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ZETA FUNCTIONS AND BLOW-NASH EQUIVALENCE

GOULWEN FICHOU

ABSTRACT. We propose a refinement of the notion of blow-Nash equivalence between
Nash function germs, which has been introduced in [E] as an analog in the Nash setting
of the blow-analytic equivalence defined by T.-C. Kuo [L]]. The new definition is more
natural and geometric. Moreover, this equivalence relation still does not admit moduli
for a Nash family of isolated singularities. But if the zeta functions constructed in [E] are
no longer invariants for this new relation, however, thanks to a Denef & Loeser formula
coming from motivic integration in a Nash setting, we managed to derive new invariants
for this equivalence relation.

The classification of real analytic function germs is a difficult topic, especially in the
choice of a good equivalence relation between germs to study. Even in the particular case
when the analytic function germs are Nash, that is they are moreover semi-algebraic, the
difficulty still remains.

In [B], we have defined the blow-Nash equivalence between Nash function germs, as an
approximation with algebraic data of the blow-analytic equivalence defined by T.-C. Kuo
in [[J. This blow-analytic equivalence has already been studied with slightly different
definitions since the original definition of T.-C. Kuo appeared (see in particular S. Koike
& A. Parusinski [[Ll]] and T. Fukui & L. Paunescu [[{]). Nevertheless, roughly speaking, it
states that two given real analytic function germs are equivalent if they are topologicaly
equivalent and moreover, after suitable modifications, they become analytically equivalent.

For the case of Nash function germs, the definition of blow-Nash equivalence runs as
follows. Let f,g : (R% 0) — (R,0) be Nash function germs. They are said to be blow-
Nash equivalent if there exist two Nash modifications (we refer to definition [[.] for the
precise definition)

Ty (Mf,ﬂJTl(O)) — (R%,0) and 7 : (Mg,wg_l(O)) — (R%,0),

and a Nash isomorphism ¢ : (Mf,wfl(O)) — (Mg,ﬂ'g_l(())), that is ¢ is a real ana-
lytic isomorphism with semi-algebraic graph, which induces a homeomorphism h between
neighbourhoods of 0 in R such that f = g o h.

For a stronger notion of blow-Nash equivalence, we known computable invariants, which
seems to be efficient tools to distinguish blow-Nash type [, i]. These invariants, called
zeta functions (cf. section P.J), are constructed in a similar way to the motivic zeta
functions of Denef & Loeser, using the virtual Poincaré polynomial of arc-symmetric sets
as a generalized Euler characteristic (cf. section R.1]).

Nevertheless, the definition of the blow-Nash equivalence given in [fl] is strong and tech-
nical. In particular the modifications are asked to be algebraic, which is not natural in
the Nash setting. The weaker definition of blow-Nash equivalence introduced in this paper
is more natural and geometric. It is closer to the definition of blow-analytic equivalence
considered by S. Koike and A. Parusiniski in [[T]]. This blow-Nash equivalence is an equiv-
alence relation (proposition [[.3). For such an equivalence relation, it is a crucial fact to
prove that it has a good behaviour with respect to family of Nash function germs. In
this direction, theorem [[.§ states that a family with isolated singularities does not admit
moduli. This result is more general that the one in [, whereas the present proof is just
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a refinement of the former one. We mention also in section [[.9 various criteria to ensure
the blow-Nash triviality of a given family.

Recently, invariants for this kind of equivalence relations have been introduced (see [[]
for a survey). In particular, we defined in [Jf] zeta functions, following ideas coming from
motivic integration [fl], which are defined via the virtual Poincaré polynomial [[LF].

Unfortunately, if this definition of the blow-Nash equivalence in this paper is more
natural and geometric, the zeta functions are no longer invariants in general. However, one
can derived new invariants from these zeta functions by evaluating its coefficients, which
are rational functions in the indeterminacy u with coefficients in Z at convenient values
(cf. theorem B.4). As a key ingredient, we generalize the Denef & Loeser formulae, that
express the zeta functions in terms of a modification, in the setting of Nash modifications
(see part P.3)).

