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Abstract

We offer a short tour into the interactive interpretation of sequential pro-
grams. We emphasize streamlike computation – that is, computation of suc-
cessive bits of information upon request. The core of the approach surveyed
here dates back to the work of Berry and the author on sequential algorithms

on concrete data structures in the late seventies, culminating in the design of
the programming language CDS, in which the semantics of programs of any
type can be explored interactively. Around one decade later, two major in-
sights of Cartwright and Felleisen on one hand, and of Lamarche on the other
hand gave new, decisive impulses to the study of sequentiality. Cartwright and
Felleisen observed that sequential algorithms give a direct semantics to con-
trol operators like call-cc and proposed to include explicit errors both in the
syntax and in the semantics of the language PCF. Lamarche (unpublished)
connected sequential algorithms to linear logic and games. The successful
program of games semantics has spanned over the nineties until now, start-
ing with syntax-independent characterizations of the term model of PCF by
Abramsky, Jagadeesan, and Malacaria on one hand, and by Hyland and Ong
on the other hand.

Only a basic acquaintance with λ-calculus, domains and linear logic is
assumed in sections 1 through 3.

1 Prologue: playing with Böhm trees

We first make some preparations. For self-containedness, we briefly recall the rele-
vant notions. The syntax of the untyped λ-calculus (λ-calculus for short) is given
by the following three constructions: a variable x is a λ-term, if M and N are λ-
terms, then the application MN is a λ-term, and if M is a term then the abstraction
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λx.M is a term. Usual abbreviations are λx1x2.M for λx1.(λx2.M), and MN1N2

for (MN1)N2, and similarly for n-ary abstraction and application. A more macro-
scopic view is quite useful: it is easy to check that any λ-term has exactly one of
the following two forms:

(n ≥ 1, p ≥ 1) λx1 · · ·xn.xM1 · · ·Mp

(n ≥ 0, p ≥ 1) λx1 · · ·xn.(λx.M)M1 · · ·Mp

The first form is called a head normal form (hnf), while the second exhibits the head
redex (λx.M)M1. The following easy property justifies the name of head normal
form: any reduction sequence starting from a hnf λx1 · · ·xn.xM1 · · ·Mp consists of
an interleaving of independent reductions of M1, . . . , Mp. More precisely, we have:

(λx1 · · ·xn.xM1 · · ·Mp →
∗ P )⇒

∃N 1, . . . Np

{

P = λx1 · · ·xn.xN1 · · ·Np and
∀ i ≤ p Mi →

∗ Ni .

Here, reduction means the replacement in any term of a sub-expression of the form
(λx.M)N , called a β-redex, by M [x ← N ]. A normal form is a term that contains
no β-redex, or equivalently that contains no head redex. Hence the syntax of normal
forms is given by the following two constructions: a variable x is a normal form, and
if M1, . . . , Mp are normal forms, then λx1 · · ·xn.xM1 · · ·Mp is a normal form.

Now, we are ready to play. Consider the following two normal forms:

M = zM1M2(λz1z2.z1M3M4) N = λx1x2x3.x3(λy1y2.y1N1)N2

The term M [z ← N ] = NM1M2(λz1z2.z1M3M4) is not a normal form anymore, and
can be β-reduced as follows:

NM1M2(λz1z2.z1M3M4) → (λz1z2.z1M3M4)(λy1y2.y1N
′

1
)N ′

2

→ (λy1y2.y1N
′

1)M
′

3M
′

4

→ M ′

3
N ′′

1

where N ′

1
, etc... are suitable substitution instances of N1 etc... But there is a more

geometric way of describing the interaction of M and N . First, we represent M and
N explicitly as trees (read from left to right), as follows:

z















M1

M2

λz1z2. z1

{

M3

M4

λx1x2x3. x3

{

λy1y2. y1

{

N1

N2
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Then we represent computation as the progression of two tokens in the two trees.
Initially, the tokens are at the root (we use underlining to indicate the location of
the tokens):

z















M1

M2

λz1z2. z1

{

M3

M4

λx1x2x3. x3

{

λy1y2. y1

{

N1

N2

We then notice that the token in M has a choice of where to move right, while the
one on the right has no choice. So let us take the latter as pilot:

z















M1

M2

λz1z2. z1

{

M3

M4

λx1x2x3. x3

{

λy1y2. y1

{

N1

N2

Here, x3 reads as “take the third branch” (in M):

z















M1

M2

λz1z2. z1

{

M3

M4

λx1x2x3. x3

{

λy1y2. y1

{

N1

N2

Notice that we are now in a situation where the token in M knows how to move
next, while the one in N has a choice. We take M as pilot:

z















M1

M2

λz1z2. z1

{

M3

M4

λx1x2x3. x3

{

λy1y2. y1

{

N1

N2

We read z1 as “take the first branch” (in N):

z















M1

M2

λz1z2. z1

{

M3

M4

λx1x2x3. x3

{

λy1y2. y1

{

N1

N2

The following steps are:
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z















M1

M2

λz1z2. z1

{

M3

M4

λx1x2x3. x3

{

λy1y2. y1

{

N1

N2

z















M1

M2

λz1z2. z1

{

M3

M4

λx1x2x3. x3

{

λy1y2. y1

{

N1

N2

We leave it to the reader to check that these steps follow closely the sequence of
β-reductions given above. The graphical presentation enhances alternation. The
tokens’ moves alternate between M and N . There are two sorts of moves: variables
(like z), and (bunches of) abstractions (like λz1z2.). We call these moves Player’s
moves and Opponent’s moves, respectively. We can view an Opponent’s move as
the question “what is the head variable of the term rooted here?”, and a Player’s
move as the answer to this question. So we see the computation as a progression of
alternating moves describing a path in M (and in N):

z















M1

M2

λz1z2. z1

{

M3

M4

λx1x2x3. x3

{

λy1y2. y1

{

N1

N2

Our example is actually too simple. The general mechanism needs an explicit ma-
nipulation of pointers, when (unlike in the example) a variable is not bound by the
immediate bunch of λ’s above. We refer the interested reader to [15, 16], where
this machinery is described for a larger class of trees with pointers – called abstract
Böhm trees –, of which Böhm trees are an example. Our main point here was to
highlight interaction: M and N are pilot in turn and tell the other which branch to
choose.

