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Jacques PRINTEMS§

January 17, 2005

Abstract

This paper is concerned with numerical approximations for a class of nonlinear

stochastic partial differential equations: Zakai equation of nonlinear filtering problem

and McKean-Vlasov type equations. The approximation scheme is based on the re-

presentation of the solutions as weighted conditional distributions. We first accurately

analyse the error caused by an Euler type scheme of time discretization. Sharp error

bounds are calculated: we show that the rate of convergence is in general of order√
δ ( δ is the time step), but in the case when there is no correlation between the

signal and the observation for the Zakai equation, the order of convergence becomes

δ. This result is obtained by carefully employing techniques of Malliavin calculus. In

a second step, we propose a simulation of the time discretization Euler scheme by a

quantization approach. This formally consists in an approximation of the weighted

conditional distribution by a conditional discrete distribution on finite supports. We

provide error bounds and rate of convergence in terms of the number N of the grids

of this support. These errors are minimal at some optimal grids which are computed

by a recursive method based on Monte Carlo simulations. Finally, we illustrate our

results with some numerical experiments arising from correlated Kalman-Bucy filter

and Burgers equation.
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1 Introduction

We are interested in numerical approximation for the measure-valued process V governed

by the following nonlinear stochastic partial differential equations (SPDE) written in weak

form: for all test functions f ∈ C2
b (R

d),

< Vt, f > = < µ0, f > +

∫ t

0
< Vs, L(Vs)f > ds

+

∫ t

0
< Vs, h(., Vs)f + γ⊺(., Vs)∇f > .dWs, (1.1)

where µ0 is an initial probability measure. Here, for any V ∈ M(Rd), set of finite signed

measures on R
d, L(V ) is the second-order differential operator:

L(V )f(x) =
1

2

d∑

i,j=1

aij(x, V )∂2
xixj

f(x) +
d∑

i=1

bi(x, V )∂xi
f(x),

W is a q-dimensional Brownian motion, a = (aij) is a d × d matrix-valued, γ = (γil) is

a d × q matrix-valued, b = (bi) is a R
d-vector valued, and h = (hl) is a R

q-vector valued

function defined on R
d ×M(Rd), in the form:

a(x, V ) = σ(x, V )σ⊺(x, V ) + γ(x, V )γ⊺(x, V ),

b(x, V ) = β(x, V ) + γ(x, V )h(x, V ),

for some d× d matrix-valued function σ = (σij) and R
d-vector valued function β = (βi) on

R
d × M(Rd). The transpose and the scalar product are respectively denoted by ⊺ and a

dot.

When the distribution Vt admits a density v(t, x), one may usually rewrite (1.1) in the

form:

dv(t, x) =


1

2

d∑

i,j=1

∂2
xixj

[aij(x, v(t, .))v(t, x)] −
d∑

i=1

∂xi
[bi(x, v(t, .))v(t, x)]


 dt

+ (h⊺(x, v(t, .))v(t, x) −∇[γ(x, v(t, .))v(t, x)]) dWt. (1.2)

Under appropriate conditions, it is proved in [19], that the solution V to (1.1) can be

characterized through the following system of diffusions:

Xt = X0 +

∫ t

0
β(Xs, Vs)ds+

∫ t

0
σ(Xs, Vs)dBs +

∫ t

0
γ(Xs, Vs)dWs, (1.3)

X0 ; µ0,

ξt = exp(Zt) = exp

(∫ t

0
h(Xs, Vs).dWs −

1

2

∫ t

0
|h(Xs, Vs)|2ds

)
, (1.4)

< Vt, f > = E
W

[f(Xt)ξt] , (1.5)

where B is a R
d-Brownian motion independent of W , and E

W
denotes the conditional

expectation given W . We also denote P
W

the corresponding conditional probability.

In this paper, we shall focus on the two following main applications of SPDE (1.1):
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1.1 Case A: Zakai equation of nonlinear filtering with correlated noise

This corresponds to equation (1.1) where all coefficients σ, β, h and γ are independent of

V . More precisely, let X be the d-dimensional signal given by

dXt = β(Xt)dt+ σ(Xt)dBt + γ(Xt)dWt, X0 ; µ0

and W the q-dimensional observation process given by:

Wt =

∫ t

0
h(Xs)ds+ Ut,

on a probability space (Ω,F , P ) equipped with filtration (Ft) under which B and U are

independent Brownian motions. The nonlinear filtering problem consists in estimating the

conditional distribution of X given W , i.e. we want to compute the measure-valued process

πt characterized by:

< πt, f > = E[f(Xt)|FW
t ],

where FW
t is the filtration generated by the whole observation of W until t. Under suitable

conditions, there exists a reference probability measure Q, such that:

dP

dQ

∣∣∣∣
Ft

= ξt = exp

(∫ t

0
h(Xs).dWs −

1

2

∫ t

0
|h(Xs)|2ds

)
,

and (B,W ) are two independent Brownian motions under Q. By the Kallianpur-Striebel

formula, we have

< πt, f > =
< Vt, f >

< Vt, 1 >
,

where

< Vt, f > = EQ
W

[f(Xt)ξt].

Moreover, the measure-valued process V solves the so-called Zakai equation

< Vt, f > = < µ0, f > +

∫ t

0
< Vs, Lf > ds +

∫ t

0
< Vs, hf + γ⊺∇f > .dWs. (1.6)

1.2 Case B: stochastic McKean-Vlasov equation

This corresponds to equation (1.1) with h = 0 so that ξ in (1.4) is constant equal to one.

All other coefficients depend on V through Lipschitz kernels σ̃(x, y), β̃(x, y), γ̃(x, y):

β(x, V ) =

∫
β̃(x, y)V (dy),

σ(x, V ) =

∫
σ̃(x, y)V (dy),

γ(x, V ) =

∫
γ̃(x, y)V (dy).
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When there is no W (or when γ = 0), the measure-valued process V is deterministic and

is solution of the classical McKean-Vlasov equation:

< Vt, f > = < µ0, f > +

∫ t

0
< Vs, L(Vs)f > ds. (1.7)

Vt is characterized as the distribution of the solution Xt to:

dXt = β(Xt, Vt)dt + σ(Xt, Vt)dBt, X0 ; µ0.

The general stochastic McKean-Vlasov equation is:

< Vt, f >=< µ0, f > +

∫ t

0
< Vs, L(Vs)f > ds+

∫ t

0
< Vs, γ

⊺(., Vs)∇f > .dWs, (1.8)

and Vt is characterized as the conditional distribution given W of the solution Xt to:

dXt = β(Xt, Vt)dt + σ(Xt, Vt)dBt + γ(Xt, Vt)dWt, X0 ; µ0.

1.3 A short discussion of related literature

Numerical approximations of SPDEs have been extensively studied in the literature. We

cite the survey paper [16] and the references therein. Roughly summarizing, one may

classify between the following approaches:

- Approximations based on the analytic expression (1.2) vary from finite difference of

finite elements methods, splitting up methods or Galerkin’s approximation. We cite for

instance for the finite difference method the papers of [29] for Zakai equation and [1] for

the stochastic Burger equation. For the splitting up method of Zakai equation, see [6], [13].

- Another point of view, studied in [21] and [8], is based on a Wiener chaos decomposition

of the solution to the Zakai equation. We mention also Wong-Zakai type approximations

considered in [17].

- The third approach is based on the probabilistic representation (1.5) of the solution as

a weighted (or unnormalized) conditional distribution. For the Zakai equation of nonlinear

filtering problem, papers [20] and [12] develop approximation methods by replacing the

signal process by a finite state Markov chain on an uniform grid prescribed a priori. This

method is somewhat equivalent to the finite difference method. Another popular method

is based on particle approximation of the conditional distribution, see for instance [10], [9],

for the nonlinear filtering problem and [7] for the McKean-Vlasov equation.

1.4 Contribution and organization of the paper

The first contribution of our work consists in accurately estimating the error due to time

discretizations on the conditional expectation (1.5). Without conditioning, classical results

yield an error at most linear w.r.t. the time step δ (see for instance [3], [2]). Here, the

situation is unusual because of the conditional expectation and our analysis makes clear

the role of the correlation factor between the underlying process X and the observation
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process W . Regarding the proof, we use Malliavin calculus computations, but to leave W

unchanged, extra technicalities are needed.

In a second part, we propose a simulation algorithm for the SPDE (1.1) based on

an optimal quantization approach. Basically, this means a spatial discretization of the

dynamics of the Euler time-discretization (Xk, Vk) of (1.3)-(1.5) optimally fitted to its

probabilistic features. To be more specific, we first recall some short background on optimal

quantization of a random vector. Let X : (Ω,F , P ) → R
d be a random vector and let Γ

= {x1, . . . , xN} be a subset (or grid) of R
d having N elements. We approximate X by

one of its Borel closest neighbour projection X̂Γ := ProjΓ(X) on Γ. Such a projection is

canonically associated to a Voronoi tessellation (Ci(Γ))1≤i≤N that is a Borel partition of

R
d satisfying for any i = 1, . . . , N :

Ci(Γ) ⊂
{
ξ ∈ R

d : |ξ − xi| = min
j

|ξ − xj|
}
,

where |.| denotes the Euclidean norm on R
d. Hence

X̂Γ = ProjΓ(X) :=

N∑

i=1

xi1{X∈Ci(Γ)}.

As soon as X∈ Lp(Ω, P,Rd) the induced Lp-quantization error is given by

‖X − X̂Γ‖p =

(
E min

1≤i≤N
|X − xi|p

) 1
p

<∞.

The Lp-optimal N -quantization problem for X consists in finding a grid Γ∗ which achieves

the lowest Lp-quantization error among all grids of size at most N . Such an optimal grid

does exist (see [15]), its size is exactly N if the support of X is infinite; it is generally

not unique (except in 1-dimension where uniqueness holds when the distribution P
X

of X

has a log-concave density). The rate of convergence of the lowest Lp-quantization error as

N → +∞ is ruled by the so-called Zador theorem (see [15]). For historical reasons, this

theorem is usually stated with the pth power of the Lp-quantization error, known as the

Lp-distortion.

Theorem 1.1 Assume that X ∈ Lp+η(Ω, P,Rd) for some η > 0. Let f denote the prob-

ability density of the absolutely continuous part of its distribution P
X

(f is possibly 0).

Then,

lim
N

(
N

p
d min
|Γ|≤N

‖X − X̂Γ‖p
p

)
= Jp,d‖f‖ d

d+p
.

The constant Jp,d corresponds to the uniform distribution over [0, 1]d and in that case the

above lim
N

also holds as an infimum.

The constant Jp,d is unknown as soon as d ≥ 3 although one knows that Jp,d ∼
(d/(2πe))

p
2 as d → ∞. This theorem says that the lowest Lp-quantization error goes

to 0 at a N− 1
d -rate when N → ∞. For more details about these results, we refer to [15]

and the references therein.
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From a computational viewpoint, no closed form is available for optimal quantization

grids Γ∗ except in some very specific 1-dimensional distributions like the uniform one. Sev-

eral algorithms can be implemented to compute these optimal (or at least some efficient

locally optimal) grids. Several of them rely on the differentiability of the Lp-distortion

function as a function of the grid (viewed as a N -tuple of (Rd)N ): if P
X

is continuous, it

is differentiable at any grid of size N and its gradient admits an integral representation

with respect to the distribution of X. Consequently one may search for optimal grids by

implementing a Newton-Raphson procedure (in 1-dimension) or a stochastic gradient de-

scent (in d-dimension). These numerical aspects have been extensively investigated in [27]

with a special attention to the d-dim normal distribution. Efficient grids for these distri-

butions are now available for many sizes in dimensions d = 1 up to 10 (can be downloaded

at www.proba.jussieu.fr/pageperso/pages.html); the extension to the quantization of

Markov chains, including its numerical aspects, has already been discussed in several pa-

pers for various fields of applications like American option pricing, nonlinear filtering, or

stochastic control (see e.g. [5], [24], [26] or [25]).

We now briefly explain in this introduction how to apply vector quantization method

to the case of SPDE (1.1). In the case of Zakai equation, the process (Xk) is simply a time-

discretization of a diffusion independent of V . In particular, given an observation W , (Xk)

can be easily simulated and the idea is to quantize optimally at each time step k, the random

vector Xk by a finite distribution X̂k. This provides in turn an approximation of (Vk) as

the conditional distribution of X̂k weighted by ξk. In the case of McKean-Vlasov equation,

the diffusion X depends through its coefficients on its (conditional to W ) distribution V .

Hence, in order to simulate Xk at each time k, we use an approximation V̂k−1 of Vk−1 based

on an optimal quantization X̂k−1 of Xk−1 (initially, V̂0 is the distribution of X̂0). Then, we

can devise an optimal quantization of Xk and so provide an approximation of Vk.

