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LAMSADE, Université Paris-Dauphine
Place du Maréchal De Lattre de Tassigny, 75775 Paris Cedex 16, France
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Abstract

We deal with MAX H(y-FREE PARTIAL SUBGRAPH. We mainly prove that 3-locally opti-
mum solutions achieve approximation ratio (g + 1)/(B + 2 + 1vp), where B = max,cy dg(v),
do = min,ev (m,) dm, (v) and vy = (|V(Ho)| +1)/do. Next, we show that this ratio rises up
to 3/(B + 1) when Hy = K3. Finally, we provide hardness results for MAX K3-FREE PARTIAL
SUBGRAPH.

Keywords: Approximation algorithms; Local search; APX-complete; Maximum subgraph
problem; Minimum vertex deletion problem; Hereditary property;

1 Introduction

MAX H)-FREE PARTIAL SUBGRAPH can be described as follows: given a graph G = (V, E), we
look for a maximum size subset V/ C V so that the induced graph from V'’ does not contain
any partial subgraph isomorphic to Hy, where Hy = (Vp, Ep) is a connected graph. In what
follows, MAX Hy-FREE PARTIAL SUBGRAPH-B, will denote the restriction to graphs with degrees
bounded by B.

MAX Hy-FREE PARTIAL SUBGRAPH-B is part of a more general problem-family including
the so called maximum induced subgraph problems with property P, or more commonly mazimum
subgraph problems; for a specific graph property P, the maximum induced subgraph problem with
respect to P consists in finding, in a given graph G = (V, E), a largest subset of vertices V' so
that the graph V' induces satisfies P. Even if it is not necessary, we will follow the stream of most
of the papers on the subject and assume that property P is hereditary, i.e., any time P is satisfied
by G, it as well is satisfied by any induced subgraph of G. Property P can be characterized by a
forbidden set H p made up of the minimal graphs (with respect to inclusion) that do not satisfy P:
then a graph satisfies P if and only if it does not contain any graph from Hp. Therefore, MAX Hy-
FREE PARTIAL SUBGRAPH is special case of the maximum subgraph problem where the forbidden
set Hp is made up of super-graphs that contain Hy (i.e., Hp = {G' = (Vp, E') : Ey C E'}).

The maximum subgraph problem has already been dealt with in the literature at the begin-
ning of the 80’s, notably by Lewis [9] and Yannakakis [14] who independently made the evidence
of its NP-hardness, as soon as Hy contains at least 2 vertices. The authors have then gener-
alized their results in Lewis and Yannakakis [10], giving the proof of the maximum subgraph
problem NP-hardness for any hereditary property P. Ten years later, Lund and Yannakakis [11]
proved that, on the one hand, MAX Hp-FREE SUBGRAPH is not approximable within 1/|V|¢, for
any € > 0, unless P = NP and, on the other hand, that maximum subgraph problem is not ap-
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graph property (a non-trivial hereditary graph property is a hereditary property satisfied for
infinitely many graphs and not satisfied by infinitely many). Halldorsson and Lau have proved
in [4] that maximum subgraph problem is approximable within 3/(B+1), while in [3] it has been
proved that this problem is approximable within O(log(|V'|)/|V]). Obviously, the same bounds
hold for MAX Hyp-FREE PARTIAL SUBGRAPH.