Suppose now that M3 = λu.tM5M6, where t is a free variable of M [z ← N ].
Then, looking back at the sequence of β-reductions, we reach a head normal form:

M ′

3N
′′

1 = (λu.tM ′

5M
′

6)N
′′

1 → tM ′′

5 M ′′

6

And, in geometrical form:
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z























M1

M2

λz1z2. z1







λu. t

{

M5

M6

M4

λx1x2x3. x3

{

λy1y2. y1

{

N1

N2

Note here that N cannot help to choose the next move in M . The machinery stops
here. After all, most functional programming languages stop evaluation on (weak)
head normal forms. But what about getting the full normal form, i.e., computing
M ′′

5
and M ′′

6
? The interactive answer to this question is: by exploration of branches,

on demand, or in a streamlike manner. The machine displays t as the head variable
of the normal form of M [z ← N ]. Now, you, the Opponent, can choose which of
the branches below t to explore, and then the machine will restart until it reaches
a head normal form. For example, if you choose the first branch, then you will
eventually reach the head variable of M ′′

5
. This is called streamlike, because that

sort of mechanism has been first analysed for infinite lists built progressively. A
λ-term too has a “potentially infinite normal form”: it’s Böhm tree.

This prologue served the purpose of introducing some keywords, such as inter-
activity, playful interpretation, streamlike computation. We now start from the
beginning.

2 Introduction

Scott’s and Plotkin’s denotational semantics takes its roots in recursion theory. It
is worth recalling here the statement of Rice’s theorem. This theorem asserts a
property of recursively enumerable (r.e.) sets of partial recursive (p.r.) functions,
defined through a fixed enumeration (φn) of the p.r. functions (i.e. φ is a surjection
from ω – the set of natural numbers – to ω ⇀ ω, using ⇀ for sets of partial functions).
Let PR ⊆ ω ⇀ ω denote the set of p.r. functions. A subset A ⊆ PR is called r.e.
if {n | φn ∈ A} is r.e. in the usual sense. The theorem asserts that if A is r.e. and
if f ∈ A, then there exists a finite approximation g of f such that g ∈ A. That g is
an approximation of f means that f is an extension of g, i.e., the domain on which
the partial function f is defined, or domain of definition of f , contains that of g and
f and g coincide where they are both defined. A simpler way of saying this is that
the graph of g is contained in the graph of f . Moreover, the domain of definition of
g is finite. Rice’s theorem is about an intrinsic continuity property in the realm of
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p.r. functions. It highlights the (complete) partial order structure of ω ⇀ ω, and in
particular the presence of a bottom element ⊥ in this partial order: the everywhere
undefined function.

Certainly, one of the key departure points taken by Scott was to take ⊥ seriously.
Once this element is part of the picture, one takes a new look at some basic functions.
Take the booleans, for example. In Scott’s semantics, this is not the set {tt ,ff }, but
the set {⊥, tt ,ff } ordered as follows: x ≤ y if and only if x = y or x = ⊥ (this is
called flat ordering). Take now the good old disjunction function or : Bool×Bool→
Bool. It gives rise to four different functions over the flat domain version of Bool

(the specifications below can be completed to full definitions by monotonicity):

por(⊥, tt) = tt
por(tt ,⊥) = tt
por(⊥,ff ) = ⊥
por(ff ,⊥) = ⊥
por(ff ,ff ) = ff

lor(⊥, y) = ⊥
lor(tt ,⊥) = tt
lor(ff , y) = y

ror(⊥, tt) = tt
ror(x,⊥) = ⊥
ror(x,ff ) = x

sor(⊥, tt) = ⊥
sor(tt ,⊥) = ⊥
sor(⊥,ff ) = ⊥
sor(ff ,⊥) = ⊥
sor(ff , tt) = tt
sor(tt ,ff ) = tt
sor(tt , tt) = tt
sor(ff ,ff ) = ff

It should be clear that lor and ror are computed by programs of the following
shape, respectively:

λxy. if x = tt

{

then tt
else if y = · · ·

λxy. if y = tt

{

then tt
else if x = · · ·

On the other hand, it should be intuitively clear that no sequential program of
the same sort can compute por, because a sequential program will
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• either start by examining one of the arguments, say x, in which case it can’t
output anything before a value for x is given, thus missing the specification
por(⊥, tt) = tt ,

• or output some value rightaway, say tt (λxy.tt), thus mising the specification
por(⊥,⊥) = ⊥.

For a formal proof that por is not sequentially definable, we refer to [33] (syntactic
proof), to [22][section 6.1] (model-theoretic proof), and to [5][section 4.5] (via logical
relations). As for sor, the story is yet different, there are two natural sequential
programs for it:

λxy. if x = tt

{

then if y = · · ·
else if y = · · ·

λxy. if y = tt

{

then if x = · · ·
else if x = · · ·

The starting point of the model of sequential algorithms (next section) was to
interpret these two programs as different objects lsor and rsor . Notice finally that
there are many more sequential programs computing lor, ror, or sor. Another
program for lor might e.g. look like

λxy. if x = tt







then tt

else if x = tt

{

then tt
else if y = · · ·

Such a “stuttering” program is perfectly correct syntactically. Whether this
program is interpreted in the model by an object different from the above program
for lor is the departure point between the model of sequential algorithm on one
hand and the more recent games semantics on the other hand. We shall come back
to this point in the next section.