The rest of this paper is organized as follows. Section 2 is devoted to the time discretiza-

tion error of the SPDE (1.1). We prove that in general the rate of convergence is of order√
δ but in the case where γ = 0, the order of convergence is improved to δ. We describe

precisely in Section 3 the optimal quantization algorithm for the Zakai equation and we

analyse the resulting error. The same structure is presented in Section 4 for the McKean-

Vlasov equation. Finally, we illustrate our results in Section 5 with several simulations

concerning the Zakai equation in the linear case and the Burger equation.

2 Time discretization error

In this section, we study the error caused by a time discretization of the system (1.3)-(1.4)-

(1.5) characterizing the solution to the SPDE (1.1) on a finite time interval [0, T ]. We

consider regular discretization times tk = kδ, k = 0, . . . , n, where δ = T/n is the time step,

and we denote φ(t) = sup{tk : tk ≤ t}. We then use an Euler scheme as follows:

Xδ
t = X0 +

∫ t

0
β(Xδ

φ(s), V
δ
φ(s))ds+

∫ t

0
σ(Xδ

φ(s), V
δ
φ(s))dBs +

∫ t

0
γ(Xδ

φ(s), V
δ
φ(s))dWs,

Zδt =

∫ t

0
h(Xδ

φ(s), V
δ
φ(s)).dWs −

1

2

∫ t

0
|h(Xδ

φ(s), V
δ
φ(s))|2ds,
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< V δ
t , f > = E

W

[
f(Xδ

t ) exp(Zδt )
]
.

By denoting X̄k = Xδ
tk

, V̄k = V δ
tk

, ∆B̄k = Btk −Btk−1
, ∆W̄k = Wtk −Wtk−1

, the Euler

scheme reads at the discretization times tk, k = 0, . . . , n:

X̄k+1 = X̄k + β(X̄k, V̄k)δ + σ(X̄k, V̄k)∆B̄k+1 + γ(X̄k, V̄k)∆W̄k+1, (2.1)

X̄0 = X0 ; µ0, (2.2)

< V̄k, f > = E
W


f(X̄k) exp



k−1∑

j=0

g(X̄j , V̄j ,∆W̄j+1)




 , (2.3)

where

g(x, V,∆W̄ ) = h(x, V ).∆W̄ − 1

2
|h(x, V )|2δ.

Denote by P̄
k,W

(x, v, dx′) the conditional probability of X̄k given W , X̄k−1 = x and V̄k−1

= v. From (2.1), we have:

P̄
k,W

(x, v, dx′) ; N
(
x+ β(x, v)δ + γ(x, v)∆W̄k, δσ(x, v)σ⊺(x, v)

)
.

As usual, we set for any f ∈ B(Rd), set of bounded measurable functions on R
d:

P̄
k,W

f(x, v) = E
W

[
f(X̄k)

∣∣ X̄k = x, V̄k = v
]

=

∫
f(x′)P̄

k,W
(x, v, dx′),

for any x ∈ R
d and v ∈ M(Rd). Hence, by the distribution of iterated conditional expec-

tations, we have the following inductive formula for V̄k, k = 0, . . . , n:

< V̄k+1, f > = < V̄k, exp
(
g(., V̄k,∆W̄k+1)

)
P̄

k+1,W
f(., V̄k) >, (2.4)

V̄0 = µ0. (2.5)

We denote by BL1(R
d) the unit ball of bounded Lipschitz functions on R

d:

BL1(R
d) = {f : R

d 7→ R satisfying |f(x)| ≤ 1 and |f(x) − f(y)| ≤ |x− y| for all x, y}

and we consider the following metric on M(Rd):

ρ(V1, V2) = sup
{
|< V1, f > − < V2, f >| , f ∈ BL1(R

d)
}
,

for any V1, V2 ∈ M(Rd).

2.1 Zakai equation

To simplify the following convergence analysis, we assume that coefficients are very smooth

and in addition, that they satisfy a uniform ellipticity condition.

(H1) (i) The functions β, σ and γ are of class C∞ with bounded derivatives (1).

1One uses the norm
p

Tr(σσ⊺) on the matrix space M(d × d)
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(ii) The function h is of class C∞, is bounded and its derivatives as well.

(iii) For some ǫ0 > 0, one has σσ∗(x) ≥ ǫ0 Id uniformly in x.

We recall some notation from [14]. We setXδ,λ
t = Xδ

t +λ(Xt−Xδ
t ), a

′(t) =
∫ 1
0 a

′(Xδ,λ
t )dλ

for a smooth function a (with derivative a′) and eZ̄
δ
T =

∫ 1
0 e

Zδ
T

+λ(ZT −Zδ
T

)dλ. Now, consider

the unique solution of the linear equation Et = Id +
∫ t
0 β

′(s)Es ds+
∑d

j=1

∫ t
0 σ

′
j(s)Es dBj

s +
∑q

j=1

∫ t
0 γ

′
j(s)Es dW j

s . Then, Lemma 4.3 in [14] gives

Xt −Xδ
t = Et

∫ t

0
E−1
s {[β(Xδ

s ) − β(Xδ
φ(s))] (2.6)

−
d∑

j=1

σ′j(s)[σj(X
δ
s ) − σj(X

δ
φ(s))] −

q∑

j=1

γ′j(s)[γj(X
δ
s ) − γj(X

δ
φ(s))]} ds

+
d∑

j=1

Et
∫ t

0
E−1
s [σj(X

δ
s ) − σj(X

δ
φ(s))] dB

j
s +

q∑

j=1

Et
∫ t

0
E−1
s [γj(X

δ
s ) − γj(X

δ
φ(s))] dW

j
s .

For any f ∈ BL1(R
d), we put fδ(x) = E(f(x + δB̄T )) where B̄ is an extra d-dimensional

Brownian motion independent onB andW . Clearly, fδ is of class C∞
b , ‖fδ‖∞+supx 6=y

|fδ(x)−fδ(y)|
|x−y| ≤

C, ‖fδ − f‖∞ ≤ Cδ, both estimates being uniform in BL1(R
d).

The main result of this section is the following.

Theorem 2.1 (Case A: Zakai equation)

Assume (H1). For f ∈ BL1(R
d), set

A1(f) = −eZδ
T f ′δ(T )ET [

q∑

j=1

∫ T

0
(E−1
s

∫ s

φ(s)
γ′j(X

δ
r )γ(X

δ
φ(r))dWr)dW

j
s ],

A2(f) = −eZ̄δ
T f(XT )(

q∑

i=1

∫ T

0
[

∫ s

φ(s)
h′i(X

δ
r )γ(X

δ
φ(r))dWr]dW

i
s),

A3(f) = −
q∑

i,j=1

f(XT )eZ̄
δ
T (

∫ T

0
h′i(s)Es(

∫ s

0
E−1
r [

∫ r

φ(r)
γ′j(X

δ
u)γ(X

δ
φ(u))dWu]dW

j
r )dW i

s),

A4(f) =
1

2
eZ̄

δ
T f(XT )

∫ T

0
[(‖h‖2)′(s)Es(

q∑

j=1

∫ s

0
E−1
r (

∫ r

φ(r)
γ′j(X

δ
u)γ(X

δ
φ(u))dWu)dW

j
r )]ds.

Then, one has
∥∥∥ρ(VT , V δ

T )
∥∥∥

2

≤ Cδ + sup
f∈BL1(Rd)

‖E
W

[A1(f) +A2(f) +A3(f) +A4(f)]‖
2
,

with

sup
f∈BL1(Rd)

‖E
W

(A1(f) +A2(f) +A3(f) +A4(f))‖
2

≤ C
√
δ,

for some constant C.
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Remark 2.1 The fact that
√
δ is an upper bound for the error is clear, if we use classic

Lp-estimates between X and Xδ , see e.g. [19]. But we know that this argument involving

pathwise errors is not optimal when errors on laws are considered [3]. The result above

makes clear the role of the correlation in the error on conditional expectations.

1. When there is no correlation between signal and observation, i.e. γ = 0, the four terms

Ai(f), i = 1, . . . , 4, vanish and the rate of convergence for the approximation of VT is of

order δ, the time discretization step.

2. For constant function γ, the three contributions A1(f), A3(f), A4(f) vanish and it

remains A2(f) of order
√
δ coming from the approximation of eZT .

3. In the general case, the error will be inexorably of order
√
δ. Indeed, main contributions

in the error essentially behave like
∑n−1

i=0

∫ ti+1

ti
(Ws −Wti)dWs = 1

2

∑n−1
i=0 ([Wti+1

−Wti ]
2 −

[ti+1 − ti]), which L2-norm equals C
√
δ.

2.2 Proof of Theorem 2.1

The proof relies on Malliavin calculus techniques: we refer the reader to [22], from which

we borrow our notations. For technical reasons, it will be useful to work with the Wiener

process W =




B

B̄

W


: all the further Malliavin calculus computations are made rela-

tively to W. Set H = L2([0, T ],Rd) and denote X̄δ,λ
t = Xδ,λ

t + δ√
2
B̄t. For F ∈ D

1,p,

we write DF = (DBF,DB̄F,DWF ) for the components relatively to the three Brown-

ian motions B, B̄ and W ; the partial Malliavin covariance matrix of F is denoted by

γF =
∫ T
0 [DB

t F,DB̄
t F, 0][DB

t F,DB̄
t F, 0]

∗dt =
∫ T
0 DB

t F [DB
t F ]∗dt+

∫ T
0 DB̄

t F [DB̄
t F ]∗dt.

As in section 4.5.2 of [14], a localization factor ψδT ∈ [0, 1] will be needed in the control of

residual terms to justify integration by parts formulas: it satisfies the following properties

a) ψδT ∈ Dk,p and supδ ‖ψδT ‖Dk,p ≤ C
T q for any integers k, p;

b) P (ψδT 6= 1) ≤ C
T q δk for any k ≥ 1;

c) {ψδT 6= 0} ⊂ {∀λ ∈ [0, 1] : det(γX̄
δ,λ
T ) ≥ 1

2 det(γXT )}.

We omit the details of its tedious construction and we simply refer to [14]. To prepare

the proof, we now state a series of technical results, which will help to derive a suitable

stochastic analysis conditionally on W .

Lemma 2.1 In the following, Φ(W ) stands for a functional measurable w.r.t. W , which

belongs to D
∞.

i) For any r.v. Y ∈ L2, EW (Y ) is the unique r.v. satisfying the equality E(Y Φ(W )) =

E(EW (Y )Φ(W )) for any functional Φ(W ) ∈ D
∞.

ii) For any Φ(W ) ∈ D
∞ and F ∈ D

1,2, one has Φ(W )F ∈ D
1,1, with DB(Φ(W )F ) =

Φ(W )DBF and DB̄(Φ(W )F ) = Φ(W )DB̄F .
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iii) For Φ(W ) and G in D
∞, g ∈ C∞

b and any multi-index α, one has
{
E (Φ(W )∂αg(XT )G) = E (Φ(W )g(XT )Hα(XT , G)) ,

‖Hα(XT , G)‖2 ≤ C
‖G‖

Dk,p

T q

(2.7)

for some integers k, p, q. Furthermore, if G = 0 on {ψδT = 0}, then for any λ ∈ [0, 1],

one has 



E
(
Φ(W )∂αg(X̄δ,λ

T )G
)

= E
(
Φ(W )g(X̄δ,λ

T )Hα(X̄
δ,λ
T , G)

)
,

‖Hα(X̄
δ,λ
T , G)‖2 ≤ C

‖G‖
Dk,p

T q

(2.8)

with some constants C, k, p, q uniform in δ and λ ∈ [0, 1].

Proof. The two first statements are straightforward. Statement i) immediatly follows from

the fact that any Φ(W ) ∈ L2 can be approximated in L2 by a sequence of D
∞-r.v. using

the chaos expansion (see Th. 1.1.1 p.6 in [22]). Statement ii) is clear from the definition of

D
1,p, DB and DB̄.

Statement iii) is an integration by parts formula, that puts the differentiation/integration

only on B and B̄, but not on W . Its proof is an easy adaptation of Proposition 3.2.1. in

[23]. The estimate (2.7) is standard using in particular ‖[γXT ]−1‖p ≤ C
T q . We only prove

(2.8) which is less usual because of the localization factor G. Using ii), one obtains the

following equalities:

[DB(Φ(W )g(X̄δ,λ
T )),DB̄(Φ(W )g(X̄δ,λ

T ))] = Φ(W )g′(X̄δ,λ
T )[DBX̄δ,λ

T ,DB̄X̄δ,λ
T ],

∫ T

0
Dt(Φ(W )g(X̄δ,λ

T ))[DB
t X̄

δ,λ
T ,DB̄

t X̄
δ,λ
T , 0]∗dt = Φ(W )g′(X̄δ,λ

T )γX̄
δ,λ
T .

