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Abstract

We investigate the evolution of a system composed of N non-interacting point
particles of mass m in a container divided into two chambers by a movable
adiabatic piston of mass M À m. Using a two-time-scale perturbation approach
in terms of the small parameter α = 2m/(M + m), we show that the evolution
towards thermal equilibrium proceeds in two stages. The first stage is a fast,
deterministic, adiabatic relaxation towards mechanical equilibrium. The second
stage, which takes place at times O(M), is a slow fluctuation-driven, diathermic
relaxation towards thermal equilibrium. A very simple equation is derived which
shows that in the second stage, the position of the piston is given by XM (t) =
L[1/2− ξ(αt)] where the function ξ is independent of M . Numerical simulations
support the assumptions underlying our analytical derivations and illustrate the
large mass range in which the picture holds.

Keywords: Liouville equation; Adiabatic; Mechanical equilibrium; Thermal equilib-
rium; Perturbation.

1 Introduction

The “adiabatic” piston problem is a well-known controversial example of thermody-
namics [1]. An isolated cylinder contains two identical fluids which initially are in
different equilibrium states and which are separated by an adiabatic fixed piston. The
whole system remains therefore in equilibrium. The problem is then to predict the final
state to which the system will evolve when the constraint fixing the piston is released.
Although it is a very old problem since it was discussed to measure experimentally the
ratio cp/cv of gases already before 1940 [2] [3], it still remains a controversial question
since it shows that the two laws of equilibrium thermodynamics are not sufficient to
predict the final state.
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Recently, especially after the work on the second law of thermodynamics by E. Lieb
and J. Ynvagson [4] and the talk of E. Lieb at the StatPhys 20 meeting in 1998 [5],
this problem has attracted renewed interest. It was first realized that it is a standard
example where one is forced to apply non-equilibrium thermodynamics since the final
state may depend on the values of the friction coefficients [6]. Then a very simple model
was considered to investigate the evolution from a microscopical point of view [7]. This
system consists of N non-interacting particles in a cylinder of length L and cross-section
A. It is divided into two compartments containing respectively N− and N+ particles
(N = N− + N+) by an adiabatic (i.e. no internal degrees of freedom) piston of mass
M . The dynamics is defined by the condition that the piston is constrained to move
without friction along the x-axis and the particles make purely elastic collisions on the
boundaries and on the piston. Without loss of generality, we can assume that all the
particles have velocities parallel to the x-axis and thus we are led formally to a one-
dimensional problem (except for normalization). Therefore, given that the velocities
of a particle and the piston are v and V before they collide, then after the collision the
velocities will be v′ and V ′, with:

v′ = 2V − v + α(v − V ) V ′ = V + α(v − V ) where α =
2m

M + m
(1)

For physical situations where m ¿ M , this model was investigated in [8] using Boltz-
mann equation and a perturbation expansion of the velocity distribution function of

the piston Φε(V, t) in powers of ε =
√

m/M . For an infinite cylinder (L = ∞) and

equal pressures on both sides of the piston (p− = p+), it was shown that the sta-
tionary solution of the Boltzmann equation gives a constant velocity for the piston
Vst = (1/4M)

√
2πkBm (

√
T+ −

√
T−) + O(m/M) towards the high temperature do-

main. It was thus concluded that stochastic motion together with space asymmetry
(temperature difference) implies a macroscopic motion. Using qualitative arguments
and numerical simulations, the case of a finite cylinder was investigated in [9]. It was
thus realized that the evolution takes place in two or three stages. In a first stage,
the evolution appears to be deterministic and adiabatic; this first stage proceeds until
mechanical equilibrium is reached (p− = p+ but T− 6= T+). In the second stage which
takes place on much longer time scale, the simulations showed that the motion of the
piston is stochastic and proceeds with exchange of heat through the piston until ther-
mal equilibrium is reached where T− = T+, i.e. the piston which was adiabatic when
fixed and during the first stage becomes heat-conducting under fluctuations. This ex-
plains in particular the results mentioned above for the infinite cylinder with p− = p+.
In the third stage, under the stochastic motion of the piston, the velocity distribution
functions of the fluids tend to Maxwellian distributions.

Recently we have studied the adiabatic piston problem in the thermodynamic limit
for the piston, i.e. by considering the limit where L is fixed but the area A of the
cylinder, the mass M of the piston and the number N± of fluid particles tend to
infinity with M/A and R± = mN±/M fixed [10]. Starting from Liouville equation, it
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was shown that in this thermodynamic limit, the motion of the piston is adiabatic and
deterministic, i.e. 〈V n〉t = 〈V 〉nt . Introducing at this point simplifying assumptions
(see Assumptions 2 and 3 below), we obtained a system of autonomous equations from
which we concluded that the system evolves towards a state of mechanical equilibrium
where the pressures are equal but the temperatures different. Furthermore, numerical
simulations were conducted which showed that the motion depends strongly on R±

for R± < 1 but tends to be independent of R± for R± > 10. For R± < 1, the
evolution is very weakly damped and the period of oscillations, which depends on R±,
coincide with the period computed with our equations, and with the period obtained
from thermodynamics assuming adiabatic oscillations [2] [3]. On the other hand for
R± > 10, the motion is strongly damped and is independent of R±. An equation was
thus conjectured to describe the evolution for R± large enough. It should be noticed
that these two types of regimes, i.e. weak vs strong damping, have been observed
experimentally [3], as well as in the previous numerical simulations for the simple
piston where the evolution is necessarily adiabatic [11]. Let us also stress that in
this thermodynamic limit, we could deduce from Liouville equation the factorization
property of the joint velocity distribution for the piston and a particle at the piston
surface.

In [9] were presented the first simulations for this model and a qualitative (non-
rigourous) discussion was given to explain the numerical results. In particular, for
finite systems, this first attempt was heuristic and the condition introduced to take
into account the pressure difference between the left and right compartments was not
at all clear. In [10] a rigourous analysis (i.e. under well defined assumptions) of the
adiabatic evolution was given in the thermodynamic limit discussed above. In this
thermodynamic limit a factorisation property was obtained and it was shown that the
system evolves toward mechanical equilibrium. In the present article, we investigate
the motion of the piston with M finite but M À m. Introducing now the factorization
property as an assumption (see Assumption 1 below) which we assume to be valid
to first order in α, and using a two-time-scale perturbation approach, we show that
the evolution of the piston proceeds in two stages with totally different properties

and time scales. In the first stage, characterized by a time scale t1 = L
√

Nm/E0

(average time for a particule to collide twice with the piston) where E0 is the initial
energy, the pressure and temperature differences between the two gases are of order
zero in m/M . In this stage the evolution is similar to the evolution obtained in the
previous thermodynamic limit [10]: it is adiabatic, deterministic, independent of M for
M sufficiently large, either weakly or strongly damped, and proceeds until mechanical
equilibrium is reached (up to corrections in m/M).