Before we close the section, let us give some rationale for the names used in
this section. As the reader might have guessed, the prefixes p, l, r, s, ls, rs stand for
“parallel”, “left”, “right”, “left strict”, and “right strict”, respectively.

3 Symmetric algorithms, sequential algorithms

We introduce enough formal definitions to give a self-contained introduction to se-
quential algorithms, presented in the light of a games interpretation [12] (following
work of Lamarche [27]). The proofs are omitted, but can be found in [5][section 14.3],
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except for what regards the coincidence between the two definitions of composition,
for which the proof from [14][section 3.6] can easily be adapted.

Definition 3.1 A sequential data structure S = (C, V, P ) is given by two sets C

and V of cells and values, which are assumed disjoint, and by a collection P of
non-empty words p of the form:

c1v1 · · · cnvn or c1v1 · · · cn−1vn−1cn,

where ci ∈ C and vi ∈ V for all i. Thus any p ∈ P is alternating and starts with
a cell. Moreover, it is assumed that P is closed under non-empty prefixes. We call
the elements of P positions of S. We call move any element of M = C ∪ V . We
use m to denote a move. A position ending with a value is called a response, and
a position ending with a cell is called a query. We use p (or s, or t), q, and r, to
range over positions, queries, and responses, respectively. We denote by Q and R

the sets of queries and responses, respectively.

Let us pause here for some comments and perspective. An important step in
the semantic account of sequential computing was taken by Berry, who developed
the stable model in which the function por is excluded. Winskel described this
model more concretely in terms of event structures, and Girard proposed a simpler
form called coherence spaces, that led him to the discovery of linear logic [19] (see
also [5][chapters 12 and 13]). In event structures or coherence spaces, data are
constructed out of elementary pieces, called events, or tokens. For example, the
pair of booleans (tt ,ff ) is obtained as the set of two elementary pieces: (tt ,⊥) and
(⊥,ff ). More precisely and technically, the structure Bool × Bool as a coherence
space has four events: tt .1, ff .1, tt .2, and ff .2. Then (tt ,ff ) is the set {tt .1,ff .2}.

In a sequential data structure (or in a concrete data structure, not defined here)
events are further cut in two “halves”: a cell and a value, or an opponent’s move
and a player’s move. The structure Bool×Bool as an sds has two cells ?.1 and ?.2
and has four values tt .1, ff .1, tt .2, and ff .2. An event, say tt .1, is now decomposed
as a position (?.1) (tt .1). The best way to understand this is to think of a streamlike
computation. Your pair of booleans is the output of some program, which will only
work on demand. The cell ?.1 reads as “I – another program, or an observer – want
to know the left coordinate of the result of the program”, and tt .1 is the answer to
this query.

An important remark, which will be further exploited in section 5, is that this
decomposition of events gives additional space: there is no counterpart in the world
of coherence spaces or in any other usual category of domains of a structure with
one cell and no value.

8



Definition 3.2 A strategy of S is a subset x of R that is closed under response
prefixes and binary non-empty greatest lower bounds (glb’s):

r1, r2 ∈ x, r1 ∧ r2 6= ǫ ⇒ r1 ∧ r2 ∈ x

where ǫ denotes the empty word. A counter-strategy is a non-empty subset of Q that
is closed under query prefixes and under binary glb’s. We use x, y, . . . and α, β, . . .

to range over strategies and counter-strategies, respectively.
If x is a strategy and if r ∈ x, q = rc for some c and if there is no v such that

qv ∈ x, we write q ∈ A(x) (and say that q is accessible from x). Likewise we define
r ∈ A(α) for a response r and a counter-strategy α.

Both sets of strategies and of counter-strategies are ordered by inclusion. They
are denoted by D(S) and D⊥(S), respectively. We write K(D(S)) and K(D⊥(S))
for the sets of finite strategies and counter-strategies, respectively. Notice that D(S)
has always a minimum element (the empty strategy, written ∅ or ⊥), while D⊥(S)
has no minimum element in general.

A more geometric reading of the definitions of sds, strategy and counter-strategy
is the following. An sds is a labelled forest, where the ancestor relation alternates
cells and values, and where the roots are labelled by cells. A strategy is a sub-forest
which is allowed to branch only at values. A counter-strategy α is a non-empty
subtree which is allowed to branch only at cells.

Let us see what collections of positions form and do not form a strategy in
Bool ×Bool. The set {(?.1) (tt .1) , (?.2) (ff .2}) (representing (tt ,ff )) is a strategy,
while {(?.1) (tt .1) , (?.1) (ff .1)} is not a strategy. A way to understand this is to
say that the cell ?.1 can hold only one value, which is the answer to the question. A
strategy consists in having ready determinate answers for the movements of the op-
ponent. If strategies are data, what are counter-strategies? They can be considered
as exploration trees, see below.

The pairs cell–value, query–response, and strategy–counter-strategy give to sds’s
a flavour of symmetry. These pairs are related to other important dualities in
programming: input–output, constructor–destructor (see [17]). It is thus tempting
to consider the counter-strategies of an sds S as the strategies of a dual structure
S⊥ whose cells are the values of S and whose values are the cells of S. However, the
structure obtained in this way is not an sds anymore, since positions now start with
a value. This situation, first analysed by Lamarche [28], is now well-understood
since the thesis work of Laurent [29]. We come back to this below.

