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We are interested in the homogenization of energy like quantities for electromagnetic
waves in the high frequency limit for Maxwell’s equations with various boundary condi-
tions. We use a scaled variant of H-measures known as semi classical measures or Wigner
measures.

Firstly, we consider this system in the half space of R3 in the time harmonic and with
conductor boundary condition at the flat boundary xs = 0. Secondly we consider the
same system but with Calderon boundary condition. Thirdly, we consider this system
in the curved interface case.
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1. Introduction

In this work, we are interested in the homogenization of energy quantities for elec-
tromagnetic waves in the high frequency limit, and more particularly for Maxwell’s
equations. Our interest is also in dealing with interactions with various boundary
conditions. For this purpose, we use a scaled variant of H-measures (see L.Tartar
or P.Gérard), known as semi classical measures or Wigner measures, introduced in
[14], [19], [20].

One of the most important predictions of Maxwell’s equations is the existence of
electromagnetic waves which can transport energy.

For this purpose, the Theory of Radiative Transfer was originally developed to
describe how light energy propagates throught a turbulent atmosphere. This the-
ory can applied to representative problems involving reflection, transmission, and
diffraction in both homogeneous and inhomogeneous media.

Justification of this theory in high frequency limit, as well as for other waves equa-
tions, can be found for a deterministic medium in the works of P.Gerard [10], [12],
and C.Kammerer [15] as well as by P.L.Lions and T.Paul [18] and L.Miller [16] and
G.Papanicolaou [21].

Our purpose in this paper is to describe this energy propagation for Maxwell’s
system, coupled with various boundary conditions, and with a typical scale which
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is played here by the frequency.

We shall consider Maxwell’s system, with electric permeability €, conductivity ¢
and magnetic susceptibility 7j, in the half space (2 > 0) of R3, with the courant
variable x = x!, 22, 23. These quantities are 3 x 3 matrix valued functions of x. This

system is given by the following equations

i) 0,D¢(z,t) + J®(2,t) =  rotHE®(x,t)+ F¢ |

i1) 0y BE (x,t) = —1otE° (z,t) + G*(a,t) ,
i) divBS(z,t) = 0 , .-
iv) divDe (x,t) = o (x,1)

where t € (0,T), and E€ JH® D€ [J€ and B¢ are the electric, magnetic,
induced electric, current density and induced magnetic fields, respectively. Morever,
p € is the charge density (a function uniformly bounded in L?(R3), and where F €,
G € € L3(R3)? are given.
We complete this system by the following constitutive relations

1) D¥(x,t) = é(x)E%(z,t)

2) JE(x,t) = &(x)ES (x,t) , (1.2)
3) B (x,t) = ij(x)HE (x,t) .

We shall only be interested in time harmonic solutions of this system and in the
high frequency limit. For that purpose, we look for solutions in the form

DF(w,t) = D (z)R{exp %},
HE (x,t) = HE (z)R{exp 2} |
() = JE () R{exp 22}, (1.3)
B (x,t) = BE(z)R{exp £} |
E€(z,t) = E°(z)R{exp &L} |

where w is the given fixed frequence, that we assume different from 0. Note that we
use the same letters on both sides of the above equations to simplify notations.

In this work, we assume that the matrix € ,7 ,d, are 3 X 3 ”scalar” matrix valued
functions given by

E=e(Id)sxz=| O €@ 0 (1.4)
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3
and
n(z) 0 0 o) 0 0
i=ndd)ss=| 0 @) 0 | 5 _sad),=| 0 @ 0 (1.5)
0 0 n(x) 0 0 U(m)

where € ,7 , 0, are smooth (scalar) functions in C*(R?). This usual assumption could
be certainly relaxed, but at the expense of much more complex spectral calculus.
With the above notations, the time harmonic form of Maxwell equations are then
rotE¢ — iwnH® = F¢ |
(1.6)
rotHE +iweE¢ = G€.
Note that we have not written the third and fourth equations appearing in system
(1.1), since in fact we assume that the right hand sides of (1.6) do satisfy the usual
compatibility conditions.

