
HAL Id: hal-00003868
https://hal.science/hal-00003868

Submitted on 17 Jan 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Symmetry and interactivity in Programming
Pierre-Louis Curien

To cite this version:
Pierre-Louis Curien. Symmetry and interactivity in Programming. Bulletin of Symbolic Logic, 2003,
9 (2), pp.169-180. �hal-00003868�

https://hal.science/hal-00003868
https://hal.archives-ouvertes.fr

cc
sd

-0
00

03
86

8,
 v

er
si

on
 1

 -
 1

7
Ja

n
20

05

Symmetry and interactivity in

programming

P.-L. Curien

October 2001

Abstract

We recall some of the early occurrences of the notions of interac-

tivity and symmetry in the operational and denotational semantics of

programming languages. We suggest some connections with ludics.

Proof theory and programming are deeply intertwinned research areas.
This short paper will address and compare ideas from both sides, so it seems
appropriate to begin by recalling what this general interplay is about, before
we enter into the more specific topic we have in mind here, namely symmetry
and interactivity of computation.

First, a disclaimer is in order: the encounter of logic and programming is
by far not limited to what is commonly called logic programming. This ex-
pression refers to a programming style in which computation is proof search.
I am speaking here of the larger match between two kinds of wide-range
activities:

• writing programs, or any piece of structured software, proving their
correctness with respect to a specification, designing a language, im-
plementing it via a compiler into another programming language, which
may be itself amenable to the same kind of analysis, etc...;

• formalizing proofs – interesting ones rely on various lemmas, sublem-
mas, etc... –, checking them, or searching them, designing a logical
system, encoding a logic into another, etc... .

1

This correspondence, or lexicon, has been working extremely well in the
past two decades, for the mutual benefit of the two disciplines. It has un-
derpinned the development of logic programming and of functional program-
ming, based on the paradigms of proof-search and proof-transformation, re-
spectively, and also of proof assistants such as the system Coq based on the
Calculus of Constructions of Coquand and Huet.

The lexicon is not just a term-to-term correspondence. It also concerns
the internal structure – that is, the underlying engine – deeply. On one hand,
the cut-elimination procedure transforms an “implicit” proof with lemmas
(called cuts in logic) into an entirely explicit proof, and as a benefit allows
for an analysis of the resulting cut-free proof that enjoys the subformula
property (every formula appearing in the proof appears also in the conclu-
sion). On the other hand, the normalization procedure, or more generally
an operational semantics for a programming language, describes formally
the computation steps of the programs. It turns out that cut-elimination
in logic, and normalization in formal semantics of programming languages
match closely. It has been remarked by Howard, who pointed out in [18] that
there exists a one-to-one correspondence between proofs in natural deduction
style and (typed) λ-terms: this is the celebrated Curry-Howard isomorphism.
More recently, Herbelin [17] noticed that λ-caclulus could be seen as match-
ing Gentzen’s sequent calculus closely and directly, which was a door open to
exhibiting more symmetries in syntax [10].

A fundamental new theoretical input of this period was Girard’s linear
logic [13], which entailed a thorough revisiting of proof theory, but also of
the semantics of programming languages. A keyword behind linear logic is
“resource consciousness”, which in turn may have a declination in time and
in space. Linear logic focused on time, while the latest body of work of
Girard – ludics – is also concerned with space. The main source of time
complexity in the cut-elimination procedure comes from repeated uses of as-
sumptions, which corresponds to duplication of computations. In linear logic,
only formulas with an explicit modality (noted !) can be freely reused. Space
consciousness, on the other hand, amounts to taking into account memory
management. Time and space: think of your favourite home dictionary: it
may have been used so many times that it is now in a very poor condition;
or you may decide to put it away in your bookcase, but you discover that
there is no room left for it on the shelves...

2

Important transfers inspired by the above lexicon include a revisiting of
proof search in logic programming influenced by linear logic [5], which in turn
has been influential on the design principles of ludics, or the extension of the
Curry/Howard correspondence from pure effect-free programs to ones with
effects such as the raising of exceptions [16]. The so-called continuation-
passing-style translations developed by computer scientists to capture the
meaning of such effects happen to match precisely so-called double-negation
translations (from classical to intuitionistic logic) designed by logicians much
earlier.