Note that γX̄
δ,λ
T ≥ δ2

2 Id and thus γX̄
δ,λ
T is invertible. Then, the duality relationship leads to

E(Φ(W )∂xi
g(X̄δ,λ

T )G)

= E(

∫ T

0
Dt(Φ(W )g(X̄δ,λ

T ))[Gei · [γX̄δ,λ
T ]−1DB

t X̄
δ,λ
T , Gei · [γX̄δ,λ

T ]−1DB̄
t X̄

δ,λ
T , 0]∗dt)

= E(Φ(W )g(X̄δ,λ
T )

∫ T

0
[Gei · [γX̄δ,λ

T ]−1DB
t X̄

δ,λ
T , Gei · [γX̄δ,λ

T ]−1DB̄
t X̄

δ,λ
T , 0]δWt).

For longer multi-index α, we iterate the procedure and construct Hα(X̄
δ,λ
T , G) by the re-

currence formula Hα′+[ei]∗(X̄
δ,λ
T , G) =

∫ T
0 [Hα′(X̄δ,λ

T , G)ei · [γX̄δ,λ
T ]−1DB

t X̄
δ,λ
T ,Hα′(X̄δ,λ

T , G)ei ·
[γX̄

δ,λ
T ]−1DB̄

t X̄
δ,λ
T , 0]δWt. Concerning the estimation on ‖Hα(X̄

δ,λ
T , G)‖2, remark first that

since the derivative operator and the Skorohod integral are local (see Propositions 1.3.6

and 1.3.7 in [22]), one has Hα(X̄
δ,λ
T , G) = Hα(X̄

δ,λ
T , G)1ψδ

T
>0 owing to the property on G.

Using the standard inequality ‖Hα(X̄
δ,λ
T , G)1A‖p ≤ C‖[γX̄δ,λ

T ]−11A‖p1q1‖X̄δ,λ
T ‖p2k2,q2‖G‖Dk3,q3

(Proposition 2.4 in [3]) combined with ‖[γX̄δ,λ
T ]−11ψδ

T
>0‖p ≤ C

T q (take into account c) of

property on ψδT ), we easily complete the expected estimation. 2

The result below is more surprising, in particular the estimates (2.10). Indeed, at the

first glance, each stochastic integral (for fixed r) is of order
√
δ, but the mean over r helps in

improving this estimate to get δ, provided that the processes g and h satisfy some suitable

controls. Its proof is postponed to the end of this section.
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Proposition 2.1 For g ∈ D
∞(H) and h ∈ D

∞(H), one has

∫ T

0
gr(

∫ r

φ(r)
huδWu)dr =

∫ T

0
(

∫ T

0
grhu1φ(r)≤u≤rdr)δWu

+

∫ T

0
(

∫ T

0
Dugr · hu1φ(r)≤u≤rdr)du, (2.9)

and the above random variable belongs to D
∞. Under extra assumptions, both terms in the

r.h.s. above are of order δ.

i) Assume that Nk,p(g) =
∑k

j=0 [E(
∫ T
0 ‖Djgr‖pLp([0,T ]j)

dr)]1/p < +∞ and Nk,p(h) < +∞
for any k and p. Then, the first term of r.h.s. of (2.9) is of order δ in D

k,p, for any

k ∈ N and p > 1:

‖
∫ T

0
(

∫ T

0
grhu1φ(r)≤u≤rdr)δWu‖Dk,p ≤ C Nk+1,q(g)Nk+1,q(h) δ (2.10)

for some constants C and q depending only on k and p.

ii) Assume that Mk,p(g) =
∑k

j=1 sup0≤r≤T [E‖Djgr‖pLp([0,T ]j)
]1/p < +∞ and Nk,p(h) <

+∞ for any k and p. Then, the second term of r.h.s. of (2.9) is of order δ in D
k,p,

for any k ∈ N and p ≥ 1:

‖
∫ T

0
(

∫ T

0
Dugr · hu1φ(r)≤u≤rdr)du‖Dk,p ≤ C Mk+1,q(g) Nk,q(h) δ (2.11)

for some constants C and q depending only on k and p.

Let us turn to the proof of Theorem 2.1. It consists in proving

E(Φ(W )[f(Xδ
T )eZ

δ
T − f(XT )eZT ]) = E(Φ(W )eZ

δ
T [(f − fδ)(X

δ
T ) − (f − fδ)(XT )])(2.12)

+E(Φ(W )eZ
δ
T [fδ(X

δ
T ) − fδ(XT )]) (2.13)

+E(Φ(W )f(XT )[eZ
δ
T − eZT ]) (2.14)

= E(Φ(W )[A1(f) +A2(f) +A3(f) +A4(f) +R])

for any functional Φ(W ) ∈ D
∞, with ‖R‖2 = O(δ) uniformly w.r.t. f ∈ BL1(R

d). Since

‖f − fδ‖∞ ≤ Cδ for f ∈ BL1(R
d), the term (2.12) can be neglected in our expansion.

In the following computations, we simply write Φ instead of Φ(W ).

2.2.1 Contribution (2.13)

A Taylor’s formula combined with (2.6) and Ito’s formula between φ(s) and s gives

E(ΦeZ
δ
T [fδ(X

δ
T ) − fδ(XT )]) = E(ΦeZ

δ
T f ′δ(T )ET

∫ T

0
E−1
s [

∫ s

φ(s)
α0,0(u)du]ds) (2.15)

+E(ΦeZ
δ
T f ′δ(T )ET

∫ T

0
E−1
s [

∫ s

φ(s)
α0,1(u)dBu]ds) (2.16)
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+E(ΦeZ
δ
T f ′δ(T )ET

∫ T

0
E−1
s [

∫ s

φ(s)
α0,2(u)dWu]ds) (2.17)

+E(ΦeZ
δ
T f ′δ(T )ET

∫ T

0
E−1
s [

∫ s

φ(s)
α1,0(u)du]dBs) (2.18)

+E(ΦeZ
δ
T f ′δ(T )ET

∫ T

0
E−1
s [

d∑

i=1

∫ s

φ(s)
α1,1
i (u)dBu]dB

i
s) (2.19)

+E(ΦeZ
δ
T f ′δ(T )ET

∫ T

0
E−1
s [

d∑

i=1

∫ s

φ(s)
α1,2
i (u)dWu]dB

i
s) (2.20)

+E(ΦeZ
δ
T f ′δ(T )ET

∫ T

0
E−1
s [

∫ s

φ(s)
α2,0(u)du]dWs) (2.21)

+E(ΦeZ
δ
T f ′δ(T )ET

∫ T

0
E−1
s [

q∑

i=1

d∑

j=1

∫ s

φ(s)
α2,1
i,j (u)dBj

u]dW
i
s) (2.22)

+E(ΦA1(f)), (2.23)

where coefficients α.. ∈ D
∞(H) with Nk,p(α

.

.)+Mk,p(α
.
.) < +∞ for any k, p, uniformly w.r.t.

δ (actually, this is a consequence of the stronger estimate supr∈[0,T ] ‖Dk
s1,···,sk

α..(r)‖p < ∞,

see [14] for instance).

Terms in factor of Φ in (2.15)(2.18)(2.21)

clearly satisfy ‖R‖2 = O(δ) (remind that ‖f ′‖∞ ≤ C uniformly in f ∈ BL1(R
d)).

The contributions (2.16) and (2.17) give a contribution of order δ in Lp-norm by an

application of estimates (2.10-2.11).

Terms (2.19) contain most of the difficulties that we have to face in this error analysis:

we may here give detailed arguments ((2.20) is handled in the same way). Note that

fδ(x) = E(fδ/
√

2(x + δ√
2
B̄T )) as well for the derivatives: thus, each term of the sum in

(2.19) equals

∫ 1

0
dλE(ΦψδT e

Zδ
T f ′

δ/
√

2
(X̄δ,λ

T )ET
∫ T

0
E−1
s [

∫ s

φ(s)
α1,1
i (u)dBu]dB

i
s) (2.24)

+

∫ 1

0
dλE(Φ(1 − ψδT )eZ

δ
T f ′

δ/
√

2
(X̄δ,λ

T )ET
∫ T

0
E−1
s [

∫ s

φ(s)
α1,1
i (u)dBu]dB

i
s). (2.25)

Since P (ψδT 6= 1) ≤ C δ2

T q , (2.25) provides a negligible contribution. Besides, if we trans-

form the Itô integral w.r.t. B into a Lebesgue integral, using the duality relationship and

Property ii) of Lemma 2.1, we obtain that (2.24) is equal to

∫ 1

0
dλE(Φ

∫ T

0
DBi

s [ψδT e
Zδ

T f ′
δ/

√
2
(X̄δ,λ

T )ET ]E−1
s [

∫ s

φ(s)
α1,1
i (u)dBu]ds)

=
∑

κ:|κ|=1,2

∫ 1

0
dλE(Φf

(κ)

δ/
√

2
(X̄δ,λ

T )

∫ T

0
α1,1
κ,i(s)[

∫ s

φ(s)
α1,1
i (u)dBu]ds)

withNk,p(α
1,1
κ,i)+Mk,p(α

1,1
κ,i ) < +∞ for any k and p. If we putG =

∫ T
0 α1,1

κ,i(s)[
∫ s
φ(s) α

1,1
i (u)dBu]ds,

we remark that G ∈ D
∞, that G = 0 if ψδT = 0 because of the local property of the
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derivative operator and that ‖G‖
Dk,p ≤ Cδ applying Proposition 2.1. Thus, Lemma 2.1

completes the estimate, and the factor of Φ in (2.24) is of order δ in L2-norm, uniformly

w.r.t. f ∈ BL1(R
d).

We now consider (2.22). As for (2.19), we introduce ψδT : the term with 1 − ψδT can be

neglected as before. Using analogous computations as above, it is straightforward to see

that we have to control

∫ 1

0
dλE(ΦψδT e

Zδ
T f ′

δ/
√

2
(X̄δ,λ

T )ET
∫ T

0
E−1
s [

∫ s

φ(s)
α2,1
i,j (u)dBj

u]dW
i
s)

=

∫ 1

0
dλ

∫ T

0

∫ T

0
E(DBj

u [DW i

s [ΦψδT e
Zδ

T f ′
δ/

√
2
(X̄δ,λ

T )ET ]E−1
s ]1φ(s)≤u≤sα

2,1
i,j (u))du ds

=
∑

κ:|κ|=1,2

∫ 1

0
dλE(Φf

(κ)

δ/
√

2
(X̄δ,λ

T )

∫ T

0

∫ T

0
α̂κ,2,1i,j (s)1φ(s)≤u≤sα

2,1
i,j (u)du ds) (2.26)

+
∑

κ:|κ|=1,2

∫ 1

0
dλE(

∫ T

0
DW i

s [Φf
(κ)

δ/
√

2
(X̄δ,λ

T )](

∫ T

0
ακ,2,1i,j (s)1φ(s)≤u≤sα

2,1
i,j (u)du)ds). (2.27)

For (2.26), it is enough to apply (2.8) with G =
∫ T
0

∫ T
0 α̂κ,2,1i,j (s)1φ(s)≤u≤sα

2,1
i,j (u)du ds that

clearly satisfies ‖G‖Dk,p ≤ Cδ: this proves the expected estimate of order δ. The same con-

clusion holds for each term in (2.27): indeed, they can be transformed in
∫ 1
0 dλE(Φf

(κ)

δ/
√

2
(X̄δ,λ

T )
∫ T
0 (
∫ T
0 ακ,2,1i,j (s)1φ(s)≤u≤sα

2,1
i,j (u)du)δW i

s) and we conclude with Lemma 2.1.