Set
Ef
E5
o — E¢ _ E§
HE HE |
Hs
Hg
Id 0
AC= (€ 1
( 0 nld) a7
and
0 Q1t> 2 (0 ta) 3 (0 Q3t)
Al = VA% = JAS = 1.8
(Ql 0 Q2 0 Qs O (1.8)
where the constant antisymmetric matrices Qi ,1 < k < 3 are given by
00 0 001 0-10
Qi=(00-1| ,Qz2=1| 000] ,Qza=(100]. (1.9)
010 -100 000
Above, the matrix C' is given by
cId 0
= 1.1
c ( . O) (1.10)

€
while the right hand side is f& = <g€ >
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Assumed uniform boundedness and symmetry of the permeability and susceptibility
tensors show that system (1.6) is a symmetric hyperbolic system as follows

. 3

iw - Ouf

A0 A= 4 Cu® = f€. 1.11
- +; oy TOW =S (1.11)

As a first boundary value problem, we shall consider system (1.6) or equivalently
system (1.11), posed in a domain, that we choose to be the upper half plane R3 =
{z,z5 > 0}, with a perfect conductor boundary condition at the flat boundary
r3 = O, ie

it AES =0 on r3=0 (1.12)
0
where it = 0 | is the unit outward normal vector to Ri. Note that this domain
-1
is not bounded, but this is unimportant since we will localize all our functions.
The second problem dealt with in this paper will be a transmission problem. To
simplify the exposition, we will consider a medium, made of two parts: Rﬁ_ ={ze
R3, 23 > 0} will be the exterior medium, while R® = {x € R3, 23 < 0} will be the
interior one, each caracterized by distinct electromagnetic coefficients.
We suppose that our electromagnetic field is created by an incident wave u'™¢ =
Einc
(Hznc) .
In Ri, we consider the following exterior problem, characterized by the dielectric
coefficients (€“**(z) ,n°"*(z)) belonging to C'*(R3), and scalar valued, see [17]

rOtEezt, g _ ,L"‘A},ne:mfl_lezt7 g _ 0

3

rOtHezt, 3 + iweeztEezt, g _ 0 , (113)
v eext pert, € /nextHeiEt,E A n"" < r_CQ

Here E¢*h¢ | He™h€ are the so called exterior fields, r = |z|, ¥ = (21, 72, x3) and
the third equation is the classical Silver Muller radiation condition, see for more
details [8], [17], with n* being the unit outward normal vector to R?.

In R3, we consider the following interior problem, which is characterized by the
dielectric coefficients (e (x) ,n™(z)) belonging to C'(R?), and scalar valued, see

[17]
I‘OtEi"t’ g _ iwnintHint, g _ 0 ,
_ __— (1.14)
rOtHznt, e + iweznthnt, g _ 0.
We impose the following boundary conditions (Calderon condition)
EfMAn~ — (Bt + E™)An~ =0 onz3 =0 ,
(1.15)

I An~ — (HE™ + H™) An™ =0 on a5 =0
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where n~ is the unit outward normal vector to R? .

Emnt &  HintE are the so called interior fields. Note that there is no condition
at infinity in the interior problem, mainly because we have assumed intuitively a
localization near x3 = 0.

In the third and final part, we generalise these two cases, and we study the curved
interface case, where the plane x3 = 0 is now replaced by a curved interface, in the
spirit of the work of Gérard and Leichtman [13].

More precisely, we consider Maxwell’s system (1.6) given above the surface given
byI': 3= (b(z,), where 2 = (r1,72), and ¢ € W2(R?% R) is a scalar function.
We consider this system in time harmonic form, in the high frequency limit, and
we consider a perfect boundary condition on T'.

For each of the above cases, we shall study propagation of energy like quantities,
using the framework of semi classical measures. Basic facts about these tools are
recalled in Section II, refering the reader for more details to [11], [19].

Then in Section III, we consider the above cases of Maxwell’s equations, with differ-
ents boundary conditions, and in particuliar, we prove therein the following results

Theorem 1.1. Perfect conductor case Consider time harmonic Mazwell’s sys-
tem in the half space x3 > 0 with a perfect boundary condition, written in the form
(1.11), with solution vector u®. Let 0(x) be a test function with compact support
that is equal to one on a compact set K C R3. Let u® € = Ouf be uniformly bounded
in L?(R3), with (up to a subsequnce) an associated semiclassical measure ji. Then

the semi classical measure ji is supported on the set (v € Supp 0,k € R?)

U={(z,k), wy =w}U{(z,k), w_ =w} (1.16)
1
where v(r) = —————= s the propagation speed. Above wy = wo(z,k) =0, wy =
e()n(z)
wilx, k) = v(z)|k], wo = w_(x,k) = —v(z)|k| are the eigenvalues (of constant
3

multiplicity two) of the dispersion matriz L(x, k) = Z(Ao)flijj.
j=1
The semi classical measure [i(x, k) has the form

fi(z, k) = pd (z,k)bY (z, k) @ bE*(z, k) + p2 (z, k)b (2, k) ® b3* (x, k)
(1.17)
+pl (2, k)b (2, k) @ b1 (2, k) + i (2, k)b2 (2, k) @ b2 (2, k)

where /ﬁk ,ui are two Sscalar positive measures supported on the set
{(z, k), wy =w} and pb ,p?, are two scalar positive measures supported on the
set {(z, k), w_ =w}. bL ,b% (resp. b1 ,b2) are two (normalized) eigenvectors of
the matriz L(x, k), corresponding to the eigenvalue wy (resp. w_ ).