The following definition resembles quite closely to the dynamics described in
section 1.

9



Definition 3.3 (play) Let S be an sds, x be a strategy and α be a counter-strategy
of S, one of which is finite. We define x α, called a play, as the set of positions p

which are such that all the response prefixes of p are in x and all the query prefixes
of p are in α.

Proposition 3.4 Given x and α as in definition 3.3, the play x α is non-empty and
totally ordered, and can be confused with its maximum element, which is uniquely
characterized as follows:

x α is the unique element of x ∩ A(α) if x α is a response
x α is the unique element of α ∩ A(x) if x α is a query .

Definition 3.5 (winning) Let x and α be as in definition 3.3. If x α is a response,
we say that x wins against α, and we denote this predicate by x⊳α. If x α is a
query, we say that α wins against x, and we write x⊲α, thus ⊲ is the negation of ⊳.
To stress who is the winner, we write:

x α =

{

x ⊳ α when x wins
x ⊲ α when α wins .

The position x α formalizes the interplay between the player with strategy x

and the opponent with strategy α. If x α is a response, then the player wins since
he made the last move, and if x α is a query, then the opponent wins. Here is
a game theoretical reading of x α. At the beginning the opponent makes a move
c: his strategy determines that move uniquely. Then either the player is unable to
move (x contains no position of the form cv), or his strategy determines a unique
move. The play goes on until one of x or α does not have the provision to answer
its opponent’s move (cf. section 1).

We next define the morphisms between sds’s. There are two definitions, a con-
crete one and a more abstract one. The concrete one is needed since we want the
morphisms to form in turn an sds in order to get a cartesian closed category (actu-
ally a monoidal closed one, to start with). Accordingly, there will be two definitions
of the composition of morphisms. Their equivalence is just what full abstraction
– that is, the coincidence of operational and denotational semantics – boils down
to, once we have tailored the model to the syntax (programs as morphisms) and
tailored the syntax to the semantics (like in the language CDS [7]). We start with
the concrete way.
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Definition 3.6 Given sets A, B ⊆ A, for any word w ∈ A∗, we define w⌈B as
follows:

ǫ⌈B= ǫ wm⌈B=

{

w⌈B if m ∈ A\B
(w⌈B)m if m ∈ B .

Definition 3.7 Given two sds’s S = (C, V, P ) and S′ = (C ′, V ′, P ′), we define
S ⊸ S′ = (C ′′, V ′′, P ′′) as follows. The sets C ′′ and V ′′ are disjoint unions:

C ′′ = {request c′ | c′ ∈ C ′} ∪ {is v | v ∈ V }
V ′′ = {output v′ | v′ ∈ V ′} ∪ {valof c | c ∈ C} .

P ′′ consists of the alternating positions s starting with a request c′, and which are
such that:

s⌈S′∈ P ′, (s⌈S= ǫ or s⌈S∈ P ), and
s has no prefix of the form s(valof c)(request c′).

We often omit the tags request , valof , is , output, as we have just done in the notation
s⌈S= s⌈C∪V (and similarly for s⌈S′).

We call affine sequential algorithms (or affine algorithms) from S to S′ the strate-
gies of S ⊸ S′.

The constraint ‘no scc′’ can be formulated more informally as follows. Thinking
of valof c as a call to a subroutine, the principal routine cannot proceed further until
it receives a result v from the subroutine.

The identity affine algorithm id ∈ D(S ⊸ S′) is defined as follows:

id = {copycat(r) | r is a response of S},

where copycat is defined as follows:

copycat(ǫ) = ǫ

copycat(rc) = copycat(r)(request c)(valof c)
copycat(qv) = copycat(q)(is v)(output v) .

The word copycat used in the description of the identity algorithm has been proposed
in [1], and corresponds to a game theoretical understanding: the player always
repeats the last move of the opponent. In some influential talks, Lafont had taken
images from chess (Karpov – Kasparov) to explain the same thing.
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Example 3.8 (1) The following affine algorithm computes the boolean negation
function:

{(request ?)(valof ?),
(request ?)(valof ?)(is tt)(output ff ),
(request ?)(valof ?)(is ff )(output tt)} .

(2) On the other hand, the left disjunction function cannot be computed by an affine
algorithm. Indeed, transcribing the program for lor as a strategy leads to:

{(request ?)(valof ?.1),
(request ?)(valof ?.1)(is tt)(output tt),
(request ?)(valof ?.1)(is ff )(valof ?.2),
(request ?)(valof ?.1)(is ff )(valof ?.2)(is tt)(output tt),
(request ?)(valof ?.1)(is ff )(valof ?.2)(is ff )(output ff )} ,

which is not a subset of the set of positions of Bool2 ⊸ Bool, because the projections
on Bool2 of the last two sequences of moves are not positions of Bool2. But the
program does transcribe into a (non-affine) sequential algorithm, as we shall see.

(3) Every constant function gives rise to an affine algorithm, whose responses have
the form (request c′

1
)(output v′

1
) . . . (request c′n)(output v′

n)..

The second and third example above thus justify the terminology affine (in the
affine framework, in contrast to the linear one, weakening is allowed). The second
example suggests the difference between affine and general sequential algorithms.
Both kinds of algorithms ask successive queries to their input, and continue to pro-
ceed only after they get responses to these queries. An affine algorithm is moreover
required to ask these queries monotonically: each new query must be an exten-
sion of the previous one. The ‘unit’ of resource consumption is thus a sequence of
queries/responses that can be arbitrarily large, as long as it builds a position of the
input sds. The disjunction algorithms are not affine, because they may have to ask
successively the queries ?.1 and ?.2, which are not related by the prefix ordering.