2.2.2 Contribution (2.14)

It can be decomposed as E(Φf(XT )[eZ
δ
T − eZT ]) = E(Φf(XT )eZ̄

δ
T [ZδT − ZT ]), that is

E(Φf(XT )eZ̄
δ
T (

∫ T

0
[h(Xδ

φ(s)) − h(Xδ
s )].dWs)) (2.28)

+E(Φf(XT )eZ̄
δ
T (

∫ T

0
[h(Xδ

s ) − h(Xs)].dWs)) (2.29)

−1

2
E(Φf(XT )eZ̄

δ
T (

∫ T

0
[‖h‖2(Xδ

φ(s)) − ‖h‖2(Xδ
s )]ds)) (2.30)

−1

2
E(Φf(XT )eZ̄

δ
T (

∫ T

0
[‖h‖2(Xδ

s ) − ‖h‖2(Xs)]ds)). (2.31)

Since (2.28) can be rewritten as E(Φf(XT )eZ̄
δ
T (
∑q

i=1

∫ T
0 [hi(X

δ
φ(s))−hi(Xδ

s )]dW
i
s)), it equals

−E(Φf(XT )eZ̄
δ
T (

q∑

i=1

∫ T

0
[

∫ s

φ(s)
h′i(X

δ
r )β(Xδ

φ(r))dr]dW
i
s)) (2.32)

−E(Φf(XT )eZ̄
δ
T (

q∑

i=1

∫ T

0
[

∫ s

φ(s)
h′i(X

δ
r )σ(Xδ

φ(r))dBr]dW
i
s)) (2.33)

−E(Φf(XT )eZ̄
δ
T (

q∑

i=1

∫ T

0
[

∫ s

φ(s)
h′i(X

δ
r )γ(X

δ
φ(r))dWr]dW

i
s)). (2.34)
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The factor of Φ in (2.32) clearly satisfies the required estimate and can be neglected.

The term (2.33) can also be discarded from the main part of the error using the same

arguments as for (2.22). Finally, the term (2.34) gives A2(f).

Term (2.29). Owing to (2.6), it writes
∑q

i=1E(Φf(XT )eZ̄
δ
T (
∫ T
0 [hi(X

δ
s )− hi(Xs)]dW

i
s)),

equals

−
q∑

i=1

d∑

j=1

E(Φf(XT )eZ̄
δ
T (

∫ T

0
h′i(s)Es(

∫ s

0
E−1
r [

∫ r

φ(r)
σ′j(X

δ
u)σ(Xδ

φ(u))dBu]dB
j
r)dW

i
s))

−
q∑

i=1

d∑

j=1

E(Φf(XT )eZ̄
δ
T (

∫ T

0
h′i(s)Es(

∫ s

0
E−1
r [

∫ r

φ(r)
σ′j(X

δ
u)γ(X

δ
φ(u))dWu]dB

j
r)dW

i
s))

−
q∑

i,j=1

E(Φf(XT )eZ̄
δ
T (

∫ T

0
h′i(s)Es(

∫ s

0
E−1
r [

∫ r

φ(r)
γ′j(X

δ
u)σ(Xδ

φ(u))dBu]dW
j
r )dW i

s)) (2.35)

−
q∑

i,j=1

E(Φf(XT )eZ̄
δ
T (

∫ T

0
h′i(s)Es(

∫ s

0
E−1
r [

∫ r

φ(r)
γ′j(X

δ
u)γ(X

δ
φ(u))dWu]dW

j
r )dW i

s)) (2.36)

+E(ΦR)

with ‖R‖2 = O(δ) by estimates (2.10-2.11). The term (2.36) gives A3(f), while the other

contributions can be neglected. To justify this assertion, let us consider for instance (2.35),

techniques being the same for the other ones. First, we can replace f by fδ since ‖f−fδ‖∞ ≤
Cδ. Then, three applications of duality relationship yield:

E(Φfδ(XT )eZ̄
δ
T (

∫ T

0
h′i(s)Es(

∫ s

0
E−1
r [

∫ r

φ(r)
γ′j(X

δ
u)σ(Xδ

φ(u))dBu]dW
j
r )dW i

s))

=

∫ T

0

∫ T

0

∫ T

0
E(DB

u [DW j

r [DW i

s [Φfδ(XT )eZ̄
δ
T ]h′i(s)Es]E−1

r ] · γ′j(Xδ
u)σ(Xδ

φ(u))1φ(r)≤u≤r)du dr ds.

The term inside the expectation can be split into a sum involving the derivative of Φ and

of f . Presumably, the more difficult term to estimate is of the form

∫ T

0

∫ T

0

∫ T

0
E(DW j

r [DW i

s [Φf
(κ)
δ (XT )]]α(u, r, s)1φ(r)≤u≤r)du dr ds.

We omit the details for the other ones which are easier to handle. Two integration by parts

with fixed W (see iii) in Lemma 2.1) show that it equals

E(Φf
(κ)
δ (XT )

∫ T

0
(

∫ T

0
(

∫ T

0
α(u, r, s)1φ(r)≤u≤rdu)δW

j
r )δW i

s).

Then, we conclude using (2.7) with ‖
∫ T
0 (
∫ T
0 (
∫ T
0 α(u, r, s)1φ(r)≤u≤rdu)δW

j
r )δW i

s‖Dk,p ≤ Cδ.

Term (2.30). It yields a contribution of order δ, by an application of Ito’s formula and in-

equalities (2.10-2.11). At last, the term (2.31) is equal to −1
2

∫ T
0 E(Φf(XT )eZ̄

δ
T [‖h‖2(Xδ

s )−
‖h‖2(Xs)])ds: in this form, the analysis is analogous to that of (2.13) and we omit the

details. It gives the contribution A4(f) and some residual terms of order δ.
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2.2.3 Proof of Proposition 2.1

To prove (2.9), take Ψ ∈ D
∞ and write using twice Fubini’s theorem and the duality

relationship alternatively:

E(Ψ

∫ T

0
gr(

∫ r

φ(r)
huδWu)dr) =

∫ T

0
E(Ψgr(

∫ r

φ(r)
huδWu))dr

=

∫ T

0

∫ T

0
E(Du[Ψgr]1φ(r)≤u≤r · hu)du dr

=

∫ T

0
E(DuΨ ·

∫ T

0
grhu1φ(r)≤u≤rdr)du+

∫ T

0
E(Ψ

∫ T

0
Dugr · hu1φ(r)≤u≤rdr)du

= E(Ψ

∫ T

0
(

∫ T

0
grhu1φ(r)≤u≤rdr)δWu) + E(Ψ

∫ T

0
(

∫ T

0
Dugr · hu1φ(r)≤u≤rdr)du).

Is is standard to check that
∫ T
0 gr(

∫ r
φ(r) huδWu)dr belongs to D

∞ (see Lemma 1.3.4 in [22]).

The original feature of our result is specifically related to (2.10) and (2.11). Our key esti-

mates are the following ones: for appropriately defined random variables (gr,s, hu,s, gr,s,u)r,s,u,

we have


E

(∫

[0,T ]j
ds

∫ T

0
du|
∫ T

0
gr,shu,s1φ(r)≤u≤rdr|2

)p/2


1/p

(2.37)

≤ Cp,q(T ) δ

[
E

(∫

[0,T ]j+1

|hu,s|q duds
)]1/q [

E

(∫

[0,T ]j+1

|gr,s|q drds
)]1/q

,


E

(∫

[0,T ]j
ds

∫ T

0
du|
∫ T

0
gr,s,uhu,s1φ(r)≤u≤rdr|2

)p/2


1/p

(2.38)

≤ Cp,q(T ) δ

[
E

(∫

[0,T ]j+1

|hu,s|q duds
)]1/q

sup
0≤r≤T

[
E

(∫

[0,T ]j+1

|gr,s,u|q dsdu
)]1/q

,

for q large enough. Indeed, the Cauchy-Schwarz inequality yields

∫ T

0
du |

∫ T

0
gr,s,uhu,s1φ(r)≤u≤rdr|2 ≤

∫ T

0
du|hu,s|2(

∫ φ(u)+δ

u
|gr,s,u| dr)2

≤ [

∫ T

0
du|hu,s|4]1/2[

∫ T

0
du(

∫ φ(u)+δ

u
|gr,s,u| dr)4]1/2

≤ δ3/2[

∫ T

0
du|hu,s|4]1/2[

∫ T

0
du

∫ φ(u)+δ

u
|gr,s,u|4 dr]1/2.

If g does not depend on u, the last term above is bounded by δ1/2[
∫ T
0 |gr,s|4 dr]1/2. Then,

the derivation of (2.37) is easy, using Hölder’s inequalities. If g depends on u, the previous

computation to get the missing factor δ1/2 does not directly work: before, one has to

integrate over s and ω, the other types of arguments remaining unchanged.

We are now in a position to derive (2.10). Consider first k = 0. To control the Lp-norms

of the first term in the r.h.s. of (2.9), we invoke the continuity of the Skorohod integral
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(Proposition 2.4.3 in [23]) to get

‖
∫ T

0
(

∫ T

0
grhu1φ(r)≤u≤rdr)δWu‖p

≤ C

(
‖
∫ T

0
grh.1φ(r)≤.≤rdr‖Lp(Ω,H) + ‖

∫ T

0
D(grh.)1φ(r)≤.≤rdr‖Lp(Ω,H⊗2)

)
. (2.39)

From (2.37), we easily get that the first term above is bounded by N0,q(h)N0,q(h)δ, for

q large enough. With analogous computations, the second term in the r.h.s. of (2.39) is

bounded by CN1,q(h)N1,q(h)δ. Estimates (2.10) have been proved when k = 0. For k ≥ 1,

the successive derivative of the r.h.s of (2.9) are standard to compute and can be expressed

in a similar form than before: then, analogous computations can be performed and this

proves (2.10) for any k. The derivation of (2.11) is analogous, using in addition (2.38).

2.3 Stochastic McKean-Vlasov equation

The detailed analysis of the time discretization error for the Zakai equation illustrates that

in general, due to the correlation factor γ, the error will be exactly of order
√
δ. The

situation with the McKean-Vlasov equation is analogous, as we briefly discuss it now.

1. Firstly, the derivation of the order
√
δ is standard, using usual techniques. In the

case of deterministic McKean-Vlasov equation, see [18] Lemma 3.1. But in view of

their proofs, it is easy to see that considering conditional laws do not modify the final

estimates.

2. Secondly, without correlation (i.e. γ = 0), it is proved in [2] that the error is of order

δ under a non-degeneracy condition. The result is proved in the case d = 1 but an

extension to higher dimensions is possible.

3. Thirdly, it remains to justify why, in general (γ 6= 0), we can not expect the error to

be of order δ but only
√
δ. A simple example in dimension 1 may be β ≡ 0, σ ≡ 0 and

γ(x, V ) = x. In that case, the error coincides with that of the Zakai equation (with

h ≡ 0). Only the contribution A1(f) remains (see Theorem 2.1), which is clearly of

order
√
δ.

3 Simulation of Zakai equation and quantization error

3.1 The quantization algorithm

In this section, we propose a quantization approach for the numerical implementation of

formulae in (2.1), (2.3) and (2.5) in Case A of Zakai equation. Here, those formulae are

written as:

X̄k+1 = X̄k + β(X̄k)δ + σ(X̄k)∆B̄k+1 + γ(X̄k)∆W̄k+1

=: Fδ(X̄k,∆B̄k+1,∆W̄k+1), (3.1)

< V̄k+1, f > = < V̄k, exp
(
g(.,∆W̄k+1)

)
P̄

k+1,W
f > (3.2)

16



for k = 0, . . . , n− 1, with

g(x,∆W ) = h(x).∆W − 1

2
|h(x)|2δ, (3.3)

and P̄
k+1,W

(x, dx′) is a normal distribution with mean x+β(x)δ+γ(x)∆W̄k+1 and variance

σ(x)σ⊺(x)δ.

We construct an approximation of V̄k as follows. At each time tk, k = 0, . . . , n, we

are given a grid Γk = {x1
k, . . . , x

Nk

k } of Nk points in R
d, associated to Voronoi tessellations

Ci(Γk), i = 1, . . . , Nk:

Ci(Γk) =

{
u ∈ R

d : |u− xik| = min
j

|u− xjk|
}
,

where |.| is the Euclidean norm in R
d. We then approximate the process (X̄k) by the

marginal quantized process (X̂k) defined as:

X̂k = ProjΓk
(X̄k) :=

Nk∑

i=1

xik1{X̄k∈Ci(Γk)}.

We thus define the conditional probability P̂
k,W

of X̂k given X̂k−1, and W . In other words,

P̂
k,W

is a (random) probability transition matrix {p̂ij
k,W

, i = 1, . . . ,Nk−1, j = 1, . . . ,Nk}
characterized by:

p̂ij
k,W

= P
W

[
X̂k = xjk

∣∣∣ X̂k−1 = xik

]
.

Finally, the random measure-valued process (V̄k) is approximated by the discrete random

measure process (V̂k) defined by:

V̂0 = law of X̂0,

< V̂k+1, f > = < V̂k, exp
(
g(.,∆W̄k+1)

)
P̂

k+1,W
f > . (3.4)

From an algorithmic viewpoint, this reads as:

V̂k =

Nk∑

i=1

v̂ikδxi
k
, (δx is the Dirac measure in x)

for k = 0, . . . , n, where the weights v̂ik are computed in a forward induction as:

v̂i0 = p̂i0 := P [X̂0 = xi0] = P [X̄0 ∈ Ci(Γ0)], i = 1, . . . ,N0,

v̂jk+1 =

Nk∑

i=1

v̂ikp̂
ij
k+1,W

exp
(
g(xik,∆W̄k+1)

)
, j = 1, . . . ,Nk+1.