We next deal with MIN Hy-COVER PARTIAL SUBGRAPH. It consists of finding a minimum
vertex subset that intersects any subgraph H (with |Vp| vertices) of G containing a partial graph
isomorphic to Hy = (Vp, Ep). More formally, for a special connected graph Hy = (Vp, Ep) the
problem can be defined as follows: given a graph G = (V, E), we look for a minimum size
subset V/ C V so that, for any subgraph H of G isomorphic to one in the set {G' = (Vp, E’) :
Ey C E'}, there exists a vertex v € V' that belongs to H. This problem also is special case of a
more general problem called minimum vertez deletion to obtain subgraph with property P; for this
latter, we look for a minimum size subset V/ C V so that the subgraph V — V" induces satisfies P.
One can easily see that when the forbidden set Hp characterizing the hereditary property P is
{G'" = (Vo,E') : Ey C E’}, then MIN Hyp-COVER PARTIAL SUBGRAPH and minimum vertex
deletion problem are identical. MIN Hy-COVER PARTIAL SUBGRAPH is approximable within |V,
by a kind of greedy algorithm which generalizes the 2-approximation algorithm for minimum
vertex cover problem (where Hy is an edge) to any connected graph Hy. This algorithm consists
of constructing a maximal matching of the input-graph and of taking in the solution the endpoints
of the matched edges. The generalization of the above algorithm can be informally described as:
starting from V’ = (), while there exists in G a subgraph H = (V(H), E(H)) isomorphic to a
graph of size |Vp| containing Hy, add V(H) to V' and delete H from G. Furthermore, depending
on the property P, the more general minimum vertex deletion problem to obtain subgraph with
property P) may be approximable within some constant: this is notably true when P describes
a finite number of minimal forbidden subgraphs (it is, for instance, the case of line and interval
graphs) as proved in [11], and also when P can be expressed through a universal first order
formula over the graph edge subsets (see Kolaitis and Thakur [8]).

In what follows, we analyze the approximation ratio achieved by local search approximation
algorithms for MAX Hyp-FREE PARTIAL SUBGRAPH. This ratio for an instance I of a combinatorial
problem II and an approximation algorithm A for II is defined by my(I)/ opty (1), where optyy(1)
denotes the value of an optimal solution of I and m, (1) denotes the value of the solution computed
by A on I. The results obtained improve the ones of [4] for any Hy of dgp > 3. Dealing with
MIN H)-COVER PARTIAL SUBGRAPH we prove that its particular case, called MIN K3-COVER
PARTIAL SUBGRAPH-B, is APX-complete, for any B > 4, even if the input graph is Ky-free
and polynomial, for any B < 3. Furthermore, we show that no polynomial time algorithm can
approximate it within better than 24145/24144 — ¢, for any € > 0, unless P = NP. Finally, we
show that MIN K3-COVER PARTIAL SUBGRAPH-3 is polynomial. These results can be extended
also to the case of MAX K3-FREE PARTIAL SUBGRAPH-B.

2 The greedy algorithm

In this section we study the behavior of maximal solutions, computed by a natural greedy
algorithm and corresponding to 1-local optima. Such solutions can be easily computed: starting
from a worst solution and in an iterative manner, just add (or delete according to the problem
goal) vertices, as long as the current solution satisfies a given property. The overall greedy



algorithm works as follows:
1. Start with V' = {);

2. While there exists v ¢ V' such that the subgraph induced by V' U {v} does not contain
any partial subgraph isomorphic to Hy, do V' := V' U {v};

3. Output V'.

The time-complexity of this algorithm is bounded by O(|Vo|n!"®l) where Vj is the vertex set
of H().

2.1 1-local optima for any Hj

In the sequel, g and B will denote the minimum degree on Hy and the maximum degree on G,
respectively; furthermore, V(G’) and E(G’) will represent for any graph G’ its vertex and edge
sets.

Proposition 2.1 The greedy algorithm is a 6o/(B + 1)-approzimation for MAX Hy-FREE PAR-
TIAL SUBGRAPH-B.

Proof. Let U* be an optimal solution and U the solution found by the greedy algorithm. We
use a simple discharging method to show that |U| > (6o/(B + 1))|U*|. We assume B + 1 > ¢y
and we assign to each vertex of U, a quantity of charge equal to (B + 1)/d9. The discharging
phase looks as follows: if a vertex v of U has a degree at most dp — 2 in U, it keeps all its charge;
otherwise, it sends to any of its neighbors which is in U* \ U exactly 1/dp units of charge. Then,

e a vertex v of U*\U has at least dp neighbors in U of degree at least do—1 in U (otherwise, v
can be added to U without creating a copy of Hy) and hence v receives charge from at
least dg neighbors;

e a vertex v of U* NU of degree at most dg — 2 keeps all its charge; otherwise, it sends some
charge to at least B+1—§p neighbors and hence it always keeps at least one unit of charge.