A generic affine algorithm, as represented in figure 1, can be viewed as a ‘com-
bination’ of the following (generic) output strategy and input counter-strategy (or
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request c
′ valof c











































































is v1 · · ·
...

is vi valof d



































...

is w output v
′











request c
′
1
· · ·

...
request c

′
m · · ·

...
...
is vn · · ·

Figure 1: A generic affine algorithm

exploration tree):

input counter-strategy output strategy

c



















































v1 · · ·
...

vi d











...
w
...

...
vn · · ·

c′ v′











c′
1
· · ·

...
c′m · · ·

We now give a definition of composition of affine algorithms by means of a
simple abstract machine. Sequential algorithms are syntactic objects, and were
indeed turned into a programming language called CDS [7]. What we present here
is a simplified version of the operational semantics presented in [14][section 3.5] in
the special case of affine algorithms. Given φ ∈ D(S ⊸ S′) and φ′ ∈ D(S′

⊸ S′′),
the goal is to compute on demand the positions that belong to their composition φ′′

in the sds S ⊸ S′′. The abstract machine proceeds by rewriting triplets (s, s′, s′′)
where s, s′, s′′ are positions of S ⊸ S′, S′

⊸ S′′, and S ⊸ S′′, respectively. The
rules are given in Figure 2 (where P ′′ designates the set of positions of S ⊸ S′′,
etc...):

The first two rules are left to the (streamlike) initiative of the observer. Each
time one of these rules is activated, it launches the machine proper, that consists

13



(r, r′, r′′) −→ (r, r′c′′, r′′c′′) (r′′c′′ ∈ P ′′)
(r, r′, r′′) −→ (rv, r′c′′, r′′v) (r′′v ∈ P ′′)

(r, q′, q′′) −→ (r, q′v′′, q′′v′′) (q′v′′ ∈ φ′)
(r, q′, q′′) −→ (rc′, q′c′, q′′) (q′c′ ∈ φ′)
(q, r′, q′′) −→ (qv′, r′v′, q′′) (qv′ ∈ φ)
(q, r′, q′′) −→ (qc, r′, q′′c) (qc ∈ φ)

Figure 2: Composition abstract machine for affine algorithms

of the four other (deterministic) rules. The generic behaviour of the machine is as
follows. The initial triplet is (ǫ, ǫ, ǫ). The observer wants to know the content of c′′,
or more precisely wants to know what the function does in order to compute the
contents of c′′ in the output. Thus, he chooses to perform the following rewriting:

(ǫ, ǫ, ǫ) −→ (ǫ, ǫ, c′′)

The request is transmitted to φ′:

(ǫ, ǫ, c′′) −→ (ǫ, c′′, c′′)

There are two cases here. Either φ′ does not consult its input and produces imme-
diately a value for c′′, in which case, this value is transmitted as the final result of
the oberver’s query:

(ǫ, c′′, c′′) −→ (ǫ, c′′v′′, c′′v′′) (c′′v′′ ∈ φ′)

Or φ′ needs to consult its input (like the various sequential or functions), and then
an interaction loop (in the terminology of Abramsky and Jagadeesan [2]) is initiated:

(ǫ, c′′, c′′) −→ (c′
1
, c′′c′

1
, c′′) (c′′c′

1
∈ φ′)

−→ (c′
1
v′

1
, c′′c′

1
v′

1
, c′′) (c′

1
v′

1
∈ φ)

−→ (c′1v
′

1c
′

2, c
′′c′1v

′

1c
′

2, c
′′) (c′′c′1v

′

1c
′

2 ∈ φ′)
...

This dialogue between φ and φ′ may terminate in two ways. Either at some
stage φ′ has received enough information from φ to produce a value v′′ for c′′, i.e.
c′
1
v′

1
. . . c′nv

′

nv′′ ∈ φ′:

(c′
1
v′

1
. . . c′nv

′

n, c′′c′
1
v′

1
c′
2
. . . c′nv′

n, c′′) −→ (c′
1
v′

1
. . . c′nv′

n, c
′′c′

1
v′

1
c′
2
. . . c′nv

′

nv
′′, c′′v′′)

14



or φ itself says it needs to consult its input, i.e., c′
1
v′

1
. . . c′nc ∈ φ: this information

is passed as a final (with respect to the query c′′) result to the observer, who then
knows that φ′′ needs to know the content of c.

(c′
1
v′

1
. . . c′n, c

′′c′
1
v′

1
c′
2
. . . c′n, c′′) −→ (c′

1
v′

1
. . . c′nc, c′′c′

1
v′

1
c′
2
. . . c′n, c

′′c)

It is then the observer’s freedom to explore further the semantics of φ′′ by issuing a
new query (provided it is in P ′′) :

(c′
1
v′

1
. . . c′nv′

n, c
′′c′

1
v′

1
c′
2
. . . c′nv

′

nv
′′, c′′v′′) −→ (c′

1
v′

1
. . . c′nv

′

n, c
′′c′

1
v′

1
c′
2
. . . c′nv

′

nv′′, c′′v′′c′′
1
)

or

(c′
1
v′

1
. . . c′nc, c

′′c′
1
v′

1
c′
2
. . . c′n, c

′′c) −→ (c′
1
v′

1
. . . c′nc, c′′c′

1
v′

1
c′
2
. . . c′n, c′′cv)

The query c′′cv reads as: “knowing that φ′′ needs c, how does it behave next when
I feed v to c”. After this, the computation starts again using the four deterministic
rules along the same general pattern. Notice how φ and φ′ take in turn the leadership
in the interaction loop (cf. section 1.