The implementation of the above method requires optimally for each k = 0, . . . , n:

• a grid Γk which minimizes the Lp-quantization error

‖∆k‖p = ‖X̄k − X̂k‖p

17



as well as an estimation of this error,

• the weights of the joint distribution (X̂k−1, X̂k) and marginal distribution X̂k−1:

r̂ij
k,W

= P
W

[
X̂k = xjk, X̂k−1 = xik−1

]
= P

W

[
X̄k ∈ Cj(Γk), X̄k−1 ∈ Ci(Γk−1)

]
,

q̂i
k−1,W

= P
W

[
X̂k−1 = xik

]
= P

W

[
X̄k−1 ∈ Ci(Γk−1)

]
,

for i = 1, . . . , Nk−1, j = 1, . . . , Nk, so that

p̂ij
k,W

=
r̂ij

k,W

q̂i
k−1,W

.

This program is achieved as follows:

- Monte-Carlo simulation of M independent copies (X̄
(m)
0 , . . . , X̄

(m)
n ) distributed accord-

ing to (X̄0, . . . , X̄n).

- Recursive optimization of the grids Γ0, . . . ,Γn by a Competitive Learning Vector Quan-

tization procedure and computation of the probability weights r̂ij
k,W

and q̂i
k−1,W

, k = 1, . . . , n.

As a byproduct, we also have an estimation of the L2 quantization errors ‖∆k‖2, k =

0, . . . , n.

3.2 Analysis of quantization error

The next theorem states an error estimation for the approximation of V̄n under the follow-

ing condition on the coefficients of the s.d.e X:

(H2) (i) The functions β, σ and γ are Lipschitz in x.

(ii) The function h is bounded and Lipschitz.

Theorem 3.1 Under (H2), for all p∈ [1,+∞) and p′ > p, there exists a positive constant

Cp,p′ such that:

∥∥∥ρ(V̄n, V̂n)
∥∥∥

p

≤ Cp,p′
1√
δ

n∑

k=0

‖∆k‖p′ .

Remark 3.1 In view of Zador’s theorem for the rate of convergence of minimal quanti-

zation error, the last theorem formally says that given a total number of N points to be

dispatched among the n grids in time, we have a rate of convergence for
∥∥∥ρ(V̄n, V̂n)

∥∥∥
p

of

order:

n
1
d
+ 3

2

N
1
d

.

We first need the following classic result about Lp-Lipschitz property of Euler schemes.

Lemma 3.1 Let Gδ be a functional in the form:

Gδ(x, ε) = x+ δB(x) +
√
δΣ(x)ε,

18



where B and Σ are Lipschitz functions on R
d, and ε is a Gaussian white noise. Then, for

all p ∈ [1,∞), there exists a constant Cp such that for all x, x′ ∈ R
d:

∥∥Gδ(x, ε) −Gδ(x
′, ε)
∥∥
p

≤ Cp(1 + δ)|x − x′|.

We refer e.g. [26] for a detailed proof in a slightly more general setting where ε is only

symmetric and lies in Lp.

One defines for every k = 1, . . . , n the operator H̄k,W by

H̄k,W (f)(x) = exp g(x,∆W̄k)P̄k,W (f)(x), ∀f ∈ BL1(R
d), ∀x ∈ R

d,

where g is defined by (3.3). One defines

H̄0,W (f) = < µ0, f > .

One easily checks that (with the former notations)

< V̄k, f > = E
W

(H̄k,W (f)(X̄k−1)) = < V̄k−1, H̄k,W (f) >

so that, for every k = 0, . . . , n,

< V̄k, f > = (H̄0,W ◦ H̄1,W ◦ · · · ◦ H̄k,W )(f).

This equality can be written either in forward or backward recursive form. The backward

form will be an important tool for proofs:

Ūn,W f := f,

Ūk−1,W f := H̄k,W (Ūk,W f), k = 1, . . . n. (3.5)

then, one checks using the Markov property and the iterated conditional expectation rule

that

Ū0,W f = < V̄n, f > .

For every k = 1, . . . , n, one approximates the operator H̄k,W by its natural quantized

counterpart Ĥk,W defined on the grid Γk−1 = {x1
k−1, . . . , x

i
k−1, . . . , x

Nk−1

k−1 } by

Ĥk,W (f)(xik−1) := exp g(xik−1,∆W̄k)
∑

j

f(xjk)PW
(X̂k = xjk | X̂k−1 = xik−1)

so that

Ĥk,W (f)(X̂k−1) = exp g(X̂k−1,∆W̄k)EW
(f(X̂k) | X̂k−1).

Then, one sets

Ĥ0,W (f) :=
∑

j

f(xj0)PW
(X̂0 = xj0).

We then notice that the approximation of V̄k defined in (3.4) satisfies:

< V̂k, f > = (Ĥ0,W ◦ Ĥ1,W ◦ · · · ◦ Ĥk,W )(f), k = 1, . . . , n. (3.6)
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Once again, this equality can be read in backward form as follows:

Ûn,W f(xin) := f(xin), i = 1, . . . ,Nn,

Ûk−1,W f(xik−1) := Ĥk,W (Ûk,W f)(xik−1), i = 1, . . . ,Nk−1, k = 1, . . . n,(3.7)

so that < V̂n, f > = Û0,W f. (3.8)

The proof is designed as follows: we wish to establish a backward induction between

the error terms ‖Ūk,W f(X̄k) − Ûk,Wf(X̂k)‖p at successive times k and k + 1 involving the

quantization error ‖X̄k+1 − X̂k+1‖p of the Euler scheme. Unfortunately a naive approach

makes the final error explode because of successive use of Holder inequality. So we are

lead to introduce a process Ȳk starting at X̄0 but produced by a biased dynamics Gδ,p
(instead of Fδ) which corresponds to a step-by-step discrete Girsanov (implicit) change of

probability. Thus we can simultaneously take advantage of the martingale property of the

Doléans exponential and of the independence property of the increments ∆W̄k. Finally we

use a revert Girsanov change of probability to come back to the quantization error of the

X̄k.

Proof of Theorem 3.1. We will assume for convenience that δ = T/n∈ (0, 1] throughout

the proof.

Step 1: backward induction on the error ‖Ūk,W f(Ȳk) − Ûk,W f(Ŷk)‖p

Set temporarily

Gδ,p(y, v, w) := Fδ(y, v, w + pδh(y))

= y + δ(β(y) + pγ(y)h(y)) + σ(y)v + γ(y)w,

Ȳk := Gδ,p(Ȳk−1,∆B̄k,∆W̄k), k ≥ 1,

Ȳ0 = X0,

and Ỹk := Fδ(Ȳk−1,∆B̄k,∆W̄k), k ≥ 1.

Let F̄k denote the σ-field σ(∆B̄ℓ,∆W̄ℓ, ℓ = 1, . . . , k). Set, for every k = 0, . . . , n,

Ŷk := ProjΓk
(Ȳk) and

̂̃
Y k := ProjΓk

(Ỹk).

With these notations, one checks that for every f ∈ BL1(R
d),

H̄k,W (f)(Ȳk−1) = exp g(Ȳk−1,∆W̄k)EW (f(Ỹk) | Ȳk−1) (3.9)

and

Ĥk,W (f)(Ŷk−1) = exp g(Ȳk−1,∆W̄k)EW (f(
̂̃
Y k) | Ŷk−1). (3.10)

Consequently

Ūk−1,W f(Ȳk−1) − Ûk−1,Wf(Ŷk−1)

= H̄k,W (Ūk,W f)(Ȳk−1) − Ĥk,W (Ûk,W f)(Ŷk−1)

= (Ūk−1,W f)(Ȳk−1) − E
W

(
(Ūk−1,W f)(Ȳk−1) | Ŷk−1

)

+E
W

(
H̄k,W (Ūk,W f)(Ȳk−1) − Ĥk,W (Ûk,W f)(Ŷk−1) | Ŷk−1

)
.
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Let us deal with the two above terms successively. The random vector Ŷk−1 being a function

of Ȳk−1 and conditional expectation E( . |W, Ŷk−1) being an Lp-contraction, one gets

∥∥Ūk−1,W f(Ȳk−1) − E
W

(
(Ūk−1,W f)(Ȳk−1) | Ŷk−1

)∥∥∥
p

≤
∥∥∥(Ūk−1,W f)(Ȳk−1) − (Ūk−1,W f)(Ŷk−1)

∥∥∥
p

+
∥∥∥EW

(
(Ūk−1,W f)(Ŷk−1) − (Ūk−1,W f)(Ȳk−1) | Ŷk−1

)∥∥∥
p

≤ 2
∥∥(Ūk−1,W f)(Ȳk−1) − (Ūk−1,W f)(Ȳk−1)

∥∥
p
.

Consequently, using the expressions (3.9) and (3.10) and once again the contraction prop-

erty and the σ(Ȳk−1)-measurability of Ŷk−1 yield

∥∥Ūk−1,W f(Ȳk−1) − Ûk−1,W f(Ŷk−1)
∥∥∥

p

≤ 2
∥∥∥(Ūk−1,W f)(Ȳk−1) − (Ūk−1,W f)(Ŷk−1)

∥∥∥
p

(3.11)

+

∥∥∥∥e
g(Ȳk−1,∆W̄k)(Ūk,W f)(Ỹk) − eg(

bYk−1,∆W̄k)(Ûk,W f)(
̂̃
Y k)

∥∥∥∥
p

(when p = 2, the 2 factor can be deleted). Let us deal now with the second term of the

sum in the right hand side. The definition of H̄k,W and the contraction property lead to

∥∥∥∥e
g(Ȳk−1,∆W̄k)(Ūk,W f)(Ỹk) − eg(

bYk−1,∆W̄k)(Ûk,W f)(
̂̃
Y k)

∥∥∥∥
p

≤
∥∥∥∥exp g(Ȳk−1,∆W̄k)

(
Ūk,W f(Ỹk) − exp

(
g(Ŷk−1,∆W̄k) − g(Ȳk−1,∆W̄k)

)
Ûk,Wf(

̂̃
Y k)

)∥∥∥∥
p

.

Set Lp(δ) := exp ((p − 1)‖h‖2
∞
δ/2). A change of variable “à la Girsanov” yields for

every nonnegative Borel function Θ and every p∈ (1,+∞),

∥∥exp (g(Ȳk−1,∆W̄k))Θ(Ȳk−1,∆B̄k,∆W̄k)
∥∥p

p

≤ (Lp(δ))
pE
(
exp (ph(Ȳk−1).∆W̄k) − p2|h(Ȳk−1)|2δ/2)Θp(Ȳk−1,∆B̄k,∆W̄k)

)

≤ (Lp(δ))
pE
(
Θp(Ȳk−1,∆B̄k,∆W̄k + pδh(Ȳk−1)

)

so that

∥∥exp(g(Ȳk−1,∆W̄k))Θ(Ȳk−1,∆B̄k,∆W̄k)
∥∥

p
≤ Lp(δ)‖Θ(Ȳk−1,∆B̄k,∆W̄k+pδh(Ȳk−1)‖p .

(3.12)

Applying the above inequality with Θ(y, v, w) = (Ūk,W f)(Gδ,p(y, v, w)) leads to

∥∥∥∥e
g(Ȳk−1,∆W̄k)(Ūk,W f)(Ỹk) − eg(

bYk−1,∆W̄k)(Ûk,W f)(
̂̃
Y k)

∥∥∥∥
p

≤ Lp(δ)
∥∥∥
(
Ūk,Wf(Ȳk)−exp

(
g(Ŷk−1,∆W̄k + pδh(Ȳk−1))−g(Ȳk−1,∆W̄k + pδh(Ȳk−1))

)
Ûk,W f(Ŷk)

)∥∥∥
p
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≤ Lp(δ)
∥∥∥Ūk,Wf(Ȳk) − Ûk,W f(Ŷk)

∥∥∥
p

+Lp(δ)
∥∥∥
(
1−exp

(
g(Ŷk−1,∆W̄k + pδh(Ȳk−1)) − g(Ȳk−1,∆W̄k + pδh(Ȳk−1))

))
Ûk,W (f)(Ŷk)

∥∥∥
p

≤ Lp(δ)
∥∥∥Ūk,Wf(Ȳk) − Ûk,W f(Ŷk)

∥∥∥
p

+Lp(δ)
∥∥∥1−exp

(
g(Ŷk−1,∆W̄k + pδh(Ȳk−1)) − g(Ȳk−1,∆W̄k + pδh(Ȳk−1))

)∥∥∥
rp

∥∥∥Ûk,Wf(Ŷk)
∥∥∥

sp

(3.13)

where r > 1 and s = r
r−1 are conjugate Holder exponents. Now

∥∥∥Ûk,Wf(Ŷk)
∥∥∥

sp

=
∥∥∥exp g(Ŷk,∆W̄k) Ûk+1,W f(Ŷk)

∥∥∥
sp

.