As a application, we manage to distinguish the blow-Nash type of some Brieskorn
polynomials whose blow-analytic type is not even known!

Acknowledgements. The author wish to thank T. Fukui, S. Koike and A. Parusinski
for valuable discussions on the subject.

1. BLOW-NASH EQUIVALENCE

1.1. Let us begin by stating the definition of the blow-Nash equivalence between Nash
function germs that we consider in this paper. It consists of a natural adaptation of the
blow-analytic equivalence defined by T.-C. Kuo ([[[3]) to the Nash framework.

Definition 1.1.

(1) Let f: (R%0) — (R,0) be a Nash function germ. A Nash modification of f is
a proper surjective Nash map 7 : (M ) 77*1(0)) — (R%,0) whose complexification
7* is an isomorphism except on some thin subset of M*, and such that f o7 has
only normal crossings.

(2) Two given germs of Nash functions f,g : (R?,0) — (R,0) are said to be blow-

Nash equivalent if there exist two Nash modifications
of (Mf,afl(O)) — (R%,0) and o, : (Mg,agl(O)) — (R%,0),
and a Nash isomorphism ® between semi-algebraic neighbourhoods (M [ 0;1(0))

and (My,0,%(0)) which induces a homeomorphism ¢ : (R%,0) — (R%,0) such
that the diagram

(My,07(0)) 2 (My,0;1(0))
|
(R4, 0) (R4, 0)

\(R 0>/

1S commutative.

Remark 1.2.

(1) Let us specify some classical terminology (see [l] for example). Such a homeomor-
phism ¢ is called a blow-Nash homeomorphism. If, as in [J], we ask moreover ®
to preserve the multiplicities of the jacobian determinant along the exceptionnal
divisors of the Nash modifications oy, o4, then @ is called a blow-Nash isomor-
phism.
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Nota that there exist blow-Nash homeomorphisms which are not blow-Nash
isomorphisms (see [fl]).

(2) In [, we consider a more particular notion of blow-Nash equivalence. Namely, the
Nash modifications were replaced by proper algebraic birational morphisms and the
blow-Nash homeomorphism was moreover asked to be a blow-Nash isomorphism.
The definition is more natural since all the data are of Nash class.

The proof of the following result is the direct analog of the corresponding one in [[L3].

Proposition 1.3. The blow-Nash equivalence is an equivalence relation between Nash
function germs.

Proof. The point is the transitivity property. Let fi, fo, f3 : (R%,0) — (R,0) be Nash
function germs such that f; ~ fy and fo ~ f3. Let 01, 09 and 0%, 0% be Nash modifications,
and ¢, ' be homeomorphisms like in definition for f1, fo and fo, f3 respectively. The
fiber product M (respectively M') of ¢oo; and o9 (respectively ¢'oo), and %) gives suitable
Nash modifications of (R, 0). Taking once more the fiber product M” of M and M’ solves
the problem since the compositions of the projections with the initial modifications o and
o% remain Nash modifications for fi and fs.

o
M/ \\M,
M, Mo / M, M;
") i 5
(R?,0)

(R%,0) ’ , ‘ (R%,0)

(R,0)
O

Remark 1.4. Note that for the blow-Nash equivalence considered in [J], we had to con-
sider the equivalence relation generated by a similar relation. This difficulty came from the
fact that the fiber product of an algebraic map and a Nash map needs not to be algebraic.

The point here is that the fiber product of Nash maps still remains in the Nash class.

The question of moduli is a natural and crucial issue when one studies an equivalence
relation between germs. The following theorem states that the blow-Nash equivalence
has a good behaviour with respect to family of Nash function germs. More precisely, the
blow-Nash equivalence does not admit moduli for a Nash family of Nash function germs
with an isolated singularity. Let’s P denote the cuboid [0, 1]* for an integer k.

Theorem 1.5. Let F : (R?,0) x P — (R,0) be a Nash map and assume that F(.,p) :
(R4,0) — R has an isolated singularity at O for each p € P.

