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Abstract

The problem of finding a martingale on a manifold with a fixed ran-

dom terminal value can be solved by considering BSDEs with a gen-

erator with quadratic growth. We study here a generalization of these

equations and we give uniqueness and existence results in two different

frameworks, using differential geometry tools. Applications to PDEs

are given, including a certain class of Dirichlet problems on manifolds.

1 Introduction

1.1 Martingales and BSDEs on manifolds

Unless otherwise stated, we shall work on a fixed finite time interval [0; T ]; moreover,
(Wt)0≤t≤T will always denote a Brownian Motion (BM for short) in RdW , for a
positive integer dW . Moreover, Einstein’s summation convention will be used for
repeated indices in lower and upper position.

It is well-known that there is a deep interplay between on the one hand the
probability theory of real martingales and Brownian motion and on the other hand
the theory of PDEs and harmonic functions h : M1 → R, defined on a manifold M1.
For instance, the Feynman-Kac formula gives a probabilistic interpretation for the
solution of a PDE; besides, the Dirichlet problem for such harmonic functions h can
be solved by considering real martingales with fixed terminal value.

It is natural to ask whether these links can be generalized to the nonlinear
context of manifolds, i.e. if we replace the vector space R in the definition of h
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by a manifold M ; this is what we now examine. Suppose that M is a manifold
endowed with a connection Γ; then one can define the notion of Γ-martingale on M ,
which generalizes real local martingales (for an overview of the basic definitions and
properties, see [10], [5] or [14]).

In Rn, the problem of finding a martingale (Xt)0≤t≤T with terminal value XT = U
consists of solving the Backward Stochastic Differential Equation (BSDE for short)

(E)

{

X t+dt = X t + ZtdWt

XT = U,

where (Zt)0≤t≤T is a Rn×dW -valued progressively measurable process. With the
connection Γ on M , one can define an exponential mapping exp and the equation
under infinitesimal form (E) becomes, for martingales on M ,

(M)0

{

Xt+dt = expXt
(ZtdWt)

XT = U
(1.1)

where Zt ∈ L(RdW , TXt
M) is now a linear map. As in the linear context, studying

martingales on M (or equivalently solving BSDE (M)0) allows to solve in a prob-
abilistic way some nonlinear PDEs and to study harmonic mappings. Let us recall
the definition and some properties of these mappings.
A harmonic map H : M1 → M between Riemannian manifolds M1 and M is a
smooth map which is a local extremal of the energy functional

∫

‖gradH‖2dvol

where dvol is the Riemannian volume element on M1.
A different but equivalent point of view about these mappings is the one of a system
of elliptic PDEs (see [8]); let us make precise it. Consider a second-order differential
operator L without term of order 0, defined on M1. For h : M1 → M , one can define
by means of L the tension field of h; it is a vector field along h, i.e.

LM(h) : M1 → TM, LM(h)(x) ∈ Th(x)M.

Then the equation LM(h) = 0 characterizes L-harmonic maps (see [9] and [8], and
probabilistic interpretations in the introductions of [28] and [29]). In coordinates
(xi) on M and (yα) on M1, this equation can be written as the following system of
elliptic PDEs

∀i, ∆M1φ
i + Γi

jk(φ)gαβ(x)DαφjDβφ
k = 0

with ∆M1 denoting the Laplace-Beltrami operator and (gαβ) the inverse metric ten-
sor on M1. Note that we have used the summation convention.
With the theory of martingales on manifolds, one can solve such a system of non-
linear elliptic PDEs; for further details, the reader is referred to [15] and [17].

Now we come to the aim of this article, by enlarging the class of processes studied.
Let (By

t )0≤t≤T denote the Rd-valued diffusion which is the unique strong solution of
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the following SDE :
{

dBy
t = b(By

t )dt + σ(By
t )dWt

By
0 = y,

(1.2)

where σ : Rd → Rd×dW and b : Rd → Rd are C3 bounded functions with bounded
partial derivatives of order 1,2 and 3.

On Rn, equation (E) is a very simple BSDE. A more general form of BSDE on
[0; T ] is

(E + D)

{

X t+dt = X t + ZtdWt + f(By
t , Xt, Zt)dt

XT = U,

studied for instance in [24] and [25]; such an equation can be used to solve systems
of quasilinear PDEs (see for example [25]).
If we try to extend equation (E + D) to manifolds, by combining with equation
(M)0 we get the following equation (under infinitesimal form)

(M + D)0

{

Xt+dt = expXt
(ZtdWt + f(By

t , Xt, Zt)dt)
XT = U.

The aim of this work is to study existence and uniqueness of a solution to the
generalized equation (M + D)0.
As for martingales, which are linked to harmonic mappings h (i.e. to the above
equation LM(h) = 0), this BSDE is related with a differential operator generalizing
the tension field LM ; moreover, in some cases, the class of mappings which solve
the new PDE can be described in terms of the local extrema of another variational
problem. This will be discussed in Section 5. It is known that when M1 ⊂ R3

and M = S2, harmonic mappings can be used to model the state of equilibrium of
liquid crystals (see the introduction of [13] for a brief discussion); then mappings
associated to the new variational problem could be used to model the equilibrium
state of a liquid crystal in an exterior field equal to the drift term f in equation
(M + D)0.

1.2 Setting of the problem

In the whole paper, we will always suppose that a global system of coordinates is
given on M . Then in these coordinates, we get from equation (M)0 the following
BSDE (see for instance [10] or the introduction of [6])

(M)

{

dXt = ZtdWt − 1
2
Γjk(Xt)([Zt]

k|[Zt]
j)dt

XT = U ;

in this equation, we have used the following notations, which will be valid throughout
the sequel : (·|·) is the usual inner product in an Euclidean space, the summation
convention is used, and [A]i denotes the ith row of any matrix A; finally,

Γjk(x) =







Γ1
jk(x)
...

Γn
jk(x)






(1.3)
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is a vector in Rn, whose components are the Christoffel symbols of the connection.
Remark also that here Zt is a matrix in Rn×dW .

In this case, the classical approach of [24] to solve BSDEs with Lipschitz coeffi-
cients fails since there is a quadratic term in Zt in the drift (the reader is referred
to [23] or [21] for an introduction to the theory of BSDEs in Euclidean spaces).
However, uniqueness and existence results have been obtained using differential ge-
ometry tools, in particular by Arnaudon ([1]), Darling ([6]), Emery([10]), Kendall
([15]), Picard ([27] and [28]) or Thalmaier ([32] and [31]); note also the results of
Estrade and Pontier ([11]) concerning some classes of Lie groups. Independently of
geometric tools, a lot of works have tried to weaken the Lipschitz assumption : in
the one-dimensional case, they include [18] (in dimension one, her results are more
general than the ones of this paper because she deals with generators with quadratic
growth), [20] or [12]; in higher dimensions, we refer the reader for instance to [4],
[30] (who studies a Ricatti-type BSDE) and [22]. To the best of our knowledge,
there is no paper that would include our results in dimensions greater than one.

Now in our global chart, the equation (M + D)0 becomes

(M + D)

{

dXt = ZtdWt +
(

−1
2
Γjk(Xt)([Zt]

k|[Zt]
j) + f(By

t , Xt, Zt)
)

dt
XT = U

(the same notation will be used to denote the TM-valued function f and its image
in local coordinates). The process X will take its values in a compact set, and a
solution of equation (M +D)0 will be a pair of processes (X, Z) in M ×(RdW ⊗TM)

such that X is continuous and IE
(

∫ T

0
‖Zt‖2

rdt
)

< ∞ (‖ · ‖2
r is a Riemannian norm;

see below). If we consider a global system of coordinates on an open set O of Rn, it
corresponds to processes (X, Z) in O × RndW , such that X is in a compact set and

IE
(

∫ T

0
‖Zt‖2dt

)

< ∞, solving equation (M + D).

Two different cases will be considered here : firstly when the drift f does not
depend on z, and secondly the case of a general f in nonpositive curvatures. In the
two cases, a Riemannian structure is fixed on M ; in the former case, the connection
may be independent of this Riemannian structure, while in the latter, only the Levi-
Civita connection associated will be used. Note that the case for a general f with
K > 0 involves more technical calculations; it will appear elsewhere.

We first give in Section 2 mild generalizations of well-known results, concern-
ing the geometry of the manifold and a characterization of the solutions in the
z-independent case by means of convex functions. In Section 3, we study the unique-
ness problem. It is solved by generalizing to our context two methods : on the one
hand, Emery’s idea, used in [10] and [15]; on the other hand, the work of Picard
([28]). We obtain Theorems 3.3.2 and 3.4.6.

Section 4 is devoted to proving the existence of a solution of equation (M + D).
The main arguments are to exhibit a solution for ”simple” terminal values (based on
a strong bound on the process (Zt) in Subsection 4.3) and to solve the equation for
any terminal value using approximation procedures (Subsections 4.1 and 4.6). We
need for the proof an additional (and necessary in fact) condition on the drift f :
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it is supposed to point outward on the boundary of the set on which we work. We
give in Subsection 1.4 the main result (Theorem 1.4.1) which sums up the results
obtained. In Section 5, we extend the results to random time intervals [0; τ ], where
τ is successively a bounded stopping time (Theorem 5.3.1) and a stopping time
verifying an exponential integrability condition (Theorem 5.3.2); then to conclude
this paper, we give some generations and applications to the theory of PDEs, as well
as the variational problem related to equation (M + D)0.

The uniqueness part, as well as the applications to PDEs, are mainly adaptations
of procedures already used; on the contrary, the approach for the existence seems
to be novel.

1.3 Notations and hypothesis

In all the article, we suppose that a filtered probability space (Ω,F , P, (Ft)0≤t≤T )
is given on which (Wt)t denotes a dW -dimensional BM. Moreover, we always deal
with a complete Riemannian manifold M of dimension n, endowed with a linear
symmetric (i.e. torsion-free) connection whose Christoffel symbols Γi

jk are smooth;
the connection does not depend a priori on the Riemannian structure.

On M , δ denotes the Riemannian distance; |u|r is the Riemannian norm for a
tangent vector u and |u′| the Euclidean norm for a vector u′ in Rn. If h is a smooth
real function defined on M and u1, u2 are tangent vectors at x, the differential of h
is denoted by Dh(x) < u > or h′(x) < u >; the Hessian Hess h(x) is a bilinear form
the value of which is denoted by Hess h(x) < u1, u2 >.

For β ∈ N∗, we say that a function is Cβ on a closed set F if it is Cβ on an
open set containing F . For a matrix z with n rows and k columns, tz denotes its
transpose,

‖z‖ =
√

Tr(ztz) =

√

√

√

√

k
∑

i=1

|[tz]i|2

(Tr is the trace of a square matrix) and ‖z‖r =
√

∑k

i=1 |[tz]i|2r where the columns of

z are considered as tangent vectors. The notation Ψ(x, x′) ≈ δ(x, x′)ν means that
there is a constant c > 0 such that

∀x, x′,
1

c
δ(x, x′)ν ≤ Ψ(x, x′) ≤ c δ(x, x′)ν .

Finally, recall that a real function χ defined on M is said to be convex if for any
M-valued geodesic γ, χ ◦ γ is convex in the usual sense (if χ is smooth, this is
equivalent to require that Hess χ be nonnegative).

Before the general framework, let us give some additional notations which are
specific to the Levi-Civita connection. In this case, we always assume that the
injectivity radius R of M is positive and that its sectional curvatures are bounded
above; we let K be the smallest nonnegative number dominating all the sectional
curvatures. For the distance function δ, if x̃ = (x, x′) is a point and u, u are tangent
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vectors at x′, we consider the partial derivatives (when they are defined)

δ′2(x̃) < u >= δ′(x̃) < (0, u) >

and
Hess22 δ(x̃) < u, u >= Hess δ(x̃) < (0, u), (0, u) > .

Now let us recall from [15] the definition of a regular geodesic ball. A closed geodesic
ball B of radius ρ and center p is said to be regular if
(i) ρ

√
K < π

2

(ii) the cut locus of p does not meet B.
For an introductory course in Riemannian geometry, the reader is referred to [3] and
for further facts about curvature, to [19].

Throughout this article, we consider an open set ω 6= ∅ relatively compact in
an open subset O of M , such that there is a unique O-valued geodesic between any
two points of O; O is also supposed to be relatively compact in a local chart, so
that it provides a system of coordinates (global on ω); it will be as well considered
as a subset of Rn. We suppose that there exists a nonnegative, smooth and convex
function Ψ on the product ω × ω (i.e. convex on an open set containing this set)
which vanishes only on the diagonal ∆ = {(x, x)/x ∈ ω} (ω is said to have Γ-convex
geometry); besides, we suppose that Ψ ≈ δp for a p ≥ 2 (note that since Ψ is smooth,
p is an even integer). In fact, we take for ω a sublevel set of a smooth convex function
χ defined on O : {χ ≤ c} (note that this hypothesis and the existence of Ψ guarantee
the existence and uniqueness of a ω-valued geodesic between any two points of ω).
Emery has shown (see Lemma (4.59) of [10]) that, in the case of a general connection
Γ, any point of M possesses a neighbourhood with Γ-convex geometry; when the
Levi-Civita connection is used, this is true for a regular geodesic ball (see [16]).

Finally we always assume two hypothesis on f :

∃L > 0, ∀b, b′ ∈ Rd, ∀(x, z) ∈ O ×L(RdW , TxM), ∀(x′, z′) ∈ O × L(RdW , Tx′M),

∣

∣

∣

∣

x′

‖
x

f(b, x, z) − f(b′, x′, z′)

∣

∣

∣

∣

r

≤ L

(

(|b − b′| + δ(x, x′))(1 + ‖z‖r + ‖z′‖r)

+

∥

∥

∥

∥

x′

‖
x

z − z′
∥

∥

∥

∥

r

)

(1.4)

and
∃L2 > 0, ∃x0 ∈ O, ∀b ∈ Rd, |f(b, x0, 0)|r ≤ L2. (1.5)

The first one is a ”geometrical” Lipschitz condition on f . This special form is needed
to get an expression which is invariant under changes of coordinates. We will see
that later, in (2.5). Remark that, in the z-independent case, it just means that f is
Lipschitz with respect to the first two variables; otherwise,

x′

‖
x

z

6



denotes the Riemannian parallel transport along the unique geodesic between x and
x′. The second one means that f is bounded with respect to the first argument.
Remark that these conditions also imply the boundedness of f if it does not depend
on the variable z.

Note to end this part that the same letter C will often stand for different constant
numbers.