Applying (3.12) (with sp) yields

∥∥∥Ûk,Wf(Ŷk)
∥∥∥

sp

≤ Lsp(δ)
∥∥∥Ûk+1,W f(Ŷ

(sp)
k+1 )

∥∥∥
sp

for some F̄k+1-measurable random vector Ŷ
(sp)
k+1 which we have no need to specify (since f

is bounded). One derives by induction that

∥∥∥Ûk,W f(Ŷk)
∥∥∥

sp

≤(Lsp(δ))
n−k‖Ûn,W f(Ŷ (sp)

n )‖sp ≤(Lsp(δ))
n−k‖f‖∞ ≤ Cp,r,‖h‖∞ ,T‖f‖∞ (3.14)

with Kp,r,‖h‖∞ ,T = exp ((sp− 1)‖h‖2
∞
T/2).

Let us deal now with the Lrp-norm of the exponential term. First temporarily set

∆̂k(h) := h(Ŷk) − h(Ȳk). Then, standard computations show that

∥∥∥1 − exp
(
g(Ŷk−1,∆W̄k + p δ h(Ȳk−1)) − g(Ȳk−1,∆W̄k + pδh(Ȳk−1))

)∥∥∥
rp

=
∥∥∥1 − exp

(
(p − 1)δh(Ȳk−1).∆̂k−1(h) + ∆̂k−1(h)∆W̄k − |∆̂k−1(h)|2δ/2

)∥∥∥
rp

.

Now using the elementary inequality |ex − 1| ≤ |x|ex+ where x
+

:= max(x, 0) and the fact

that x 7→ x
+

is non-decreasing yield

‖1 − exp
(
g(Ŷk−1,∆W̄k + p δ h(Ȳk−1)) − g(Ȳk−1,∆W̄k + pδh(Ȳk−1))

)∥∥∥
rp

≤
∥∥∥|∆̂k−1(h)|

∣∣∣(p−1)δh(Ȳk−1)+∆W̄k−(∆̂k−1(h))δ/2
∣∣∣ exp

(
2(p− 1)δ‖h‖2

∞
+ 2‖h‖∞ |∆W̄k|

)∥∥∥
rp

≤ L4p−3(δ)
√
δ[h]

Lip

∥∥∥ |Ȳk−1−Ŷk−1|
(
(p− 1)

√
δ‖h‖∞) + |Zk| + ‖h‖∞

√
δ
)

exp
(
2‖h‖∞

√
δ|Zk|

)∥∥∥
rp

where Zk := ∆W̄k√
δ

is a N (0; Id) random vector independent of F̄k−1. Finally

‖1 − exp
(
g(Ŷk−1,∆W̄k + pδh(Ȳk−1)) − g(Ȳk−1,∆W̄k + pδh(Ȳk−1))

)∥∥∥
rp

≤ Cp,r,δ,‖h‖∞ ,T

√
δ[h]

Lip
‖Ŷk−1 − Ȳk−1‖rp (3.15)
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with

Cp,r,δ,‖h‖∞ ,T = L4p−3(δ)
∥∥∥
(
(p− 1)

√
δ‖h‖∞) + |Z| +

√
δ‖h‖∞

)
exp

(
2‖h‖∞

√
δ|Z|

)∥∥∥
rp

.

(Note that this real constant is increasing as a function of δ.) Plugging the estimates

in (3.15) and (3.14) into (3.13) yields for every k = 1, . . . , n,
∥∥∥∥e

g(Ȳk−1,∆W̄k)(Ūk,W f)(Ỹk) − eg(
bYk−1,∆W̄k)(Ûk,W f)(

̂̃
Y k)

∥∥∥∥
p

≤ Lp(δ)
∥∥∥Ūk,W f(Ȳk) − Ûk,W f(Ŷk)

∥∥∥
p

+B(δ)‖Ȳk−1 − Ŷk−1‖rp (3.16)

with B(δ) := Cp,r,‖h‖∞ ,T

√
δ[h]Lip‖f‖∞ (with Cp,r,‖h‖∞ ,T = Cp,r,1,‖h‖∞ ,TKp,r,‖h‖∞ ,TLp(1)).

Now let us pass to the first term in the right hand side of (3.11). Let (Ȳ k,y
ℓ )ℓ=k,...,n be

the sequence obtained by iterating Gp,δ(.,∆B̄ℓ,∆W̄ℓ) from y at time ℓ = k i.e.

∀ ℓ∈ {k + 1, . . . , n}, Ȳ k,y
ℓ = Gp,δ(Ȳ

k,y
ℓ−1,∆B̄ℓ,∆W̄ℓ), Ȳ k,y

k := y.

The same proof as above shows that, for any couple (Zk−1, Z
′
k−1) of F̄k−1-measurable Lp-

integrable random variables

∥∥(Ūk−1,W f)(Zk−1) − (Ūk−1,W f)(Z ′
k−1)

∥∥
p

≤ Lp(δ)‖Ūk,W (Ȳ
k−1,Zk−1

k ) − Ūk,W (Ȳ
k−1,Z′

k−1

k )‖rp

+B(δ)‖Ȳ k−1,Zk−1

k−1 − Ȳ
k−1,Z′

k−1

k−1 ‖rp

so that by induction,

∥∥∥(Ūk−1,W f)(Ȳk−1) − (Ūk−1,W f)(Ŷk−1)
∥∥∥

p

≤ B(δ)

n∑

ℓ=k

(Lp(δ))
ℓ−k‖Ȳ k−1,Ȳk−1

ℓ−1 − Ȳ
k−1,bYk−1

ℓ−1 ‖rp

+(Lp(δ))
n+1−k[f ]

Lip
‖Ȳ k−1,Ȳk−1

n − Ȳ
k−1,bYk−1
n ‖rp .

Now, Lemma 3.1 (applied to Gδ,p) implies the existence of a real constant Crp > 0 such

that

‖Ȳ k−1,Ȳk−1

ℓ − Ȳ
k−1,bYk−1

ℓ ‖rp ≤ (1 + Crpδ)
ℓ+1−k‖Ȳk−1 − Ŷk−1‖rp .

Setting L′
p,r(δ) = Lp(δ)(1 + Crpδ) finally yields for every k = 1, . . . , n,

∥∥(Ūk−1,W f)(Ȳk−1) − (Ūk−1,W f)(Ŷk−1)
∥∥∥

p

≤ C(δ)‖Ȳk−1 − Ŷk−1‖2p

with C(δ) = Lp(T )eCrp

(
Cp,r,‖h‖∞ ,T

[h]
Lip

‖f‖∞

√
δ

L′
p,r(δ) − 1

+ [f ]
Lip

)
. (3.17)

≤ Lp(T )eCrp

(
C ′
p,r,‖h‖∞ ,T

[h]
Lip

‖f‖∞√
δ

+ [f ]
Lip

)
. (3.18)

Plugging (3.16) and (3.17) into (3.11) finally yields the induction
∥∥∥Ūk−1,W f(Ȳk−1) − Ûk−1,W f(Ŷk−1)

∥∥∥
p

≤ Lp(δ)
∥∥∥Ūk,W f(Ȳk) − Ûk,Wf(Ŷk)

∥∥∥
p

+A(δ)‖Ȳk−1 − Ŷk−1‖rp
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with

A(δ) = B(δ) + C(δ) ≤ C ′′
p,r,‖h‖∞ ,T

(
[h]

Lip
‖f‖∞(

√
δ +

1√
δ
) + [f ]

Lip

)

≤
Cp,r,‖h‖∞ ,[h]

Lip
,‖f‖∞ ,T√

δ
.

A new induction leads to
∥∥∥<V̄n, f >−<V̂n, f >

∥∥∥
p

=
∥∥∥Ū0,W f(X̄0) − Û0,W f(X̂0)

∥∥∥
p

=
∥∥∥Ū0,W f(Ȳ0) − Û0,W f(Ŷ0)

∥∥∥
p

≤ A(δ)

n∑

k=0

(Lp(δ))
k‖Ȳk − (Ûn,W f)(Ŷn)‖rp + (Lp(δ))

n‖(Ūn,W f)(Ȳn) − Ŷk‖p

≤
Cp,r,‖h‖∞ ,[h]

Lip
,‖f‖∞ ,T√

δ

n∑

k=0

‖Ȳk − Ŷk‖rp + Lp(T )[f ]
Lip
‖Ȳn − Ŷn‖rp . (3.19)

Step 2 (Global revert Girsanov transform): Now, we aim to come back to X̄k by

introducing a revert Girsanov transform:

‖Ȳk − Ŷk‖rprp
= E

(
Zk(Zk)

−1|Ȳk − Ŷk|rp
)

where

Zk = exp

(
−

k∑

ℓ=1

ph(Ȳℓ−1).∆W̄ℓ − p2|h(Ȳℓ−1)|2δ/2
)
.

It follows that

E
(
Zk(Zk)

−1|Ȳk − Ŷk|rp
)

= E

(
exp

(
k∑

ℓ=1

ph(X̄ℓ−1).∆W̄ℓ − p2|h(X̄ℓ−1)|2δ/2
)
|X̄k − X̂k|rp

)

so that by the Holder inequality applied with two conjugate exponents r′, s′ > 1,

‖Ȳk − Ŷk‖rprp
≤

(
E exp

(
k∑

ℓ=1

s′ph(X̄ℓ−1).∆W̄ℓ − s′p2|h(X̄ℓ−1)|2δ/2
))1/s′ (

E|X̄k − X̂k|rr
′p
)1/r′

≤ exp (k(s′ − 1)p2‖h‖2
∞
δ/2)‖X̄k − X̂k‖rp

rr′p
.

Finally

‖Ȳk − Ŷk‖rp ≤ exp (kp‖h‖2
∞
δ/4)‖X̄k − X̂k‖4p

≤ Cp,r,r′,‖h‖∞ ,T ‖X̄k − X̂k‖rr′p
.

One completes the proof by setting r = r′ =
√
p′/p > 1 and plugging this last inequality

into (3.19). ♦
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4 Simulation of Stochastic McKean-Vlasov equation and quan-

tization error

4.1 The quantization algorithm

In this case, formulae (2.1), (2.3) are written as:

X̄k+1 = X̄k +

∫
β̃(X̄k, y)V̄k(dy)δ +

∫
σ̃(X̄k, y)V̄k(dy)∆B̄k+1

+

∫
γ̃(X̄k, y)V̄k(dy)∆W̄k+1

:= F (X̄k, V̄k,∆B̄k+1,∆W̄k+1),

< V̄k, f > = E
W

[
f(X̄k)

]
.

The last relation means that V̄k is the conditional distribution of X̄k given W . For a fixed

trajectory of W , we construct an approximation of V̄k as follows. At each time tk, k =

0, . . . , n, we are given a grid Γk = {x1
k, . . . , x

Nk

k } of Nk points in R
d, associated to Voronoi

tessellations Ci(Γk), i = 1, . . . , Nk. We then approximate (X̄k, V̄k) by a quantization algo-

rithm defined by:

X̃0 = X̄0,

V̂0 = probability distribution of X̂0 = ProjΓ0
(X̃0),

and for k = 1, . . . , n:

X̃k = F (X̃k−1, V̂k−1,∆B̄k,∆W̄k),

V̂k = probability distribution of X̂k = ProjΓk
(X̃k).

The implementation of the above method requires optimally for each k = 0, . . . , n:

• a grid Γk which minimizes the Lp-quantization error

‖∆k‖p = ‖X̃k − X̂k‖p

as well as an estimation of this error,

• the weights of the discrete probability distribution V̂k =
∑Nk

i=1 v
i
kδxi

k
:

vik = P
[
X̂k = xik

]
= P

[
X̃k ∈ Ci(Γk)

]
.

This program is achieved by successive stochastic gradient descent methods, known as

Competitive Learning Vector Quantization algorithm, based on Monte-Carlo simulation of

(X̃k):

◮ k = 0:

- simulation (and storing until time k = 1) of M independent copies X̃
(m)
0 distributed

according to X̄0.

- optimization of the grid Γ0 by a CLVQ procedure and computation of the probability

weights vi0, i = 1, . . . , N0 of X̂0 = ProjΓ0
(X̃0). As a byproduct, we also have an estimation

of the L2 quantization error ‖∆0‖2.