Some dual pairs

It is remarkable that largely independent developments have converged to
the recognition of the importance of symmetries in both worlds, and then of
the paradigm of computation-as-interaction. Let me emphasize this from the
computer science standpoint first. Here are a few often found (and related)
complementary pairs:

• a memory cell or location or register versus its actual contents or value;
in object-oriented style, the record field names versus their values, the
method names versus their actual definition;

• input and output;

• sending and receiving messages;

• a program and its context (the libraries of your program environment –
or the larger program of which the program under focus is a subpart,
or a module); the programmer and the computer; two programs that
call each other.

One may also add vaguer, but helpful complementary pairs, taken from
“human life”: questions and answers, attack and defence, or – more down-to-
earth! – male and female plugs. Such a “computer/man” style is often helpful
informally, as in the sentences: “the programmer interacts with the computer
through the top-level loop, typing commands and waiting for the prompts
(or error messages)”, or: “a program A computing a function f(a, b, c) of
three arguments of boolean type has used only the first two arguments, and
more precisely has first explored the second argument; as this argument was

3

itself the output of another program B, program A passed the control to
program B, waiting for B’s output or response; when B has finished, it
passes the control back to A, which may proceed for a while and then wait
for the output of a program C computing the first argument, etc...”. In the
programming language community, the latter mechanism is known as that of
coroutines. It is interactive in nature: A, B, and C exchange questions and
answers, in an incremental way, i.e., when B is resumed, it starts from the
point of control that it had reached at the moment it had last returned an
answer to A.

This model of computation is so important and simple that it deserves
an illustration by a simple example. Suppose you have a tree, whoses leaves
are labelled by numbers (the internal nodes do not have labels, or they don’t
matter). One whishes, say, to add all the numbers at the leaves. A sim-
ple recursive definition will do, but it embodies a commitment to inorder
traversal of the tree. The coroutine view allows us to parameterize over the
choice of the traversal algorithm (program A), and over the computation we
want to do with the labels of the leaves (program B). For example, one may
take for program A a post-order traversal procedure, and for program B a
simple procedure that adds its argument to the contents of a fixed register
and returns the new value of the register.

Interaction is also central in models of concurrent computation such as
Milner’s CCS or the π-calculus [26]. There, programs and agents may be
active simultaneously but have to synchronize at appropriate points of their
execution. The synchronization may involve the transmission of a value, one
process being the sender and the other the receiver. The logical counterpart
of process calculi is yet to be found. Some believed to find it in linear logic.
Ludics may offer better chances, because of the importance of naming in these
calculi (names of channels, of intermediate data or computations, etc...), and
clearly names have to do with memory locations.

In logic, the related pairs are the following:

• Hypotheses and conclusions: Gentzen’s sequent calculus manipulates
formal sequents of the form Γ ⊢ ∆, where Γ and ∆ are sequences of
formulas, to be interpreted as: “the conjunction of the formulas in Γ
entails the disjunction of the formulas in ∆”. In sequent calculus, each
connective comes with two introduction rules, one on the left of ⊢,

4

the other on the right. Symmetry goes with the involutive character of
negation, which is lost in intuitionistic logic. Thus sequent calculus (for
classical logic) enhances symmetries, but cut-elimination, besides being
inherently non-deterministic (whence the restrictions to intuitionistic
subsystems), is rather clumsy (due to boring “commutative conver-
sions”). The novelty of linear logic was to offer both symmetry and a
satisfactory computational behaviour (confluence and normalization).

• Proofs can be given a “dialogue-game” interpretation, and are then
called strategies. This was first observed by Lorenzen and his coworkers
in the early fifties (see e.g. [12]). Under this interpretation, a formula
is checked for correctness through a dialogue between an opponent who
doubts some formulas, and the player who justifies his proof step-by-
step by exhibiting the rules he has used, in a top-bottom way. The
dialogue begins as follows: the opponent challenges the player to justify
the conclusion A. The player then exhibits the inference rule he has
used last, which has, say, A1, . . . , An as antecedents. Then the opponent
picks one of the formulas, say Ai, and again challenges the player to
justify how he has reached this intermediate conclusion, etc... Note
that in this approach, each dialogue is far from amounting to a full
proof: it is the collection of all such dialogues or experiments which
characterizes the proof. This is very much related to the notion of
observation at the basis of the study of the equivalence of programs
and processes in computer science. Unfortunately, the dialogue games’
school remained at a static, descriptive level. The full flavour comes
when cut-elimination is interpreted as a play [11] (see also below).