Furthermore, the scalar measure ,ui satisfies the following transport equation

ka_i_.VI/L}r - Vmw+.V;€u}r = ’ka3i€3[l/i+T1(5k3:k; + VéJrTl(skg:k;r](slS:O (1.18)
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where VL, ,1/}, | are scalar positive measures associated with the semiclassical mea-
sure U corresponding to the boundary term usvo(:c’,()), with @’ = (x1,22) and

k=k/|k|. The wave vector k*(k') = (K',k3) is defined by

2

kE(2,0) = 4 | ——— — k2, K = (k1 k) .

3 (:L'a ) ’U(ZL'/,O)2 ) ( 1, 2)
Finally, we have denoted by Ty the operator defined as follows: for all smooth func-
tion a(x, k) let the unique decomposition of a given by

a(z, k) = ao(x, k') + a1 (z, k' ks + az(z, k) (v | k | —w).

Then we set T;(a) = a; ,i=10,1,2.
Similar results hold true for the other scalar semi-classical measures.

Theorem 1.2. Calderon boundary condition case Using the same framework
as in Theorem 1.1, but with Calderon boundary condition, the associated semi clas-
sical measure ji®*(x, k), corresponding to the exterior part, is supported on the set

U={(zk), i =w}U{(z,k), v =w} . (1.19)
Furthermore, it has the form

it (x, k) = p (2, kD (w, k) @ 057 (w, k) + ST (e, )BT (k)
R (a, k) + p (2, )b (2, k) @ 0  (a, k) 4 SR (2, k) (2, k) (1.20)

®bimt,2* (.’L‘, k/’)

ext,l ext,2 o
where p77, Y are two scalar positive measures supported on the set

1 2 »

{(z, k), W =w}, and pe 2 e two scalar positive measures supported
1 2 1 2 A

on the set { z, k), wt =w}. bft ,bft’ (resp. b1 b)) are two eigenvec-

tors of the exterior dispersion matrix
3
Lezt(x, k) _ Z(Ae“*o)flkszj,
j=1

corresponding to the eigenvalue wS™ (resp. w*).

ext,l

The scalar transport equation, for the first scalar positive measure p." " is given by

vkwizt VI izt 17V wiwt V emt 1 _ _ ewtkg[ ext, 15 kwt 7+Vezt 15 kemt +]5z3:0 (121)

t1 t1
Above V{7 v 5" are scalar positive measures associated with the semiclassical

measure V% corresponding to the boundary term u¢*t ¢ 9(30 ,0). The wave vector

kertE (k) = (k’,k:;mt’i) is defined by

ext,+ _ w?
k/’3 (;C/,O) —i\/m —k/2
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1
r) = ————1is the propagation speed for the exterior problem.
eext(z)nezt(z)

Similar results hold true for the other scalar positive measures.

and ve*t(

Similarly, for the interior problem (x3 < 0), with the following interior dispersion
matrix

Lmt (z, k) =
J

3
Aznt 0 1ijj
=1

the corresponding semi classical measure ji'™ (x, k), is supported on the set
U={(z,k), P =w}U{(z,k), v =w} . (1.22)
Furthermore, it has the form
o) = 0 L ) @ 6 o ) 2 o R )
@ (k) + 0 (a, )OT (, k) @ b (a, ) A P (2, DT (2, k) (1.23)
®billt,2* ((E, k)
where ,uft ! ,uTt 2 are two scalar positive measures supported on the set

t,1 int,2 "y
{(:c k), ’"t = w} and um L1, are two scalar positive measures supported

on the set { z, k), Wt =w}. th’l ,th’Q (resp. b1 b2) are two eigen-
vectors of the matrm Lmt(:zz, k) given above, corresponding to the eigenvalue wft
(resp.w™?).

The scalar transport equation for the first positive measure /ﬂft’l s given by
vkth-vm,U/Tt 1_vmwznt v MTt 1 _ emt]% [V-li-ntal(sk kmt —+y3rntﬂl5 k;‘nt,+](5I3:0(1.24)
where l/+ tal , _ﬁ_"gl are scalar measures associated to the semiclassical measure
"t corresponding to the boundary term umt’evo(q}’,O), and the tangential vector
kit E (R = (K, k"EY s defined by

int, &, 7 _ w?
kg ($,O)i\/mk/2
1

where v'"(x) = ————————1is the propagation speed for the interior problem.
et (ZC)T]Z"t ((E)
Similar results hold true for the other scalar positive measures. Finally, setting

100000
010000
000000
000100
000010
000000
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we have the following relation

bznt — Ml-/-e:nt .