1.4 The main result

Before achieving calculations, we give the main theorem of the article. Let us first
introduce a technical but natural hypothesis, which we will make explicit in Subsec-
tion 4.6 :

(H) f is pointing outward on the boundary of ω.

Then we can state :

Theorem 1.4.1 We consider the BSDE (M + D) with terminal random variable
U ∈ ω = {χ ≤ c}, where ω satisfies the above conditions. If f verifies conditions
(1.4), (1.5) and (H), and if χ is strictly convex (i.e. Hess χ is positive definite),
then

(i) If f does not depend on z, the BSDE has a unique solution (Xt, Zt)0≤t≤T such
that X remains in ω.

(ii) If M is a Cartan-Hadamard manifold and the Levi-Civita connection is used,
then the BSDE has yet a unique solution (Xt, Zt)0≤t≤T with X in ω.

In particular, if the Levi-Civita connection is used, a ”good” example of domain on
which existence and uniqueness hold is a regular geodesic ball.

In Section 5, we will extend this theorem to random time intervals [0; τ ] (in-
stead of [0; T ]), for stopping times τ which are bounded, or verify the exponential
integrability condition :

∃ρ > 0 : IE(eρτ ) < ∞. (1.6)

In the former case, Theorem 1.4.1 goes the same, while in the latter the constants
L and L2 in (1.4) and (1.5) are furthermore required to be small with respect to the
constant ρ in (1.6).

Acknowledgements : The author would like to thank his supervisor Jean Picard
for his help and his relevant advice, and the referees for their suggestions to improve
a first version.

2 Preliminary results

We first recall elementary results about Itô’s formula and parallel transport. Then
we give some geometrical estimates for the distance function on M × M and char-
acterize solutions of the equation (M + D) using convex functions, but only when
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the drift f does not depend on z. As underlined in the introduction, these results
are just mild generalizations of well-known results of [10] and [28].

In this section, the covariant derivative of a vector field zt along a curve γt will
be denoted ∇γ̇t

zt.

2.1 Itô’s formula on manifolds

Consider two solutions (X1, Z1) and (X2, Z2) of equation (M + D) with terminal
values U1 and U2, such that X1 and X2 remain in O. Let

X̃ = (X1, X2) and Z̃ =

(

Z1

Z2

)

;

then Itô’s formula with the function Ψ is written

Ψ(X̃t) − Ψ(X̃0) =

∫ t

0

DΨ(X̃s)
(

Z̃sdWs

)

+

∫ t

0

DΨ(X̃s)

(

f(By
s , X

1
s , Z1

s ) − 1
2
Γjk(X

1
s )([Z1

s ]
k|[Z1

s ]
j)

f(By
s , X

2
s , Z2

s ) − 1
2
Γjk(X

2
s )([Z2

s ]
k|[Z2

s ]
j)

)

ds

+
1

2

∫ t

0

Tr
(

tZ̃sD
2Ψ(X̃s)Z̃s

)

ds

=

∫ t

0

DΨ(X̃s)
(

Z̃sdWs

)

+
1

2

∫ t

0

(

dW
∑

i=1

t[tZ̃s]
iHess Ψ(X̃s)[

tZ̃s]
i

)

ds

+

∫ t

0

DΨ(X̃s)

(

f(By
s , X

1
s , Z1

s )
f(By

s , X
2
s , Z2

s )

)

ds (2.1)

(remember notation (1.3) and that [tZ̃s]
i denotes the ith column of the matrix Z̃; it

is a vector in R2n). Moreover, for a smooth function h on O and a solution (X, Z)
of (M + D), we get a similar formula, replacing X̃ by X and Z̃ by Z.

2.2 Two inequalities

We first give an equivalence result between the Euclidean and Riemannian norms;
it follows easily from the relative compactness of O, considered as a subset of Rn (in
particular, this means that we can identify each tangent space with Rn).

Lemma 2.2.1 There is a c > 0 such that for any (x, z) ∈ O × TxM = O × Rn,

1

c
|z| ≤ |z|r ≤ c|z|.

Lemma 2.2.1 will often be useful in the sequel.
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Proposition 2.2.2 The Levi-Civita connection is used. There is a C > 0 such
that for every (x, x′) ∈ O × O and (z, z′) ∈ TxM × Tx′M , we have

∣

∣

∣

∣

x′

‖
x

z − z′
∣

∣

∣

∣

r

≤ C (|z − z′| + δ(x, x′)(|z| + |z′|)) (2.2)

and

|z − z′| ≤ C

(∣

∣

∣

∣

x′

‖
x

z − z′
∣

∣

∣

∣

r

+ δ(x, x′)(|z|r + |z′|r)
)

. (2.3)

Remark 1. In fact, by Lemma 2.2.1, we can use any of the two norms (except
for |z − z′| which is necessarily the Euclidean norm).
Proof. It is sufficient to prove

∀(x, z), (x′, z′) ∈ O × Rn,

∣

∣

∣

∣

x′

‖
x

z − z

∣

∣

∣

∣

≤ Cδ(x, x′)|z|. (2.4)

Indeed, this implies

∣

∣

∣

∣

x′

‖
x

z − z′
∣

∣

∣

∣

r

≤ C1

(

|z − z′| +
∣

∣

∣

∣

x′

‖
x

z − z

∣

∣

∣

∣

)

≤ C(|z − z′| + δ(x, x′)|z|)

and

|z − z′| ≤
∣

∣

∣

∣

x′

‖
x

z − z

∣

∣

∣

∣

+

∣

∣

∣

∣

x′

‖
x

z − z′
∣

∣

∣

∣

≤ C

(

δ(x, x′)|z| +
∣

∣

∣

∣

x′

‖
x

z − z′
∣

∣

∣

∣

)

.

So let us prove (2.4) : let γ be the geodesic such that γ(0) = x and γ(1) = x′,
and z(t) the parallel transport of z along γ :

∀t ∈ [0; 1], z(t) =
γt

‖
x

z.

In local coordinates, the equation ∇γ̇t
z(t) = 0 gives for every k

żk(t) + Γk
jl(γt)γ̇

j
t z

l(t) = 0.

Moreover, |γ̇t|r = δ(x, x′) so |γ̇t| ≤ C̃δ(x, x′) and
∣

∣

∣

∣

x′

‖
x

z − z

∣

∣

∣

∣

2

= |z(1) − z(0)|2

=
∑

k

|zk(1) − zk(0)|2

=
∑

k

∣

∣

∣

∣

∫ 1

0

żk(t)dt

∣

∣

∣

∣

2

=
∑

k

∣

∣

∣

∣

∫ 1

0

Γk
jl(γt)γ̇

j
t z

l(t)dt

∣

∣

∣

∣

2

≤ C1δ(x, x′)2
∑

l

∫ 1

0

|zl(t)|2dt

≤ Cδ(x, x′)2|z|2.
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The last inequality comes from the equivalence on O of the Riemannian and Eu-
clidean norms, and the fact that |z(t)|r is constant by definition of z(t). The proof
is completed.

As a consequence, on the relatively compact set O ⊂ Rn, (1.4) becomes

∃L′ > 0, ∀b, b′ ∈ Rd, ∀(x, z), (x′, z′) ∈ O × RndW ,

|f(b, x, z) − f(b′, x′, z′)| ≤ L′((|b− b′| + |x− x′|)(1 + ‖z‖ + ‖z′‖) + ‖z − z′‖). (2.5)

Remark 2. In particular, (2.5) is verified for a drift f that is Lipschitz in
(b, x, z) in O (the Lipschitz property of f is not necessarily preserved by a change
of coordinates, but (2.5) is).

Remark 3. If f does not depend on z, it just means that f is Lipschitz in (b, x).

2.3 Estimates of the derivatives of the distance

This paragraph is based on Section 1 of [28]. The connection used is Levi-Civita’s
one.

The geodesic distance (x, x′) 7→ δ(x, x′) is defined on M × M and is smooth
except on the cut locus and the diagonal {x = x′}. We want to estimate its first and
second derivatives when M × M is endowed with the product Riemannian metric.
If x̃ = (x, x′) is a point which is not in the cut locus or the diagonal, there exists
a unique minimizing geodesic γ(t), 0 ≤ t ≤ 1, from x to x′. If ut is a vector of
Tγ(t)M , we can decompose ut as vt + wt, where vt is the orthogonal projection of ut

on γ̇(t); the vectors vt and wt are respectively called the tangential and orthogonal
components of ut. If u = (u0, u1) is a vector of Tx̃(M ×M), (v0, v1) and (w0, w1) are
also called its tangential and orthogonal components.

Lemma 2.3.1 Let x̃ be a point of M × M which is not in the cut locus or the
diagonal. Let u be a vector of Tx̃(M × M) and let v and w be its tangential and
orthogonal components. Then

|δ′(x̃) < u > | =

∣

∣

∣

∣

x′

‖
x

v0 − v1

∣

∣

∣

∣

r

; (2.6)

if moreover K = 0 (i.e. the sectional curvatures are nonpositive), then

Hess δ(x̃) < u, u >≥ 1

δ(x̃)

∣

∣

∣

∣

x′

‖
x

w0 − w1

∣

∣

∣

∣

2

r

. (2.7)

Proof. Let Jv(t) (resp. Jw(t)) be the tangential (resp. normal) Jacobi field along
γ(t) satisfying Jv(0) = v0 and Jv(1) = v1 (resp. Jw(0) = w0 and Jw(1) = w1). From
(1.1.5) and (1.1.7) of [28], we have

δ′(x̃) < u >=
(γ̇(t)|∇γ̇(t)Jv(t))

|γ̇(t)|r
(2.8)

10



and

Hess δ(x̃) < u, u >≥ 1

δ(x̃)

∫ 1

0

|∇γ̇(t)Jw(t)|2rdt − Kδ(x̃)

∫ 1

0

|Jw(t)|2rdt. (2.9)

It is easy to see with the Jacobi equation that Jv(t) = (At + B)γ̇(t). Then
∇γ̇(t)Jv(t) = Aγ̇(t) and the limit conditions Jv(0) = v0 = αγ̇(0) and Jv(1) = v1 =
βγ̇(1) imply A = β − α. Hence (2.8) gives

|δ′(x̃) < u > | = |A| · |γ̇(t)|r = |β − α|δ(x̃) =

∣

∣

∣

∣

x′

‖
x

v0 − v1

∣

∣

∣

∣

r

.

This is (2.6).
Moreover, let us write Jw(t) =

∑

i ui(t)Ei(t) where {Ei(t)}i is a parallel or-
thonormal frame along γ. Its covariant derivative is ∇γ̇(t)Jw(t) =

∑

i u̇i(t)Ei(t) and
x′

‖
x

Jw(0) =
∑

i ui(0)Ei(1). Then

∫ 1

0

|∇γ̇(t)Jw(t)|2rdt =

∫ 1

0

∑

i

|u̇i(t)|2dt

≥
∑

i

(
∫ 1

0

u̇i(t)dt

)2

=

∣

∣

∣

∣

x′

‖
x

Jw(0) − Jw(1)

∣

∣

∣

∣

2

r

.

Now this inequality together with (2.9) and the nonpositivity of the sectional cur-
vatures give (2.7).

Then we have the following estimate :

Proposition 2.3.2 If K = 0 and x̃ is not in the cut locus, then

Hess (
1

2
δ2)(x̃) < u, u >≥

∣

∣

∣

∣

x′

‖
x

u0 − u1

∣

∣

∣

∣

2

r

. (2.10)

Proof. If x̃ = (x, x′) is not on the diagonal, we recall the classical formula

Hess (
1

2
δ2)(x̃) < u, u >= δ(x̃) · Hess δ(x̃) < u, u > +(δ′(x̃) < u >)2.

This formula and estimates (2.6) and (2.7) imply the proposition for x 6= x′ since

the two terms
x′

‖
x

v0 − v1 and
x′

‖
x

w0 − w1 are orthogonal for the Riemannian norm.

The case x = x′ follows by continuity since δ2 is smooth on a neighbourhood of the
diagonal.

11



2.4 A characterization of the solutions of equation (M + D)
when the drift f does not depend on z

We give here a generalization of a well-known result (see (4.41)(ii) in [10]) which
roughly says that a continuous M-valued process (Yt) is a Γ-martingale if and only
if its image under convex functions is a real local submartingale. In this paragraph,
the filtration used is the natural one of (Wt)t.

Proposition 2.4.1 Suppose that the drift f does not depend on z. Then every
point p of M has an open neighbourhood Op, included in a local chart, with the
following property :

A pair of processes (X, Z) (with X continuous, adapted and Op-valued) is a

solution of (M + D) iff for every convex function ξ : Op → R, ξ(Xt) −
∫ t

0
Dξ(Xs) ·

f(By
s , Xs)ds is a local submartingale.

The proof given here is just an adaptation of Emery’s one; first we recall Lemma
(4.40) of [10].

Lemma 2.4.2 On M , let ξ be a smooth function. Every point of M has an open
neighbourhood Op depending on ξ with the following property : For every ε > 0 and
a ∈ Op, there is a convex function ha

ε : Op → R such that (a, x) 7→ ha
ε(x) is smooth

on Op×Op, ha
ε(a) = 0, Dha

ε(a) = Dξ(a) and Hess ha
ε(a) = εg(a), where g represents

the metric.

Now we complete the proof of Proposition (2.4.1) :
The ”only if” part is just a consequence of Itô’s formula (similar to (2.1)) applied
to ξ(Xt) : as Hess ξ is nonnegative by convexity, ξ(Xt)−

∫ t

0
Dξ(Xs) · f(By

s , Xs)ds is
indeed a local submartingale.

For the ”if” part, notice first that around p there is a system (xi) of local coor-
dinates that are convex functions (if (yi) are any local coordinates with yi(p) = 0,
then take xi = yi + c

∑

j(y
j)2 for c > 0 large enough). Choose Op relatively compact

in the domain of such a local chart and in an open set on which Lemma (2.4.2) holds
for ξ = xi and ξ = −xi (denote by S this set of 2n functions).

For a continuous adapted Op-valued process X, suppose that h ◦X −
∫

Dh(X) ·
f(By, X)dt is a local submartingale for every convex h on Op. Taking first for h
the global (on Op) coordinates (xi) shows that each xi ◦X is a real semimartingale,
so X is a semimartingale. For every fixed ξ ∈ S, it is sufficient to prove that
ξ◦X− 1

2

∫

(Hess ξ)ijd < X i, Xj > −
∫

Diξ(X) ·f i(By, X)dt is a local submartingale;
for then replacing ξ by −ξ shows that (remember that Dijx

k = 0 and Dix
k = 1 if

i = k and 0 otherwise)

xk ◦ X +
1

2

∫

Γk
ij(X)d < X i, Xj > −

∫

fk(By, X)dt

is a local martingale for each k. But the theorem of representation of local mar-
tingales in Brownian filtrations allows to write this local martingale explicitly as
∫

ZtdWt; thus d < X i, Xj >t= ([Zt]
i|[Zt]

j)dt and (X, Z) solves equation (M + D).