Computation as interaction

From the computer science perspective, the history of the computation-as-
interaction paradigm is inseparable from the study of sequentiality. Vuillemin,
and Milner have given the first denotational definitions of a sequential func-
tion, which were later generalized by Kahn and Plotkin to the framework of
concrete data structures (see e.g. [4]). Intuitively, a sequential function is
one for which a sequential schedule can be given. The best way to grasp it
more exactly is to think of a sequential function as one of the programs in a

5

system of coroutines. In the example above, program A could be

if b = true then if a = true then true

which is a partial specification of the logical and function of the first two
arguments. The function f(a, b, c) associated with the program is sequential
because it can be scheduled: first compute b, then a. Both arguments b and
a are needed. Note that the following is another sequential schedule A′ for
the same function:

if a = true then if b = true then true

Some functions in denotational semantics cannot be scheduled in this way,
the simplest example being Plotkin’s parallel-or function por , which is such
that por(true,⊥) = true and por(⊥, true) = true. In these equations, ⊥ is
a symbol for an undefined value. (One endows B = {⊥, true, false} with the
partial order defined by ⊥ ≤ true and ⊥ ≤ false.) A program implementing
por should be able to output the value true as soon as either a or b is true,
and supposing that a and b are the outputs of two programs P and Q it would
necessitate computing P and Q in parallel. A more subtle example was given
by Berry and is known as Gustave’s function, or Berry-Kleene function (as
Kleene had encountered a variant of this function too):

BK(true, false,⊥) = true
BK(false,⊥, true) = true
BK(⊥, true, false) = true

This function too cannot be scheduled sequentially. In the mid-seventies,
Berry worked on the modelling of the notion of sequential computation and
isolated the important intermediate notion of stability (which later led Gi-
rard, independently, to linear logic). The functions por and BK are typical
examples of a continuous and non stable function, and of a stable and non se-
quential function, respectively. Berry also had the insight that to model the
sequential computational behaviours, and only them, one should move from
a traditional framework of appropriate ordered sets (domains in the jargon
of denotational semantics) and functions to a setting retaining more than the
ordinary input-output behaviour of programs. For example, the two above
schedules for the logical and function are given different interpretations in
the model.

6

APPLICATION 2 (output)

internal table

argument function

?
c′

?
yc′

-y

?

output v′

v′

internal table

APPLICATION 1 (interaction loop) y → y ∪ {(c, v)}

argument function

6v

� c �valof c

?
c′

?
yc′

-y

7

The insight resulted in the model of sequential algorithms [6], which I
presented in 1978 in a Spring School on λ-calculus in La Châtre. In this
model, morphisms are not functions but pairs of a function and a compu-
tation strategy for it, that specifies a schedule of interaction of the function
with its argument.

The model was then turned into syntax, and a programming language
called CDS was developped [7]. The operational semantics of the language,
which I presented in 1982 in a joint French-US workshop held in Fontaine-
bleau, was – as far as I know – the first appearance of the notion of function
application (or function composition) as a dialogue, from an operational point
of view. We shall briefly explain how it works. A concrete data structure has
a collection C of cells and a collection V of values. Datas x are represented
as sets of pairs (c, v) such that c ∈ C and v ∈ V . Hence a data is made of
elementary bricks which consist of a cell c filled with some value v. For ex-
ample, the triplet (true, false,⊥) may be represented as {(a, true), (b, false)}:
there are three cells corresponding to the three coordinates a, b, c, and we
spell out that a holds the value true, that b holds the value false, and that c

is not filled.
In CDS, computation proceeds in a lazy, stream-like way. If an expression

a of the language, of any type, is entered for evaluation, the interpreter of
the language prompts the user for a request c and returns the value v of this
cell in (the meaning of) a, and then prompst the user for a new request c1,
etc...

The cells of a function type have the form xc′, and the values have
the form “valof c” and “output v′”. If f is a sequential algorithm, then
(xc′, output v′) ∈ f (roughly) expresses that (c′, v′) ∈ f(x), and (xc′, valof c) ∈
f expresses that, at input x, in order to compute the value of the output cell
c′, f needs, or waits for, the value of cell c. Now we are ready to explain
the dynamics of function application, as illustrated by the two figures AP-
PLICATION 1 and APPLICATION 2: f(x), when presented with a request
c′, consults the “state” y of an internal table, which stands for the part of
the input x read so far (initially, the internal table is the empty set). The
function is then asked the question yc′. If may either answer (cf. above)
“valof c” or “output v′”. In the first case, control is transfered to the argu-
ment x, because the value of cell c in x is requested. When c answers with
some v, then the internal table is updated and become y′ = y ∪ {(c, v)}, al-
lowing for the more informed question y′c′ to be asked. In this way a loop is

8

formed between f and x, whose “trace” consists of a sequence c, v, c1, v1, . . .

of alternating “opponent and player moves” (following the above dictionary
of dual pairs). The loop terminates when f has received enough information
from x, i.e., when the internal table y has become large enough, so that f

presented with yc′ answers with “output v′”, which yields v′ as answer to the
initial request c′ to f(x).