Then the family F(.,p), for p € P, consists of a finite number of blow-Nash equivalence
classes.

Remark 1.6. The proof of theorem [[.5 can be performed in a similar way to the one in

[, even if the result is more general here. Indeed, we had to restrist the study in to

particular Nash families, that is falilies which admit, a resolution of the singularities, an
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algebraic modification. But, if we allow the modifications to become Nash, the Hironaka’s
resolution of singularities provides us suitable Nash modifications [J].

1.2. Blow-Nash triviality. In view of classification problems, a worthwhile issue is to
give criteria for a Nash family to consist of a unique blow-Nash class. In particular, one
says that a Nash family F' : (R%,0) x P — (R, 0) is blow-Nash trivial if there exist a Nash
modification o : (M, E) — (R%,0), a t-level preserving homeomorphism ¢ : (R%,0) x
P — (R9,0)x P and a t-level preserving Nash isomorphism ® : (M, E)x P — (M, E)x P
such that the diagram

o Xi z,p)—F(x,0
(M, E) x P—Z . (Rd 0) x prrEY g )
@l lqﬁ lid
(M, E) x P—29 (R 0) x P20 (R )

is commutative.

Below, we mention sufficient conditions to ensure the blow-Nash triviality of a given
family, that are analogs of corresponding results concerning blow-analytic equivalence ([ﬂ],
/). Moreover their proof (cf. remark [.10) is a direct consequence of the one of theorem

Let us introduce some terminology before stating the first result, which is inspired by
the main theorem of [§]. For an analytic function germ f : (]Rd,Q) — (R, 0), denote by
>~ crz! its Taylor expansion at the origin, where z/ = 2. sy, I = (i1,...,iq). The
Newton polygon of f is the convex hull of the union of the sets I + Ri, for those |I| such
that ¢ # 0. For a face v of this polyhedron, we put f(z) = >/, crzl. The germ f is
said to be non-degenerate, with respect to its Newton polygon, if the only singularities of
f are concentrated in the coordinate hyperplanes, for any compact face v of the Newton
polygon. Finally, one says that a given face is a coordinate face if it is parallel to some
coordinate hyperplane.

Proposition 1.7. Assume that the Newton polygon of F(.,p) is independent of p € P,
non-degenerate for each p € P, and moreover assume that (F(.,p))y in independent of

p € P for any non-compact and non-coordinate face v of the Newton polygon. Then the
family {F(.,p)}pep is blow-Nash trivial.

The second result is inspired by the main theorem in []. Consider the Taylor expansion
F(x,p) = Y. ;cr(p)z! of F at the origin of R% For an d-uple of positive integers w =
(wi,...,wyq), we set Hi(w)(x,p) =20 =i crr!, where |I|, = iywy + - - - + iqwg. Denote

by m the smallest integer ¢ such that H i(w) (z,p) is not identically equal to 0.

Proposition 1.8. If there exists an d-uple of positive integers w such that H%U)(x,p) has
an isolated singularity at the origin of R for any p € P, then the family {F(.,p)}pep is
blow-Nash trivial.

Example 1.9. ([f]) Let F : (R3,0) x R — (R, 0) be the Briancon-Speder family, namely
F(z,y,2,p) = 2° +py’z +ay’ +ab.
This family is weighted homogenous with weight (1, 2, 3) and weighted degree 15. Moreover

14
it defines and isolated singularity at the origin for p # py = —15732 . Therefore the

Briancon-Speder family is blow-Nash trivial over all interval that does not contain py.

Remark 1.10. The proof of these triviality results in the blow-analytic case is based
on the integration along an analytic vector field defined on the parameter space, and
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that can be lifted through the modification. The flow of the lifted vector field gives the
trivialisation upstairs. Moreover the assumptions made enable to choose, as a modification,
a toric modification that has an unique critical value at the origin of R%. Therefore the
trivialisation upstairs induces a trivialisation at the level of the parameter space.