We now turn to the abstract definition of our morphisms.

Definition 3.9 A (continuous) function f : D(S) → D(S′) is called stable if for
any x ∈ D(S), α′ ∈ K(D⊥ such that S′)), f(x)⊳α′ there exists a minimum (finite)
y ≤ x such that f(y)⊳α′ (m(g, α′, x), denoted by m(f, x, α′). One defines similarly
a notion of stable function g : D⊥(S′) ⇀ D⊥(S), with notation m(g, α′, x).

Definition 3.10 (symmetric algorithm) Let S and S′ be two sds’s. A symmetric
algorithm from S to S′ is a pair

(f : D(S) → D(S′), g : D⊥(S′) ⇀ D⊥(S))

of a function and a partial function that are both continuous and satisfy the following
axioms:

(L) (x ∈ D(S), α′ ∈ K(D⊥(S′)), f(x)⊳α′)⇒

{

x⊳g(α′) and
m(f, x, α′) = x ⊳ g(α′)

(R) (α′ ∈ D⊥(S′), x ∈ K(D(S)), x⊲g(α′)⇒

{

f(x)⊲α′ and
m(g, α′, x) = f(x) ⊲ α′
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We set as a convention, for any x and any α′ such that g(α′) is undefined:

x⊳g(α′) and x ⊳ g(α′) = ∅.

Hence the conclusion of (L) is simply m(f, x, α′) = ∅ when g(α′) is undefined. In
contrast, when we write x⊲g(α′) in (R), we assume that g(α′) is defined.

Thus, g provides the witnesses of stability of f , and conversely. Moreover, the above
definition is powerful enough to imply other key properties of f and g.

Definition 3.11 A (continuous) function f : D(S) → D(S′) is called sequential
if, for any pair (x, α′) ∈ K(D(S)) × K(D⊥(S′)) such that f(x)⊲α′ and f(z)⊳α′ for
some z ≥ x, there exists α ∈ K(D⊥(S)), called a sequentiality index of f at (x, α′),
such that x⊲α and for any y ≥ x, f(y)⊳α′ implies y⊳α.

Proposition 3.12 Let f and g be as in the previous definition. Then f and g are
affine (i.e., preserve the least upper bounds of pairs of upper bounded elements) and
satisfy the following two axioms:

(LS) If x ∈ D(S), α′ ∈ K(D⊥(S′)),f(x)⊲α′, and f(y)⊳α′ for some y > x, then
x⊲g(α′), and x ⊲ g(α′) is a sequentiality index of f at (x, α′).

(RS) If α′ ∈ D⊥(S′), x ∈ K(D(S)), x⊳g(α′), and x⊲g(β ′) for some β ′ > α′, then
f(x)⊳α′, and f(x) ⊳ α′ is a sequentiality index of g at (α′, x). Hence f and
g are sequential, and g provides the witnesses of sequentiality for f and con-
versely.

We turn to the composition of affine algorithms.

Definition 3.13 Let S, S′ and S′′ be sds’s, and let (f, g) and (f ′, g′) be symmetric
algorithms from S to S′ and from S′ to S′′. We define their composition (f ′′, g′′)
from S to S′′ as follows:

f ′′ = f ′ ◦ f and g′′ = g ◦ g′.

The announced full abstraction theorem is the following.

Theorem 3.14 The sets of affine algorithms and of symmetric algorithms are in
a bijective correspondence (actually, an isomorphism), and the two definitions of
composition coincide up to the correspondence.
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We just briefly indicate how to pass from one point of view to the other. Given
φ ∈ D(S ⊸ S′), we define a pair (f, g) of a function and a partial function as follows:

f(x) = {r′ | r′ = s⌈S′ and s⌈S∈ x for some s ∈ φ}
g(α′) = {q | q = s⌈S and s⌈S′∈ α′ for some s ∈ φ}.

(By convention, if the right hand side of the definition of g is empty for some α′, we
interpret this definitional equality as saying that g(α′) is undefined.)

Conversely, given a symmetric algorithm (f, g) from S to S′, we construct an
affine algorithm φ ∈ D(S ⊸ S′) by building the positions s of φ by induction on
the length of s (a streamlike process!). For example, if s ∈ φ, if s⌈S and s⌈S′ are
responses, and if q′ = (s⌈S′)c′ for some c′, then:

sc′c ∈ φ if (s⌈S)c ∈ g(q′)
sc′v′ ∈ φ if q′v′ ∈ f(s⌈S) .

But, as remarked above, we do not get all sequential functions in this way. Recall
that in linear logic the usual implication A⇒ B is decomposed as (!A) ⊸ B (!, and
its de Morgan dual ?, are called exponentials in linear logic).

Definition 3.15 (exponential) Let S = (C, V, P ) be an sds. We set !S = (Q, R, P!),
where Q and R are the sets of queries and of responses of S, respectively, and where
P! is recursively specified as follows (letting ρ range over responses in P!):

ρq ∈ P! if q ∈ A(strategy(ρ))
ρq(qv) ∈ P! if ρq ∈ P!, strategy(ρq(qv)) ∈ D(M), and qv 6∈ strategy(ρ)

where strategy is the following function mapping responses (or ǫ) of P! to strategies
of S:

strategy(ǫ) = ∅ strategy(ρq(qv)) = strategy(r) ∪ {qv}.

Sequential algorithms between two sds’s S and S′ are by definition affine algorithms
between !S and S′.

It is easily checked that the programs for lor (cf. example 3.8), ror, lsor , and
rsor transcribe as sequential algorithms from Bool × Bool to Bool.