To be fair, this interactive sort of semantics was not the intended goal
when we started. Our motivation was to provide a “denotational” description
of the fully abstract model of PCF. The language PCF is a simply typed
λ-calculus with constants and recursion that encodes all partial recursive
functions, and a fully abstract model is one in which two terms M and N

receive the same interpretation if and only if they cannot be separated by any
observation (cf. the dialogue interpretation of proofs, above). An observation
on a term M is defined with the help of a context C (a term of base type
with a hole): one evaluates C[M], which yields a base constant c or does not
terminate. Two programs can be separated if there exists a context C for
which C[M] and C[N] do not evaluate in the same way.

Sequential algorithms did provide a fully abstract model, not for PCF, but
for extensions of PCF with control primitives, as offered in the language CDS,
or in PCF extended with an operation catch [9]. The model is effective in the
sense that observational equivalence classes can be effectively enumerated,
and there is even a finite number of them when the base types are themselves
finite (such as the Booleans). Again, this full abstraction result was not the
intended goal: we wanted a fully abstract model of PCF for short. But
Loader’s later result [24] settled the question negatively: he showed that
the observational equivalence for PCF is not effective. As a matter of fact,
the game-theoretic models of PCF given in 1994 by Abramsky, Jagadeesan,
and Malacaria (AJM), and by Hyland and Ong (H0) [19, 2] offer syntax-free
presentations of term-models, and the fully abstract model of PCF is obtained
from them by a rather brutal quotient, called “extensional collapse”, which
gives little more information than Milner’s original term model construction
of the fully abstract model.

With hindsight, the full abstraction problem was a very interesting, but
poorly specified, problem. One looked for a “domain theory”-like presenta-
tion of the fully abstract model which was known to exist and to be unique
[25]. But what domain-like meant exactly was not really spelled out. In par-
ticular, the effectivity criterion came only to light when it was made possible

9

to contrast different sorts of game models. Indeed, the model of sequential
algorithms was given a game-theoretic presentation by Lamarche [23]: the
main difference with the AJM and HO models lies in the definition of the !
connective, which is set-based for sequential algorithms (whence its finitary
character) and multiset-based for the AJM and HO models.

But this poorly stated long standing “open problem” did trigger an im-
portant amount of works which are often more important for their side effects.
The variety of games models created a new era in denotational semantics,
and the HO presentation of games led to an important classification of some
features of sequential programming languages such as control, or references
(see [3] for a survey). The whole approach received many insights from the
developments of linear logic, and in particular of the geometry-of-interaction
interpretation of linear logic [14, 1]. For instance, Lamarche’s decomposition
of the function space in the model of sequential algorithms allowed me to
give a more symmetric presentation of affine sequential algorithms, as pairs
of two functions, one from input data (or strategies, in game-theoretic terms)
to output data, the other from output counter-strategies to input counter-
strategies. In terms of the discussion above, the two functions take care of
the pairs (xc′, output v′) (input x, piece of output (c′, v′)) and (xc′, valof c)
(“input” c′, “output” c), respectively [8].

Last but not least, we discovered later that Kleene had the same ex-
perience of a need to record internal information in addition to the plain
underlying functions, and as a matter of fact he essentially built the Berry-
Curien sequential algorithms at lower order types [21]. In his flourished
vocabulary, he modelled higher-order recursive computations as “machines”
communicating via “oracles”, or “envelopes” that are handed by the sender
and opened by the receiver.

In the early nineties, Cartright and Felleisen found another presentation of
sequential algorithms, as “input-output” functions. This is achieved through
the introduction of error values in the semantics. In the presence of these
new values, the computation strategy can be made visible interactively, i.e.,
is part of the input-output behaviour. Take the above A and A′:

if b = true then if a = true then true
if a = true then if b = true then true

We have (forgetting about the dummy argument c): A(err,⊥) = ⊥ and
A′(err,⊥) = err, i.e. A and A′ are different functions (note that A and

10

A′ as functions differ only on data containing errors values). The informal
explanation of these values is as follows: A needs its second argument, and
hence cannot output anything if the second argument is ⊥; A′ needs its
first argument, and if this argument is err, this stands for some error that
occurred when computing the first argument, which terminates the whole
computation, so that the value err is propagated to the top-level (second
occurrence of err in A′(err,⊥) = err).