However, by integration along a Nash vector field, one needs not keep Nash data, and
therefore the same method as in the blow-analytic case does not apply in the situation
of propositions [.7, [.L§ Nevertheless, one can replace this integration by the following
argument (exposed with details in [[f]). First, resolve the singularities of the family via the
relevant toric modification as in [ff], [§]. Then, trivialise the zero level of the function germs
with the Nash Isotopy Lemma [[]. Finally, trivialise the t-levels, ¢ # 0, via well-choosen
projections that can be proven to be of blow-Nash class.

2. ZETA FUNCTIONS

In this section, we recall the definition of the naive zeta function of a Nash function
germ (as it is defined in [B]). Then we prove the so-called Denef & Loeser formula for
such a zeta function in terms of a Nash modification. This result is new and requires to
generalize the change of variables formula in the theory of motivic integration to the Nash
setting.

2.1. Virtual Poincaré polynomial of arc-symmetric sets. Arc-symmetric sets have
been introduced by K. Kurdyka [[4] in 1988 in order to study “rigid components” of
real algebraic varieties. The category of arc-symmetric sets contains the real algebraic
varieties and, in some sense, this category has a better behaviour that the one of real
algebraic varieties, maybe closer to complex algebraic varieties. For a detailed treatment
of arc-symmetric sets, we refer to [f]. Nevertheless, let us precise the definition of such
sets.
We fix a compactification of R”, for instance R"™ C P"™.

Definition 2.1. Let A C P" be a semi-algebraic set. We say that A is arc-symmetric if,
for every real analytic arc 7y :] — 1, 1[— P™ such that (] — 1,0[) C A, there exists ¢ > 0
such that v(]0,¢[) C A.

One can think about arc-symmetric sets as the biggest category, denoted AS, stable
under boolean operations and containing the compact real algebraic varieties and their
connected components.

In particular, the following lemma specifies what the nonsingular arc-symmetric sets
are. Note that by an isomorphism between arc-symmetric sets, we mean a birational map
containing the arc-symmetric sets in the support. Moreover, a nonsingular arc-symmetric
set is an arc-symmetric whose intersection with the singular locus of its Zariski closure is
empty.

Lemma 2.2. ([E]) Compact nonsingular arc-symmetric sets are isomorphic to unions of
connected components of compact nonsingular real algebraic varieties.

A Nash isomorphism between arc-symmetric sets A1, A> € AS is the restriction of an
analytic and semi-algebraic isomorphism between compact semi-algebraic and real an-
alytic sets Bjp, Bo containing Ai, Ay respectively. Generalized Euler characteristics for
arc-symmetric sets are the invariants, under Nash isomorphisms, which enable to give
concrete measures in the theory of motivic integration. A generalized Euler characteristic
is defined as follows.

An additive map on AS with values in an abelian group is a map y defined on AS such
that

(1) for arc-symmetric sets A and B which are Nash isomorphic, x(4) = x(B),
(2) for a closed arc-symmetric subset B of A, x(A4) = x(B) + x(A\ B).
5



If moreover x takes its values in a commutative ring and satisfies x(A x B) = x(4) - x(B)
for arc-symmetric sets A, B, then we say that y is a generalized Euler characteristic on
AS.

In [B] we proved:

Proposition 2.3. There exist additive maps on AS with values in Z, denoted §; and
called virtual Betti numbers, that coincide with the classical Betti numbers dim H;(-, 2Z)
on the connected component of compact nonsingular real algebraic varieties.

Moreover B(-) = .~ Bi(-)u’ is a generalized Euler characteristic on AS, with values
in Zlu).

Example 2.4. If P¥ denotes the real projective space of dimension k, which is nonsingular
and compact, then B(P*) = 1 +u + --- + u*. Now, compactify the affine line A]%{ in P!
by adding one point at the infinity. By additivity S(AL) = B(P!) — B(point) = u, and so
BlAg) = u*
Remark 2.5.

(1) The virtual Poincaré polynomial is not a topological invariant (cf [I5]).