25



◮ k = 1, . . . , n:

- for every m = 1, . . . ,M , one simulates and stores until next time k + 1

X̃
(m)
k = F (X̃

(m)
k−1, V̂k−1,∆B̄

(m)
k ,∆W̄k).

- optimization of the grid Γk by a CLVQ procedure and computation of the probability

weights vik, i = 1, . . . , Nk of X̂k = ProjΓk
(X̃k). As a byproduct, we also have an estimation

of the L2 quantization error ‖∆k‖2.

Some comments: the usual asset of quantization based algorithms (including the one

proposed here to solve Zakai equation) is that a significant part of the computation can be

kept off-line. Then the implementation of the procedure for a given function f is almost

instantaneous; this is no longer the case here. However it remains an attractive procedure

in comparison with particle algorithms because of its lower complexity. This comes once

again from the quantization feature. Let us be more specific: At every time step k, the

main task of the CLVQ algorithm is to search the closest neighbour of X
(m)
k among the

Nk points of the grid Γk in order to update it. In some way this phase corresponds to

the interaction phase in particle algorithms. The complexity of such a procedure when

appropriately implemented is O(log(Nk)) in average (see [11]) (and O(Nk) in case of a

naive search). Then, one has to simulate M independent copies of the Euler scheme at

time k + 1 based on (2.1) with a cost M × Nk (due to the computation of M integrals

with respect to V̂k). So the global complexity induced by time step k is upper-bounded by

C×M×Nk where C is a real constant not depending on k. The resulting global complexity

behaves like

C ×M ×N × n

where N = (N0 +N1 + · · · +Nn)/(n + 1) is the average number of elementary quantizers

used per time step for the quantization of the measures V̂k. This is to be compared to the

complexity of an algorithm based on interacting particles like the one implemented in [7]

which is proportional to

M ×M × n

in full generality.

4.2 Analysis of quantization error

The next theorem states an error estimation for the approximation of V̄k by V̂k. We make

the following condition on the coefficients of the s.d.e X:

(H3) The functions β̃, σ̃ and γ̃ are bounded and Lipschitz in x, uniformly in y: there

exists some positive constant C such that

|β̃(x, y)| + |σ̃(x, y)| + |γ̃(x, y)| ≤ C,

|β̃(x, y) − β̃(x′, y)| + |σ̃(x, y) − σ̃(x′, y)| + |γ̃(x, y) − γ̃(x′, y)| ≤ C|x− x′|,

for all x, x′, y ∈ R
d.
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Theorem 4.1 Under (H3), for all p ∈ [1,∞), there exists a positive constant Cp such

that:

∥∥∥ρ(V̄n, V̂n)
∥∥∥

2p
≤ ‖∆n‖2p + Cpδ

1
2p

n−1∑

k=0

‖∆k‖2p .

Remark 4.1 In view of the Zador-Wise theorem for the rate of convergence of minimal

quantization error, the last theorem formally says that given a total number of N points to

be dispatched among the n grids in time, we have a rate of convergence for
∥∥∥ρ(V̄n, V̂n)

∥∥∥
2p

of order:

n
1+ 1

d
− 1

2p

N
1
d

.

Proof of Theorem 4.1.

Step 1. We set for all x ∈ R
d and v ∈ M(Rd)

β(x, v) =

∫
β̃(x, y)v(dy), σ(x, v) =

∫
σ̃(x, y)v(dy), γ(x, v) =

∫
γ̃(x, y)v(dy),

and we notice that under (H3), the following Lipschitz condition holds: there exists some

positive constant C such that

|β(x, v) − β(x′, v′)| + |σ(x, v) − σ(x′, v′)| + |γ(x, v) − γ(x′, v′)|
≤ C

[
|x− x′| + ρ(v, v′)

]
, (4.1)

for all x, x′ ∈ R
d, v, v′ ∈ M(Rd).

We consider the continuous Euler scheme associated to (X̄k) and (X̃k): It is written for

all t ∈ [tk, tk+1], k = 0, . . . , n− 1, as

Xδ
t = X̄k + β(X̄k, V̄k)(t− tk) + σ(X̄k, V̄k)(Bt −Btk) + γ(X̄k, V̄k)(Wt −Wtk)

X̃δ
t = X̃k + β(X̃k, V̂k)(t− tk) + σ(X̃k, V̂k)(Bt −Btk) + γ(X̃k, V̂k)(Wt −Wtk).

We denote Dt = Xδ
t − X̃δ

t . Applying Itô’s formula to |D|2p between tk and t ∈ [tk, tk+1],

standard computations as for the estimation of Lp-moments of s.d.e. show the existence of

some positive constant Cp such that:

Ek|Dt|2p ≤ |X̄k − X̃k|2p + Cp

∫ t

tk

Ek|Du|2pdu

+ Cp

∫ t

tk

Ek

[
|β(X̄k, V̄k) − β(X̃k, V̂k)|2p + |σ(X̄k, V̄k) − σ(X̃k, V̂k)|2p

]
du

+ Cp

∫ t

tk

Ek

[
|γ(X̄k, V̄k) − γ(X̃k, V̂k)|2p

]
du.

Here Ek denotes the conditional expectation given Fk. From the Lipschitz condition (4.1),

we then have:

Ek|Dt|2p ≤ (1 + Cpδ)|X̄k − X̃k|2p + Cpδ|ρ(V̄k , V̂k)|2p + Cp

∫ t

tk

Ek|Du|2pdu.
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Here and in the sequel, Cp denotes a generic constant dependent of p (and independent

of δ) which may change along the different lines. By Gronwall lemma, and recalling that

Dtk+1
= X̄k+1 − X̃k+1, we get:

Ek|X̄k+1 − X̃k+1|2p ≤ (1 + Cpδ)|X̄k − X̃k|2p + Cpδ|ρ(V̄k , V̂k)|2p.

This clearly implies
∥∥∥X̄k+1 − X̃k+1

∥∥∥
2p

2p
≤ (1 + Cpδ)

∥∥∥X̄k − X̃k

∥∥∥
2p

2p
+ Cpδ

∥∥∥ρ(V̄k, V̂k)
∥∥∥

2p

2p
. (4.2)

Step 2. For any f ∈ BL1(R
d), we have

∣∣∣< V̄k, f > − < V̂k, f >
∣∣∣ =

∣∣∣EW

[
f(X̄k) − f(X̂k)

]∣∣∣

≤ E
W
|X̄k − X̂k|,

so that by Jensen’s inequality and the law of iterated conditional expectation:
∥∥∥ρ(V̄k, V̂k)

∥∥∥
2p

≤
∥∥∥X̄k − X̂k

∥∥∥
2p

≤
∥∥∥X̄k − X̃k

∥∥∥
2p

+ ‖∆k‖2p . (4.3)

Substituting this last inequality into (4.2) and using the elementary relation (a + b)2p ≤
Cp(a

2p + b2p), we obtain:
∥∥∥X̄k+1 − X̃k+1

∥∥∥
2p

2p
≤ (1 + Cpδ)

∥∥∥X̄k − X̃k

∥∥∥
2p

2p
+ Cpδ ‖∆k‖2p

2p .

By induction and recalling that X̃0 = X̄0, we get:

∥∥∥X̄n − X̃n

∥∥∥
2p

2p
≤ Cpδ

n−1∑

k=0

(1 + Cpδ)
n−1−k ‖∆k‖2p

2p

≤ Cpδ

n−1∑

k=0

‖∆k‖2p
2p .

By using the elementary inequality (a+ b)
1
2p ≤ a

1
2p + b

1
2p , this yields

∥∥∥X̄n − X̃n

∥∥∥
2p

≤ Cpδ
1
2p

n−1∑

k=0

‖∆k‖2p .

Plugging finally this last inequality into (4.3) proves the required result. 2

5 Numerical simulations and estimation of the rates of con-

vergence

5.1 Zakai equation in the linear case

We consider the linear case:

β(x) = (A− ΓH)x, h(x) = Hx,

γ(x) = Γ, σ(x) = Σ,
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where A, Γ, Σ and H are constant matrices of appropriate dimensions. We also suppose

that µ0 is a Gaussian law with mean m0 and covariance matrix R0. Then it is well-known

that the solution to the Zakai equation (1.6) is explicitly given by:

< Vt, f > =

[∫
f(m̂t +R(t)

1
2x)

exp
(
−1

2 |x|2
)

(2π)
d
2

dx

]
< Vt, 1 >, (5.1)

where R(t) is the solution to the Riccati equation:

dR

dt
= AR+RA⊺ + ΣΣ⊺ + ΓΓ⊺ − (RH⊺ + Γ)(HR+ Γ⊺), (5.2)

R(0) = R0,

m̂t is solution of:

dm̂t = Am̂tdt+ (RH⊺ + Γ)(dWt −Hm̂tdt), (5.3)

m̂0 = m0,

and

< Vt, 1 > = exp

(∫ t

0
Hm̂s.dWs −

1

2

∫ t

0
|Hm̂s|2ds

)
. (5.4)

In other words, the normalized measure πt defined by

< πt, f > =
< Vt, f >

< Vt, 1 >
,

is a Gaussian distribution with mean m̂t and variance R(t).

We introduce now the quantized normalized filter for a given function f ∈ BL1(R) as

< π̂δk, f >:=
< V̂k, f >

< V̂k, 1 >
, k = 0, . . . , n,

where we have emphasized the dependence of the filter in δ = T/n by a superscript. The

unnormalized filters V̂k are computed according to algorithm (3.4).

The exact normalized filter is approximated owing to (5.1) using the following way.

Since R is an explicitly known function (solution of (5.2)), it is sufficient to approximate

m̂t, solution of the SDE (5.3) with a refined Euler scheme of step

δref =
T

1024
≪ δ.

Indeed, for each path of the observation W , (5.3) and (5.4) are discretized as

m̄l+1 = m̄l + δrefAm̄l + (R(lδref )H
⊺ + Γ)(W(l+1)δref

−Wlδref
−Hm̄lδref ), (5.5)

Z̄l+1 = Z̄l +Hm̄l.(W(l+1)δref
−Wlδref

) − 1

2
|Hm̄l|2δref , ξ̄l = exp(Z̄l), (5.6)

and so a very close approximation of the exact normalized filter is

< π
δref

lδref
, f >:=

∫
f(m̄l +R(lδref )

1
2x)

exp
(
−1

2 |x|2
)

(2π)
d
2

dx,
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where R(t) is computed owing to an exact quadrature formula.

We now estimate the rate of convergence of the scheme with respect to the spatial and

time discretization. In order to remove undesirable time oscillations of the error, we focus

on the following temporal mean of the quadratic quantization error for the normalized filter,

namely

Err(δ, N̄ ) =
1

n
E

n∑

k=0

∣∣∣< π̂δk, f > − < π
δref

tk
, f >

∣∣∣
2
, (5.7)

where tk = kδ = l(k)δref .

We test the error for the following test functions:

f0(x) = x, f1(x) = exp(−x2), f2(x) = exp(−x). (5.8)

The expectation in (5.7) is computed by a Monte Carlo method with M = 100 trajec-

tories of the observations W .

The parameters of our simulations are

Σ = 1, B = −0.5, H = 1, T = 1.

Such a choice of parameter is motivated by the fact that it provides not too small values

for R(t). Otherwise, there would not be enough points around m0 = 0 in order to be able

to “capture” the behaviour of the signal around its mean 0.

We will also change a bit the model and consider the following equations:




dXt = BXt dt+ Σ dBt + ΓdWt,

dWt = HXtdt+ εdUt.

(5.9)

The formulæ above need to be changed as follows Γ ; εΓ and H ; H/ε. The reason for

introducing this new degree of freedom on the noise level may look paradoxical since small ε

will provide large errors. But precisely, these large errors make it possible to display the rate

of convergence more efficiently than with ε = 1 which produces smaller errors. Indeed, we

will see that as the discretization parameters δ (resp. N̄) get smaller and smaller the error

Err(δ, N̄ ) is decreasing as a function of δ (resp. N̄) until some threshold depending on N̄

(resp. δ) and in the numberM of observations (i.e. paths of W ). Beyond this threshold, the

error becomes more or less constant because the difference with the exact solution will be of

the same order of the spatial discretization (resp. temporal discretization). Subsequently

the sum of the two errors will become indistinguishable from the spatial one (resp. temporal

one). Therefore a small ε will provide bigger errors and so we will have more relevant points

before reaching this threshold.