It was a striking discovery for me to realize that Girard has introduced
the same notion, on the logical side (dynamic dictionary!), which he calls the
Demon. The Demon is placed somewhere in a proof which the player does
not want to justify completely, or in a counter-proof or observation which the
opponent wants to terminate. Think of a human situation where you have a
few questions to ask to someone, and where you want to stop the conversation
when you have got the answers you wanted to get. In the same way, errors
help to terminate a computation that reveals a part of the behaviour of a
program: the observation encoded by the argument (or counter-strategy)
(err,⊥) reveals that A′ starts by examining its first argument.

Interactive types

The game-theoretic approach to semantics allows us to achieve a better match
between primitive base types and defined data types. We illustrate this
point with the Booleans. Recall that we interpret the boolean type as B =
{⊥, true, false}, where the order is given by ⊥ ≤ true and ⊥ ≤ false. The
logicians have shown that Booleans can be defined in second-order logic as
∀X X → (X → X). It was observed by Laird that there exists a suitable
game o for which o → (o → o) is isomorphic to B [22]. To begin, note that
this is not true with usual domains: either X consists of just ⊥, and then
X → (X → X) is also a singleton (the map that sends ⊥ and ⊥ to ⊥), or X

has at least one non-bottom element, and then it is easy to see that there will
be strictly more than 3 elements in (the interpretation of) X → (X → X).
But with games, one may consider a structure o with just one cell – called
“?” –, and no value. Then a sequential algorithm viewed as a strategy can
only be one of the three following sequences of moves (we write o → o → o as
o11 → o12 → o1, and we place corresponding subscripts to the unique move

11

of each copy of o, thus, e.g., ?12 refers to a move in o12):

the empty sequence of moves
?1 ?11

?1 ?12

or, with the notation used above:

{} {({}?1, valof ?11)} {({}?1, valof ?12)} .

There is nothing to output, so the algorithms are mere schedulers here. Now,
it is straightforward to match these three algorithms with ⊥, true, and false,
respectively (and this is in agreement with the λ-calculus encoding of λxy.x

as true and λxy.y as false).

Following Girard’s notion of behaviour in ludics, the interactive approach
also allows us to enlarge the notion of “type”. A type is then a collection of
programs that behave the same way, in reaction to a set of experiences or
tests, which are nothing else than other programs. Taking images of ordinary
life, this makes perfect sense: everyone can find for himself examples of how
a change in his environment may have affected her or his behaviour.

Let me give an example of type/behaviour, which may have potential
applications. One may take as test set a single “taster” program A of type
((σ111 ×σ112 ×σ113 → σ11) → σ1) that examines its argument – an algorithm
of three arguments – and returns an error value if, say, the function says that
it needs its ith argument. If its argument does something else, like outputing
directly a value without looking at its argument, or says it needs its jth
argument (j 6= i), then the taster does not proceed further, and in particular
does not deliver any error or non-error value. Formally, we write (for i = 2):

A =?1 ?11 ?112 err .

Then it is easy to see that the behaviour A⊥ consisting of all programs or-

thogonal to the taster, i.e., such that the interaction with the taster yields
“error” (or Demon, cf. above), is the set of algorithms B that start by exam-
ining their second argument, or, equivalently, such that B(⊥, err ,⊥) = err .
This sort of neededness analysis is extremely useful in practice. Remember
that the “Ariane V bug” was caused by an overflow due to a piece of useless
data....

12

This notion of type is well-suited to the semantics of subtyping: a subtype
of a behaviour X⊥ (where X is a set of tests) is just a behaviour of the form
Y ⊥ for a larger set of tests, i.e., X ⊆ Y (and Y ⊥ ⊆ X⊥). For example, the
type of records with fields “year”, “price”, and “colour” is a subtype of the
type of records with the fields “year” and “price”. A record of the latter type
is interactively recognized by testing the presence of the two fields “year” and
“price”, while a third test for the presence of “colour” is needed to “type-
check” the membership to the subtype. Moreover, intersection types are just
usual intersections: this is what Girard calls the locative point of view, but
we must end this exposition somewhere, and refer to [15].

