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ON SYMMETRIC SENSITIVITY

Benot CADRE and Pierre JACOB

UMR CNRS 5149, Equipe de Probabilits et Statistique
Universit Montpellier II, CC 051, Place E. Bataillon,

34095 Montpellier cedex 5, FRANCE

Abstract We define the concept of symmetric sensitivity with respect to
initial conditions for the endomorphisms on Lebesgue metric spaces. The
idea is that the orbits of almost every pair of nearby initial points (for the
product of the invariant measure) of a symmetrically sensitive map may
diverge from a positive quantity independent of the initial points. We study
the relationships between symmetric sensitivity and weak mixing, symmetric
sensitivity and positiveness of metric entropy and we compute the largest
sensitivity constant.

Index Terms Sensitive dependence on initial conditions, Measure-preserving
transformation, Ergodicity, Mixing, Metric entropy.

AMS 2000 Classification 37A05, 37A25, 37A35.

1. Introduction

The concept of sensitive dependence on initial conditions has attracted much
attention in recent years and several authors have tried to formalize it in
various ways. The phrase -sensitive dependence on initial conditions- was
first used by Ruelle (1978), to indicate some exponential rate of divergence
of orbits of nearby points. More generally, it captures the idea that a very
small change in the initial condition can cause a big change in the trajec-
tory. Following the pioneer work by Guckenheimer (1979), Devaney (1989)
called sensitive a self-map T : X → X on the metric space (X, d) satisfying
the property : there exists δ > 0 such that for all x ∈ X and all ε > 0
there is some y ∈ X which is within a distance ε of x and for some n ≥ 0,
d(T nx, Tny) ≥ δ. In the last years, several authors proposed sufficient condi-
tions both on T and (X, d) to ensure the sensitivity property (cf. Abraham
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et al, 2002, 2004, Banks et al, 1992, Glasner and Weiss, 1993, Guckenheimer,
1979).

However, sensitive dependence on initial conditions was first defined in
Chaos Theory to measure the divergence of orbits of nearby points, by anal-
ogy with the butterfly effect described by the meteorologist Ed Lorentz (for
an overview in Chaos Theory, we refer the reader to the book by Devaney,
1989). From this point of view, the above definition of sensitivity appears to
be too weak. In order to follow the sensitivity idea drawn by the butterfly
effect, one could say that T is sensitive if there exists δ > 0 such that for all
x, y in X, one can find n ≥ 0 with d(T nx, Tny) ≥ δ. However, this property
appears to be too strong because it is never satisfied by the non injective
maps, such as the archetype of a chaotic map, namely the quadratic one
Tx = 4x(1 − x) on X = [0, 1].

As an attempt to weaken the previous definition of sensitivity, we make use
of tools from Ergodic Theory. From now on, we consider an endomorphism
T on a probability Lebesgue space (X,B, µ) (cf. Petersen, 1983, page 16)
and we fix a metric d on X. For simplicity, we assume throughout that the
support of µ, denoted suppµ, is not reduced to a single point.

Our sensitivity property described below is easily shown to be stronger than
Guckenheimer’s one.

Definition The endomorphism T is said to be symmetrically sensitive (with
respect to initial conditions) if there exists δ > 0 -a sensitivity constant- such
that for µ⊗2-a.e. (x, y) ∈ X2, one can find n ≥ 0 with d(T nx, Tny) ≥ δ.

Equivalently, T is symmetrically sensitive if there exists δ > 0 with

µ⊗2
(

⋂

n≥0

T
−n

Aδ

)

= 0,

where, here and in the following, T = T × T is the map on X2 defined by
T : (x, y) 7→ (Tx, Ty) and, for any r > 0, Ar stands for the set :

Ar := {(x, y) ∈ X2 : d(x, y) < r}.

This kind of sensitivity can be viewed as well as a property of T which
justifies in a sense the adjective symmetrical. Moreover, we note that this
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sensitivity property is the exact measure theoretic equivalent of the concept
studied in Akin and Kolyada (2003) in a topological dynamic context.

Section 2 is devoted to the computation of the sensitivity constant and to
the case where T is weakly mixing. The case where T is of positive metric
entropy is studied in Section 3.

2. Symmetric sensitivity, weak mixing and the sensitivity constant

Observe that if δ is a sensitivity constant for T , then so is any positive δ′ ≤ δ.
This leads to consider the following quantity, denoted ∆(T ) :

∆(T ) = sup
{

δ : δ is a sensitivity constant for T
}

.

From now on, diam (A) stands for the diameter of A ⊂ X and for all z ∈ X,
r > 0, B(z, r) is the open ball :

B(z, r) = {x ∈ X : d(z, x) < r}.

Theorem 2.1 Assume that T is symmetrically sensitive. Then,
(i) There exists δ > 0 such that for µ⊗2-a.e. (x, y) ∈ X2, one can find a
sequence (nk)k≥0 with d(T nkx, Tnky) ≥ δ for all k ≥ 0 ;
(ii) For µ⊗2-a.e. (x, y) ∈ X2, one has supn≥0 d(T nx, Tny) ≥ ∆(T ) ;
(iii) ∆(T ) ≤ diam (suppµ).