In the second stage, characterized by a time scale t2 = Mt1/m, the evolution is
strongly dependent on M . In fact, we shall derive the following scaling property:

Main result: introducing the scaled time variable τ = αt, the evolution of the piston of
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mass M À m is given by:

XM(τ) = L
(

1

2
− ξ(τ)

)
(2)

where
dξ

dτ
= − 1

3

1

L

√
E0

N

√
8

mπ



√

N

N+
(1 + 2ξ) −

√
N

N−
(1 − 2ξ)


 (3)

Moreover from the knowledge of ξ(τ), one obtains the temperatures and pressures on
both sides of the piston, as well as the temperature of the piston, to lowest significant
order in α. In this second stage, the fluctuation-driven evolution is stochastic and
proceeds with heat transfer across the piston towards a state of “thermal” equilibrium
where T− = T+. Investigation to higher orders in α would be necessary to conclude
that the fluid velocity distributions will ultimately tend to Maxwellian distributions.
Let us also stress that the initial state for the second stage is the final stage for the
first stage (matching condition).

The same microscopical model was analyzed by Lebowitz, Piasecki and Sinai using
a different limiting procedure [13]. In their work, they have considered the container
to be a cube of size L and they have taken the limit L → ∞ with N− = N+ ∼ L3 and
M ∼ L2. Using heuristical arguments, they derived autonomous coupled equations
describing the motion of the piston and the fluid for large L. More recently, exact
results were obtained by Chernov, Lebowitz and Sinai using this limiting procedure
L → ∞ [14]. They were able to prove rigorously that for a time interval sufficiently
short so that only the first and second recollisions of a particle on the piston can
occur, the random functions describing the position and the velocity of the piston,
expressed in terms of scaled variables (τ = t/L, Y = X/M), converge in probability
to some deterministic functions. However the time interval to which their results hold
is inversely proportional to an arbitrary introduced cutoff and is zero for Maxwellian
distributions. On the other hand, with the natural cutoff which appears in numerical
simulations, this time interval is of the order of the time needed for the first oscillation
to occur.

To conclude this introduction, we should mention that the approach to “thermal”
equilibrium was investigated in [15] using an expansion of the master equation for the
piston velocity distribution function in powers of

√
α, as well as numerical simulations,

for a gas of hard rods.
We shoud insist on the fact that our model is formally a one-dimensional system

and that the particles do not interact. However it appears that similar results will also
hold for two dimensional systems of hard-disks. Indeed an interesting discussion was
presented in [16], where the power spectrum and the time correlation function of the
piston were calculated at equilibrium for a two-dimensional system of hard disks by
molecular dynamics simulations. From this analysis, one can also deduce a two-time-
scale relaxation towards equilibrium. The problem of approach to equilibrium and the
question of heat transfer for this 2-dimensional system of hard disks was analyzed in
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[17] and [18] using molecular dynamics simulations and a linear Langevin equation
(see also [11] for a 2-dimensional system of hard-disks). It is however possible that
the evolution toward Maxwellian distribution is faster in higher dimension and for
interacting molecules, but we have not studied this question.

Let us finally mention another problem which was investigated in 1963 [12]. It
presents similarity with our model (if the cylinder has infinite length) in the sense that
there is a stochastic motion coupled to a space asymmetry. However the conditions
are very different since in the present work the two gases are identical but the ther-
modunamical conditions are different, while in [12] the two gases are different but the
thermodynamical conditions are the same. Both [12] and the following analysis are
based on perturbation with respect to the small parameter m/M , but the methods are
entirely different.

2 Equations for the moments 〈V n〉 of the piston ve-

locity

In the spirit of BBGKY hierarchy, we shall characterize the velocity distribution Φ(V, t)
through its moments:

V̄ (t) = 〈V 〉(t) =
∫ ∞

−∞
V Φ(V, t)dV (4)

and
〈V n〉(t) =

∫ ∞

−∞
V nΦ(V, t)dV (5)

Introducing the notation:

F̃k(V, ρ±
surf ) =

[∫ ∞

V
(v − V )kρ−

surf (v, V, t)dv −
∫ V

−∞
(v − V )kρ+

surf (v, V, t)dv

]
(6)

where k ≥ 0 and ρ±
surf (v, V, t) is the two-point correlation function for one molecule on

the left (−), resp. on the right (+), and the piston, then by integration of Liouville
equation over all variables except the piston velocity V , we have obtained the following
evolution equation for Φ [10]:

1

γ
∂tΦ(V, t) =

∞∑

k=0

(−1)k+1αk

(k + 1)!

∂k+1F̃k+2

∂V k+1
(V, ρ±

surf ) (7)

where γ = Aα = 2mA/(M + m) and with ∂tΦ(V, t) defined in the framework of
generalized functions. Hence, by definition, integration over V commute with ∂t and
with the infinite summation in any average with respect to Φ:

1

γ

d〈h(V )〉
dt

=
∫ ∞

−∞
h(V ) ∂tΦ(V, t) dV =

∞∑

k=0

∫ ∞

−∞
h(V )

(−1)k+1αk

(k + 1)!

∂k+1F̃k+2

∂V k+1
(V, t) dV

(8)
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In particular, we have:

1

γ

d〈V n〉
dt

=
∞∑

k=0

∫ ∞

−∞
V n (−1)k+1αk

(k + 1)!

∂k+1F̃k+2

∂V k+1
(V, ρ±

surf )dV (9)

Under the hypothesis that V → ρ±
surf (v, V, t) decreases faster than any power of V ,

uniformly in v, we may integrate by parts, which yields:

1

γ

d〈V n〉
dt

=
n−1∑

k=0

∫ ∞

−∞

n! αk

(k + 1)!

V n−k−1

(n − k − 1)!
F̃k+2(V, ρ±

surf ) dV

+
∞∑

k=n

∫ ∞

−∞

n! (−1)k+1+nαk

(k + 1)!