12



By the choice of Op, given any ε > 0 we are provided with functions ha
ε associated

to ξ as in Lemma (2.4.2). Call σ the pth dyadic subdivision of the time axis (σ =
{tk = k

2p : k, p ∈ N}) and let for t ∈ [tk; tk+1[, ρ(t) = tk and

Sσ
t =

∑

l<k

(

h
Xtl
ε (Xtl+1

) −
∫ tl+1

tl

Dh
Xtl
ε (Xu) · f(By

u, Xu)du

)

+ h
Xtk
ε (Xt) −

∫ t

tk

Dh
Xtk
ε (Xu) · f(By

u, Xu)du.

As each ha
ε is convex, h

Xtk
ε (Xt)−

∫ t

tk
Dh

Xtk
ε (Xu) · f(By

u, Xu)du is a submartingale in

the interval [tk; tk+1], and Sσ is a continuous submartingale. Using the coordinates
(xi), write

dSσ
t = Dih

Xtk
ε (Xt)dX i

t +
1

2
Dijh

Xtk
ε (Xt)d < X i, Xj >t −Dih

Xtk
ε (Xt)f

i(By
t , Xt)dt.

So, if X i is decomposed into N i + Ai (i.e. local martingale + bounded variation
part),

dSσ
t −

(

Dih
Xtk
ε (Xt)dAi

t +
1

2
Dijh

Xtk
ε (Xt)d < X i, Xj >t −Dih

Xtk
ε (Xt)f

i(By
t , Xt)dt

)

is a local martingale; hence the process

Bσ
t =

∫ t

0

Dih
Xρ(s)
ε (Xs)dAi

s +
1

2

∫ t

0

Dijh
Xρ(s)
ε (Xs)d < X i, Xj >s

−
∫ t

0

Dih
Xρ(s)
ε (Xs) · f i(By

s , Xs)ds

is increasing. The estimates (using relative compactness of Op)

|Dih
u
ε (v) − Dih

v
ε(v)| ≤ C|u − v|

|Dijh
u
ε (v) − Dijh

v
ε(v)| ≤ C|u − v|

and the convergence of Xρ(t) to Xt when p goes to infinity (i.e. when σ becomes

finer), yield a dominated convergence of Dih
Xρ(s)
ε (Xs) to Dih

Xs
ε (Xs) = Diξ(Xs)

(since dha
ε(a) = dξ(a)) and of Dijh

Xρ(s)
ε (Xs) to Γk

ij(Xs)Dkξ(Xs) + εgij(Xs) (since
Hess ha

ε(a) = εg(a)). Hence Bσ has a limit, equal to

∫

Diξ(X)dAi +
1

2

∫

Γk
ij(X)Dkξ(X)d < X i, Xj >

+
1

2
ε

∫

gij(X)d < X i, Xj > −
∫

Diξ(X) · f i(By, X)dt,

13



that is an increasing process too. Letting now ε tend to zero,

J =

∫

Diξ(X)dAi +
1

2

∫

Γk
ij(X)Dkξ(X)d < X i, Xj > −

∫

Diξ(X) · f i(By, X)dt

is also increasing, and (remember that Dijξ = 0)

ξ ◦ X − ξ ◦ X0 −
1

2

∫

(Hess ξ)ijd < X i, Xj >

−
∫

Diξ(X) · f i(By, X)dt =

∫

Diξ(X)dN i + J

is a local submartingale, as was to be proved.

3 The uniqueness property

In the first paragraph, we set the problem and exhibit the sum (3.2), whose non-
negativity suffices to have uniqueness. Then, we give a useful estimate and derive
the result in the two cases considered in this paper. The calculus is rather longer if
the drift f depends on z, for we have to prove exponential integrability.

3.1 The general method

Consider two solutions (Xt, Zt)t and (X ′
t, Z

′
t)t of (M +D) such that X and X ′ remain

in ω and XT = YT = U (we will often write ”ω-valued solutions of (M + D)”). Let

X̃s = (Xs, X
′
s) and Z̃s =

(

Zs

Z ′
s

)

.

In the martingale case (f = 0), Itô’s formula (2.1) and the convexity of Ψ ensure
that the process (Ψ(X̃t))t is a submartingale. The other properties of Ψ (see the
introduction) then imply that X̃ remains in the diagonal ∆, therefore the uniqueness
required. This is Emery’s method (see Corollary (4.61) in [10]).

For our purpose (i.e. f does not vanish identically), we want to keep the sub-
martingale property and therefore control the integral involving f in (2.1). The idea
is to study, rather than (Ψ(X̃t))t, the new process (exp(At)Ψ(X̃t))t where

At = λt + µ

∫ t

0

(‖Zs‖r + ‖Z ′
s‖r)ds,

for appropriate nonnegative constants λ and µ. Apply Itô’s formula to obtain
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eAtΨ(X̃t) − Ψ(X̃0) =

∫ t

0

eAsd(Ψ(X̃s)) +

∫ t

0

eAs(λ + µ(‖Zs‖r + ‖Z ′
s‖r))Ψ(X̃s)ds

=

∫ t

0

eAsDΨ(X̃s)
(

Z̃sdWs

)

+
1

2

∫ t

0

eAs

(

dW
∑

i=1

t[tZ̃s]
iHess Ψ(X̃s)[

tZ̃s]
i

)

ds

+

∫ t

0

eAsDΨ(X̃s)

(

f(By
s , Xs, Zs)

f(By
s , X

′
s, Z

′
s)

)

ds

+

∫ t

0

eAsΨ(X̃s)(λ + µ(‖Zs‖r + ‖Z ′
s‖r))ds. (3.1)

It is clear that the submartingale property will be preserved if we show the
nonnegativity of the sum

1

2

dW
∑

i=1

t[tZ̃t]
iHess Ψ(X̃t)[

tZ̃t]
i + DΨ(X̃t)

(

f(By
t , Xt, Zt)

f(By
t , X

′
t, Z

′
t)

)

+ (λ + µ(‖Zt‖r + ‖Z ′
t‖r))Ψ(X̃t). (3.2)

The remainder of the uniqueness part is mainly devoted to proving this result.

3.2 An upper bound

The first step towards the nonnegativity of the sum (3.2) is to give a bound on the
term involving f . This is the purpose of Lemma 3.2.1 below.

Let (x, x′) be a point in ω × ω and b ∈ Rd. For notational convenience, we
keep the same notation ω ×ω for the image of this compact set in local coordinates
considered below, and we write f for f(b, x, z) and f ′ for f(b, x′, z′) (note that the b
is the same in f and f ′). Take a local chart (φ, φ) in which (x, x′) has coordinates
(x̂, x̂′); if (∂1, . . . , ∂2n) denotes the natural dual basis of these coordinates, then

(

f
f ′

)

=
n
∑

i=1

(

f i∂i + f ′i∂i+n

)

. (3.3)

Now v = (v1, . . . , v2n) = (x̂ − x̂′, x̂′) are new coordinates in which the diagonal ∆
is represented by the equation {v1 = · · · = vn = 0}; moreover, if (ϕ1, . . . , ϕ2n) is
the natural dual basis of the v-coordinates, then ϕi = ∂i and ϕi+n = ∂i + ∂i+n for
i = 1, . . . , n; thus (3.3) becomes

(

f
f ′

)

=
n
∑

i=1

(

(f i − f ′i)ϕi + f ′iϕi+n

)

and

DΨ ·
(

f
f ′

)

=

n
∑

i=1

(

∂Ψ

∂vi

(f i − f ′i) +
∂Ψ

∂vi+n

f ′i

)

. (3.4)

15



Finally, we call p(V ) the projection of a vector V onto ∆ : if V = (v1, . . . , v2n), then
p(V ) = (0, . . . , 0, vn+1, . . . , v2n).

Lemma 3.2.1 Suppose that Ψ(x, x′) ≈ δ(x, x′)ν on ω × ω where ν is an even
positive integer (since Ψ is smooth). Then there is C > 0 such that, for all b in Rd,
x, x′ in ω and z, z′ in Rn×dW

∣

∣

∣

∣

DΨ ·
(

f
f ′

)∣

∣

∣

∣

≤ Cδ(x, x′)ν−1 (δ(x, x′)|f ′| + |f − f ′|) . (3.5)

Proof. First remark that on ω × ω, we have

|V − p(V )| ≈ δ(x, x′). (3.6)

Indeed, let (x, x′) ∈ M × M ; in v-coordinates, it is represented by V = (x̂ − x̂′, x̂′).
Then |V −p(V )| = |(x̂− x̂′, 0)|, the Euclidean distance between x̂ and x̂′; as x and x′

belong to the compact set ω, the Euclidean and Riemannian distances are equivalent
and (3.6) follows.

Write Di for ∂
∂vi

. Since Ψ(x, x′) ≈ δ(x, x′)ν , a Taylor expansion gives

Ψ(V ) =
1

ν!

∑

1≤i1,...,iν≤n

Di1...iνΨ(p(V ))(V −p(V ))i1 . . . (V −p(V ))iν +O(|V −p(V )|ν+1).

Using another Taylor expansion with DiΨ gives

|DiΨ(V )| ≤ C|V − p(V )|ν−1 if i ≤ n

|DiΨ(V )| ≤ C|V − p(V )|ν if i > n (i.e. in the direction of the diagonal)

with a uniform C on the compact set ω × ω. As a consequence of (3.4), we obtain
∣

∣

∣

∣

DΨ ·
(

f
f ′

)∣

∣

∣

∣

≤ C|V − p(V )|ν−1 (|V − p(V )| · |f ′| + |f − f ′|) .

Using once again (3.6) completes the proof.

We now give two functions which verify the hypothesis of Lemma (3.2.1). In
these two examples, the Levi-Civita connection is used.

Example 1. Consider the mapping Ψ(x, x′) = δ2(x, x′); it is smooth, not convex
in general, but this is true if the sectional curvatures are bounded above by 0.

Example 2. Take for ω a regular geodesic ball B centered at o ∈ M , with the
sectional curvatures bounded from above by a constant K > 0; then we can find a
nonnegative convex function Ψ on B × B which vanishes only on the diagonal (see
[16]) :

Ψ(x, x′) =

(

1 − cos(
√

Kδ(x, x′))

cos(
√

Kδ(x, o)) cos(
√

Kδ(x′, o)) − h2

)p

,

where h > 0 is small and p ≥ 2 is an integer large enough (so that Ψ is smooth).
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3.3 The case f independent of z

In all this paragraph, f does not depend on z, i.e. f(b, x, z) = f(b, x).

Proposition 3.3.1 If the drift f doesn’t depend on z, then the process (eλtΨ(X̃t))t

is a submartingale for λ positive large enough; this implies that two ω-valued con-
tinuous semimartingales (Xt) and (X ′

t) verifying the same equation (M + D), with
the same terminal value, are indistinguishable.

Proof. For x, x′ ∈ ω, |f(b, x) − f(b, x′)| ≤ L′δ(x, x′); thus using (3.5) and the
boundedness of f

∣

∣

∣

∣

DΨ(x, x′) ·
(

f(b, x)
f(b, x′)

)∣

∣

∣

∣

≤ Cδ(x, x′)ν ≤ C̃Ψ(x, x′).

Then for λ ≥ C̃, µ = 0, the sum (3.2) is nonnegative (note that the convexity
of Ψ gives the nonnegativity of the term involving Hess Ψ). Moreover, the local
martingale in equation (3.1) is in fact a martingale since DΨ is bounded on ω × ω,
so the process (eλtΨ(X̃t))t is indeed a submartingale. As it is nonnegative and
has terminal value 0, it vanishes identically; so Ψ(X̃t) = 0 for all t. Finally, the
definition of Ψ leads to Xt = X ′

t for all t and the proof is completed since we
consider continuous processes.

Remark. Of course, X = X ′ implies that for any t, Zt = Z ′
t a.s.

As an immediate corollary, we are now able to give the uniqueness property.

Theorem 3.3.2 Suppose that ω and Ψ verify the properties of the introduction
(see paragraph 1.3) and moreover that the drift f depends only on (b, x) and verifies
(1.4) and (1.5). Then, for a given terminal value U in ω, there is at most one
ω-valued solution to the equation (M + D).

Example. Suppose that the Levi-Civita connection is used. Then Theorem
3.3.2 implies uniqueness on any compact set of a Cartan-Hadamard manifold, and
on any regular geodesic ball (with K > 0); indeed it suffices to consider respectively
the functions δ2 and Ψ defined after Lemma 3.2.1.

3.4 The general case in nonpositive curvatures

In this subsection, the drift f depends also on z, Ψ = 1
2
δ2 and the connection used

is Levi-Civita’s one; moreover M is supposed to be a Cartan-Hadamard manifold
(i.e. simply connected with nonpositive sectional curvatures); remark then that any
closed geodesic ball is regular. By achieving explicit calculations we are going to
derive the uniqueness property for any compact set.
The problem is to show that the process (exp(At)Ψ(X̃t))t is a submartingale. But
to define such a process, we need to consider solutions in some class which we now
define.

17



Definition 3.4.1 If α is a positive constant, let (Eα) be the set of ω-valued solutions
of (M + D) satisfying

IE exp

(

α

∫ T

0

‖Zs‖2
rds

)

< ∞. (3.7)

Actually, we now verify that for α small, (Eα) contains any solution of equation
(M + D). The first step is the following lemma, which generalizes Proposition 2.1.2
of [28].

Lemma 3.4.2 Suppose that we are given a positive constant α and a C2 function
φ on ω satisfying Cmin ≤ φ(x) ≤ Cmax for some positive Cmin and Cmax. Suppose
moreover that Hess φ + 2αφ ≤ 0 on ω; this means that

Hess φ(x) < u, u > +2αφ(x)|u|2r ≤ 0. (3.8)

Then, for every ε > 0, any ω-valued solution of (M + D) belongs to (Eα−ε).

Proof. Define

St = φ(Xt) exp

(

α

∫ t

0

‖Zs‖2
rds − 1

Cmin

∫ t

0

|Dφ(Xs) · f(By
s , Xs, Zs)|ds

)

.