We first need a lemma. Notice that, since the support of µ is not reduced to
a single point, there exists δ > 0 with µ⊗2(Aδ) < 1. Hence, the quantity

a(µ) := sup
{

δ : µ⊗2(Aδ) < 1
}

is positive.

Lemma 2.1 One has
a(µ) = diam (suppµ).

Proof First notice that a(µ) ≤ D := diam (suppµ) because for all ε > 0,
µ⊗2(AD+ε) = 1. Moreover, let for all ε > 0,

Fε =
{

(x, y) ∈ suppµ⊗2 : d(x, y) ≤ D −
ε

2

}

,
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where suppµ⊗2 denotes the support of µ⊗2. Then, µ⊗2(Fε) < 1 because Fε

is a closed set and

Fε ( suppµ⊗2 = suppµ × suppµ.

Since AD−ε ⊂ Fε, one deduces that µ⊗2(AD−ε) < 1 and hence, that a(µ) ≥
D •

Proof of Theorem 2.1 (i) It is a straighforward consequence of Halmos
Recurence Theorem (cf. Petersen, 1983, page 39).
(ii) If T is symmetrically sensitive, then for all ε > 0 small enough :

µ⊗2
(

⋂

n≥0

T
−n

A∆(T )−ε

)

= 0.

We get from a monotonicity argument that :

µ⊗2
(

⋃

ε>0

⋂

n≥0

T
−n

A∆(T )−ε

)

= lim
ǫց0

µ⊗2
(

⋂

n≥0

T
−n

A∆(T )−ε

)

= 0,

hence Assertion (ii), because

⋃

ε>0

⋂

n≥0

T
−n

A∆(T )−ε =
{

(x, y) ∈ X2 : sup
n≥0

d(T nx, Tny) < ∆(T )
}

.

(iii) Assume that a(µ) < ∆(T ). For any r ∈]a(µ),∆(T )[, one has simulta-
neously :

µ⊗2(Ar) = 1 and µ⊗2
(

⋂

n≥0

T
−n

Ar

)

= 0,

which is a contradiction. Therefore, a(µ) ≥ ∆(T ) and (iii) is now straight-
forward from Lemma 2.1 •

Theorem 2.2 Assume that T is weakly mixing. Then, T is symmetrically
sensitive and moreover :

∆(T ) = diam (suppµ).
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Remarks

• Ergodicity is not strong enough in order to ensure the symmetric sen-
sitivity property. Indeed, consider the case X = IR/ZZ, µ theHaar-
Lebesgue measure and d the natural metric on X. The self-map T
defined by Tx = x+ θ (mod 1), where θ is an irrational number, being
an isometry for d, can not be symmetrically sensitive. However, it is
known to be ergodic.

• In the case of a Guckenheimer’s type definition of sensitivity, Abraham
et al (2002, 2004) also provide some bounds for the largest sensitivity
constant.

• For the classical dynamical systems such as r-adic maps, tent map
or quadratic map, one has therefore ∆(T ) = 1. Hence, the orbits of
almost all pair of nearby initial points may diverge from a quantity
which is closer to 1.

Proof of Theorem 2.2 Let δ < diam (suppµ). Since T is an ergodic en-
domorphism on (X2,B ⊗ B, µ⊗2) (cf. Petersen, 1983, page 65) and

⋂

n≥0

T
−n

Aδ

is a T -invariant set, one has

µ⊗2
(

⋂

n≥0

T
−n

Aδ

)

= 0,

because µ⊗2(Ad
δ) < 1 by Lemma 2.1. Hence, T is symmetrically sensitive

and ∆(T ) ≥ diam (suppµ). Apply now Theorem 2.1 (iii), and the theorem
is proved •

Observe now that for µ⊗2-a.e. (x, y) ∈ X2, one has

sup
n≥0

d(T nx, Tny) ≤ diam (suppµ).

Corollary 2.1 below is then a straightforward consequence of Theorem 2.1
(ii) and Theorem 2.2.

Corollary 2.1 If T is weakly mixing, then for µ⊗2-a.e. (x, y) ∈ X2 :

sup
n≥0

d(T nx, Tny) = diam (suppµ).
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3. Symmetric sensitivity and metric entropy

For any mesurable countable partition α of X, we denote by h(T, α) the
metric entropy of the transformation T with respect to the partition α (cf.
Petersen, 1983, Chapter 5). Whatever being the chosen definition of sen-
sitivity, it is usually expected that positiveness of the entropy implies the
sensitivity property (cf. Glasner and Weiss, 1993, Blanchard et al, 2002,
and Abraham et al, 2004, in which positiveness of the Lyapunov exponent
is considered). Theorem 4.1 below gives an answer to this problem in the
case of symmetric sensitivity.