∂k+1F̃k+2

∂V k+1
(V, ρ±

surf ) dV (10)

All terms with k ≥ n, appearing as pure derivatives with respect to V , vanish after
integration on the whole V -axis, due to the fast decrease of V → ρ±

surf (v, V, t) at
infinity. Hence the equation simplifies into:

1

γ

d〈V n〉
dt

=
n−1∑

k=0

∫ ∞

−∞

n! αk

(k + 1)!

V n−k−1

(n − k − 1)!
F̃k+2(V, ρ±

surf )dV (11)

where F̃k depends functionally on ρ±
surf (v, V, t).

3 Factorization property

In [10], we have shown that in the limit α = 0, the two-point correlation functions
ρ±

surf (v, V, t) have the factorization property. Although we can not prove it, we expect
that in the limit α → 0 which we now consider, and for initial conditions such that
the evolution is smooth, this property will still be valid to first order O(α) where the
leading behavior is Φ(V, t) = δ(V − V̄ (t)). Therefore in the following perturbation
approach, we shall consider that the following assumption holds to first order in α:

Assumption 1 (factorization property): before a collision the two-point correlation func-
tions have the following factorization property at first order in α:

ρ±
surf (v, V, t) = ρ±

surf (v, t) Φ(V, t) (12)

This assumption is in fact of the same nature as the molecular chaos assumption
introduced in kinetic theory. Under this factorization property, we have F̃k = FkΦ
where:

Fk(V, ρ±
surf ) = F−

k (V, ρ−
surf )−F+

k (V, ρ+
surf ) =

∫ ∞

V
(v−V )kρ−

surf (v, t)dv−
∫ V

−∞
(v−V )kρ+

surf (v, t)dv

(13)
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and the evolution of the moments 〈V n〉 of the piston velocity satisfy the equation:

1

γ

d〈V n〉
dt

=
n−1∑

k=0

∫ ∞

−∞

n! αk

(k + 1)!

V n−k−1

(n − k − 1)!
Fk+2(V, ρ±

surf ) Φ(V, t) dV (14)

Similarly, under the factorization assumption, the distributions ρ±(x, v, t) of the fluid
molecules satisfy the Boltzmann equations with boundaries [10]:

(∂t + v∂x)ρ
−(x, v, t) = δ(x)vρ−(0, v, t)

+δ(x − X(t))[V (t) − v][θ(V (t) − v)ρ−(X(t), v′, t) + θ(v − V (t))ρ−(X(t), v, t)] (15)

(∂t + v∂x)ρ
+(x, v, t) = −δ(x)vρ+(L, v, t)

−δ(x − X(t))[V (t) − v][θ(v − V (t))ρ+(X(t), v′, t) + θ(V (t) − v)ρ+(X(t), v, t)] (16)

where v′ = 2V − v + α(v − V ) is the velocity of the molecules after their collision onto
the piston. Note that ρ±(X(t), v, t) is what we denote ρ±

surf (v, t).

It is straighforward to check that:

dF±
k

dV
(V, ρ±

surf ) = − k F±
k−1(V, ρ±

surf ) (if k ≥ 1) (17)

which leads to define F±
k for k < 0 by:

(
d

dV

)r

F±
0

.
= F±

−r = ±
(

d

dV

)r−1

ρ±
surf (V, t) (r ≥ 1) (18)

We define the densities ρ±
surf (not to be confused with the distributions ρ±

surf (v)), the
temperatures T±

surf and the pressures p±surf at the surface of the piston, on each side:

ρ−
surf

.
= 2

∫ ∞

0
ρ−

surf (v, t)dv = 2F−
0 (V = 0, ρ−

surf ) (19)

ρ+
surf

.
= 2

∫ 0

−∞
ρ+

surf (v, t)dv = 2F +
0 (V = 0, ρ+

surf ) (20)

p±surf
.
= 2mF±

2 (V = 0)
.
= ρ±

surfkBT±
surf (21)

It is obvious from the definition that F−
2 (V ) and −F+

2 (V ) are decreasing functions of
V , which allows to express F±

2 (V ) and F±
0 (V ) in the following form:

2mF±
2 (V )

.
= p±surf ±

(
M + m

A

)
λ±(V )V (22)

2F±
0 (V )

.
= ρ±

surf ±
(

M + m

A

) (
λ̃±(V )

kBT±
surf

)
V (23)
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and λ±(V ) have the physical meaning of friction coefficients. Denoting λ(V ) = λ−(V )+
λ+(V ) yields:

2mF2(V ) = (p− − p+) −
(

M + m

A

)
λ(V )V (24)

From Eq. (17), we have also 2mF±
2 (V ) = p± − 4mF±

1 (0)V +O(V 2), so that, denoting
simply λ± = λ±(V = 0):

F±
1 (V = 0) = ∓ 1

4m

(
M + m

A

)
λ± (25)

4 Irreducible moments

We denote F (r)
n the r-th derivative of Fn (with respect to V ); from Eq. (17), these F (r)

n

are functional of ρ±
surf (v, t), proportional to Fn−r(V, ρ±

surf ). We thus have:

Fn(V, ρ±
surf ) =

∞∑

r=0

1

r!
F r

n(V̄ , ρ±
surf )(V − V̄ )r (26)

where:

(F±
n )(r) = (−1)r n!

(n − r)!
F±

n−r for r ≤ n (27)

(F±
n )(r) = ± (−1)n n!

(
d

dV

)r−n−1

ρ±
surf (V, t) for r ≥ n + 1 (28)

Plugging the expansion Eq. (26) in Eq. (14) yields for n = 1:

1

γ

dV̄

dt
= F2(V̄ , t) +

∑

r≥2

∆r

r!
F

(r)
2 (V̄ , t) (29)

where:

F
(0)
2 = F2 F

(1)
2 = −2F1 F

(2)
2 = 2F0 F

(3)
2 = 2F−1 = −2[ρ−

surf (V, t)−ρ+
surf (V, t)]

(30)
and ∆r are the irreducible moments:

∆r ≡
∫ ∞

−∞
(V − V̄ (t))rΦ(V, t)dV =

r∑

q=0

(−1)q r!

q!(r − q)!
V̄ (t)q 〈V r−q〉 (31)

with
V̄ (t) =

∫ ∞

−∞
V Φ(V, t)dV (32)

the average velocity of the piston. Let us note that

∆0 = 1 (33)

∆1 = 0 (34)

∆2 = 〈V 2〉 − V̄ 2(t) (35)
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We can invert Eq. (31) to express the moments 〈V s〉 as functions of the irreducible
moments (cumulant expansion):

〈V s〉 = V̄ s +
s∑

q=2

s!

q!(s − q)!
V̄ s−q ∆q (36)

Finally replacing the function Fk+2(V, ρ±
surf ) by its expansion in powers of (V − V̄ (t))

around the average velocity V̄ (t) and using Eq. (36) lead to the following evolution
equations for the irreducible moments (s ≥ 2):

1

γ

d∆s

dt
= −s∆s−1


∑

r≥2

1

r!
∆rF

(r)
2


− 2s


∑

n≥0

1

(n + 1)!
∆s+nF

(n)
1




+α




s−2∑

k=0

αk s!