Sequential algorithms also enjoy two direct definitions, a concrete one and an
abstract one, and both an operational and a denotational definition of composition,
for which full abstraction holds, see [14].
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Let us end the section with a criticism of the terminology of symmetric algorithm.
As already pointed out, the pairs (f, g) are not quite symmetric since g unlike f is
a partial function. Logically, S ⊸ S′ should read as S⊥

OS′. But something odd
is going on: the connective O would have two arguments of a different polarity: in
S′ it is Opponent who starts, while Player starts in S⊥. For this reason, Laurent
proposed to decompose the affine arrow [29] (see also [8]):

S ⊸ S′ = (↓ S)⊥OS′

where ↓ is a change of polarity operator. For sds’s, this operation is easy to define:
add a new initial opponent move, call it ⋆, and prefix it to all the positions of S⊥.
For example, ↓ (Bool⊥) has ⋆ ? tt and ⋆ ? ff as (maximal) positions. According
to Laurent’s definition, the initial moves of S1OS2 are pairs (c1, c2) of initial (Op-
ponent’s) moves of S1 and S2. Then the positions continue as interleavings of a
position of S1 and of S2. Notice that this is now completely symmetric in S1 and
S2.

Now, let us revisit the definition of S ⊸ S′. We said that the positions of this
sds had to start with a c′, which is quite dissymetric. But the ↓ construction allows
us to restore equal status to the two components of the O. A position in S⊥

OS′

must start with two moves played together in S and S′. It happens that these moves
have necessarily the form (⋆, c′), which is conveying the same information as c′.

4 Related works

Sequential algorithms turned out to be quite central in the study of sequentiality.
First, let us mention that Kleene has developed (for lower types) similar notions
[25], under the nice name of oracles, in his late works on the semantics of higher
order recursion theory (see [9] for a detailed comparison).

Two important models of functions that have been constructed since turned
out to be the extensional collapse (i.e. the hereditary quotient equating sequential
algorithms computing the same function, i.e. (in the affine case) two algorithms
(f, g) and (f ′, g′) such that f = f ′): Bucciarelli and Ehrhard’s model of strongly
stable functions [10, 18], and Longley’s model of sequentially realizable functionals
[31]. The first model arose from an algebraic characterization of sequential (first-
order) functions, that carries over to all types. The second one is a realizability
model over a combinatory algebra in which the interaction at work in sequential
algorithms is encoded.
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Also, Laird has shown that sequential algorithms can be obtained by a collapsing
construction from his games model of control in Hyland and Ong style [26].

Hyland and Ong’s model and Abramsky-Jagadeesan-Malacaria’s model (HO and
AJM, respectively) capture PCF definability exactly, whereas the games associated
with sequential algorithms also accommodate control operations such as call-cc

that are not definable in PCF (see section 5). In fact, the interpretation function
from normal forms to these models is injective. An essential merit of these works
was to characterize the image of this injection, and hence to characterize PCF de-
finability in a syntax-independent way by a few conditions such as innocence and
well-bracketing. This opened the way to a whole research program launched by
Abramsky. What does happen if one of the conditions is relaxed? Giving up in-
nocence led to very interesting (and fully abstract) models of references (see [4]).
Giving up well-bracketing gave a model of PCF plus control, as already mentioned.

The model of sequential algorithms and the HO (or AJM) model differ drastically
in size. The type Bool → Bool is interpreted by a finite sds (i.e., an sds with finitely
many positions) in the model of sequential algorithms, while there are infinitely
many PCF Böhm trees (and hence infinitely many strategies) in the HO and AJM
models at that type. The difference comes from the way the exponential is defined.
In definition 3.15, a key feature is non-repetition (qv 6∈ strategy(ρ)). In the games
models, the exponential is defined either by interleaving allowing for repetitions
or by the opening of potentially infinitely many copies of positions. Roughly, this
amounts to dropping the condition qv 6∈ strategy(ρ).

The finitary nature of sequential algorithms implies that equality in the model is
decidable for any type built over Bool, while the term model games do not provide
effective tools to tackle observational equivalences. As a matter of fact, it has been
proved by Loader [30] that equality of two objects in the fully abstract model of
(finitary) PCF is undecidable. A model of PCF is called fully abstract if it equates
two terms if and only if these terms are observationally equivalent, which means
that one can be replaced by the other in any program context without affecting
the final result. The full abstraction problem of Scott, Milner and Plotkin was the
(quite loosely) specified problem of providing a denotational construction of the
fully abstract model of PCF, as opposed to the original term-based construction
of Milner, who also had shown the uniqueness of the fully abstract model [32].
The HO and AJM games models can be called denotational, since they provide a
syntax-independent characterization of a term model made of (a PCF version of)
Böhm trees. But they yield full abstraction only via a collapse construction which
is not essentially different from the one originally performed by Milner. An implicit
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hope was to arrive at decidability results for the equality in the model, as usual
denotational models consist of functions, and hence interpret every type built over
Bool by a finite set. Loader’s result says that there cannot be such a construction of
the fully abstract model of PCF, and justifies a posteriori why game models had to
use infinitary exponentials. In contrast, when PCF is extended with control, then
the finitary exponential of the model of sequential algorithms does the job (coming
next).

5 Control

We already pointed out that theorem 3.14 is a full abstraction result (for the
affine case), and that the same theorem has been proved for all sequential algo-
rithms with respect to the language CDS. Sequential algorithms allow inherently
to consult the internal behaviour of their arguments and to make decisions accord-
ing to that behaviour. For example, there exists a sequential algorithm of type
(Bool2 → Bool) → Bool that maps lsor to tt and rsor to ff (cf. end of section 2).
Cartwright and Felleisen made the connection with more standard control operators
explicit, and this lead to the full abstraction result of sequential algorithms with
respect to an extension of PCF with a control operator [13].