Denote by e(t) the exponential term above. It follows from Itô’s formula that

dSt = e(t)

(

Dφ(Xt)(ZtdWt)

+

(

1

2

dW
∑

i=1

t[tZt]
iHess φ(Xt)[

tZt]
i + αφ(Xt)‖Zt‖2

r

)

dt

+

(

−φ(Xt)

Cmin

|Dφ(Xt) · f(By
t , Xt, Zt)| + Dφ(Xt) · f(By

t , Xt, Zt)

)

dt

)

.

Thus condition (3.8) ensures that St is a local supermartingale; since it is nonneg-
ative, we get IEST ≤ IES0. By using the lower and upper bounds on φ, we deduce
that

IE exp

(

α

∫ T

0

‖Zs‖2
rds − 1

Cmin

∫ T

0

|Dφ(Xs) · f(By
s , Xs, Zs)|ds

)

≤ Cmax

Cmin

. (3.9)

By conditions (1.5) and (2.5), there is a C̃ > 0 such that

1

Cmin

|Dφ(Xs) · f(By
s , Xs, Zs)| ≤ C̃(1 + ‖Zs‖r)

≤ ε‖Zs‖2
r + Cε;

in particular, we have (3.7) for α − ε.
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Lemma 3.4.3 Let B(o, ρ) be a (regular) geodesic ball of center o and radius ρ.
Then for α > 0 small enough, every B(o, ρ)-valued solution of (M + D) belongs to
the set (Eα) defined previously.

Proof. Let φ(x) = cos
(

π
3ρ

δ(o, x)
)

for x in the geodesic ball B(o, ρ). We want

to prove that this function φ verifies the hypothesis of Lemma (3.4.2). Firstly, φ is
obviously a smooth function and there is a c > 0 such that

∀x ∈ B(o, ρ), c ≤ φ(x) ≤ 1.

Moreover, we have

Hess φ(x) < u, u >= − cos

(

π

3ρ
δ(o, x)

)(

π

3ρ

)2

(δ′2(o, x) < u >)2

− sin

(

π

3ρ
δ(o, x)

)(

π

3ρ

)

Hess22 δ(o, x) < u, u > .

If we get back to the notations of Subsection 2.3, we have, as a consequence of (2.6)
and (2.7), the estimates (for x 6= o) :

|δ′2(o, x) < u > | = |v|r

and

Hess22 δ(o, x) < u, u >≥ |w|2r
δ(o, x)

.

Then

Hess φ(x) < u, u > ≤ −φ(x)

(

π

3ρ

)2

|v|2r −
sin
(

π
3ρ

δ(o, x)
)

π
3ρ

δ(o, x)

(

π

3ρ

)2

|w|2r

≤ −
(

π

3ρ

)2

φ(x)|u|2r.

So there is a α > 0 (depending on the radius ρ) such that (3.8) holds. It suffices to
apply Lemma 3.4.2 to conclude.

Obviously, this is also true for any compact set ω. We can easily derive, from
(3.9) and the preceding lemma, the following result, which will be useful in later
calculations.

Corollary 3.4.4 There is an α > 0 and a finite positive constant Cu (both de-
pending only on ω and the constants L and L2 in (1.4) and (1.5)) such that for any
ω-valued solution (X, Z) of equation (M + D),

IE exp

(

α

∫ T

0

‖Zs‖2
rds

)

≤ Cu.
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We can now state the uniqueness result (Theorem 3.4.6).

Lemma 3.4.5 For two solutions (X, Z), (X ′, Z ′) of (M + D), verifying IE(AT ) <
∞ for every µ > 0, the expression (3.2) is nonnegative for λ and µ large enough.

Proof. Using (2.10) we have for z̃ =

(

z
z′

)

dW
∑

i=1

t[tz̃]iHess Ψ(x̃)[tz̃]i ≥
dW
∑

i=1

∣

∣

∣

x′

‖
x

[tz]i − [tz′]i
∣

∣

∣

2

r
=
∥

∥

∥

x′

‖
x

z − z′
∥

∥

∥

2

r
. (3.10)

Moreover, we also have using (1.4) and (1.5), together with (3.5) (or with (2.2)
and (2.6))

∣

∣

∣

∣

DΨ(x̃)

(

f(b, x, z)
f(b, x′, z′)

)∣

∣

∣

∣

≤ C1δ(x, x′)

(

δ(x, x′)(1 + ‖z‖r + ‖z′‖r) +

∥

∥

∥

∥

x′

‖
x

z − z′
∥

∥

∥

∥

r

)

≤ Cδ2(x, x′)(1 + ‖z‖r + ‖z′‖r) +
1

4

∥

∥

∥

∥

x′

‖
x

z − z′
∥

∥

∥

∥

2

r

. (3.11)

Then (3.2) is greater than the following sum

−Cδ2(Xt, X
′
t)(1 + ‖Zt‖r + ‖Z ′

t‖r) +
1

2
δ2(Xt, X

′
t)(λ + µ(‖Zt‖r + ‖Z ′

t‖r)).

Taking λ and µ greater than 2C makes obviously this sum (and the expression
(3.2)) nonnegative.

Theorem 3.4.6 Suppose that M is a Cartan-Hadamard manifold and that the
drift f verifies condition (1.4) and (1.5). Then, for a given terminal value U in
the compact ω, there is at most one ω-valued solution to the equation (M + D)
(i.e. for two solutions (X, Z) and (X ′, Z ′), the (continuous) processes X and X ′ are
indistinguishable).

Proof. Every compact ω is included in a closed geodesic ball. Hence any ω-valued
solution of (M + D) is in (Eα) for a α > 0 from Lemma 3.4.3; this easily gives the
integrability of exp(AT ) for every µ > 0. Consequently, it suffices to apply Lemma
3.4.5 and conclude as in the proof of Proposition 3.3.1.

Remark. Note that the only hypothesis required for uniqueness in this case is
the compactness of ω.
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4 Existence results

In this section we are given an ω-valued random variable U and we want to construct
a pair of processes (X, Z), satisfying equation (M + D), with X in ω and terminal
value U . We limit ourselves to the case of a Wiener probability space and we recall
that on ω, if (X, Z) and (X ′, Z ′) are two solutions of the equation (M + D) and
X̃ = (X, X ′), then for λ > 0 and µ > 0 large enough the following processes

(

eλtΨ(X̃t)
)

t∈[0;T ]
if f = f(By, X)

and, when M is Cartan-Hadamard,
(

eλt+µ
∫ t

0 (‖Zs‖r+‖Z′

s‖r)dsδ2(X̃t)
)

t∈[0;T ]
if f = f(By, X, Z)

are nonnegative submartingales.
The strategy of the proof can be described as follows :

1. Simplify the problem by considering only terminal values which can be expressed
as functions of the diffusion By at time T , i.e. U = F (By

T ) (Subsection 4.1). This
step needs to pass through the limit in equation (M + D); when f is independent
of z, it is a corollary of a well-known result, but in the other case, more technical
calculations, using the uniqueness part, are involved.
2. Solve a Pardoux-Peng BSDE with parameter to construct a pair of processes in
Rn × Rndw which is close to being a solution of (M + D) with XT = U (Subsection
4.2).
3. Show that under an additional condition on f the solution of the preceding BSDE
is a solution of the BSDE (M + D) on a small time interval (Subsections 4.3 and
4.4). Note that the main argument in the existence proof is certainly Proposition
4.3.2, where we give an a.s. upper bound on the process (Zt).
4. Use the convex function Ψ to show that we have a solution of (M + D) on the
whole time interval [0; T ] (Subsection 4.5).

In fact, for technical reasons we suppose in the two last steps that f is sufficiently
regular; then the proof of the existence is completed with the last subsection :
5. Solve BSDE (M + D) for general f using classical approximation methods (Sub-
section 4.6).

Note that we usually work within local coordinates in Rn, i.e. we consider that
ω ⊂ O ⊂ Rn.

4.1 Reduction of the problem

Let C∞
c (Rd, ω) denote ω-valued functions on Rd which are constant off a compact

set. In this paragraph, it is shown that it suffices to check the existence result for
U = F (By

T ) with F ∈ C∞
c (Rd, ω).

The space of all functionals {G(Wt1 , Wt2 , . . . , Wtq), 0 < t1 < . . . < tq ≤ T ; G ∈
C∞

c (RqdW , ω)} is dense in L2(FT ; ω) (remark that L2(FT ; ω) = L∞(FT ; ω) since ω is
compact) endowed with the distance
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δ(1)(U1, U2) =
√

IE (δ2(U1, U2)).

The same is true by replacing functions of the Brownian Motion at discrete times by
functions of the diffusion By at discrete times. Indeed, if we add the dW components
W 1

t , . . . , W dW

t to the d components of the diffusion By
t = (B1,y

t , . . . , Bd,y
t ), it is easy

to conclude that the diffusion obtained in this way generate the same filtration as
(Wt)0≤t≤T .

Let U l ∈ L2(FT ; ω) and (X l, Z l) the ω-valued solution of (M +D) with X l
T = U l.

We are going to show that if U l → U in L2(FT ; ω), then (X l) tends, for the distance

δ(2)
(

(X l
t), (Xt)

)

=

√

√

√

√IE

(

sup
t∈[0,T ]

δ2(X l
t , Xt)

)

,

to a process X ending at U and that there is a process Z such that (X, Z) solves
the BSDE (M + D).

Definition 4.1.1 Let T be the set of all terminal values U ∈ ω of processes X
solutions of (M + D) (i.e. such that there is a process Z with (X, Z) solution
of (M + D)) and S be the set of all these ω-valued processes. According to the
uniqueness part, to every U in T corresponds a unique process (Xt)t in S such that
XT = U . Hence we can define a mapping c with c(U) being this process :

c : T → S
U 7→ (Xt)t.

We endow the space T with δ(1) and S with δ(2), the distances just defined.

It is obvious that c is one-to-one and onto, and that c−1 is uniformly continuous
for the above distances. Next we want to prove the uniform continuity of c. This is
the aim of the following lemma, whose proof is a (slightly) modified version of the
one of theorem (5.5) from [15].

Lemma 4.1.2 c is uniformly continuous for the distances δ(1) and δ(2).

Proof. Suppose that we are given two terminal values U1 and U2 corresponding to
two solutions (Xt, Zt) and (X ′

t, Z
′
t). Then by Hölder’s inequality,

δ(2)((Xt), (X
′
t)) ≤ IE

(

sup
t

δp(Xt, X
′
t)

)
1
p

, (4.1)

and since Ψ ≈ δp

IE

(

sup
t

δp(Xt, X
′
t)

)

≤ CIE

(

sup
t

(

eλt+µ
∫ t

0 (‖Zs‖r+‖Z′

s‖r)dsΨ(Xt, X
′
t)
)2
)

1
2

≤ CIE
(

e2λT+2µ
∫ T

0 (‖Zs‖r+‖Z′

s‖r)dsΨ2(XT , X ′
T )
) 1

2

≤ CIE
(

e4µ
∫ T

0
(‖Zs‖r+‖Z′

s‖r)ds
)

1
4

IE
(

δ4p(U1, U2)
)

1
4

≤ CIE
(

eCηT+η
∫ T

0 (‖Zs‖2
r+‖Z′

s‖
2
r)ds
)

1
4
IE
(

δ2(U1, U2)
) 1

4 . (4.2)
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The constant C above is allowed to vary from one inequality to another, but it
depends only on T , ω and Ψ (but not on the processes X and X ′). The second
inequality is Doob’s L2 one applied to the submartingale (exp(At)Ψ(Xt, X

′
t))t; the

third one is Cauchy-Schwarz’s one and the last one uses the classical inequality
x ≤ ηx2 + Cη and the boundedness of δ which implies δ4p ≤ C̃δ2.

Inequalities (4.1) and (4.2) together give :

δ(2)((Xt), (X
′
t)) ≤ CIE

(

eCηT+η
∫ T

0 (‖Zs‖2
r+‖Z′

s‖
2
r)ds
)

1
4p

δ(1)(U1, U2)
1
2p . (4.3)

Now we specialize to each case : if f does not depend on z, take µ = 0; then
(

eλtΨ(Xt, X
′
t)
)

t
is indeed a submartingale, and with η = Cη = 0, the inequality

(4.3) gives the uniform continuity required.
In the other case, (exp(At)Ψ(Xt, X

′
t))t is yet a submartingale with Ψ = 1

2
δ2;

moreover, taking in (4.3) η = α (with α as in Corollary 3.4.4) leads to the conclusion
again.

Using the completeness of the space of all ω-valued processes endowed with the
distance δ(2), we get the following result as an easy consequence of the preceding
lemma.

Proposition 4.1.3 Let (U l)l be a sequence in T converging to U ∈ L2(FT ; ω) for
the distance δ(1) and X l = c(U l). Then there is a (continuous) process (Xt)t∈[0;T ]

such that δ(2)(X l, X)
l→ 0. In particular, we have XT = U a.s.

The result of this part is completed by proving the next proposition.

Proposition 4.1.4 There is a process Z such that the pair (X, Z), with X defined
in Proposition 4.1.3, is a solution of (M + D) with XT = U , limit of the sequence
(U l)l.

Proof. First, it is clear from the definition of δ(2) that X is ω-valued. We give
then two proofs, one for the z-independent case and one for the general case in
nonpositive curvatures.

In the z-independent case, we use a proof very similar to the one of Theorem
(4.43) of [10] based on the characterization of Proposition 2.4.1 : first we localize
the processes (in order to work in the Op defined in Proposition 2.4.1) and then it
suffices to notice that the submartingale property passes through the limit in l.

In the other case, it is not possible to apply the preceding proof, as the drift
depends also on z. In fact, we are going to find explicitly a process Z such that
(X, Z) is a solution of (M +D). We recall that for each l, we have in Rn (remember
that [Z l

t]
j is the jth row of the matrix Z l

t)

{

dX l
t = Z l

tdWt +
(

−1
2
Γjk(X

l
t)(
[

Z l
t

]k |
[

Z l
t

]j
) + f(By

t , X
l
t , Z

l
t)
)

dt

X l
T = U l.
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First step : Find a process Z, limit in the L2 sense of the processes Z l.
Let

X̃ l,m = (X l, Xm) and Z̃ l,m =

(

Z l

Zm

)

;

apply Itô’s formula (2.1) to Ψ(X̃ l,m); then use (3.10) to bound below the Hessian
term and (3.11) to bound above the term involving f . Taking the expectation gives

1

4
IE

∫ T

0

∥

∥

∥

∥

∥

Xl
s

‖
Xm

s

Zm
s − Z l

s

∥

∥

∥

∥

∥

2

r

ds ≤ CIE

(

sup
s

δ2(X l
s, X

m
s )

)

+CIE

∫ T

0

δ2(X l
s, X

m
s )(‖Z l

s‖r + ‖Zm
s ‖r)ds.