(k + 2)!(s − 2 − k)!


∑

n≥0

1

n!
∆s−2−k+nF

(n)
3+k




 (37)

where we recall that Fk are functions of V̄ and functional of ρ±(., t).
For s = 2, it comes:

1

γ

d∆2

dt
= −4

∑

n≥0

∆n+2

(n + 1)!
F

(n)
1 + α

∑

n≥0

1

n!
∆n F

(n)
3 (38)

Using the fact that ∆1 = 0, F
(n)
1 = −1

2
F

(n−1)
2 and F

(r)
3 = −3F

(r−1)
2 if r ≥ 1, we may

rewrite this equation:

1

γ

d∆2

dt
=
∑

r≥2

∆r

r!
(2r − 3α) F

(r−1)
2 + αF3 (39)

5 Evolution at first order in α

A qualitative analysis of Eq. (37) shows that:

∆s ∼ α[
(s+1)

2
] (40)

where [(s+1)/2] is the integral part of (s+1)/2. Since we want to restrict our study to
first order in α, assuming that Eq. (40) is valid, we only have to consider the evolution
of V̄ and ∆2, Eqs. (29) and (39), which we supplement with the equations for the
energies 〈E±〉 of the gas in the left and right compartments, restricted similarly to first
order in α. We thus obtain to first order in α the following set of coupled deterministic
equations:

1

γ

dV̄

dt
= F2 + ∆2F0 (41)
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1

γ

d∆2

dt
= −4∆2F1 + αF3 (42)

1

γ

d〈E−〉
dt

= −MV̄ [F−
2 + ∆2F

−
0 ] +

M

2
[4∆2F

−
1 − αF−

3 ] (43)

1

γ

d〈E+〉
dt

= MV̄ [F+
2 + ∆2F

+
0 ] − M

2
[4∆2F

+
1 − αF+

3 ] (44)

and we recall that all the functions F are functions of V̄ (t) and functionals of ρ±
surf (v, t).

We should note that the set of Eqs. (41)-(44) have a constant of motion, i.e.

〈E−〉 + 〈E+〉 +
1

2
M(V̄ 2 + ∆2) = E0 = const. (45)

which reflects the conservation of energy at the microscopic level.

Remark 1: The evolution is described by Eqs. (41) and (42) together with Boltzmann
equations for the fluid Eqs. (15) and (16). In the next section, we shall introduce the
“average assumption” which will then enable us to ignore the equation for the fluids
and to replace them by Eqs. (43) and (44).

Remark 2: Recalling that ∆2(t = 0) = 0, it is straighforward using Gronwall lemma
to check the consistency of the scaling hypothesis, i.e. ∆2 = O(α), from the above
evolution equation (42). Indeed, F3 remains of order O(1) (upper bound denoted
sup(F3)) and F1 is strictly positive since F1 = 0 would imply that:

{
ρ−

surf (v, t) = 0 ∀v ≥ V̄ (t)
ρ+

surf (v, t) = 0 ∀v ≤ V̄ (t)
(46)

which is precluded by the relations:
{

∀v ≥ V̄ (t) (1 − α) ρ−
surf (v, t) = ρ−

surf (2V̄t − v + α(v − V̄t), t)
∀v ≤ V̄ (t) (1 − α) ρ+

surf (v, t) = ρ+
surf (2V̄t − v + α(v − V̄t), t)

(47)

Therefore ∆2 is bounded by α sup(F3)/ inf(F1) i.e. ∆2 = O(α).

Remark 3: In our first paper [10], we have considered the case α = 0, i.e. the
thermodynamic limit for the piston, and discussed the evolution described by ∆2 = 0
and:

1

γ

dV

dt
= F2(V ) (48)

1

γ

d〈E−〉
dt

= −MV F−
2 (V ) (49)

1

γ

d〈E+〉
dt

= MV F+
2 (V ) (50)
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6 Adiabatic evolution for short time

We want to investigate the evolution of the piston under the initial condition where
X(t = 0) = X0, V (t = 0) = 0 and the fluids on both sides of the piston are in
equilibrium, described by Maxwellian distribution of velocity, with temperatures T ±

0 .
The initial conditions are such that |T +

0 − T−
0 | = O(1) and |p+

0 − p−0 | = O(1). Since
α ¿ 1, the perturbation approach shows that in a first stage, we can restrict our
analysis to order zero in α and thus we recover the results of our previous paper
(where α = 0), except that they will now be valid only for finite time. In this first
stage, the motion of the piston is a deterministic (no velocity fluctuations, ∆2 = 0)
adiabatic (no heat transfer between the compartments) evolution towards mechanical
equilibrium. This first stage ends when p− − p+ = O(α) (but T− − T+ is still O(1)).
At this point, the term F2 which appears in the evolution of V̄ , Eq. (41), becomes
of order α and the first order terms of the perturbation approach must now be taken
into account. Let us note that if we introduce the “average assumption” (see below,
Assumption 2), the state at the end of this first stage is given by the final state derived
in [10] for α = 0:

p±ad = p0 + O(α) (51)

T−
ad =

(
N

N−

)
T0

Xad

L
+ O(α) (52)

T+
ad =

(
N

N+

)
T0

(
1 − Xad

L

)
+ O(α) (53)

where:

kBT0 =
(

AL

N

)
p0 =

2E0

N
, N = N− + N+ , (54)

and Xad is the solution of

√(
N

N−

)
X3

ad −
√(

N

N+

)
(L − Xad)3 =

√
L

T0

C (55)

where the constant C is related to the initial conditions according to

C =
√

T−(0)X0 −
√

T+(0)(L − X0) (56)

7 Slow relaxation towards thermal equilibrium

The perturbation approach developped here (at order 1 in α) intends to reach the
long-time behavior of the piston motion in the case where M À m. We claim that the
fluctuations of the piston velocity V enter the scene only in a second stage, of time
scale O(1/α), once the pressure difference has become of order O(α). In order to prove