(2) The virtual Poincaré polynomial (3 respects the dimension of arc-symmetric sets:

for A € AS, dim(A) = deg (B(A)) In particular, it assures us that a nonempty

arc-symmetric set has a nonzero value under the virtual Poincaré polynomial.
(3) By evaluating u at —1, one recover the classical Euler characteristic with compact

supports ([B, [3))-

2.2. Zeta functions. The zeta functions of a Nash function germ are defined by taking
the value, under the virtual Poincaré polynomial, of certain sets of arcs related to the
germ.

Denote by £ the space of formal arcs at the origin 0 € R?, defined by:

L£=L(R,0)={y: (R,0) — (R%0) : v formal},
and by L,, for an integer n, the space of arcs truncated at the order n + 1:
L ={71t) = ait +agt> + - - ant", a; € R4},

Let 7, : L — L,, be the truncation morphism
Consider a Nash function germ f : (R% 0) — (R,0). We define the naive zeta function
Z¢(u,T) of f as the following element of Z[u u[[T]):

T)=> B(X)u 1",
n>1

where X, is composed of those arcs that, composed with f, give a series with order n:

Xop={v€L,:ord(foy)=n}={ye€L,: fory(t)=bt"+---,b+#0}.

Similarly, we define zeta functions with signs by

Zfw,T) =Y BXHu™T",  Z;(u,T)=>_ A(X, Ju "T"

n>1 n>1

where
XE={yeLl,: fory(t)==+t"+---}.
Remark that X, X,f[, for n > 1, are constructible subsets of R™®, hence belong to AS.
In [F], we prove that these zeta functions are invariants for the stronger notion of blow-
Nash equivalence (with blow-Nash isomorphism). Adapted to the present case, what we

will prove is:
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Proposition 2.6. Let f,g: (R% 0) — (R,0) be germs of Nash functions. If f and g are
blow-Nash equivalent via a blow-Nash isomorphism, then

Remark 2.7.

(1) We do not know whether or not the zeta functions are invariant for the blow-Nash
equivalence.

(2) This result is a step toward the resolution of the main issue of the paper (theorem
B-4): which informations can we preserve, at the level of zeta functions, with only
a blow-Nash homeomorphism instead of a blow-Nash isomorphism.

(3) Note that if the modifications appearing in the definition of the blow-Nash equiv-
alence of f and g are moreover algebraic, the result is precisely the one in [F. So
what we have to justify here is that Nash modifications are allowed. The key point
is the Denef & Loeser formula (cf. next section).

2.3. Denef & Loeser formulae for a Nash modification. The key ingredient of the
proof of proposition R.g, and that will be crucial in section J also, is the following Denef
& Loeser formulae which express the zeta functions of a Nash function germ in terms of
a modification of its zero locus. First, we state the case of the naive zeta function.

Proposition 2.8. (Denef & Loeser formula) Let o : (M,o~1(0)) — (R%,0) be a Nash
modification of R% such that f o o and the jacobian determinant jac o have only normal
crossings simultaneously, and assume moreover that o is an isomorphism over the com-
plement of the zero locus of f.

Let (f oo)71(0) = UjesE; be the decomposition of (f o o)~1(0) into irreducible compo-
nents, and assume that 0*1(0) = Uper Er for some K C J.

Put N; = multg, f oo and v; = 1+ multg, jaco, and, for I C J, denote by E(I) the set
(NierEi) \ (Uje\rEj). Then

Zp(w,T) =Y (u—DB(E] N o7(0))r(T)
I#0

—v; N
where ®1(T) = [[;¢; %

In the case with sign, let us define first coverings of the exceptional strata E? as follows.

Let U be an affine open subset of M such that foo =u]l],; yNi

;“on U, where u is a
Nash function that does not vanish. Let us put

b
u(x)

where m = ged(N;). Then the R[j][ glue together along the EY NU to give E(I)’i.