We have observed that each vertex of U* has a final charge at least one and the desired inequality
now easily follows. O

The greedy algorithm reaches ratio at least dp/B in some special Hy topologies, for instance
when Hj has a unique vertex of degree §y. Furthermore, this ratio is also reached when Hy = K>
or Hy = Ks; the former case amounts to the independent set problem (consider the complete
bipartite graph K ), while the latter one amounts to the search of triangle-free maximum
subgraph. We conjecture that 1-local optima do reach ratio dyg/B in the case where Hj is a
clique; we show in section 2.2 the truthfulness of this conjecture in the case of triangles.

2.2 1-local optima for Hy = K3

We assume in this section that Hy = K3; so g = 2.

Proposition 2.2 The greedy algorithm is a 2/B-approximation for MAX K3-FREE PARTIAL
SUBGRAPH-B and this ratio is tight.



Proof. Let U* be an optimal solution and U the solution found by the greedy algorithm. We
again use a simple discharging method to prove that |U| > (2/B)|U*|. We assume B > 2 and
we assign to each vertex of U, a quantity of charge equal to B/2. We say that a vertex has
an independent neighborhood if its neighbors induce a subgraph of G consisting only of isolated
vertices, i.e., its neighborhood is an independent set. The discharging phase looks as follows: a
vertex v of U keeps all its charge if it has an independent neighborhood in G or it is an isolated
vertex in U; otherwise, it sends to each of its neighbors which is in U* and whose neighborhood
is not independent, a charge of 1/2. Then,

e a vertex v of U™\ U must be incident with at least two vertices linked by an edge in U and
hence v receives charge from at least two of its neighbors;

e if a vertex v of U* N U has an independent neighborhood or it is an isolated vertex in U,
then it keeps its charge (which is at least one unit); if v sends out any charge, then all the
neighbors of v cannot be included in U* (otherwise, v with an edge in its neighborhood
would form a triangle in U*); so, v sends out at most (B — 1)/2 units of charge and hence
it keeps at least charge of 1/2; on the other hand, it receives charge from at least one of its
neighbors in U unless all its neighbors in U have independent neighborhoods; in the latter
case, it sends out at most (B — 2)/2 units (each vertex with an independent neighborhood
belongs to U* N U) and thus it keeps at least one unit of charge.

Finally, we have proved that each vertex in U* has a final charge at least one and hence the
desired inequality follows.

For tightness of the ratio, assume G = (V,E) with V = {z1,22,91,%2,...,yp—1} and
E = {(z1,22)} U {(x1,¥), (x2,94;) : 1 < i < B — 1}; on such a graph, the solution U* =
{z1,y1,Y2,...,yB—1} is an optimum of value B while the solution found by the greedy algorithm
is U = {1, 22} of value 2 (Figure 1). O
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Figure 1: Example of tightness for greedy algorithm.

3 The 3-0PT algorithm

In this section we show that when allowing three moves from a solution to a neighboring solution,
then the 3-local optimum of MAX Hy-FREE PARTIAL SUBGRAPH guarantees differential ratio



max{(dp +1)/(B + 2+ v9),d0/(B + 1)} with vp = (|V(Ho)| —1)/do. For instance, when Hy is
a (0p + 1) clique (i.e., Hy = Ks,+1), a 3-local optimum reaches ratio (6o + 1)/(B + 3), which is
strictly better than 6o/(B + 1) as soon as B > 2§y — 1, and better than do/B when B > 3dy.
The 3-local neighborhood aims at improving a given solution U by removing one vertex from it
and by adding two vertices from V' \ U; thus, determining a 3-local optimum can be described,
for MAX Hyp-FREE PARTIAL SUBGRAPH, as follows: starting from a maximal solution S, remove
one vertex from S and add two other ones, if possible, make the solution maximal, and so on.
The name 3-0PT is due to the fact that we aim at changing the status of 3 vertices.