11



this assertion, we have to develop a boundary-layer-type perturbation approach[21];
indeed, at the end of the fast relaxation towards mechanical equilibrium, the standard
perturbation approach (with time variable t) becomes singular and fails to give access
to the further evolution of the system. The relevant time variable to be used in order
to reach the second stage of the evolution is the rescaled variable:

τ
.
= α t (57)

When the evolution is described in terms of this rescaled time, the first stage collapses
into a boundary layer (τ ¿ 1) whereas the focus now bears on the second (previously
asymptotic) stage. We introduce a rescaled velocity Ṽ (τ), describing a slow motion of
the piston:

V̄ (t)
.
= α Ṽ (τ) with Ṽ (τ) =

dX

dτ
(58)

The motion is now driven by fluctuations and the velocity fluctuations play a crucial
role; they allow to define the piston temperature T P :

∆2(t)
.
= α ∆̃2(τ) with ∆̃2

.
=

kBT P

2m
(59)

Finally, mechanical equilibrium has been reached in the first stage of the evolution
and only fluctuations around mechanical equilibrium are to be observed in the second
stage. We thus introduce:

(p− − p+)(t)
.
= α Π̃(τ) (60)

In this second stage, the rescaled quantities are of order 1 and this stage ends when they
become of order α. At this point, we should then consider the corresponding equation
to order α2. We now investigate the consequences of the perturbation approach to
order 1 in α. Equations (41)-(44) can be written in terms of the rescaled quantities:





α

γ

dṼ

dτ
=

Π̃

2m
− 2F1Ṽ + ∆̃2F0

α

γ

d∆̃2

dτ
= −4∆̃2F1 + F3

(61)

Another set of equations describes the evolution of the gas energies (at lowest order in
α):





1

N−

d〈E−〉
dτ

= − 2m
(

A

N−

)
Ṽ [F−

2 + ∆2F
−
0 ] + m

(
A

N−

)
[4∆̃2F

−
1 − F−

3 ]

1

N+

d〈E+〉
dτ

= 2m
(

A

N+

)
Ṽ [F+

2 + ∆2F
+
0 ] − m

(
A

N−

)
[4∆̃2F

+
1 − F+

3 ]

(62)
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Consistency of the perturbation approach then requires to take the value of all the
functions Fj at V̄ = 0 (as soon as V̄ remains of order O(α), i.e. Ṽ = O(1)), and
therefore to replace Eqs. (62) by:





1

N−

d〈E−〉
dτ

= −
(

A

N−

)
Ṽ p−surf + m

(
A

N−

)
[4∆̃2F

−
1 − F−

3 ]

1

N+

d〈E+〉
dτ

= 2m
(

A

N+

)
Ṽ p+

surf − m
(

A

N−

)
[4∆̃2F

+
1 − F+

3 ]

(63)

8 Slaving principle (consistency condition)

Equations (61) show that Ṽ and ∆̃2 are slaved to the slow relaxation of the gases
towards thermal equilibrium appearing in the ρ±-dependence of the Fj:

Π̃

2m
= 2Ṽ F1(0) −

F3(0)F0(0)

4F1(0)

∆̃2 =
F3(0)

4F1(0)

(64)

We call consistency condition such a lower-order resolution of evolution equations of
the general form α dA/dτ = r.h.s.(τ) = O(1), leading to the instantaneous relation
r.h.s.(τ) = 0, up to terms of order O(α). Indeed, it merely follows from a term-wise
identification of the expansion in powers of α, given that A actually is a non trivial
function of τ when α → 0[19]. It can also be termed a quasi-steady-state approximation
(as for instance in the context of enzymatic catalysis [20]). We shall make further
encounter of this argument. As mentionned above, the consistency of the lower order
perturbation approach also requires to set V = 0 in functions Fj.

9 Average assumption

At this stage, to simplify our analysis, we introduce the following:

Assumption 2 (average assumption): The temperatures and the densities at the surface
of piston coincide at order 1 in α with the average energy and density in the fluids in
the respectively left/right compartments:

a) T±
surf = T± where N± kB T± = 2〈E±〉.

b) ρ±
surf = ρ± where ρ− =

N−

AX
, ρ+ =

N+

A (L − X)
, and then p±surf = p± =

ρ±kBT±.
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From Eq. ( 45), we get:

N−kBT− + N+kBT+ = 2E0 − M(∆2 + V̄ 2) (65)

or equivalently

Xp− + (L − X)p+ =
2E0

A
− M

A
(∆2 + V̄ 2) (66)

Therefore:

p− = p0 + α
[(

1 − X

L

)
Π̃ − M

AL
(∆̃2 + αṼ 2)

]
(67)

p+ = p0 − α
[(

X

L

)
Π̃ +

M

AL
(∆̃2) + αṼ 2)

]
(68)

where by definition p0 = 2E0/AL, and thus:

dp±

dτ
= O(α) (69)

Moreover, from Eqs. (63) we have:





kB
dT−

dτ
= − 2

(
A

N−

)
Ṽ p− + 2m

(
A

N−

)
[4∆̃2F

−
1 + F−

3 ] + O(α)

kB
dT+

dτ
= 2

(
A

N+

)
Ṽ p+ − 2m

(
A

N+

)
[4∆̃2F

+
1 + F+

3 ] + O(α)

(70)

On the other hand, from Assumption 2b (average assumption), we have:

p− =
N−kBT−

AX
p+ =

N+kBT+

A(L − X)
(71)

which together with Eqs. (70) and (71), yields:

(
N−

A

)
1

p−
dp−

dτ
= −3ρ−Ṽ +

2m

kBT−
[4∆̃2F

−
1 − F−

3 ] + O(α) (72)

(
N+

A

)
1

p+

dp+

dτ
= 3ρ+Ṽ − 2m

kBT+
[4∆̃2F

+
1 − F+

3 ] + O(α) (73)

From Eq. (64) follows that:

4∆̃2F
−
1 − F−

3 = 4∆̃2F
+
1 − F+

3 =
1

F1

(F−
3 F+

1 − F+
3 F−

1 ) (74)

On the other hand, from Eqs. (67) and (68), we have:

ρ−kBT− = ρ+kBT+ + O(α) (75)
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Therefore, since dp±/dτ is of order α, the consistency condition of the perturbation
approach yields from Eqs. (72), (73) and (74) the final relation:





Ṽ =
m

3

(
AL

E0

)(
F−

3 F+
1 − F+

3 F−
1

F1

)
+ O(α)

Π̃

2m
=

2m

3

(
AL

E0

)
(F−

3 F+
1 − F+

3 F−
1 ) − F3F1

4F1

+ O(α)

∆̃2 =
F3

4F1

+ O(α)

(76)

10 Dimensionless variables

As usual in perturbation methods, it is convenient to introduce dimensionless variables.
From Eq. (14) and Assumption 2a, we have:

N−kBT− + N+kBT+ = 2E0 − M(∆2 + V̄ 2) (77)

Let us define:

kBT0 =
2E0

N
=
(

AL

N

)
p0 (78)

It is natural to introduce the dimensionless variable ξ defined by:

N±kBT± .
=

1

2
(1 ± 2ξ)

[
NkBT0 − Mα(∆̃2 + αṼ 2)

]
(79)

We thus have from Eqs. (67) and (68):

N+kBT+ − N−kBT− = 2ξ[ALp0 − Mα(∆̃2 + αṼ 2)] (80)

= p+A(L − X) − p−AX (81)

= p0AL − αAL
[
X

L
Π̃ +

M

AL
(∆̃2 + αṼ 2)

]
(82)

−2p0AX + αAX
[(

2X

L
− 1

)
Π̃ +

2M

AL
(∆̃2 + αṼ 2)

]
(83)

Therefore:

2ξ

[
1 − α

M

ALp0

∆̃2

]
=
(
1 − 2X

L

)
+

α

p0

[(
X

L − 1

)
M

AL
Π̃ ∆̃2

]
+ O(α2) (84)

The variable ξ remains O(1) in the second stage of the evolution, hence the consistency
of the perturbation approach requires to truncate the previous equation at lower order
in α, which yields:

ξ =
1

2
− X

L
+ O(α) (85)
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According to this the consistency condition, we have:

dξ

dτ
= − Ṽ

L
(86)

and from Eq. (76), we obtain our final equation:

dξ

dτ
= − m

3

(
A

E0

)
1

F1

(F−
3 F+

1 − F+
3 F−

1 ) (87)

11 Maxwellian identities

Let us introduce at this point the following:

Assumption 3 (Maxwellian identities):

a) The relation between the functionals F1 and F3 obtained when ρ± are Maxwellian
remains valid here at order α, i.e.

F±
3 (V ) =

2kBT±

m
F±

1 (V ) − V F±
2 (V ) + O(α) provided V = O(α) (88)

b) F±
1 = F±

1 (V = 0) coincide at order α with the value given by Maxwellian distribu-
tions, i.e.:

F±
1 (0) = ∓ ρ±

√
kBT±

2mπ
+ O(α) (89)

From Assumption 3a, we have:

F−
3 F+

1 − F+
3 F−

1 =
2kB

m
(T− − T+)F−

1 F+
1 (90)

and thus:

dξ

dτ
= − kB(T− − T+)

(
2A

3E0

)
F−

1 F+
1

F1

(91)

Ṽ = kB(T− − T+)
(

2AL

3E0

)
F−

1 F+
1

F1

(92)

∆̃2 =
kB

2m

(T−F−
1 − T+F+

1 )

F1

(93)

Π̃

2m
= kB(T− − T+)

[(
4AL

3E0

)
F−

1 F+
1 +

(
E0

AL

)
∆̃2

k2
BT−T+

]
(94)

We remark that whatever are the distributions ρ±(v, t), then as long as Assumption
3a is satisfied, we have Ṽ > 0 if and only if T + > T−, i.e. the piston moves in the
direction of the warmer side, which is typical of heat transfer since p+ = p− + O(α).
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To obtain an explicit equation for the evolution, we shall now use the Assumption
3b above, together with the fact that ρ±kBT± = p0 + O(α). We thus have:

F−
1 F+

1

F1

=

√
2

mπ

(
E0

AL

)
1√
kB

1√
T− +

√
T+

(95)

and Eq. (87) leads to the main result of our paper:

dξ

dτ
= − 1

3

1

L

√
E0

N

√
8

mπ



√

N

N+
(1 + 2ξ) −

√
N

N−
(1 − 2ξ)


 (96)

Finally introducing the dimensionless variable s by:

s = τ
2

3L

√
kB

mπ

√
2N−

N
T−

0 +
2N+

N
T+

0 (97)

we have:

Main result: under Assumptions 1, 2 and 3, the evolution of the system in the second
stage is described in terms of the dimensionless variables by

dξ

ds
= −



√

N

2N+
(1 + 2ξ) −

√
N

2N−
(1 − 2ξ)


 (98)

together with the “initial condition” (in fact the matching condition of the boundary-
layer-type perturbation approach) which is from Eq. (85):

ξ(s = 0) =
1

2
− Xad

L
(99)

with Xad being the position of the piston at the end of the first stage, Eq. (55), i.e.
at mechanical equilibrium. Integrating Eq. (96) with Eq. (99) yields the evolution
ξ = ξ(s) from which we obtain the position and the temperatures:

X = L
(

1

2
− ξ

)
(100)

T± = (1 ± 2ξ)
N−T−

0 + N+T+
0

2N±
(101)

together with Ṽ , ∆̃2 and Π̃ obtained from Eqs. (92)-(94) and Eq. (95), i.e.:




Ṽ =
1

3

√
8kB

πm

(√
T+ −

√
T−
)

∆̃2 =
kB

2m

√
T−T+ i.e. T P =

√
T+T−

Π̃ =
(

E0

AL

) (
T+ − T−

√
T−T+

)(
16

3π
− 1

)

(102)
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From Eq. (96), the second stage of the evolution described here will proceed until:

ξ = ξf =
N+ − N−

2N
+ O(α) (103)

which implies:

X = Xf =
N−

N
+ O(α) (104)

T± = T±
f =

2E0

NkB

+ O(α) (105)

∆̃2 =
kBT P

f

2m
=

E0

mN
+ O(α) i.e. T P

f = T±
f + O(α) (106)

Ṽ = O(α) (107)

Π̃ = O(α) (108)

At this point, corrections in α2 have to be included; the relevant perturbation approach
to get the further evolution would use the rescaled time τ2

.
= α2t and consider also

∆3 and ∆4, and so on for the successive stages of the relaxation towards complete
equilibrium (Maxwellian distributions for the gas particles).