We know that the first expectation on the right tends to zero as l and m tend to
+∞. Moreover, if I1 denotes the last integral, then using a α as in Corollary 3.4.4
and the fact that δ4 is bounded above by Cδ2 on the compact set ω × ω, we get

I1 ≤
√

2IE

(

sup
s

δ4(X l
s, X

m
s )

)
1
2

IE

(
∫ T

0

(‖Z l
s‖2

r + ‖Zm
s ‖2

r)ds

)

1
2

≤
√

2

α
IE

(

sup
s

δ4(X l
s, X

m
s )

)
1
2

IE
(

eα
∫ T

0
(‖Zl

s‖
2
r+‖Zm

s ‖2
r)ds
)

1
2

≤ C√
α

IE

(

sup
s

δ2(X l
s, X

m
s )

) 1
2

. (4.4)

As C does not depend on l, m,

IE

∫ T

0

∥

∥

∥

∥

∥

Xl
s

‖
Xm

s

Zm
s − Z l

s

∥

∥

∥

∥

∥

2

r

ds
l,m→∞−→ 0. (4.5)

Now we use inequality (2.3) to have a bound on the Euclidean norm :

IE

∫ T

0

‖Zm
s − Z l

s‖2ds ≤ C

(

IE

∫ T

0

∥

∥

∥

∥

∥

Xl
s

‖
Xm

s

Zm
s − Z l

s

∥

∥

∥

∥

∥

2

r

ds

+ IE

∫ T

0

δ2(X l
s, X

m
s )(‖Z l

s‖2
r + ‖Zm

s ‖2
r)ds

)

.

The first term on the right tends to 0 by (4.5), and an argument similar to (4.4)
would show that it also holds for the second term. Hence

IE

∫ T

0

‖Zm
s − Z l

s‖2ds
l,m→∞−→ 0.

Now by completeness of the space L2([0; T ] × Ω), we have the required result :

∃(Zt)t ∈ L2([0; T ] × Ω) : (Z l
t)

L2

−→ (Zt).
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Second step : (X, Z) is indeed a solution of equation (M + D) with terminal
value U .

In view of this, let us show that the following expectation tends to zero as l tends
to ∞ :

IE

∣

∣

∣

∣

U −
∫ T

t

ZsdWs −
∫ T

t

(

−1

2
Γjk(Xs)([Zs]

k | [Zs]
j) + f(By

s , Xs, Zs)

)

ds

− U l +

∫ T

t

Z l
sdWs +

∫ T

t

(

−1

2
Γjk(X

l
s)(
[

Z l
s

]k |
[

Z l
s

]j
) + f(By

s , X
l
s, Z

l
s)

)

ds

∣

∣

∣

∣

.

Obviously, this expectation is bounded above by

IE
(

|U − U l|2
)

1
2 + IE

(
∫ T

0

‖Z l
s − Zs‖2ds

)

1
2

+ IE

(
∫ T

0

|Γjk(Xs) − Γjk(X
l
s)| · |([Zs]

k | [Zs]
j)|ds

)

+ IE

(
∫ T

0

|Γjk(X
l
s)|
∣

∣

∣
([Zs]

k | [Zs]
j) − (

[

Z l
s

]k |
[

Z l
s

]j
)
∣

∣

∣
ds

)

+ IE

(
∫ T

0

|f(By
s , Xs, Zs) − f(By

s , X
l
s, Z

l
s)|ds

)

.

We know that the first two expectations tend to zero; the third term tends to zero
by dominated convergence (at least for a subsequence of (X l), but it doesn’t matter
since (X l) is Cauchy). Let E1 denote the next expectation; then we can write

E1 ≤ CIE

(
∫ T

0

‖Z l
s − Zs‖(‖Z l

s‖ + ‖Zs‖)ds

)

≤
√

2CIE

(∫ T

0

‖Z l
s − Zs‖2ds

)

1
2

IE

(∫ T

0

(‖Z l
s‖2 + ‖Zs‖2)ds

)

1
2

.

The first integral tends to zero and the second is bounded because Z l converges in
L2; hence E1 tends to zero.

Finally, let E2 denote the last integral and use inequality (2.5) to obtain

E2 ≤ IE

(
∫ T

0

(

δ(X l
s, Xs)(1 + ‖Z l

s‖ + ‖Zs‖) + ‖Z l
s − Zs‖

)

ds

)

;

using an argument similar to (4.4), this quantity tends also to zero as l tends to ∞.
Hence the limit in L1 of X l

t is

U −
∫ T

t

ZsdWs −
∫ T

t

(

−1

2
Γjk(Xs)([Zs]

k | [Zs]
j) + f(By

s , Xs, Zs)

)

ds;

We know that it is also Xt, so by continuity :

a.s., ∀t, Xt = U −
∫ T

t

ZsdWs −
∫ T

t

(

−1

2
Γjk(Xs)([Zs]

k | [Zs]
j) + f(By

s , Xs, Zs)

)

ds.
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That finishes the proof of the proposition for a general f in nonpositive curvatures.

As a consequence of Propositions 4.1.3 and 4.1.4, it suffices to work with a
dense subset of L2(FT ; ω), i.e. to consider terminal values U that are written U =
G(By

t1
, By

t2
, . . . , By

tq
) where G ∈ C∞

c (Rqd, ω) (in fact, we can obviously take tq = T ).
A further step of simplification is possible (see [15]): conditioning by Ftq−1 and

working over the time interval [tq−1; T ], By
t1
, . . . , By

tq−1
can be treated as constant.

Then, if we know a solution (Xt, Zt) to (M + D) on [tq−1; T ] with XT = G(By
T ),

the problem is to reach Xtq−1 . But this variable is in fact a measurable function of
By

t1
, By

t2
, . . . , By

tq−1
. A density argument enables us to suppose this function smooth

and constant off a compact set. Thus by induction the problem is solved if we can
find a solution to (M + D) with terminal value F (By

T ) with F ∈ C∞
c (Rd, ω).

So to prove the existence result for any ω-valued terminal variable U , it suffices
to solve equation (M +D) with a terminal value U that can be written F (By

T ) where
F ∈ C∞

c (Rd, ω). This is the aim of the next paragraphs.

4.2 Approximation by BSDEs with Lipschitz coefficients

We deal with a BSDE whose coefficients Γjk(x) (we recall that it is a vector in Rn;
see the introduction) and f(b, x) (or f(b, x, z)) are defined only for x in the open
subset O of Rn, and with a quadratic term in Zt; but we would like to apply the
existence result of [24] to BSDEs with Lipschitz coefficients. Our purpose in this
part is to define such a BSDE, derived from the initial one and defined on all Rn.

Firstly, we extend the definition of the BSDE (M + D) to the whole space Rn :
let φ be a smooth function on Rn with compact support in O and such that φ = 1
on ω. We will explicit φ a little more later in Subsection 4.4. Then we extend
the drift f and Christoffel symbols to the whole space Rn by letting , for b ∈ Rd,
f̃(b, x) = φ(x)f(b, x) (or f̃(b, x, z) = φ(x)f(b, x, z)) and Γ̃(x) = φ(x)Γ(x).
The new BSDE defined on all Rn (we keep X and Z for the notations) is :

˜(M + D)

{

dXt = ZtdWt +
(

−1
2
Γ̃jk(Xt)([Zt]

k | [Zt]
j) + f̃(By

t , Xt, Zt)
)

dt

XT = U.

Remark : We write f̃(By
t , Xt, Zt) but when it is not pointed out, it should also

be interpreted as f̃(By
t , Xt) as well.

Now let ε ∈]0; 1[ and sε : R+ → R+ be a smooth nondecreasing function such
that sε(t) = 0 iff t ∈ [0; 1

ε
], and sε is linear for t large enough. Then, for z ∈ RndW ,

we define hε(z) = sε(‖z‖) and z = z
1+hε(z)

. We have the following

Lemma 4.2.1 The functions hε and z defined above satisfy the next assertions.

(i) If ‖z‖ ≤ 1
ε
, then hε(z) = 0 and z = z;

(ii) z 7→ z is smooth, bounded and Lipschitz on RndW ;

(iii) (x, z) 7→ g(x, z) := Γ̃jk(x)([z]k|[z]j) is smooth and Lipschitz on Rn × RndW .
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(iv) (b, x, z) 7→ f̃(b, x, z) is bounded and Lipschitz on Rd × Rn × RndW .
As a consequence, the function

γ : Rd × Rn × RndW → Rn

(b, x, z) 7→ 1

2
Γ̃jk(x)([z]k|[z]j) − f̃(b, x, z)

is bounded and Lipschitz.

Proof.
(i) It is obvious on the definition.
(ii) The smoothness and boundedness of z are clear. Now we just prove that

‖z − z′‖ ≤ C‖z − z′‖, considering the 3 cases below.
• ‖z‖ ≤ 1

ε
and ‖z′‖ ≤ 1

ε

Then ‖z − z′‖ = ‖z − z′‖.
• ‖z‖ ≥ 1

ε
and ‖z′‖ ≥ 1

ε

Then, as z is bounded and hε Lipschitz, we can write

∥

∥z − z′
∥

∥ ≤
∥

∥

∥

∥

z − z′

1 + hε(z)

∥

∥

∥

∥

+ ‖z′‖
∣

∣

∣

∣

1

1 + hε(z)
− 1

1 + hε(z′)

∣

∣

∣

∣

≤ ‖z − z′‖ + ‖z′‖
∣

∣

∣

∣

hε(z
′) − hε(z)

1 + hε(z)

∣

∣

∣

∣

≤ C‖z − z′‖.

• ‖z‖ > 1
ε

and ‖z′‖ ≤ 1
ε

Let z′′ ∈ [z; z′] with ‖z′′‖ = 1
ε
; then, using the first two cases, we have

∥

∥z − z′
∥

∥ ≤
∥

∥z − z′′
∥

∥+
∥

∥z′ − z′′
∥

∥ ≤ C(‖z − z′′‖ + ‖z′ − z′′‖) = C‖z − z′‖.

(iii) We have

|g(x, z) − g(x′, z′)| ≤ |Γ̃jk(x) − Γ̃jk(x
′)| · |([z]k|[z]j)|

+|Γ̃jk(x
′)| · |([z]k|[z]j) − ([z′]k|[z′]j)|.

There is no problem with the first term on the right because Γ̃jk is smooth on Rn

with compact support and z is bounded. Using (ii), it is easy to deduce that the
second term is bounded above by C‖z − z′‖ and that finishes the proof.

(iv) Recall that for x, x′ ∈ O,

|f(b, x, z) − f(b′, x′, z′)| ≤ L′
(

(|b − b′| + |x − x′|)(1 + ‖z‖ + ‖z′‖) + ‖z − z′‖
)

.

If Os denotes the compact support of φ, this inequality and (1.5) imply that f(b, x, z)
is bounded, uniformly in x ∈ Os, b ∈ Rd and z ∈ RndW . Thus f̃ is bounded on
Rd × Rn × RndW because for x outside Os, f̃ = 0. Besides, we consider the 3
following cases to study the Lipschitz property :

• x, x′ /∈ Os

Then f̃(b, x, z) − f̃(b′, x′, z′) = 0 and it is obvious.
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• x ∈ Os, x
′ /∈ Os

Then, as φ is Lipschitz,

|f̃(b, x, z) − f̃(b′, x′, z′)| = |φ(x)f(b, x, z)|
= |φ(x) − φ(x′)| · |f(b, x, z)|
≤ α|x − x′|.

• x, x′ ∈ Os

Then

|f̃(b, x, z) − f̃(b′, x′, z′)| = |φ(x)f(b, x, z) − φ(x′)f(b′, x′, z′)|
≤ |φ(x) − φ(x′)| · |f(b, x, z)|

+|φ(x′)| · |f(b, x, z) − f(b′, x′, z′)|
≤ α|x − x′| + β1‖z − z′‖ + γ|b − b′|
≤ α|x − x′| + β2‖z − z′‖ + γ|b − b′|

since z 7→ z is Lipschitz by (ii). The proof of (iv) is completed.

Now we can introduce a new BSDE

˜(M + D)ε

{

dXε
t = Zε

t dWt − γ(By
t , Xε

t , Z
ε
t )dt

Xε
T = U.

The interest of this new equation lies in the following result.

Proposition 4.2.2 The equation ˜(M + D)ε has Lipschitz coefficients; it has a
unique solution (Xε

t , Z
ε
t ) ∈ Rn × RndW such that

IE

(

sup
t∈[0;T ]

|Xε
t |2
)

< ∞ and IE

(∫ T

0

‖Zε
t ‖2dt

)

< ∞.

Proof. The first part is a consequence of Lemma 4.2.1; then existence and unique-
ness are classical results of [24].

In Subsections 4.3, 4.4 and 4.5 below, f is also supposed to be a C3 function such
that (b, x, z) 7→ f̃(b, x, z) and γ are C3 functions with all their partial derivatives of
order 1, 2 and 3 bounded.

4.3 Existence of a solution of ˜(M + D) on a small time in-

terval

In this paragraph we consider a terminal value U = F (By
T ) (F ∈ C∞

c (Rd, ω)) which

lies in ω and we show that for an ε small enough, the solution (Xε
t , Z

ε
t ) of ˜(M + D)ε

is also a solution of the BSDE ˜(M + D) on a small time interval [T ε
1 ; T ]. This result

relies on Proposition 4.3.2, which gives the very strong condition that Z is bounded
a.s.

Firstly, let us give a classical link between BSDEs and PDEs.
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Proposition 4.3.1 Let ε ∈]0; 1[; we use the notations introduced in paragraph 4.2
(recall in particular that the function γ depends on ε).
Consider for uε = (u1

ε, . . . , u
n
ε ) : [0; T ]×Rd → Rn the following system of quasilinear

parabolic partial differential equations

{

∂uε

∂t
(t, x) = Luε(t, x) + γ(x, uε(t, x), (∇xuεσ)(t, x))

uε(0, x) = F (x)
(4.6)

where ∇xuε is the n× d matrix whose rows are (∇xu
i
ε)i=1,...,n, the partial derivatives

of the components of uε with respect to space; moreover,

Luε = (Lu1
ε, . . . , Lun

ε ) (4.7)

is a vector in Rn, and

L =
1

2

d
∑

i,j=1

(σtσ)i,j(t, x)
∂2

∂xi∂xj

+
d
∑

i=1

bi(t, x)
∂

∂xi

(4.8)

is the infinitesimal generator of the diffusion (1.2).
Then

(i) This equation has a unique solution uε in C1,2([0; T ] × Rd, Rn) (i.e. uε has
continuous first derivative with respect to time and continuous second derivatives
with respect to space);

(ii) A.s., Xε
t = uε(T − t, By

t ) ∀t;

(iii) ∀t, a.s., Zε
t = ∇xuε(T − t, By

t )σ(By
t ).