Proposition 3.1 3-0PT is a (5o + 1)/(B + 2 + vy)-approzimation for MAX Hp-FREE PARTIAL
SUBGRAPH-B, where vy = (|[V(Hp)| —1)/dp.

Proof. Let U* be an optimal solution and U the solution found by 3-0PT. We use a simple
discharging method to show that |U| > |U*|(dp + 1)/(B + 2 + vp). We assume B + 1 + vy > dy
and we assign to each vertex of U, a charge equal to (B+2+1)/(d0+1). We say that a
vertex v of U* \ U is critical if, when we add v to U, there is a unique graph isomorphic to Hy;
the other vertices of the copy of Hy (that belong to U) are called incident to critical vertex v.
Remark that a critical vertex v may have more neighbors in U than those incident to critical
vertex v (the neighbors of v in U outside of the copy of Hy). The discharging phase looks as
follows: a vertex v of U keeps all its charge if it has a degree at most §o — 2 in U; otherwise, a
vertex v of U sends to each of its neighbors in U* (except those of U* N U with degree at most
dp — 2 in U) a charge depending upon whether it is critical or not; so, if v is incident to critical
vertex u, then v sends to u 1/dp units of charge (in other words, v sends charge of 1/dy to its
critical neighbor w, where w is such that v is contained in the unique isomorphic copy of Hyp in
U U {w}); otherwise it sends to it 1/(dg + 1) units of charge.

Note that any vertex of U is incident to at most |Vj| — 1 critical vertices since, on the one
hand, these critical vertices form a clique (by local improvement) and, on the other hand, they
belong to U*. Let us explain why the critical vertices incident to u € U form a clique. Let u € U
and let w; and wa be two critical vertices incident to u. Assume that (wq,w2) ¢ E(G). In this
case (U \ {u}) U{w;,ws} does not contain a copy of Hy since there exists a unique copy of H
in UU{w;} and in U U{ws} respectively. So, we obtain a contradiction with local improvement
done by 3-0PT. Moreover, any vertex of U sends out at most (|Vy|—1)/do+(B—(|Vo|—1))/(dp+1)
units of charge and then, it keeps at least 2/(do+ 1) = (B+2+19)/(d0 + 1) — (|Vo| — 1)/d0 +
(B — (Vo] —1))/(dp + 1) units of charge.

We again show that the final charge received by each vertex of U* is at least 1:

e a vertex v of U* NU of degree strictly less than §y — 1 keeps all its charge; otherwise, it
receives a charge from at least §p — 1 of its neighbors and hence, its final charge is at least 1
(since, it has kept at least 2/(dgp 4+ 1) units of charge); indeed, v need not to receive some
charge from all of its (at least) dyp — 1 neighbors in U; in particular, it receives no charge
from its neighbors in U whose degree in U is at most dg — 2; on the other hand, v does not
send any charge to such vertices;

e a non-critical vertex v of U* \ U receives from at least dyg + 1 neighbors of it, 1/(dp + 1) of
charge;



e a critical vertex v of U* \ U receives from at least dp neighbors of it (the vertices incident
to the critical vertex v) 1/d¢ of charge. O

As for 1-local optima, we conjecture that 3-local optima reach ratio of at least (6o +1)/(B + 1),
which would improve ratios dp/(B + 1) and d¢/B, the best ratio expected for 1-local optimum.
The ratio conjectured is at least true for MAX INDEPENDENT SET (see [7]) and, as we are going
to show, even in the case where forbidden graph is a triangle.

Proposition 3.2 3-0PT is a 3/(B + 1)-approzimation for MAX K3-FREE SUBGRAPH-B.