12 Remarks

1) Our main result Eq. (98) gives an equation totally independent of the parameters
of the problem, except for the ratio 2N±/N , which will be 1 in our simulations.

2) The expression (102) for V and the equation (96) describing the evolution, coincide
with the equations obtained in [9] using qualitative arguments.

3) The equation (98) for ξ(s) was also derived by J.L. Lebowitz [22] using either
qualitative arguments or the fact that the evolution of the piston will be described by
an Ornstein-Uhlenbeck process.

4) The consistency between the short time solution (obtained in [10] with α = 0)
and the solution for large time, here obtained by considering evolution equations with
respect to rescaled variable τ and restricted at first order in α, amounts to match the
infinite-time limit t → ∞ of the zero-order solution with the initial condition in τ = 0
of the rescaled perturbation large-time solution, which makes sense only for large R.

5) From Eq. (102), we see that Π̃ > 0 if and only if T + > T−. As we have seen above,
it is precisely the condition for Ṽ > 0. Therefore work is delivered to the warmer side
but more heat is extracted from this warmer side so that its energy decreases.
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6) We should compare the expression obtained for the velocity Eq. (102):

V =
2

3M

√
8kBm

π
(
√

T+ −
√

T−) (109)

with the expression obtained in [7] for the stationnary state of the piston in an infinite
cylinder under the condition that the pressures on both sides are equal:

Vst =
1

M

√
πkBm

8
(
√

T+ −
√

T−) (110)

The velocity V is larger than Vst by a factor 16/3π. It is related to the fact that in
[7] we could impose the condition that the pressures are the same, while in the present
situation (cylinder with finite length) the pressures are different, determined by the
equations for the evolution which gives:

p− − p+ =
2mΠ̃

M
+ O(α2) ≥ 0 (111)

13 Numerical simulations

In order to check the assumptions 1, 2 and 3 and to test our main results, in particular
Eqs. (96)-(108), we have conducted a large number of simulations. We have considered
a one-dimensional system of fixed length L. The mass of the fluid particles is m = 1
and the mass M of the piston is varied in the different simulations. Initially the
piston is at the position X0 with velocity V0 = 0 and a configuration of N− and N+

particles is taken at random from Maxwellian distributions with temperatures T −
0 and

T+
0 . The system is then led to evolve according to the law of purely elastic collisions

Eq. (1). The position X of the piston is recorded, together with the temperatures and
pressures in the left and right compartments defined by the average (kinetic) energy
and the equation of state p± = ρ±kBT±.

To conduct these numerical simulations, one is confronted with the following dilemma.
In order to reduce the fluctuations to a minimum to obtain significant results, one
should take N± very large. This implies that M should also be very large in order
to have a strong damping. However since the second stage proceeds on a time scale
τ = 2t/M , this implies that one has to follow an enormous number of collisions, which
needs a very long computer time. For this reason, to study the first stage of the evo-
lution, we have considered up to 2 millions particles, but we were forced to reduce
drastically this number of particles to investigate the second stage, i.e. to approach
thermal equilibrium. In all simulations presented below we have taken:

kB = 1, m = 1, L = 60, N− = N+ = N̄ =
N

2

X0 = 10, V0 = 0, T−
0 = 1, T+

0 = 10 i.e. ρ−
0 = 5ρ+

0 and p−0 =
p+

0

2
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For these initial conditions, the end of the first stage, i.e. mechanical equilibrium, is
characterized by Eqs. (51)-(55) which give:

Xad = 8.42, T−
ad = 1.54, T+

ad = 9.46, p−ad = p+
ad = 0.1833 N̄ (112)

We concluded in [10] that in the first stage, the motion is deterministic and depends
strongly on R = N̄/M if R < 1, but become independent of R if R > 4. In particular
for R < 1, it is weakly damped and the period of oscillations we have computed
coincide with the period obtained from simulations and from hydrodynamics assuming
adiabatic oscillations. On the other hand for R > 10, the motion is strongly damped
and is independent of N± and M as soon as M is large enough. Moreover at the end of
the first stage, after mechanical equilibrium has been reached, simulations shows that
oscillations start to appear. These oscillations were interpreted as a consequence of the
fact that the velocity distributions in the fluid were not Maxwellian.

In Figure 1, we have plotted the first part of the evolution, i.e. the adiabatic
approach towards mechanical equilibrium, in function of time t for N± = 2.104, M =
105 (i.e. R = 0.2, weak damping) and for N± = 3.105, M = 3.104 (i.e. R = 10, strong
damping). From the simulations the values obtained at mechanical equilibrium are:

Xobs = 8.33±0.05, T−
obs = 1.52±0.04, T +

obs = 9.48±0.04, p−obs = p+
ad = 0.183 N̄

(113)
in good agreement with the analytical values Eq. (112). Other graphs for this adiabatic
evolution can be found in [10].

In Figures 2-8, we have plotted the second part of the evolution, i.e. the approach
towards thermal equilibrium in terms of the scaled variable τ = 2t/M , obtained from
our equations and from simulations with N± = 3.104 and M = 100, 200, 1000. The
position in function of τ is presented in Figure 2, where no significant difference can
be seen for the different values of M . Figure 3 shows a zoom around τ = 0 and τ = 16
for M = 200 and M = 1000, expressed in terms of the real time t = τM/2. It shows
that on the time interval (t, t + 300) considered in this zoom, the evolution (fast local
relaxation slaved to the slow evolution of the system) will tend to be independent of M
for M sufficiently large (fluctuations around mechanical equilibrium) while on the large
scale the evolution is scaled by 1/M , i.e. appears independent of M when expressed in
function of τ = 2t/M . In Figure 4, we present the temperatures T± together with the
surface temperatures T±

surf computed from the incoming particles at distance 1 from
the piston. In Figure 5 the temperature of the piston is plotted using either Eq. (102)
i.e. T P =

√
T+T− or the definition (77) with kBT P = M∆2; one should note that using

the definition (77) implies a factor which is in our simulations 30000(T + + T− − 11)
and thus the fluctuations are very large. The other scaled quantities of order 1, i.e.
Π̃ = M(p− − p+)/2 and Ṽ = MV/2 (recall that m = 1) obtained from the simulations
and our Eqs. (102) are represented in Figures 6 and 7. Finally, since the distributions of
velocities of the gases do not remain Maxwellian, we compare in Figure 8 the previous
evolution with the evolution starting from the (adiabatic) initial conditions (113) with
Maxwellian distributions. We observe no significant difference.
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14 Conclusions