RE={(z,t) € (EYNU) x R;t™ = +——1},

Proposition 2.9. With the assumptions and notations of proposition |2.4, one can express
the zeta functions with sign in terms of a Nash modification as:
+ 1T|-1 (-0, 1 u N
I#0 iel

Remark 2.10. The proof of propositions P.§ and P.9 in the Nash case run as in the
algebraic one (cf. [[] for example, which is already an adaptation to the real case of
[). In particular, in the remaining of this section, we prove that we can apply the same
method. The main point is that we dispose of a Kontsevich change of variables formula
in the Nash case. In order to prove this, the following lemma is crucial.
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Lemma 2.11. Let h : (M7 hil(O)) — (R%,0) be a proper surjective Nash map.
Put
Ae ={~y € L(M, E);ord, jac h(v(t)) = e},
for an integer e > 1, and A, = m,(Ae).
For e > 1 and n > 2n, then hy(A¢y) is arc-symmetric and hy, is a piecewise trivial
fibration over A, where the pieces are arc-symmetric sets, with fiber R°.

As an intermediate result, note the following elementary lemma whose proof is based
on Taylor’s formula (cf. [I}).

Lemma 2.12. Take e > 1 and n > 2e. Then, if 1,72 € L(M, E), then if 1 € A and
h(y1) = h(y2) mod t"*! then vo € A, and v, =2 mod "¢+,

Proof of lemma [2.1]. Tt follows from lemma that h,, is injective in restriction to
Agn N 7n_o(L(M, E)), and that hy, (Ae,n O e (LM, E))) = hn(Acn). Then hy(Acn)
is arc-symmetric, as being the image by an injective Nash map of an arc-symmetric set

(more precisely a constructible set).
Now, the remaining of the proof can be carried on exactly as in [fl]. O

To obtain the Kontsevich change of variables formula for a Nash modification, and
therefore propositions P.§ and R.9, it suffices to follow the same computation as in [B].
Indeed, lemma enables to apply word by word the method exposed in [{], just by
replacing “constructible sets” by “arc-symmetric sets”.

Now we can detail the proof of proposition P.4.

Proof of proposition [2.8. Let us prove the proposition in the case of the naive zeta func-
tions.

Let f,g: (R%,0) — (R, 0) be blow-Nash equivalent Nash function germs. By definition
of the blow-Nash equivalence, there exist two Nash modifications, joined together by a
commutative diagram as in definition [[.Jf

By a sequence of blowings-up with smooth Nash centres, one can make the jacobian
determinants having only normal crossings. One can assume moreover that the exceptional
divisors have also only normal crossings with the ones of the previous Nash modifications,
so that we are in situation to apply the Denef & Loeser formula.

Then, it is sufficient to prove that the expressions of the zeta functions of the germs, ob-
tained via the Denef & Loeser formula, coincide. Now, the terms of the form 3 (E?ﬂa_l (O))
are equal since the virtual Poincaré polynomial 3 is invariant under Nash isomorphisms
(cf. proposition P.) and the N; remain the same because of the commutativity of the
diagram (cf. definition [LIf). Finally, the v; coincide due to the additional assumption on
the blow-Nash homeomorphism to be a blow-Nash isomorphism.

O

3. EVALUATING THE ZETA FUNCTIONS

In order to perform a classification of Nash function germs under blow-Nash equivalence,
one needs invariants for this equivalence relation. The only ones known until now are
the Fukui invariants [[[0] and the zeta functions of Koike-Parusifiski defined with the
Euler caracteristic with compact supports [[L1]]. However, for the stronger notion of blow-
Nash equivalence, the zeta functions obtained via the virtual Poincaré polynomial are also
invariants (cf. proposition P.6).

In this section, we define new invariants for the blow-Nash equivalence. These new
invariants are derived from the zeta functions of a Nash function germ introduced in
section .4, Recall that the zeta functions are formal power series in the indeterminacy T'
with coefficients in Z[u,u~!]. Then the new invariants are obtained from the zeta functions
by evaluating u in an appropriate way.

8



3.1. Evaluate u at —1. To begin with, let us note that we recover the zeta functions
defined by S. Koike and A. Parusiniski in [T}, which has been proven to be invariants
for the blow-analytic equivalence of real analytic function germs, by evaluating the zeta
functions of section P-4 at u = —1.