Proof. Let U* be an optimal solution and U the solution found by 3-0PT. We again use a simple
discharging method. We assume B > 2 and we assign to each vertex of U, a charge of (B + 1)/3.
We say that a vertex u of U* \ U is critical if the graph induced by its neighbors in U contains
exactly one edge. Hence, any critical vertex u has only two neighbors in U, say u; and ug, such
that (u1,u2) € F; u; and ug will be called incident to critical vertex u. Note that any v € U is
incident to at most two critical vertices (the proof is similar to the Proposition 3.1). Moreover,
if v e U*NU (assume v = uq), then ug € U \ U* and v is incident to exactly one critical vertex
(this is u) since, otherwise, a local improvement would yield a better solution. The discharging
phase looks as follows: a vertex v of U keeps all its charge if it has an independent neighborhood
or it is isolated in U; otherwise, v sends 1/3 of charge to each of its neighbors which is in U*
and which does not have an independent neighborhood. If v has a critical neighbor incident to
it, then v sends 1/2 of charge instead of 1/3 this critical neighbor. So, v does not send 1/2 to
any of its critical neighbors, but only to critical vertices v such that w and v are in a triangle of
U U {u}. Finally, if v € U \ U* has a critical neighbor u incident to it (this neighbor is unique
by the previous remark; so, we can assume that v = u;), then v sends additional 1/6 of charge
to uo.

Observe that any v € U sends out at most (B —1)/3+1/241/6 = (B + 1)/3 units of charge
if it has a unique critical vertex v incident to it (in this case, v =u; € U\ U* and ug € UNU¥).
Otherwise, either it has at most two critical vertices incident to it (and, perhaps, one neighbor
in U corresponding to ug € U NU*) and it sends out at most (B —3)/3+1/2+1/2+1/6 =
(2B + 1)/6 units of charge, or it has no critical vertex incident to it and it sends out at most B/3
units of charge. Furthermore,

e a vertex v of U™\ U receives either from at least three neighbors of it 1/3 of charge, or
from two neighbors of it 1/2 of charge (if v is critical);

e avertex v of U*NU that does not send out anything has a final charge at least 1; otherwise,
v € U* NU sends out some charge; in this case, at most B — 1 of its neighbors are in U*
(the neighborhood of v is not independent); if v has a neighbor w with an independent
neighborhood, then w € U* and v does not send any charge to it; hence, v sends some
charge to at most B — 2 vertices; if no neighbor of v has an independent neighborhood,
then v can send out some charge to B — 1 vertices, but v also receives 1/3 of charge from
a neighbor in U; we can conclude that if v sends to each of its neighbors at most 1/3 of
charge, then its final charge is at least 1 (and this is the case unless v has a critical vertex
incident to it); finally, if v has a critical vertex w incident to it (assume v = wj), then v
has received additional 1/6 of charge from the vertex ug and the final charge of v is again
at least 1 (see Figure 2 for an illustration of this case).



In any case, we have proved that each vertex of U* has a final charge at least one. 0
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Figure 2: A case of Proposition 3.2; vertex 2 is critical.

Note that the result of Proposition 3.2 already slightly improves ratio 3/(B + 2) obtained
in [4].

4 Hardness results

In this section we give hardness results for MIN K3-COVER PARTIAL SUBGRAPH-B and MAX
K3-FREE PARTIAL SUBGRAPH-B. Our main result is stated in the following proposition.

Proposition 4.1 MIN K3-COVER PARTIAL SUBGRAPH-B is APX-complete, for any B > 4,

even if G is Ky-free. Furthermore, no polynomial time algorithm can approximate it within
better than 24145/24144 — ¢, for any € > 0, unless P = NP.