Proof. The assertion (i) is a classical result; for a probabilistic proof, see Theorem
3.2 of [25], and for a proof in dimension 1 (i.e. n = 1) with less regular functions γ,
see [2].

Then (ii) and (iii) follow easily : both Itô’s formula and equation (4.6) lead to

{

duε(T − t, By
t ) = −γ(By

t , uε, (∇xuεσ)(By
t ))dt + (∇xuεσ)dWt

uε(0, B
y
T ) = F (By

T ) = U.

Thus
(uε(T − t, By

t ),∇xuε(T − t, By
t )σ(By

t ))t

is a solution of BSDE ˜(M + D)ε. But (Xε, Zε) is also a solution and this BSDE has
Lipschitz coefficients, so it has a unique solution. Then (ii) and (iii) follow.

Remark. Since ∇xuε is continuous, the trajectories t 7→ Zε
t can be taken

continuous.

Now we give the main result of this paragraph.

29



Proposition 4.3.2 There is an ε ∈]0; 1[ and a T ε
1 ∈ [0; T [ (depending on ε) such

that a.s. for t ∈ [T ε
1 ; T ], we have ‖Zε

t ‖ ≤ 1
ε
. This means, with the notations of

paragraph 4.2, that hε(Z
ε
t ) = 0 so Z

ε

t = Zε
t and (Xε

t , Z
ε
t ) is a solution of BSDE

˜(M + D) on the time interval [T ε
1 ; T ].

Proof. We only deal with a drift f depending both on x and z, the z-independent
case being similar (and easier).

We let αε be the global Lipschitz constant of the function γ (independent of b):

∀(x, z), (x′, z′) ∈ Rn × RndW ,

|γ(b, x, z) − γ(b, x′, z′)| ≤ αε (|x − x′| + ‖z − z′‖) . (4.9)

(in general, αε will tend to ∞ as ε decreases to zero).
We have to show that ‖Zε

t ‖ = ‖∇xuε(T − t, By
t )σ(By

t )‖ ≤ 1
ε

a.s., so it suffices to
check that uε is 1

ε‖σ‖∞
-Lipschitz with respect to the space variable (‖σ‖∞ denoting

the supremum of ‖σ(b)‖ for b ∈ Rd). This work will be achieved in several steps.

First Step : We consider two solutions (Y, Z) and (Ŷ , Ẑ) of ˜(M + D)ε corre-
sponding to two terminal values YT and ŶT . We set δYt = Yt− Ŷt and δZt = Zt− Ẑt.

Then

δYt +

∫ T

t

δZsdWs = δYT +

∫ T

t

(

γ(By
s , Ys, Zs) − γ(By

s , Ŷs, Ẑs)
)

ds.

Independence gives :

IE|δYt|2 +IE

(
∫ T

t

‖δZs‖2ds

)

= IE

(

∣

∣

∣

∣

δYT +

∫ T

t

(γ(By
s , Ys, Zs) − γ(By

s , Ŷs, Ẑs))ds

∣

∣

∣

∣

2
)

.

Using Hölder’s inequality, we obtain :

IE|δYt|2 + IE
(

∫ T

t
‖δZs‖2ds

)

≤ 2 IE|δYT |2

+ 2(T − t)IE

(

∫ T

t
|γ(By

s , Ys, Zs)

−γ(By
s , Ŷs, Ẑs)|2ds

)

.

Hence using (4.9) we have

IE|δYt|2 + IE
(

∫ T

t
‖δZs‖2ds

)

≤ 2 IE|δYT |2

+ 4α2
ε(T − t)

(

IE
(

∫ T

t
|δYs|2ds

)

+IE
(

∫ T

t
‖δZs‖2ds

)

)

.

30



Second Step : We want to remove the terms IE
(

∫ T

t
‖δZs‖2ds

)

, to get an equa-

tion with Y only; this leads to make the following assumption (which will be true
in the end of the proof) : t ∈ [T ε

1 ; T ] with T ε
1 ∈ [0; T [ such that 4α2

ε(T − T ε
1 ) ≤ 1.

Then, if t ∈ [T ε
1 ; T ], we get

IE|δYt|2 ≤ 2IE|δYT |2 + IE

(
∫ T

t

|δYs|2ds

)

.

And Gronwall’s lemma gives

IE|δYt|2 ≤ 2eT−tIE|δYT |2. (4.10)

Third Step : Let us choose YT = F (Bt,x
T ) and ŶT = F (Bt,x̂

T ) (where (Bt,x
. )

denotes the diffusion starting at x at time t); then

δYt = uε(T − t, x) − uε(T − t, x̂) (4.11)

and
IE|δYT |2 ≤ L2

F IE
(

|Bt,x
T − Bt,x̂

T |2
)

≤ L2
F Cσ,b|x − x̂|2, (4.12)

with LF the Lipschitz constant of F , and the last inequality is a well-known result
of L2-continuity with respect to initial conditions. Hence from (4.10)

|uε(T − t, x) − uε(T − t, x̂)| ≤ LF

√

2Cσ,beT−t|x − x̂|

and

‖∇xuε(T − t, x)‖ ≤ LF

√

2Cσ,beT .

(In fact, the right hand side is given up to a positive multiplicative constant, due to
the different norms used; it doesn’t matter in the sequel).

Conclusion : Let ε ∈]0; 1[ such that 1
ε
≥ ‖σ‖∞LF

√

2Cσ,beT . Then the preceding
proof shows that if T ε

1 ∈ [0; T [ is such that 4α2
ε(T − T ε

1 ) ≤ 1, then for t ∈ [T ε
1 ; T ] we

have

a.s. ‖Zε
t ‖ = ‖∇xuε(T − t, By

t )σ(By
t )‖ ≤ 1

ε
. (4.13)

In fact, using the continuity in t of Zε
t , this inequality holds for any t, a.s.; that

finishes the proof of the proposition.

4.4 A solution of (M + D) on a small time interval

The framework is the same as the one introduced in Subsections 4.2 and 4.3. The
aim of this section is to prove that the above solution (Xt, Zt)t (we omit in this

paragraph the superscript ε for notational convenience) of ˜(M + D) is, under an
additional condition on the drift f , a solution of (M + D) (in fact we prove that
(Xt) remains in ω, the compact where the terminal value U lies). We recall that
ω = {χ ≤ c} is the sublevel set of a smooth convex (for the connection Γ) function χ,
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defined on an open set O relatively compact in Rn, and moreover that ω is relatively
compact in O. We make the following hypothesis

(Hs) f is pointing strictly outward on the boundary ∂ω of ω.

It means that

∀(b, x, z) : x ∈ ∂ω, inf
b,x,z

(Dχ(x)|f(b, x, z))r ≥ ζ > 0, (4.14)

where (·|·)r denotes the Riemannian metric tensor (if f⊥ is the component of f
orthogonal to ∂ω = {χ = c}, it is equivalent to require that inf

b,x,z
(Dχ(x)|f⊥(b, x, z))r

be bounded below by a positive constant, since χ is constant (equal to c) on ∂ω).
Remark : This condition arises naturally in the deterministic version of equa-

tion (M + D)
{

dxt = f(xt)dt
xT = u

where u is deterministic and so Zt = 0 for any t (in fact, as we shall see in Sub-
section 4.6, the natural condition is to require that the infimum in (4.14) be only
nonnegative).

Proposition 4.4.1 Suppose that χ is strictly convex on O (this means that Hess χ
is positive definite). Then, under the assumption (Hs), the process (Xt)t∈[T ε

1 ;T ] re-
mains in ω, i.e. (Xt, Zt) is a solution of (M + D) on the time interval [T ε

1 ; T ].

Proof. Once again, the goal is to construct a nonnegative submartingale, null at
time T , which vanishes if and only if the process X is in ω. The proof will be split
into three steps.

First Step : Framework of the proof.
Suppose that c > 0 and χ reaches its infimum at p ∈ ω with χ(p) = 0. Then con-

sider the following mapping, defined on a normal open neighbourhood of ω centered
at p (so it is in particular a neighbourhood of 0 in Rn)

y 7→
√

c2y
√

c2‖y‖2 + c − χ(y)
;

for c2 > 0 small enough, it is a diffeomorphism from an open set O1 (relatively
compact in O and containing ω) onto an open neighbourhood N of B(0, 1), such that
ω is sent onto B(0, 1) (in fact, it is sufficient to take c2 ≤ 1

2
λχ, where λχ denotes the

(positive) infimum on O1 of the eingenvalues of Hess χ). Using this diffeomorphism,
we can work in a local chart O (take O := N) such that ω = B(0, 1) and χ(0) = 0.

Second Step : Construction of a ”nearly convex” function H .
Choose ρ > 1 such that B(0, ρ) ⊂ O; then we take for the mapping φ (see the

beginning of Subsection 4.2) a smooth function Rn → [0; 1] equal to 1 on B(0, 1) and
to 0 outside B(0, ρ), which has moreover spherical symmetry. This gives Γ̃ = φΓ
and f̃ = φf . Then define on Rn

k(x) = φ(x)χ(x) + (1 − φ(x))α(x)
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where α(x) = a|x| and a > 0 is chosen so that k(x) ≤ c if and only if x ∈ B(0, 1)
(take for instance a > supB(0,ρ) χ); k is clearly a nonnegative smooth mapping. We
would like to have a mapping which vanishes on ω, so we let H = h ◦ k where
h : R+ → R+ is a smooth convex (so nondecreasing) function, vanishing on the
interval [0; c] (only) and growing linearly at infinity.

The mapping H so defined is convex for the connection Γ̃ on B(0, 1) and outside
B(0, ρ). Indeed, on B(0, 1), H = 0 and outside B(0, ρ), H = h ◦ α which is convex
for the flat connection (= Γ̃).

Third Step : We work on the time interval [T ε
1 ; T ]. The aim of this step is

to show that, for λ large enough, the process (eλtH(Xt))t is a real submartingale.
Reasoning as in the uniqueness part, we apply Itô’s formula :

eλtH(Xt) − eλT ε
1 H(XT ε

1
) =

∫ t

T ε
1

eλsDH(Xs)(ZsdWs)

+
1

2

∫ t

T ε
1

eλs

(

dW
∑

i=1

t[tZs]
iH̃ess H(Xs)[

tZs]
i

)

ds

+

∫ t

T ε
1

eλsDH(Xs) · f̃(By
s , Xs, Zs)ds

+

∫ t

T ε
1

λeλsH(Xs)ds.

The stochastic integral is a martingale because DH is bounded; it remains to
prove that the bounded variation term is an increasing process, i.e. show the non-
negativity of the sum

1

2

dW
∑

i=1

t[tz]iH̃ess H(x)[tz]i + DH(x)f̃(b, x, z) + λH(x).

But H̃ess H(x) ≥ h′(k(x))Hess k(x) since k is nondecreasing (see for instance
(4.36) p 42 in [10]); then it suffices to prove the nonnegativity of

h′(k(x))

(

1

2

dW
∑

i=1

t[tz]iH̃ess k(x)[tz]i + Dk(x)f̃(b, x, z)

)

+ λH(x). (4.15)

Remark that h′(k(x)) ≥ 0 and that, because of the boundedness of the process
Zt (according to (4.13)), it is sufficient to consider z such that ‖z‖ ≤ 1

ε
.

Let A1, A2 and A3 denote the three terms in this order in the sum (4.15).
• if x ∈ B(0, 1), A1 and A2 vanish because H = 0, so the sum is nonnegative;
• if x ∈ cB(0, ρ), A1 ≥ 0 because k = α is convex for the flat connection and A2 = 0
because f̃ = 0; then the sum is nonnegative.
• if x ∈ B(0, ρ) \ B(0, 1), we consider two situations : firstly when x belongs to a
neighbourhood of the sphere S(0, 1) (i.e. when |x| ∈]1; 1 + η[ where η > 0 is to be

determined). Using continuity, H̃ess k(x) is nonnegative (in the sense of matrices) on
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]1; 1 + η1[ (with η1 > 0 sufficiently small) because if |x| = 1, H̃ess k(x) = H̃ess χ(x)
and χ is strictly convex on B(0, 1) for the connection Γ̃. This gives A1 ≥ 0.
For A2, using hypothesis (Hs), we get that for x ∈ ∂ω and ‖z‖ ≤ 1

ε
,

Dk(x) · f̃(b, x, z) = Dχ(x) · f̃(b, x, z) = Dχ(x) · f(b, x, z) ≥ ζ > 0.

So by uniform continuity and hypothesis (1.4) and (1.5), there is an η2 > 0 such
that

∀b, ∀y : 1 < |y| < 1 + η2, ∀z : ‖z‖ ≤ 1

ε
, Dk(y) · f̃(b, y, z) ≥ 0.

In particular, A2 ≥ 0 for 1 < |x| < 1 + η2. Let η = min(η1, η2, ρ − 1). Then
A1 + A2 ≥ 0 if 1 < |x| < 1 + η ≤ ρ, and the sum (4.15) is nonnegative.

On the other hand, if |x| ∈]1 + η; ρ[ (i.e. if |x| is ”far” from 1), then A1 + A2 is
bounded above since H is smooth, and f̃(b, x, z) is bounded since z is bounded. But
we have constructed H so that H(x) ≥ θ > 0 if |x| > 1 + η. Then we can choose
λ > 0 such that A1 + A2 + A3 is nonnegative.

Conclusion : The end of the proof now goes on by classical arguments : the
process (eλtH(Xt))t∈[T ε

1 ;T ] is a nonnegative submartingale for the λ chosen above,
null at time T . Then ∀t ∈ [T ε

1 ; T ], H(Xt) = 0; and the mapping H has precisely
been chosen so that this implies Xt ∈ ω.

Remark : In our local coordinates, let Drχ(x) denote the radial derivative of χ
at x and f r the radial component of f . Then, since χ = c on the sphere S(0, 1) = ∂ω,
we have

∀x ∈ ∂ω, Dχ(x) · f(b, x, z) = Drχ(x) · f r(b, x, z).