Indeed, one recover the Euler characteristic with compact supports by evaluating the
virtual Poincaré polynomial at v = —1 (cf. remark R.7.0).

Remark 3.1. We recover also the zeta functions with sign in [[[]] of a Nash function
germ f as —ZZ;[(—LT). Indeed, their ones are defined by considering the value under
the Euler characteristic with compact supports x. of the set of arcs

YE={yeLl,: foy(t)=bt"+---,+b>0}.
But Xf x RY — Y,£, (y(t),a) — 7(at) is a homeomorphism, therefore
XC(Yni) = Xc(R}) 'XC(Xni) = _QXC(erLE)-
As a consequence:

Proposition 3.2. Let f,g : (R%,0) — (R,0) be blow-Nash equivalent germs of Nash
functions. Then

Z(=1,T) = Z,(—1,T),
and

Z+

F(-LT)=Z (-1T), Z;(-1,T)=Z,(-1,T).

f
Remark 3.3.

(1) This is also a direct consequence of the proof of proposition P.§ because by a
blow-Nash homeomorphism, just the parity of the v; are preserved.

(2) As an application, it follows from [[1] that we can state the classification of the
Brieskorn polynomials of two variables f,, = £2? £ 49, p,q € N under blow-
Nash equivalence, by using the zeta functions evaluated at © = —1 and the Fukui
invariants. We will see another approach in section B.3.

3.2. Evaluate u at 1. In a similar way, one can evaluate the zeta functions at 1. In the
case of the naive zeta function, what we obtain is only zero! Nevertheless, one can obtain
finer invariants. Actually, let us decompose the naive zeta function Z;(u,T’) of a Nash
function germ f in the following way:

Zs(u,T) = Z(u — 1)lzf7l(u,T),

>1

where z7;(u,T) is a formal power series in T’ with coefficient in Z[u,u™!] which is not
divisible by v — 1.
Similarly, decompose the zeta functions with sign:

ZFw,T) =Y (u—1) 25 (u,T).
1>0
Note that here the index of the sum may begin at 0.
By evaluating these series in Z[u,u !][[T]] at u = 1, one finds new invariants for the
blow-Nash equivalence.

Theorem 3.4. Let f,g: (R%,0) — (R,0) be blow-Nash equivalent germs of Nash func-
tions. Then
nyl(l,T) = 2971(1,T),
zf’o(l,T) = z;fo(l,T),
and
2£2(1,T) = 242(1,T)  mod 2,
9



75, (1,T) = 2,,(1,T)  mod 2.

Note that by mod 2 congruence we mean equality of the series considered as elements

in 2% ([T]).

Remark 3.5. For k£ > 2, then the series sz(l, T) and z¢;41(1,T) are also invariant mod
2, but unfortunately they just vanish!

Proof. This is a consequence of the Denef & Loeser formulae given in propositions P.§
and R.9. Let us concentrate firstly on the naive case.
Actually, note that

Z T A T
zf1(1,T) = lim JiICEV 21(1,T) = lim Zy(u, T)

u—1 u—1 u—1 u—1"

that is z71(1,T) (respectively zg1(1,T)) is the derivative with respect to u of Z¢(u,T)
(respectively Zy(u,T')) evaluated at u = 1. One can express these quotients via the Denef
& Loeser formula (proposition R.§). As Z;(u,T) and Z,(u,T) are divisible by u — 1,
these quotients coincide except the coefficients v;, which only have the same parity. By
evaluating uw at 1, we obtain the equality

nyl(l, T) = Zg71(1, T)

Similarly, zf2(1,7") is the derivative of % evaluated at © = 1. However, the

derivative of quotients of the type % arriving in the expression of the Denef &

Loeser formula for Z¢(u,T') are of the form
ul/flTN
Bdemrey
Therefore the mod 2 congruence of z¢5(1,7T") and z42(1,T) comes from the mod 2 con-
gruence of the different v.

One just have to repeat the same arguments with z]jfo(l,T) and z}tl(l,T) in order to
complete the proof of the theorem in the cases with sign.