Proof. The proof will be done via an L-reduction (see Papadimitriou and Yannakakis [13]))
from MAX 2-SAT-3. An instance of MAX 2-SAT-3 consists of a collection of clauses and a set of
variables such that any clause contains exactly 2 variables and any variable appears at most 3
times (positively and negatively) in the formula. The goal is to determine a truth assignment
satisfying a maximum number of clauses. Karpinski [6] proved that (i) MAX 2-SAT-3 is APX-
complete and (ii) it is NP-hard to approximate it within a factor 2011/2012 + ¢, for any € > 0.

i Ci fi

T ai bi ;
Figure 3: The gadget H(z;).
We consider an arbitrary instance I = (C,X) of MAX 2-SAT-3, where X = {z1,...,2,}

denotes the set of variables and C = {C1,...,C,,} denotes the set of clauses. We construct an
instance G = (V, E) of MIN K3-COVER PARTIAL SUBGRAPH-4 as follows:



e for z; € X, we build gadget H(x;) (Figure 3); it has seven vertices a;, b;, ¢, fi, gi, ; and Z;;
its edges are such that the subgraphs induced by {a;, b;, ¢;}, {ai, gi, z;} and {b;, fi, ©;} are
all Kg;

e for C; € C, we build gadget H(C;) which is a K3 on vertices v1(j),...,v3(j).

Let Cj = x;, V x;,, 1 < i1 < iz < n be a clause in I. Then, for k = 1,2: if z;, = x;, we add
edges {(z1,v£(4)), (g1, vx(j))} in E; if ;, = @, then we add in E edges {(z1,vk(7)), (fi,vk(4))}-
The resulting graph G has maximum degree at most 4 (since we can assume that any variable
appears both positively and negatively in I).

Let T be a truth assignment. Without loss of generality, assume that 7" satisfies the following
clauses C1,...,C, (i.e., m(I) = p). We construct a triangle-cover U = U; U Uy as follows: for
1<i<n,z; €Uy and b; € Uy if T(z;) =true else z; € Uy and a; € U;. For 1 < j < k, we
add in Uy one vertex among v1(j),v2(7) in such a way that the remaining, non-added, vertex
has a neighbor in U;. For k+1 < j < m, we add v;(j)) and v2(j) in Uy. We so have:
Ul = m(G) =2(m+n)—p.

Conversely, let U be a triangle-cover in GG. Without loss of generality, we can assume that U
have the following properties: (i) for i = 1,...,n, there exist exactly two vertices of U in H(x;);
moreover, these vertices are either x; and b; or &; and a;; (i) for j = 1,...,m, there exist either 1
or 2 vertices of U in H(C}); moreover, these vertices are among v;(j),v2(j). We then get the
truth assignment 7" defined by: T'(x;) =true if z; € U; T(x;) =false if &; € U. The number of
satisfied clauses by T"is m(I) = |U| — 2(m + n).

Notice that m(G) — opt(G) = opt(I) — m(I). Furthermore, opt(G) < 2m + 2n < 6m, since
each clause has exactly 2 variables, and opt(/) > m/2. Thus, we deduce opt(G) < 12opt([).

In order to prove the lower bound claimed, it suffices now to use the result of [6] cited in the
beginning of the proof, i.e., m(I)/opt(I) < 2011/2012 + ¢ together with the facts that m(G) —
opt(G) = opt(L) — m(I) and opt(G) < 120pt(I); Then an easy algebra gets m(G)/opt(G) >
24145/24144 — ¢, q.e.d. 0

We note that an analogous result can be obtained for MAX K3-FREE PARTIAL SUBGRAPH-B
also. In fact, we know that U is triangle-free iff V' \ U is a triangle-cover of the input graph.
Moreover, we can assume that any vertex of GG is adjacent to some triangle. Then, the following
corollary holds immediately.

Corollary 4.2 MAX K3-FREE PARTIAL SUBGRAPH-B is APX-complete for any B > 4.

We finally point out both MIN K3-COVER PARTIAL SUBGRAPH-3 and MAX K3-FREE PARTIAL
SUBGRAPH-3 can be polynomially solved by matching techniques. In order to see this, observe
that G is in this case K -free since we can assume that it is connected and has at least 5 vertices.
In this case any of its vertices is adjacent to at most 2 triangles.