But if Hess χ is positive definite, Drχ(x) is a positive real number and in our coor-
dinates, (Hs) is equivalent to require that f r(b, x, z) be bounded below by a positive
constant, independent of x ∈ ∂ω and of b, z.

Now we come back to the end of the proof of the existence.

4.5 The solution on the whole interval [0; T ]

According to Subsections 4.3 and 4.4, (Xε
t , Z

ε
t ) is a solution of BSDE (M + D) on

the time interval [T ε
1 ; T ]; moreover, ε and T ε

1 must verify (see the conclusion in the
proof of Proposition 4.3.2)

{

1
ε

≥ ‖σ‖∞LF

√

2Cσ,beT

4α2
ε(T − T ε

1 ) ≤ 1

where αε tends a priori to ∞ when ε goes to zero. The aim of this subsection is to
show that it is a solution on the time interval [0; T ].

In general, if we take back the proof of Proposition 4.3.2, with now T ε
1 and

uε(T − T ε
1 , By

T ε
1
) as terminal time and variable, we get a solution of (M + D) on a

time interval [T ε
2 ; T ε

1 ]; but it is easy to show that ε and T ε
2 must verify now

{

1
ε

≥ (‖σ‖∞LF

√

2Cσ,beT )
√

2eT

4α2
ε(T

ε
1 − T ε

2 ) ≤ 1;
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as a consequence, the length of the interval [T ε
2 ; T ε

1 ] may be less than the one of
[T ε

1 ; T ] and repeating this method inductively could lead to a solution on an interval
]T0; T [ with T0 > 0 only (this means that the solution explodes).

In fact, the existence of Ψ prevents the solution from exploding and allows to
build inductively a solution of (M + D) on [T ε

1 ; T ], [T − 2(T − T ε
1 ); T ], [T − 3(T −

T ε
1 ); T ], ... and so to get at the end a solution on [0; T ].

Proposition 4.5.1 Suppose that assumption (Hs) holds and that χ is strictly con-

vex on O. If ε > 0 is small enough, then (Xε
t , Z

ε
t ), the solution of BSDE ˜(M + D)ε,

is also a solution of BSDE (M + D) on the whole time interval [0; T ].

Proof. Consider T ε
1 and uε(T − T ε

1 , By
T ε
1
) as terminal time and variable; applying

the two preceding sections, we get a solution of (M + D) (with Xε
t ∈ ω) on a time

interval [T ε
2 ; T ε

1 ] where ε and T ε
2 verify

{

1
ε

≥ ‖σ‖∞Luε

4α2
ε(T

ε
1 − T ε

2 ) ≤ 1

(Luε
is the Lipschitz constant of uε for the space variable, uniformly in t on [T ε

2 ; T ]).
As in Subsection 4.3, for t ∈ [T ε

2 ; T [ we let (Ys, Zs)s∈[t;T ] and (Ŷs, Ẑs)s∈[t;T ] be two

solutions of BSDE ˜(M + D)ε such that YT = F (Bt,x
T ) and ŶT = F (Bt,x̂

T ) (by which
we denote diffusions starting at x or x̂ at time t). According to Subsection 4.4, these
two processes remain in ω, so we can make use of the function Ψ. Then the same
inequalities as in (4.2) give

IE
(

Ψ(Yt, Ŷt)
)

≤ C1IE
(

eη
∫ T

0
(‖Zu‖2

r+‖Ẑu‖2
r)du
)

1
4

IE
(

δ4p(YT , ŶT )
)

1
4

≤ CIE
(

δ4p(YT , ŶT )
) 1

4

(the second inequality is obtained by letting η = 0 in the z-independent case; in the
other case, by letting η = α as in Corollary 3.4.4 and p = 2).

The equivalence of the Riemannian and Euclidean distances on ω×ω and Ψ ≈ δp,
together with (4.11) and (4.12) give

|uε(T − t, x) − uε(T − t, x̂)| ≤ C0LF |x − x̂|,

where C0 depends only on the diffusion (By
t )t, T , Ψ, ω and the drift f (then Luε

=
LF C0).

Consequently, if we take ε such that

1

ε
≥ ‖σ‖∞LF C0, (4.16)

T ε
1 s.t. 4α2

ε(T − T ε
1 ) ≤ 1 and T ε

2 s.t. 4α2
ε(T

ε
1 − T ε

2 ) ≤ 1, we get a solution on an
interval [T ε

2 − T ε
1 ] with the same length as [T ε

1 ; T ]. Repeating the same method
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inductively with the same ε at each step, we obtain that (Xε
t , Z

ε
t ) is a solution of

(M + D) on [T ε
1 ; T ], [T − 2(T − T ε

1 ); T ], [T − 3(T − T ε
1 ); T ], ... and so on the whole

interval [0; T ].

Remark : As Zε
t = ∇xuε(T − t, By

t )σ(By
t ), it is a straightforward consequence

of the proof that a.s., for all t, ‖Zε
t ‖ is bounded above by 1

ε
.

If we sum up the results obtained, we have the

Proposition 4.5.2 We consider BSDE (M + D) with a terminal value U in ω =
{χ ≤ c}. Suppose that f is a C3 function which verifies conditions (1.4), (1.5) and
(Hs). If moreover χ is strictly convex (i.e. Hess χ is positive definite), then

(i) If f does not depend on z, the BSDE has a (unique) solution such that X remains
in ω.

(ii) If M is a Cartan-Hadamard manifold and the Levi-Civita connection is used,
then the BSDE has a (unique) solution such that X remains in ω too.

The last paragraph is devoted to generalize Proposition 4.5.2 to drifts f which
are less regular and satisfy a weaker hypothesis than (Hs).

4.6 The solution for general f

Let f be a function verifying (1.4), (1.5) and the hypothesis

(H) f is pointing outward on the boundary of ω

introduced in Subsection 1.4. This means that

∀(b, x, z) : x ∈ ∂ω, (Dχ(x)|f(b, x, z))r ≥ 0;

equivalently, if f⊥ is the component of f orthogonal to ∂ω = {χ = c}, we may
require (Dχ(x)|f⊥(b, x, z))r to be nonnegative. This condition is obviously weaker
than (Hs).

Firstly, we will derive from equation (M + D) new BSDEs, each one having a
unique ω-valued solution. Then we will show that these solutions converge to the
solution of (M +D). The function χ will supposed to be strictly convex and calculus
will be achieved for a drift f depending both on x and z (the case when f does not
depend on z being simpler).

Let us consider the local chart O defined in the first step of the proof of Propo-
sition 4.4.1. Remember that ω = B(0, 1) in these local coordinates and remark that
hypothesis (H) means that the radial component f r(b, x, z) of f(b, x, z) is nonnega-
tive for x ∈ ∂ω (see the remark at the end of Subsection 4.4). Extend the mapping f
to Rd×Rn×RndW by putting f(b, x, z) = 0 if x /∈ O and define (on Rd×Rn×RndW )
the convolution product for l ∈ N∗ fl = f ∗ ρl where ρl(b, x, z) = lρ(l‖(b, x, z)‖) and
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ρ : R+ → R+ is a bump function (i.e. a smooth function with ρ′(0) = 0, ρ = 0
outside [0; 1] and

∫

R+
ρ(u)du = 1). Besides, let us define a function gl by

gl(b, x, z) = fl(b, x, z) +
A

l
x, (4.17)

where A is a positive constant which will be chosen below; we introduce on O the
following BSDE for F ∈ C∞

c (Rd) and U ∈ ω

(M + D)l

{

dXt = ZtdWt +
(

−1
2
Γjk(Xt)([Zt]

k|[Zt]
j) + gl(B

y
t , Xt, Zt)

)

dt
XT = F (By

T ) = U.

Lemma 4.6.1 Let O1 be an open set such that ω ⊂ O1 ⊂ O1 ⊂ O. Then for l ≥ l0
the functions gl are smooth on Rd ×O1 ×RndW and verify a Lipschitz condition like
(2.5) with the same Lipschitz constant L′′. Moreover, they also verify a boundedness
condition like (1.5).

Proof. For x ∈ O1, we write

fl(b, x, z) =

∫

Rd×Rn×R
ndW

f((b, x, z) − (β, y, w))ρl(β, y, w)d(β, y, w).

Thus, as soon as dist(O1, O) > 1/l0 ≥ 1/l, ρl(β, y, w) = 0 if |y| ≥ dist(O1, O); so
the integrand vanishes if x − y /∈ O and we can use the Lipschitz property (2.5)
of f on O. Then the properties of convolution give the result for fl. As it also
holds obviously for the functions x 7→ A/l x, we have the result for gl. The second
assertion is an easy consequence of conditions (1.4) and (1.5) for the drift f .

In the sequel, we will consider the sequence (gl)l only for l ≥ l0.

Proposition 4.6.2 For every l, the BSDE (M +D)l has a (unique) ω-valued solu-
tion (X l, Z l); moreover, there is an ε > 0, independent of l, such that a.s., ‖Z l

t‖ ≤ 1
ε

for any t.

Proof. Using Lemma 4.6.1, we apply Subsections 4.2 and 4.3 to (M + D)l. We
get an εl and a T εl

1 for every l; but the Lipschitz constant of γ is independent of l
(since the gl have the same one), so the proof of Proposition 4.3.2 shows that we
can choose εl = ε and T εl

1 = T ε
1 , independently of l.

In order to apply Subsection 4.4, we need to prove that gl verifies condition (Hs);
in fact, we have seen (see in particular the remark at the end of Subsection 4.4) that
it suffices to show that

∀(b, x, z) : x ∈ ∂ω, ‖z‖ ≤ 1

ε
, inf

b,x,z
gr

l (b, x, z) ≥ ζ > 0, (4.18)

It is easy to see with the properties of convolution that, for a constant Ĉ depending
only on ε and f ,

∀l, ∀b, ∀x ∈ ∂ω, ∀z : ‖z‖ ≤ 1

ε
, |fl(b, x, z) − f(b, x, z)| ≤ Ĉ

l
.
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This and the nonnegativity of f r(b, x, z) for x ∈ ∂ω give

∀l, ∀b, ∀x ∈ ∂ω, ∀z : ‖z‖ ≤ 1

ε
, f r

l (b, x, z) ≥ −Ĉ

l
.

Now if we take in (4.17) A = Ĉ + 1, obviously (4.18) holds with ζ = 1/l and
Subsection 4.4 can be applied.

Then the results of Subsection 4.5 hold (in particular Proposition 4.5.2) with the
same ε for every l (this comes from (4.16), remarking that the constant C0 in this
inequality is independent of l). The proof is completed.

Now we prove that, as expected, the limit of these solutions when l → ∞ solves
equation (M + D).

Proposition 4.6.3 For n ∈ N and s ∈ [0; T ], we note for simplicity V n
s :=

(By
s , X

n
s , Zn

s ), When l tends to infinity, the above solution (X l, Z l) converges (for
the usual L2 norms for X and Z) to a pair (X, Z) which solves equation (M + D).

Proof. For l and m in N, we note δXt = X l
t − Xm

t , δZt = Z l
t − Zm

t and

Al,m = IE

∫ T

0

|δXs|
(

|fm(V l
s ) − fl(V

l
s )| + A

∣

∣

∣

∣

1

l
X l

s −
1

m
Xm

s

∣

∣

∣

∣

)

ds.

Applying Itô’s formula (in Rn) to |δXt|2 between t and T , we get (note that a
dot stands for the inner product in Rn)

− |δXt|2 =

∫ T

t

2δXs · (δZsdWs) +

∫ T

t

2δXs ·
(

gl(V
l
s ) − gm(V m

s )
)

ds

−1

2

∫ T

t

2δXs ·
(

Γjk(X
l)([Z l

s]
k|[Z l

s]
j) − Γjk(X

m)([Zm
s ]k|[Zm

s ]j)
)

ds

+

∫ T

t

‖δZs‖2ds. (4.19)

Using the uniform boundedness of the (Z l
t) (proved in the preceding lemma), we

can bound above the integral involving the Christoffel symbols by C
∫ T

t
|δXs|2ds;

besides, for the second term on the right, we write

∣

∣

∣

∣

∫ T

t

δXs · (gl(V
l
s ) − gm(V m

s ))ds

∣

∣

∣

∣

≤ Al,m +

∫ T

t

|δXs| · |fm(V l
s ) − fm(V m

s )|ds

≤ C1

(

Al,m +

∫ T

t

|δXs|(|δXs| + |δZs|)ds

)

≤ C

(

Al,m +

∫ T

t

|δXs|2ds

)

+
1

2

∫ T

t

‖δZs‖2ds
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where C is independent of l and m. Then, we obtain by taking the expectation in
(4.19)

IE|δXt|2 +
1

2
IE

∫ T

t

‖δZs‖2ds ≤ C

(
∫ T

t

IE|δXs|2ds + Al,m

)

. (4.20)

Gronwall’s lemma gives IE|δXt|2 ≤ CAl,m, where C is again independent of l and
m. Moreover, using (1.4), fl converges uniformly to f on Rd × ω × B(0, r) for any
r > 0 (with B(0, r) = {z ∈ RndW : ‖z‖ < r}) and X l, Xm are bounded, so Al,m

tends to zero when l, m tend to infinity; therefore (X l)l converges to a process X in
L2(Ω × [0; T ]).

Using (4.20) again, we get

IE

∫ T

0

‖δZs‖2ds ≤ CAl,m;

hence the sequence of processes (Z l) has also a limit in L2(Ω× [0; T ]); let Z denote
this limit process.

The pair (X, Z) solves BSDE (M + D) and X is ω-valued; the proof is just
an adaptation of the second step in the proof of Proposition 4.1.4. This remark
completes the proof.

Remark : As a consequence, a.s., ‖Zt‖ ≤ 1
ε

for any t.
According to Subsection 4.1, this result can be extended to every ω-valued and

FT -measurable terminal variable U . Then Theorem 1.4.1 of existence and unique-
ness of a solution follows.

Note that uniqueness and existence hold in particular on any regular geodesic
ball (or geodesic ball if the sectional curvatures are nonpositive).

5 Applications and related PDEs

5.1 The martingale case

The drift f = 0 verifies hypothesis (H). Hence in this case the results of this paper
apply to the martingale case. As already underlined, any regular geodesic ball veri-
fies the condition of Theorem 1.4.1; so we recover the well-known results of existence
and uniqueness of a martingale with prescribed terminal value in such domains (see
[15]). These results hold in nonpositive curvatures, they will be achieved in positive
curvatures elsewhere.