• Estimation of the spatial discretization rate. We first estimate the spatial

rate of convergence in the case Γ = 0 (no correlation between the signal process X and

the observation process W ). For four values of n = 1/δ ∈ {16, 32, 64, 128}, we estimate

N̄ 7→ Err(δ, N̄ ) with N̄ = 2−ℓ, ℓ = 1, . . . , 7. As a first step, for each value of n and of N̄ ,

we compute an optimal quantization (X̂k)k of the Euler scheme (X̄k)k of (5.9) (which is

a version of (3.1)), according to the algorithm described in subsection 3.1. Then, for each
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test function f in (5.8) and each observation path of W , we compute recursively < V̂ δ
k , f >

and < V̂ δ
k , 1 > using (3.4) and then < π̂δk, f >. On the other hand, we compute the exact

solutions using (5.5) and finally we compute Err(δ, N̄ ) as defined by(5.7) by summing up

over the M trajectories sampled from the observation process W .

Note that since Γ = 0, the quantization optimization procedure of (Xk)k is a one shot

process which does not depend on the observations W .

The results are summarized in Figure 1. In this case ε = 0.1. We have plotted

log Err(δ, N̄ ) against log(N̄). It shows that the rate of convergence of the square root

of the error (5.7) with respect to N̄ toward 0 seems to behave like O(1/N̄ ). This remains

true for all the four selected time steps δ as well as for all the test functions (5.8). This is

in accordance with the results given by Theorem 3.1.

In Figure 2 are depicted the same curves for n = 256. The slope of the lines seems to be

closer to 1 than 2. This could suggest a slower rate of convergence O((N̄ )−1/2). In fact, this

emphasizes that the scheme needs some stability criterion involving n and N̄ in order to

converge at the true rate O(1/N̄ ). The quantization step of the algorithm can also be the

cause of this rate. Indeed, during the quantization optimization of the signal X, we need

to simulate at each time step an Euler increment of X in (5.9). This simulation is used to

compute the weights of the “quantization tree” of X (weight of the Voronoi cells and the

transition probabilities) and to process the optimization. Here the Euler increment of X,

namely Σ
√
δ χ where χ denotes a real valued normal random variable becomes very small as

n grows; and so it is when n = 256. This implies that the Euler increment will mainly “hit”

the closest cell in the upper time layer (not to speak about the ability of random number

generator to simulate the tail of distributions). Consequently the transition probabilities

are not computed accurately enough, given the size of the simulation and can explain the

downgrading of the rate of convergence in time. One can conclude this experiment by

saying that there is a “CFL” involving the mean spatial unit length and the time step

parameter and a second “CFL” involving the time discretization parameter and the size of

the simulation (this one has been precisely analyzed in [5]).

• Estimation of the time discretization rate of convergence. Now we look for

the rate of convergence with respect to δ. For that purpose, we use N̄ = 100 quantization

points in each time layer. The rate of convergence in time will be estimated with

Γ ∈ {0, 0.5}, ε ∈ {0.1, 0.5, 1.0}, δ = 2−m, m = 1, . . . , 8.

Let us see now why we used normalized filter instead of non normalized one. In Figure 3

are displayed typical examples of graphs k 7→< V̂ δ
k , f >, t 7→< Vt, f >, k 7→< π̂δk, x > and

t 7→< πt, x > for Γ = 0, ε = 0.1, δ = 1/256 and N̄ = Nn = 100. The exact filters are

still computed using (5.5) and (5.6). We verify on that example that the normalized filter

seems to be better computed than the unnormalized one. It explains why we did not use

the unnormalized version of the error. Indeed, for such a level of noise for the observations,

(ε = 0.1) the unnormalized filter < V̂ δ
k , f > has very large values. This is true for all

tested functions f and all time discretization δ = 1/n. Furthermore, it is also true on all

sampled trajectories of W (not all depicted). Therefore it is difficult for numerical reasons

to compute errors based on < V̂ δ
k , f > for ε = 0.1.
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Let us consider first the uncorrelated case (Γ = 0). Figure 4 shows the error plotted

against the time step in a log− log scale for f given by (5.8). We can see again that for a

fixed ε given, the time error decreases until a threshold and then remains flat. We also see

that this threshold grows as the inverse of the noise level ε. Before reaching this threshold,

for every ε and every function f , the rate seems to be of order δ = 1/n as established in

Theorem 2.1.

Let emphasize that, once again in this case, the quantization procedure does not depend

on the observations. Therefore, it can be carried out off-line. This is no longer true in the

correlated case. Then (e.g. if Γ = 0.5), we will have to compute M = 100 quantizations

(one per observation path) of the signal (Xk)k for every n∈ {2, 4, 8, 16, 32, 64, 128, 256}, i.e.

800 optimal grids. The previous study in the uncorrelated case seems to indicate that we

need a small level of noise on the observations in order to display a rate with a significant

number of time steps. This is why we have chosen ε = 0.1 for the simulations. Figure 5

shows the errors obtained as a function of n in a log–log scale for the functions (5.8). The

rates of convergence are the same in each case. A linear regression seems to indicate a rate

of O(n−3/4) which is better than O(n−1/2) stated in Theorem 2.1. An explanation of this

unexpected behavior could be the following one. The constant in factor of the term n−1/2

is presumably very small compared to the one associated to n−1: thus, small values of n

make an intermediate rate of convergence appear, while the rate n−1/2 would be observed

for larger n (in the asymptotic regime).

5.2 McKean Vlasov equation

In order to compare the performances of the quantization approach, i.e. the spatial rate

of convergence estimated in Theorem 4.1, we implement our procedure in the case of a

deterministic one-dimensional McKean-Vlasov equation, closely following the setting tested

in [7]. Namely we set

σ(x, v) = σ =
√

0.2, γ(x, v) = 0

and

β(x, v) =

∫
β̃(x, y)v(dy) with β̃(x, v) = β H(x− y),

where H denotes the Heavyside function and β = ±1. Note that this corresponds to a

non-Lipschitz setting. Then, one checks (see [7]) that the distribution function

F (t, x) =

∫ x

−∞
Vt(dy)

satisfies the following initial value problem equation with its initial condition

∂F

∂t
=

σ2

2

∂2F

∂x2
− F

∂F

∂x
on (0, T ) × R (5.10)

F (0, x) =

∫ x

−∞
V0(dy),

where V0 = H if β = 1 or V0 = 1 −H if β = −1.
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In this setting, the process (Xt) satisfies the following SDE:

dXt = β(Xt, Vt) dt + σdBt, X0 = 0.

Hence, only the drift depends on the conditional distribution of X given W , namely V .

We consider an horizon T = 1. The McKean-Vlasov equation is discretized using an

Euler scheme with discretization step δ = 1/50 = 0.02. The quantization procedure is

carried out according to the following Euler scheme described in the subsection 4.1:

X̄k+1 = X̄k + δ

Nk∑

i=1

vikβ̃(X̄k, x
i
k) +

√
δσχk+1,

where (χk) denotes a sequence of i.i.d. real valued normally distributed random variables

and

β̃(X̄k, x
i
k) = βH(X̄k − xik), β ∈ {−1, 1}.

Let us note that β = 1 corresponds to an expanding wave whereas β = −1 corresponds to a

shock wave. Note that in this setting the quantization optimization algorithm is processed

on line, i.e. during the evaluation of the quantized solution itself. This was not the case

for the (uncorrelated) Zakai equation.

We reproduce here the exact solution of (5.10) (see [7]):

F (x, t) =

∫∞
0 exp(−(1/2(x − y)2/t+ βg(y))/σ2) dy∫∞
−∞ exp(−(1/2(x − y)2/t+ βg(y))/σ2) dy

,

where g(y) =
∫ y
0 H(z) dz.

Let (xik, v
i
k)1≤i≤Nk

denote the quantization system obtained at time step k. We define

the approximate solution by

F̂ (xik) := P(X̂k ≤ xik) =
∑

j≤i
vik

We evaluate the induced quadratic error using the closed form for F given in [7] by

‖F (tk, X̂k) − F̂k(X̂k)‖2
=

(
Nk∑

i=1

vik(F (tk, x
i
k) − F̂k(x

i
k))

2

) 1
2

In Figure 6, we plot the quantized solution together with the exact solution at t = T = 1

in the case β = 1 (a) and β = −1 (b). We can check on that example that both behaviours

(expanding and shock waves) are well reproduced by the scheme.

In Table 1, we compute the errors in the expanding wave case (β = 1) with several

values of the number Nn of quantization points on the top time layer and corresponding

values of the total number of points N = Ntotal. This confirms a spatial rate of convergence

of order 1/N as stated in Theorem 4.1.
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Table 1: L2-quantization error for the McKean-Vlasov as a function of the space discretiza-

tion where δ = 0.02, β = 1, T = 1, σ2/2 = 0.1 and n = 50.

Nn 50 100 200 400

‖F (T, X̂n) − F̂n(X̂n)‖2
4.82(-2) 3.91(-2) 1.75(-2) 6.61(-3)

N 2 020 4 036 8 074 16 153

CPU 575 975 1 876 4 017
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[1] A. Alabert, J. Gaines, I. Gyöngy (2000): On numerical approximations of stochastic

Burgers’ equations, Preprint.

[2] F. Antonelli and A. Kohatsu-Higa (2002): Rate of convergence of a particle method to

the solution of the McKean-Vlasov equation, Annals of Applied Probability, 12, 423-476.

[3] V. Bally, D. Talay (1996): The distribution of the Euler scheme for stochastic differen-

tial equations: I. Convergence rate of the distribution function, Probab. Theory Related

Fields, 104-1, 43-60 (1996).

[4] V. Bally, G. Pagès (2003): A quantization algorithm for solving discrete time multi-

dimensional optimal stopping problems, Bernoulli, 9, n06, pp.1003-1049.

[5] V. Bally, G. Pagès, Error analysis of the optimal quantization algorithm for obstacle

problems, Stoch. Proc. and their Appl., 106, n06, pp.1-40.

[6] A. Bensoussan, R. Glowinski, R. Rascanu (1989): Approximation of Zakai equation by

the splitting-up method, Stochastic Systems and Optimization, Lect. Notes in Cont. Inf.

Sci., 136, 257-265, Springer Verlag.

[7] M. Bossy, D. Talay (1997): A stochastic particle method for the McKean-Vlasov equa-

tion and the Burgers equation, Math. Comp., 66, 157-192.

[8] A. Budhiraja, G. Kallianpur (1996): Approximations to the solution of the Zakai

equation using multiple Wiener and Stratonovitch integral expansions, Stochastics and

Stochastics Reports, 56, 271-315.

[9] D. Crisan, T. Lyons (1999): A particle approximation of the solution of the Kushner-

Stratonovitch equation, Probability Theory and Related Fields, 115, 549-578.

[10] P. Del Moral (1995): Nonlinear filtering using random particles, Theory of Prob. Appl.,

40, 690-701.

[11] L. Devroye (1986): Non uniform random variate generation, Springer Verlag.

[12] G. Di Masi, M. Pratelli, W. Runggaldier (1985): An Approximation for the nonlinear

filtering problem with error bounds, Stochastics and Stochastics Reports, 14, 247-271.

34



[13] P. Florchinger, F. Le Gland (1991): Time-discretization of the Zakai equation for

diffusion processes observed in correlated noise, Stochastics and Stochastics Reports, 35,

233-256.

[14] E. Gobet, R. Munos (2002): Sensitivity analysis using Itô-Malliavin calculus and mar-
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(c) n = 64 (d) n = 128
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Figure 1: Error Err(δ, N̄ ) as a function of N̄ for several time discretization n: (a) n = 16,

(b) n = 32, (c) n = 64 and (d) n = 128. The straight line depicts N̄ 7→ 1/N̄2 and the dash

lines denotes the errors computed with the different functions (5.8). Here ε = 0.1.
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Figure 2: Rate of convergence of (5.7) with n = 256. Here again ε = 0.1.
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Figure 3: Examples of curves k 7→< V̂ δ
k , x > a), k 7→< V̂ δ

k , 1 > b), k 7→< π̂δk, x > c)

with δ = 1/256 and Nn = 100 computed with the same trajectory of observation. Here

ε = 0.1 and Γ = 0. The thick line depicts the exact filter computed according a time step

δref = 1/1024 and the thin line the quantized filter.
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Figure 4: Square of the error (5.7) where f(x) = exp(−x2) a), f(x) = exp(−x) b) and

f(x) = x c) as a function of the time step n in a log–log scale. Non correlated case.40
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Figure 5: Error (5.7) as a function of the time step n in a log–log scale. Correlated case.

The three functions Id, f1(x) = exp(−x) and f2(x) = exp(−x2)) are depicted.
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Figure 6: Quantized and exact solutions of (5.10) with δ = 0.02 (i.e. n = 50), Nn = 400,

N = 16153, T = 1, σ2/2 = 0.1. The plain line depicts the quantized solution and the dash

line, the exact solution. (a) β = 1, (b) β = −1.
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