Proposition 4.3 MIN K3-COVER PARTIAL SUBGRAPH-B and MAX K3-FREE PARTIAL SUBGRAPH-
B are polynomial for any B < 3.
5 Further remarks

We have shown that, in the case of MAX Hy-FREE PARTIAL SUBGRAPH, 3-local optima are better
solutions than 1-local optima; the following question can be therefore posed: is the approximation



ratio provided by local optima strictly improved when increasing the size of the neighborhood
(or, equivalently, are (k + 1)-local optima strictly better solutions than k-local ones?). In fact,
if py refers to the approximation ratio provided by k-local optima, we wonder if the ratio px/ps
becomes, for a certain k, greater than, or equal to, 1. If pg/p3 tends to 1, then local optima
according to larger neighborhoods will never improve ps within better than an additive constant.
On the other hand, if py/ps tends to something strictly greater than 1, then local optima of
larger neighborhoods improve p3 by multiplicative factors. We cannot answer this question yet;
all we can say is that, in general, the quality of local optima is not necessarily correlated to the
size of neighborhood there are defined from.

For instance, it is proved in Bruggemann et al. [1] that, in the special case of the mini-
mum label spanning tree problem with bounded color classes, 3-local optima provide a (r 4 1)/2-
approximation, while the ratio provided by k-local optima will not exceed (r/2)+e, for any k > 3
and € > 0, where r bounds the number of occurrence of each color on the edges of the graph
considered.

Another illustration of this fact is provided by MAX 2-CCSP: it is shown in Monnot et al. [12]
that 3-local optima for MAX 2-CCSP ensure a 1/3-approximation, but this ratio is tight for any
k-local optimum, for a special neighborhood structure called mirror k-bounded neighborhood. Do
there exist problems for which use of wider neighborhoods leads to strictly better solutions? This
is an open question and matter for further research.

Let us note that another way of measuring the quality of an approximation ratio is by using
the so-called differential approximation ratio. It is defined as (wrr(I) —ma(1))/(wn(I) —opty (1)),
where wrr(]) is the value of a worst feasible solution for I and opty(I) and m,(I) are as for the
standard ratio used in the paper. The differential ratio can be used in uniformly analyzing
approximation properties of classes of maximization and minimization problems. For instance,
it is stable under affine transformations of the objective function of a problem (see Demange and
Paschos [2] or Hassin and Khuller [5]).

Revisit MIN Hp-COVER PARTIAL SUBGRAPH. Computation of an optimum solution here is
obviously no harder than for MAX Hy-FREE PARTIAL SUBGRAPH; indeed, both computations
are of equivalent hardness since a solution value (a posteriori the optimal one) is given by the
number of deleted vertices for the former and of remaining vertices for the latter. In other
words if G’ is a feasible solution for the former, then G\ G’ is a feasible solution for the latter.
However, MAX Hy-FREE PARTIAL SUBGRAPH and MIN Hy-COVER PARTIAL SUBGRAPH become
strikingly different in terms of their standard approximation: in fact, as we previously said, MAX
Hy-FREE PARTIAL SUBGRAPH cannot be standard approximable within any constant, while MIN
Hy-COVER PARTIAL SUBGRAPH is constant approximable. This dissymmetry is removed when
dealing with differential approximation. In fact, it is easy to see that transformation G — G\ G’
is affine and, as we have already mention, differential ratio is stable under such transformation;
consequently, MIN Hy-COVER PARTIAL SUBGRAPH and MAX Hy-FREE PARTIAL SUBGRAPH are
equi-approximable regarding to their differential approximation. On the other hand, standard
and differential approximation ratios coincide for MAX Hy-FREE PARTIAL SUBGRAPH, since, for
this problem the value of the worst solution of any instance is 0. All this implies that, when
dealing with differential approximation, our positive results identically apply to the cases of MIN
Hy-COVER PARTIAL SUBGRAPH.
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