In this respect, we would like to highlight a key observation made by Laird.
Let o be the sds with one cell and no value: o = {{?}, ∅, {?}}. Then we have the
isomorphism

Bool ∼ (o→ o→ o)

where Bool is the sds {{?}, {tt ,ff }, {?, (?tt), (?ff )}} considered above. Indeed, both
sds’s have exactly three strategies, ordered in the same way:

D(Bool) = {∅, {? tt}, {? ff }}
D(o→ o→ o) = {∅, {?ǫ ?1}, {?ǫ ?2}}

(we use subscripts to decorate the cells of the three copies of o, using the convention
o1 → o2 → oǫ). It is an instructive exercise to write down explicitly the inverse
isomorphisms as sequential algorithms: in one direction, one has the if then else

function, in the other direction, we have the control operation catch considered
in [13], which tells apart the two strategies , {?ǫ ?1}, {?ǫ ?2}. Here, we shall show
(at type bool) how the control operator call-cc of Scheme or Standard ML is
interpreted as a sequential algorithm of type ((bool → B) → bool) → bool. The
formula ((A → B) → A) → A is called Pierce’s law and is a typical tautology of
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classical logic. The connection between control operators and classical logic – and
in particular the fact that call-cc corresponds to Pierce’s law– was first discovered
in [21]. Here is is the sequential algorithm interpreting call-cc for A = bool:

?ǫ ?1















?11 ?111

{

tt111 tt ǫ

ff 111 ff ǫ

tt 1 tt ǫ

ff 1 ff ǫ

(with labelling of moves ((bool111 → B11) → bool1) → boolǫ). The same algorithm,
with bool replaced by o→ o→ o, is:

?ǫ ?1















?11 ?111

{

?1111 ?2

?1112 ?3

?12 ?2

?13 ?3

(with labelling (((o1111 → o1112) → o111 → B11) → o12 →13→ o1) → o2 → o3 → oǫ).
The reader familiar with continuations may want to compare this tree with the
continuation-passing (CPS) style interpretation λyk.y(λxk′.xk)k of call-cc, or in
tree form (cf. section 1):

λyk.y

{

λxk′.x
{

k

k

where the first k indicates a copy-cat from o111 to oǫ while the second one indicates
a copycat from o1 to oǫ. The bound variable k′ amounts to the fact B itself is of
the form B′ → o (see below). This is an instance of the injection from terms to
strategies mentioned in section 4 (in this simple example, Laird’s HO style model
coincides with that of sequential algorithms).

CPS translations are the usual indirect way to interpret control operators: first
translate, then interpret in your favorite cartesian closed category. In contrast,
sequential algorithms look as a direct semantics. The example above suggests that
this is an “illusion”: once we explicitly replace bool by o → o → o, we find the
indirect way underneath.

A more mathematical way to stress this is through Hofmann-Streicher’s notion of
continuation model [23]: given a category having all the function spaces A→ R for
some fixed object R called object of final results, one only retains the full subcategory
of negative objects, that is, objects of the form A → R. In this category, control
can be interpreted. (For the logically inclined reader, notice that thinking of R as
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the formula “false”, then the double negation of A reads as (A → R) → R, and
the classical tautology ((A → R) → R) → A is intuitionistically provable for all
negative A = B → R.) Now, taking R = o, the above isomorphism exhibits bool as
a negative object. But then all types are negative: given A and B = B′ → R, then
A→ B ∼ (A×B′)→ R is also negative. Hence the model of sequential algorithms
(and Laird’s model of control) are indeed continuation models, but it is not written
on their face.

6 A few more remarks

We would like to mention that this whole line of research on sequential interaction
induced such side effects as the design of the Categorical Abstract Machine [11],
that gave its name to the language CAML, and of a theory of Abstract Böhm Trees,
alluded to in section 1.

As for future lines of research, imports from and into the program of ludics newly
proposed by Girard [20] are expected. We just quote one connection with ludics.
We insisted in section 2 that lsor and rsor were different programs for the same
function. But there is a way to make them into two different functions, by means
of additional error values, and accordingly of additional constants in the syntax.
Actually, one error is enough, call it err. Indeed, we have:

lsor(err,⊥) = err rsor(err,⊥) = ⊥ .

Because lsor looks at its left argument first, if an error is fed in that argument,
it is propagated, whence the result err. Because rsor looks at its right argument
first, if no value is is fed for that argument, then the whole computation is waiting,
whence the result ⊥. One could achieve the same more symmetrically with two
different errors: lsor(err1, err2) = err1, rsor(err1, err2) = err2. But the economy of
having just one error is conceptually important, all the more because in view of the
isomorphism of section 5, we see that we can dispense (at least for bool but also for
any finite base type) with the basic values tt ,ff , 0, 1, . . .. We arrive then at a picture
with only two (base type) constants: ⊥ and err! This is the point of view adopted in
Girard’s ludics. In ludics, the counterpart of err is called Daimon. The motivation
for introducing Daimon is quite parallel to that of having errors. Girard’s program
has the ambition of giving an interactive account of proofs. So, in order to explore
a proof of a proposition A, one should play it against a “proof” of A⊥ (the negation
of linear logic). But it can’t be a proof, since not both A and A⊥ can be proved.
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So, the space of “proofs” must be enlarged to allow for more opponents to interact
with. Similarly, above, we motivated errors by the remark that, once introduced,
they allow more observations to be made: here, they allowed us to separate lsor and
rsor . More information, also of a survey kind, can be found in [17].
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