5.2 The one-dimensional case

The nonpositive curvature case gives the existence and uniqueness of a solution to
the one-dimensional BSDE

(E)1

{

dXt = ZtdWt − Γ(Xt)Z
2
t + f(By

t , Xt, Zt)dt
XT = U
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for a bounded terminal condition U , a drift f satisfying (1.5), (2.5) and any smooth
function Γ defined on R.

Note that a change of coordinates (in fact a reparametrization of the one-
dimensional manifold by arclength) reduces equation (E)1 to

{

dXt = ZtdWt + f(By
t , Xt, Zt)dt

XT = U ;

moreover, it is a very particular case of the results of Kobylansky in [18].
One can ask whether such results can be extended to higher dimensions. In fact,

the original problem is geometric and to deal with general BSDEs, we would start
with smooth functions (Γk

ij) and should give conditions in order to interpret these
functions as the Christoffel symbols of a given Levi-Civita connection. This problem
is out of the scope of this paper.

5.3 Case of a random terminal time

In this paragraph, we will only sketch the proofs.
We are interested in the following equation

(M + D)τ

{

dXt = ZtdWt +
(

−1
2
Γjk(Xt)([Zt]

k|[Zt]
j) + f(By

t , Xt, Zt)
)

dt
Xτ = U τ

where τ is a stopping time with respect to the filtration used and U τ is a ω-valued,
Fτ -measurable random variable. It is the counterpart of equation (M + D) on the
random interval [0; τ ].

Let us first consider the case of a bounded stopping time τ , i.e. τ ≤ T where T
is a deterministic constant. We have the following result :

Theorem 5.3.1 We consider BSDE (M + D)τ with ω = {χ ≤ c} and τ ≤ T a.s.
If f verifies conditions (1.4), (1.5) and (H), and if χ is strictly convex (i.e. Hess χ
is positive definite), then this BSDE has a unique solution (X, Z), with X ∈ ω, in
the same two cases as in Theorem 1.4.1.

Proof. First remark that the uniqueness part goes the same as in the deterministic
case; for the existence part, it can be completed in several steps :

First Step : We work in local coordinates introduced in Subsection 4.4. Let
c1 > c and put ω1 = {χ ≤ c1}; suppose that c1 is such that ω ⊂ ω1 ⊂ O and
that χ is yet strictly convex on ω1. Now let φ be a cut-off function with φ = 1
on ω and φ = 0 outside ω1. For any nonzero integer l, we define a new drift
by fl(b, x, z) := φ(x)(f(b, x, z) + (1/l)x); note that fl verifies hypothesis (H) with
respect to ω1 and (Hs) with respect to ω.

Then solve path by path on [τ ; T ] the following differential equation

{

dX l
t = fl(B

y
t , X

l
t , 0)dt

X l
τ = U τ (5.1)
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and set U l = U τ +
∫ T

τ
fl(B

y
t , X l

t, 0)dt. Since fl vanishes outside ω1, U l is in ω1;
besides, U l is FT -measurable.

Second Step : Considering the random variable U l and the drift fl introduced
in the first step, we solve on [0; T ] equation (M + D) with drift fl and terminal
value X l

T = U l. The hypothesis of Theorem 1.4.1 are satisfied considering the set
ω1 instead of ω. So this BSDE has a solution (X l, Z l) with X l ∈ ω1.

We condition by Fτ and consider the above solution (X l, Z l) on the random time
interval [τ ; T ]. It is a solution on this interval of BSDE (M + D) with drift fl and
terminal value U l. The uniqueness property for such equations implies that X l is
the solution of equation (5.1), i.e.

∀t ∈ [τ ; T ], X l
t = U l −

∫ T

t

fl(B
y
s , X

l
s, 0)ds

and Z l
t = 0 for τ ≤ t ≤ T . In particular,

X l
τ = U l −

∫ T

τ

fl(B
y
s , X

l
s, 0)ds = U τ .

We now show that actually, (X l
t)0≤t≤τ remains in ω, and not only in ω1. For this

purpose, we want to construct as in Subsection 4.4 a submartingale which is written
as (eλtH(X l

t)), where now H = h ◦χ, since X l is ω1-valued. Recall from (4.15) that
the keypoint is to show for x ∈ ω1 the nonnegativity of

h′(χ(x))

(

1

2

dW
∑

i=1

t[tz]iHess χ(x)[tz]i + Dχ(x)fl(b, x, z)

)

+ λH(x).

In fact, as χ is strictly convex on the compact domain ω1, we have Hess χ ≥ αId
(in the sense of matrices) for α > 0 and it turns out that it suffices to prove the
nonnegativity of

h′(χ(x))

(

1

2
α‖z‖2 + Dχ(x)fl(b, x, z)

)

+ λH(x). (5.2)

From (1.4) and (1.5) we deduce

|Dχ(x)fl(b, x, z)| ≤ C(1 + ‖z‖) ≤ 1

2
α‖z‖2,

the last inequality holding for ‖z‖ large enough, say ‖z‖ ≥ A. Obviously in this
case, (5.2) is nonnegative.
Now suppose that ‖z‖ ≤ A. If x ∈ B(0, 1) = ω then h′ = 0 and the required result
holds. Otherwise we write for x ∈ ω1 \ ω and x0 ∈ ∂ω (i.e. in our local coordinates
|x| ≥ 1 and |x0| = 1) :

|Dχ(x)fl(b, x, z) − Dχ(x0)fl(b, x0, z)| ≤ C|x − y|

for a constant C. But the hypothesis (Hs) for fl writes

Dχ(x0)fl(b, x0, z) ≥ ζ > 0.
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Then we distinguish two cases (x near 1 or ”far” from 1) and get the nonnegativity
of (5.2) in both situations. This can be done by using similar arguments to those
displayed at the end of the Third Step in the proof of Proposition 4.4.1; in particular,
a λ large enough is needed.

Third Step : The first two steps give the existence of processes (X l, Z l) (with
X l ∈ ω) solving equation (M +D)τ associated to the drift f l and terminal value U τ .
But f l converges to f uniformly on ω so, passing through the limit as in Subsection
4.6, we get a pair of processes (Xt, Zt)0≤t≤τ , with X ∈ ω and solving the initial
equation (M +D)τ with drift f and terminal value U τ . This completes the proof.

We consider again a stopping time τ and the corresponding equation (M + D)τ ;
now, we only suppose that τ is finite a.s. and verifies the exponential integrability
condition (1.6). Examples of such stopping times are exit times of uniformly elliptic
diffusions from bounded domains in Euclidean spaces.

In this case, we need to add restrictions on the drift f ; indeed, the main thrust
in the proof of uniqueness and existence is the construction of a submartingale on
the product manifold (St)t = (exp(At)Ψ(X̃t))t with µ = 0 if f does not depend
on z. To extend this approach to a random (non necessarily bounded) interval,
we have to keep the integrability of Sτ . An accurate examination of the method
to obtain the submartingale (in particular inequalities (3.5) and (3.9)) shows that
this integrability holds for ”small” drifts; more precisely there is a constant h with
0 < h < ρ such that, under the following condition on the constants in (1.4) and
(1.5)

L < h, L2 < h, (5.3)

the integrability required holds, so (St)0≤t≤τ is a true submartingale.
Remarks : 1- Such a condition guarantees in particular that we have

IE

∫ τ

0

|f(By
s , Xs, Zs)|ds < ∞.

2- This condition is rather natural; actually, it is very similar to conditions yet
introduced for BSDEs with Lipschitz coefficients and random terminal time : see
condition (24) and Propositions 3.2 and 3.3 in [7], or (2.6) and the condition before
in [26].

3- A priori, the process (Zt)t verifies the integrability condition

IE

(∫ τ

0

‖Zs‖2ds

)

< ∞;

in fact, it results from the existence part that in any case (i.e. f depending or not
on z), (Zt)0≤t≤τ belongs to (Eα) (see Definition 3.4.1) for α small enough, which is
a stronger property. In particular, we get

∀θ < ρ, IE

∫ τ

0

eθs‖Zs‖2ds < ∞;
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this condition is usual for BSDEs with random terminal time (see again Propositions
3.2 and 3.3 in [7], or Theorem 2.2 in [26]).

Once we have constructed the submartingale as on a deterministic interval,
uniqueness is straightforward. Let us indicate how existence can be deduced.

We are given a ω-valued and Fτ -measurable variable U τ . As in the proof of
Theorem 5.3.1, we consider again local coordinates introduced in Subsection 4.4, ω1

such that ω ⊂ ω1 ⊂ O and a cut-off function φ with φ = 1 on ω and φ = 0 outside
ω1. We put f1(b, x, z) = φ(x)f(b, x, z).
The first step here is to solve on [0; τ ] a BSDE whose terminal value is near U τ :
on [0; τ ∧ n], using Theorem 5.3.1, we solve equation (M + D) with drift f1 and
terminal value at time τ ∧ n, IE[U τ |Fn]; let (Xn

t , Zn
t )0≤t≤τ∧n denote the solution;

on [τ ∧ n; τ ], we put Zt = 0 and solve
{

dXn
t = f1(B

y
t , Xn

t , 0)dt
Xn

τ∧n = IE[U τ |Fn].

Then it is easily seen, since IE[U τ |Fn] is Fτ∧n-measurable, that (Xn
t , Zn

t )0≤t≤τ is a
solution to BSDE (M + D)τ with terminal value U τ,n, where

U τ,n = Xn
τ∧n +

∫ τ

τ∧n

f1(B
y
s , X

n
s , 0)ds.

The second step is to show that when n tends to infinity, we get the solution of
BSDE (M + D)τ with terminal value U τ .
We have that U τ,n tends to U τ in L2(Ω); indeed,

IE|U τ − U τ,n|2 = IE

(

1n≤τ

∣

∣

∣

∣

U τ − IE[U τ |Fn] −
∫ τ

τ∧n

f1(B
y
s , X

n
s , 0)ds

∣

∣

∣

∣

2
)

and the last expectation tends to zero as n tends to infinity; this is a consequence
of dominated convergence, using the exponential integrability condition of τ .
Then we apply the results of Subsection 4.1 to the random interval [0; τ ]; indeed,
an accurate examination shows that these results rely essentially on the exponential
integrability condition (according to the uniqueness part)

IE
(

eα
∫ τ

0 (‖Zn
s ‖2+‖Zm

s ‖2)ds
)

≤ C < ∞

for a constant C independent of m, n. At the end, we get the existence of a pair of
processes (Xt, Zt)0≤t≤τ solution of BSDE (M +D)τ with drift f1 and terminal value

U τ . But, since U τ is ω-valued and ω = B(0, 1), for each n the process (Xn
t )0≤t≤τ∧n

remains in ω by Theorem 5.3.1; thus the whole process (Xt)0≤t≤τ remains in ω and
this completes the existence part.

As a consequence, we can state the following result

Theorem 5.3.2 We consider BSDE (M +D)τ with τ a stopping time verifying the
integrability condition (1.6); the function χ used to define the domain ω is supposed
as usual to be strictly convex. Then if f verifies conditions (1.4), (1.5), (H) and
moreover is ”small” (i.e. verifies condition (5.3) above), this BSDE has a unique
solution (X, Z), in the same cases as in Theorem 1.4.1.
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5.4 Application to nonlinear elliptic PDEs

In this paragraph, we make precise the Dirichlet problem that we briefly discussed
in the introduction.

Suppose (N, g) is a Riemannian manifold, and Bx a Brownian motion on (N, g)
(started at x at time 0). Alternatively, think of Bx as the diffusion process on Rd,
defined by (1.2); in this case,

∀i, j = 1, . . . , d,
d
∑

l=1

σilσjl = gij,

the inverse metric tensor, and

∀i = 1, . . . , d, bi +

dW
∑

k,l=1

gklΓi
kl = 0.

Let M1 be a compact submanifold of N , with boundary ∂M1 and interior M1. For
x ∈ M 1, we call ζ the first time Bx hits the boundary; we assume that ζ verifies an
integrability condition like (1.6). Given a regular mapping

φ : ∂M1 → ω ⊂ M,

we wish to find a mapping φ : M 1 → ω which solves the following Dirichlet problem

(D)

{

LMφ(x) − f(x, φ(x),∇φ(x)σ(x)) = 0 , x ∈ M1

φ(x) = φ(x) , x ∈ ∂M1

where LMφ is the tension field of the mapping φ (see [9], or for a probabilistic point
of view the introduction of [28]).

We recall from the introduction that, in coordinates (xi) on M and (yα) on M1,
the equation LMφ = 0 characterizes harmonic mappings, and is written

∀i, ∆M1φ
i + gαβΓi

jk(φ)DαφjDβφ
k = 0.

Using the same Wiener process W with which we constructed Bx, we can solve
according to Theorem 5.3.2 the BSDE (M + D)ζ with terminal value φ(Bx

ζ ). Let
(Xx

t , Zx
t )0≤t≤ζ be the unique solution and put φ(x) := Xx

0 . Then under sufficient
regularity on φ, it is not difficult to verify that φ is a solution to the Dirichlet
problem (D). Note that when f ≡ 0 (i.e. in the martingale case), Kendall ([17])
has proved regularity results on φ using almost only probability theory, so that φ is
a strong solution of the equation LMφ ≡ 0 (i.e. a harmonic mapping).

When f(b, x, z) = f(b, x) and is written as f(b, x) = D2G(b, x) (the differential
of G with respect to the second variable), the elliptic nonlinear PDE in the Dirichlet
problem (D) is associated with a variational problem; more precisely, solutions of
this equation are critical points of the functional

F(u) =
1

2

∫

M1

‖gradu(b)‖2dvol(b) +

∫

M1

G(b, u(b))dvol(b)

and the elliptic PDE in equation (D) is the Euler-Lagrange equation associated.

44



5.5 Application to nonlinear parabolic PDEs

We conclude this part by studying the time-dependent equation associated with the
stationary equation described in the Dirichlet problem (D) above. More precisely,
we are interested in the following equation, for mappings u : [0; T ] × N → ω ⊂ M :

{

∂u
∂t

= LMu − f(x, u,∇uσ)
u|t=0 = F

where F is sufficiently regular and has range ω. In local coordinates, this equation
becomes






∂u
∂t

(t, x) = 1
2
Lu(t, x) + 1

2
Γjk(u(t, x))([(∇xuσ)(t, x)]k|[(∇xuσ)(t, x)]j)

− f(x, u(t, x), (∇xuσ)(t, x))
u(0, x) = F (x)

in the case of L being the Laplace-Beltrami operator on N . This is equation (4.6). As
a by-product of Section 4, we have the existence and uniqueness of a regular solution
to this system of quasilinear parabolic PDEs; it is based on the boundedness of ∇xu,
proved in Subsection 4.3.
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