With this collection of examples and bridges across logic and program-
ming languages, we hope to have convinced the reader that the dictionary
we started with continues to receive enrichments, in great part triggered by
concepts born in computer science (such as the last mentioned: subtyping).

References

[1] S. Abramsky and R. Jagadeesan, New foundations for the geometry of
interaction, Information and Computation 111 (1), 53-119 (1994).

[2] S. Abramsky, R. Jagadeesan, and P. Malacaria, Full abstraction for
PCF, Information and Computation 163, 409-470 (2000). (Manuscript
circulated since 1994.)

[3] S. Abramsky and G. McCusker, Game semantics, in Computational
Logic, U. Berger and H. Schwichtenberg eds, Springer-Verlag, 1-56
(1999).

[4] R. Amadio and P.-L. Curien, Domains and lambda-calculi, Cambridge
University Press (1998).

[5] J.-M. Andreoli and R. Pareschi, Linear objects: logical processes with
built-in inheritance, New Generation Computing 9 (3-4), 445-473 (1991).

[6] G. Berry and P.-L. Curien, Sequential algorithms on concrete data struc-
tures, Theoretical Computer Science 20, 265-321 (1982).

13

[7] G. Berry and P.-L. Curien, Theory and practice of sequential algorithms:
the kernel of the applicative language CDS, in Algebraic methods in

semantics, Nivat and Reynolds eds, Cambridge University Press, 35-87
(1985).

[8] P.-L. Curien, On the symmetry of sequentiality, Proc. Mathematical
Foundations of Programming Semantics 1993, Springer Lect. Notes in
Comp. Science. 802, 122-130 (1993).

[9] R. Cartwright, P.-L. Curien, and M. Felleisen, Fully abstract seman-
tics for observably sequential languages, Information and Computation
111(2), 297-401 (1994).

[10] P.-L. Curien and H. Herbelin, The duality of computation, Proc. Inter-
national Conference on Functional Programming 2000, Montréal, ACM
Press (2000).

[11] T. Coquand, A semantics of evidence for classical arithmetic, Journal of
Symbolic Logic 60, 325–337 (1995).

[12] W. Felscher, Dialogues as a foundation of intuitionistic logic, Handbook
of Philosophical Logic 3, 341-372 (1986).

[13] J.-Y. Girard, Linear logic, Theoretical Computer Science 50, 1-102
(1987).

[14] J.-Y. Girard, Geometry of interaction I: interpretation of system F, in
Proc. Logic Colloquium ’88, 221-260, North Holland (1989).

[15] J.-Y. Girard, Locus Solum, Mathematical Structures in Computer Sci-
ence (2001).

[16] T. Griffin, A formulae-as-types notion of control, Proc. Principles of
Programming Languages 1990, ACM Press (1990).

[17] H. Herbelin, Séquents qu’on calcule, Thèse de Doctorat, Université Paris
7 (1995).

[18] W. Howard, The formulas-as-types notion of construction, in Curry
Festschrift, Hindley and Seldin eds, 479-490 , Academic Press (1980).
(Manuscript circulated since 1969.)

14

[19] M. Hyland and L. Ong, On full abstraction for PCF, Information and
Computation 163, 285-408 (2000). (Manuscript circulated since 1994.)

[20] G. Kahn, D. Macqueen, Coroutines and networks of parallel processes,
in Proc. Information Processing 77, North Holland, 993-998 (1977).

[21] S. Kleene, Recursive Functionals and Quantifiers of Finite Types Revis-
ited I, II, III, and IV, in Proc. General Recursion Theory II, Fenstad et
al. eds, North-Holland (1978), Proc. of the Kleene Symposium, Barwise
et al. eds, North-Holland (1980), Proc. Patras Logic Symposium, North
Holland (1982), and Proc. Symposia in Pure Mathematics 42 (1985),
respectively.

[22] J. Laird, A semantic analysis of control, Ph.D. thesis, University of
Edinburgh (1999).

[23] F. Lamarche, Sequentiality, games and linear logic, manuscript (1992).

[24] R. Loader, Finitary PCF is undecidable, manuscript, University of Ox-
ford (1996).

[25] R. Milner, Fully abstract models of typed lambda-calculi, Theoretical
Computer Science 4, 1-23 (1977).

[26] R. Milner, Communicating and mobile systems: the π-calculus, Cam-
bridge University Press (1999).

15