Theorem 3.1 Assume that T is ergodic and consider a finite mesurable
partition α = {P1, · · · , Pl} of X. If P1, · · · , Pl are µ-continuity sets for d
and if h(T, α) > 0, then T is symmetrically sensitive.

A very similar conclusion is obtained in Blanchard et al (2002), but these
authors consider the case where T is a homeomorphism on a compact space.

Proof Without loss of generality, we can assume that h(T, α) < ∞. For all
D ∈ B and ε > 0, denote by D−ε the internal ε−boundary of D :

D−ε =
{

x ∈ D : d(x,Dc) < ε
}

,

and moreover :

Kε = exp
(

2l
l

∑

i=1

µ(P−ε
i )

)

.

Since the Pi’s are µ-continuity sets, Kε → 1 as ε → 0. Hence, one can choose
δ > 0 such that

Kδ 2−h(T,α)/2 < 1. (4.1)

The map

x 7→ µ
(

⋂

n≥0

T−nB(T nx, δ)
)

defined on X is T -invariant and moreover, according to the Fubini Theorem,

µ⊗2
(

⋂

n≥0

T
−n

Aδ

)

=

∫

X
µ
(

⋂

n≥0

T−nB(T nx, δ)
)

µ(dx).

Consequently, by ergodicity of T , we have for µ-a.e. x ∈ X :

µ⊗2
(

⋂

n≥0

T
−n

Aδ

)

= µ
(

⋂

n≥0

T−nB(T nx, δ)
)

. (4.2)

6



We deduce from the von Neumann Ergodic Theorem that for µ-a.e. x ∈ X :

1

n
card

(

k ∈ {0, · · · , n} : T kx ∈

l
⋃

i=1

P−δ
i

)

→

l
∑

i=1

µ
(

P−δ
i ). (4.3)

We now fix a point x ∈ X which satisfies both (4.2) and (4.3). It is associated
with it a sequence (in)n≥0 ∈ {1, · · · , l}IN such that T nx ∈ Pin for all n ≥ 0.
For all n ≥ 0, we let :

Qn =
{

k ∈ {0, · · · , n} : B(T kx, δ) " Pik

}

.

For all n ≥ 0,

cardQn ≤ card
(

k ∈ {0, · · · , n} : T kx ∈ P−δ
ik

)

≤ card
(

k ∈ {0, · · · , n} : T kx ∈

l
⋃

i=1

P−δ
i

)

By (4.3), there exists N1 ≥ 0 such that for all n ≥ N1 :

cardQn ≤ 2n
l

∑

i=1

µ(P−δ
i ).

For all n ≥ 0, we let :

Sn =
{

(sk)k=0,··· ,n : sk ∈ {1, · · · , l} if k ∈ Qn and sk = ik if k /∈ Qn

}

.

This set satisfies, for all n ≥ N1 :

cardSn = exp
(

cardQn log l
)

≤ exp
(

2nl

l
∑

i=1

µ(P−δ
i )

)

= Kn
δ . (4.4)

Now denote, for n ≥ 0 and s ∈ Sn :

Ln,s =

n
⋂

k=0

T−kPsk
.

For all n ≥ 0, we have the following inclusions :
n
⋂

k=0

T−kB(T kx, δ) =
⋂

k∈Qc
n∪Qn

T−kB(T kx, δ)

⊂
⋂

k∈Qc
n

T−kPik

⊂
⋃

s∈Sn

Ln,s. (4.5)
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Now fix ε ∈]0, h(T, α)/2[. By the Entropy Equipartition Property (cf. Pe-
tersen, 1983, page 263), there exists N2 ≥ 0 such that for all n ≥ N2, the
elements of {1, · · · , l}n+1 can be divided into two disjoints classes, Gn and
Bn, such that :

µ
(

⋃

s∈Bn

Ln,s

)

≤ ε,

and, for all s ∈ Gn :
µ(Ln,s) ≤ 2−n(h(T,α)−ε).

We then deduce from (4.4) and (4.5) that for all n ≥ max(N1, N2) :

µ
(

n
⋂

k=0

T−kB(T kx, δ)
)

≤ µ
(

⋃

s∈Sn∩Bn

Ln,s

)

+
∑

s∈Sn∩Gn

µ(Ln,s)

≤ ε + cardSn max
s∈Gn

µ(Ln,s)

≤ ε + Kn
δ 2−n(h(T,α)−ε)

≤ ε + Kn
δ 2−nh(T,α)/2,

where the latter inequality comes from the fact that ε < h(T, α)/2. Letting
n → ∞, we deduce from (4.1) that for all ε > 0 small enough :

lim
n

µ
(

n
⋂

k=0

T−kB(T kx, δ)
)

≤ ε,

hence, letting ε → 0 :

µ
(

⋂

n≥0

T−nB(T nx, δ)
)

= 0.

Finally, we deduce from (4.2) and the choice of x that T is symmetrically
sensitive •
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