Using a two-time-scale perturbation approach, we have shown that the evolution of a
piston with large but finite mass proceeds in two stages. For R > 10, there is strong
damping and in the first stage, at times t = O(1), the evolution is similar to the one
previously discussed in the thermodynamic limit [10]: it is a deterministic, adiabatic
evolution towards mechanical equilibrium. At the end of this first stage, adiabatic
oscillations appear which are interpreted as associated with the fact that the velocity
distributions of the gas particles are not Maxwellian. In particular, simulations show
that in the adiabatic evolution:

1

T−

dT−

dt
≈ − 1.8

1

X

dX

dt
(114)

In the second stage, at times t = O(M), a fluctuation-driven regime develops, leading
to a relaxation towards thermal equilibrium. In this regime, the motion of the piston is
slaved (i.e. it adapts on a time scale O(1)) to the slowly relaxing (on a time scale O(M))
asymmetry of the thermal fluctuations on each side. Moreover, since the motion of the
piston is now stochastic, one has to introduce the temperature of the piston. Therefore
the fluctuations in the piston motion produce a heat transfer from the warmer to the
colder side which is larger than the work produced by the piston motion. In particular,
in this stage, simulations as well as equations show that now:

1

T−

dT−

dt
≈ 1

X

dX

dt
(115)

In this regime, the piston is no longer adiabatic but the time involved to reach thermal
equilibrium is of order M .

In the first stage, simulations are in very good agreement with the predicted values
for the position of the piston and the temperatures of the gases at mechanical equilib-
rium. Moreover for weak damping (R < 1) the observed values for the period coincide
within a few per cent with the predicted values from our equations, as well as with the
values obtained from thermodynamics assuming “adiabatic oscillations”. However the
observed values for the damping coefficient disagree strongly with the computed values.
Unravelling the origin of the friction, we must conclude that there are two different
friction coefficients. A first coefficient describes the stabilization of the piston velocity
in the infinite length situation, or for the case of finite length (and R > 10) until the
first recollision on the piston takes place. It is related to the shock waves propagating
uniformly on both sides of the surface of the piston. The second coefficient describing
the damping of the oscillations is associated with the rebouncing of these shock waves
on the surface of the cylinder and of the piston. It appears to be related to the relative
velocity of the shock waves with respect to the piston velocity [11].

For the second stage, as can be seen on Figures 2 to 7, our main conclusions are all
verified by numerical simulations with high degree of accuracy. One should however
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observe that the agreement would be “perfect” if we would consider, instead of Eq.
(98), the equation:

dξ

ds
= − 0.8



√

N

2N+
(1 + 2ξ) −

√
N

2N−
(1 − 2ξ)


 (116)

The origin of the discrepancy could be traced to our Assumption 3b where we use the
Maxwellian values for F±

1 (V = 0). It is known [9] that at this stage the distribution
functions f±(v) differ considerably from the Maxwellian distributions around v = 0.
Of course this discrepancy could also come from the average assumption (Assumption
2); however from Figure 4, we see that the surface temperatures oscillate around the
bulk temperatures (on a time scale t) and thus we expect this technical assumption to
have no important consequences.

Let us remark that if we compute the time auto-correlation function C(t) of the
position X of the piston and the associated power spectrum S(ω) (the Fourier transform
of C(t)), then from the simulation we could expect a three-peak structure as observed in
the equilibrium state by White et al. [16] recovering a standard result in hydrodynamics
[23]. The central peak describes (according to the fluctuation-dissipation theorem) both

– the (slow) relaxation towards thermal equilibrium, described by a term ∼ e−t/τth

in the time auto-correlation function C(t), with τth ∼ 1/α ∼ M ; the width of the peak
is O(1/M).

– and the thermal fluctuations of the piston as described by ∆2(∞).

The two lateral peaks, slowly evolving in time with X(τ) and T±(τ) correspond to the
fast adiabatic and deterministic relaxation towards the instantaneous mechanical equi-
librium, slaved to the values of X(τ) and T±(τ). It also gives (fluctuation-dissipation
theorem in this quasi-equilibrium state) a contribution to the fluctuations of the piston
motion. The width of these peaks is independent of M .

The perturbation approach can be carried on at higher orders; it would give access
to the following stages of the relaxation, at increasing time scales O(1/αn) ∼ O(Mn),
involving higher moments ∆2n−1 and ∆2n. Maxwellian distributions for the velocity
distributions inside the gases would be reached only in the final stage s of this relaxation
(namely at times t ∼ O(Mn) with n large ). However the factorization property will
be violated at these orders and we can not say what would be the consequences of this
violation on the results obtained within our Boltzmann’s equation approach.
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Figure captions

Figure 1: Adiabatic stage of the evolution for T−
0 = 1 and T+

0 = 10.
a) strong damping: N± = 3.105, M = 3.104, R = 10.
b) weak damping: N± = 2.104, M = 105, R = 0.2.

Figure 2: Approach to thermal equilibrium for N± = 3.104 and M = 100, 200, 1000
compared with the solution of Eq. (96) (the real time is t = τM/2).

Figure 3: Zoom on the evolution of Figure 2 in function of the real time t for M = 200
(light curve) and M = 1000 (bold curve) around τ = 0 and τ = 16.

Figure 4:
a) Evolution of the temperatures T±(τ) for N± = 3.104 and M = 200 compared

with Eqs. (96) and (101);
b) Surface temperatures T±

surf (τ) compared with bulk temperatures T±(τ).

Figure 5: Temperature of the piston (N± = 3.104, M = 200)
a) from T P =

√
T+T− (Eq. (102) with T± obtained from Eq. (96) (light curve);

b) from T P =
√

T+T− with T± obtained from the simulations (dark curve);
c) from the definition Eq. (77) with kBT P = M∆2 (stochastic curve).

Figure 6: Scaled pressure difference Aπ̃ = A(p− − p+)M/2 computed from Eq. (102)
with T± obtained from Eq. (96) and from simulations (with N± = 3.104, M = 200).

.

Figure 7: Scaled velocities (N± = 3.104, M = 200)
a) from Eq. (96) (light curve);
b) from Eq. (102) with T± obtained from the simulations (dark curves);
c) average velocity obtained from the simulations.

Figure 8: Evolution for N± = 3.104, M = 200 compared with the evolution starting
from initial conditions Eq. (113) and Maxwellian velocity distributions.
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