O

Example 3.6. Let f,; be the Brieskorn polynomial defined by
fpe = £(aP + y* + "), peven, ke N.

It is not known whether two such polynomials are blow-analyticaly equivalent or not.
However we prove below that for fixed p and different k, two such polynomials are not
blow-Nash equivalent.

Note that in [B], we established the analog result concerning the blow-Nash equivalence
via blow-Nash isomorphism, by using the naive zeta functions. Actually, the naive zeta
function Zy , of fp k. looks like

Zy

P,k

= (u — 1)(u71Tp + T 4+t u*(k‘*l)T(k‘*l)p) + (u3 . 1)ufkf2Tkp
+(u — 1)(u*(k+3)T(k+1)p T AL u7(2k+1)T(2k71)p)

+(u3 o 1)u72(k72)T2kp 4o

Now, for p fixed and k < k', the pk-coefficient of Zy, , is (u3 — 1)u™*=2 whereas the one
of Z o is (u — 1)u~". Therefore, the pk-coefficient of z o1 €quals 2 whereas the one of
Zf, ool is 1, and so fp and f, ;s are not blow-Nash equivalent.
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3.3. Classification of two variables Brieskorn polynomials. Effective classification
of function germs under a “blow-type” equivalence relation is a difficult topic. In this direc-
tion, the simplest example people tried to handle with is the one of Brieskorn polynomials.
Actually, only the classification of two variables Brieskorn polynomials has been done com-
pletely, under blow-analytic equivalence in [[L], and also under blow-Nash equivalence via
blow-Nash isomorphism in [F]. In remark B.J, we notice moreover that the invariants
used in [[I]] enable to conclude also for the blow-Nash equivalence. Here we present an
alternative proof using only the invariants derived from the zeta functions.
Recall that two variables Brieskorn polynomials are polynomials of the type

+aP +y? p,qeN.

As proven in [[]], the zeta functions evaluated at u = —1 (cf. remark B.1)) enables to
distinguish the blow-Nash type except in the particular case of

Tr(z,y) = ﬂi(xk + yk), k even.

In that case, by Denef & Loeser formulae we obtain

2 "
25,(T) = (0 ~ 1)y,
and if f(z,y) = z* + y*,
N Tk _
and the converse if fi(z,y) = —i—(wk + yk)-
Therefore
Tk
p— 27
Zfi,1 1+ Tk

and thus zy, 1 # 2y,,1 whenever k # k', whereas if k = k' but the signs are different, the
cancellation of 2}271 or zy, 4 enables to distinguish fr and fy.

As a consequence, we have proved that we can draw the classification under blow-Nash
equivalence of the Brieskorn polynomials of two variables, by using the invariants derived
from the zeta functions by evaluation of the indeterminacy u. Moreover, this classification
coincides with the ones established in [[[J]] and [P, that is the blow-analytic, blow-Nash via
blow-Nash isomorphism and blow-Nash type of the Brieskorn polynomials of two variables
are the same.

4. QUESTIONS

As we have already noticed, the invariants known for the blow-analytic equivalence (the
Fukui invariants [[[(], the zeta functions of S. Koike and A. Parusinski [LT]) are invariants
for the blow-Nash equivalence. However:

Question 4.1. Do the zeta functions Z¢(u,T’) of a real analytic function germ be invari-
ants for the blow-analytic equivalence? Or, as a weaker version, do the invariants obtained
after evaluation at 1 be invariants for the blow-analytic equivalence?

More generally, the differences between the blow-Nash equivalence and the blow-analytic
one are not known in the case of Nash function germs or even of polynomial germs. As an
example, we haved proved that the blow-analytic and the blow-Nash types of the Brieskorn
polynomials of two variables coincide. But in general:

Question 4.2. Do the blow-Nash equivalence and the blow-Nash equivalence via blow-
Nash isomorphism coincide?

Question 4.3. Do the blow-Nash equivalence(s) and the blow-analytic equivalence coin-
cide on polynomial germs? On Nash function gems?
11
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