By adapting the proofs of the above two main theorems, we are also able to deal
with the curved interface case. We sketch the proof at the end of Section III.

2. Prerequesites on semi classical measures

In this section, we recall some properties of semi classical measures which are useful
in the analysis of high frequency propagation problems. For more details, we refer
o [11], [15], [18], [20], [19].

Let f: R? — R™ be in L*(R%)". Its (unscaled) semi classical transform is then
defined as

Wiek) = g [ €@ u/2)@ e+ v/2dy. 2.1)

Its scalar semi classical transform is w(z, k) = Tr(W (z, k)). The function f can be
scalar (n = 1), or vector-valued (f* denotes the transposed conjugated of the vector
f)- In the latter case its semi classical transform is an hermitian n X n matrix.
We want to consider the semi classical transform of high frequency waves, i.e of
functions f€(x) which are oscillating on a given scale ¢, such that ¢ — 0. Our expo-
sition follows the ideas of P. Gerard [25], [19]. Therefore, we consider the rescaled
semi classical transform, at the scale ¢

We(z, k) = # /Rd eV —ey/2) @ fE (x +ey/2)dy . (2.2)

Proposition 2.1. Let the family f€ be uniformly bounded in L?(R®)™. Then, upon
extracting a subsequence, the semi classical transform W€ converges weakly to a dis-
tribution W (z, k) € 8" (R% x RO, such that Tr W (z, k) is a non-negative measure
of bounded total mass (in the case n = d).

Let a(x, k) be a test function in S(R? x R?), where z € R? is the spatial variable,
and k € R? is the momentum, or also the dual variable to x in Fourier space. Then

<a,W® >= (a"(2,eD)f*, fe) (2:3)

where <,> is the duality product between S (R%) and S(R?), (,) is the L2(R?)
inner product, and the Weyl operator a®(x,eD) is defined by

- g L i D
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Here a is the Fourier transform of a(z, k) in the variable k only,
a(z,y) = / e~ *YVa(x, k)dk (2.5)
Rd

and this operator is bounded on L?(R%), uniformly in e,

||0Jw($,ED)HLZ(]Rd)*,LZ(Rd) S c(a) . (26)
We also introduce the pseudo differential operator at the scale ¢, a(x,eD) by
1 X X
a(a:eD)f1(@) = T /R kol k) f(k)dk (2.7)

Again, one can show that the operators a(z, D) are uniformly bounded on L?(R?);
there exists a constant c(a) > 0 independent of € € (0,1) (but depending on the
function a) so that

lla(z,eD)|| L2 (ra)— L2 (re) < c(a) (2.8)
and furthermore, it satisfies for any s > 0
e*lla(z, eD)|| gr-s (ra)— L2 (re) < ¢s(a) (2.9)
and
e®lla(z,eD)||L2ray— s ra) < Cs(a) - (2.10)

The important point is that
lla(z,eD) — a"(z,eD)||2re)—L2@e) — O (2.11)

as € — 0, so that the two quantizations are asymptotically equivalent.
With the above notations, one has the following link between pseudo differential
theory and semi classical transforms

lim (a(z,eD)f%, ) =< a,W >= Tr/a(x,k:)W(dm,dk:) (2.12)

e—0

(where we have also included the vectorial case).

We shall also need the following results, from pseudo differential calculus (adapted
at the scale ¢)

Lemma 1. The product of two operators a(xz,eD), b(xz,eD) can be written as
b(x,eD)a(x,eD) = (ba)(x,eD) + £/i(Vibh.Va)(z,eD) + Qe (2.13)

where the operators Q= are uniformly bounded on L? with respect to €.

Lemma 2. (Localisation) Let f€(x) be a uniformly boundedfamiliy of functions
in L?, and let ps(x, k) be any limit semi classical measure. Let ¢(z) be a smooth
function. Then the semi classical measure of the family ¢%(z) = ¢(z)f¢(z) is
|p(z) [P 1g(x, k). Moreover, let f€, g° be two uniformly bounded families of L* func-
tions which coincide in an open neighbourhood of a point x o. Then any limit semi
classical measure py and g coincide in this neighbourhood.
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3. Proofs of the Theorems
3.1. Proof of Theorem (1.1), Perfect boundary condition case

We consider the time harmonic form of Maxwell’s system (1.11) or equivalently
(1.6), in the half space of R3, (2® > 0), where E¢ = (ES, E§, ES), and = = (2/,23),
2’ € R?, 23 > 0, with a perfect conductor boundary condition 7 A E€ = 0, n being
the outward unit normal vector, i.e. n = ,E, which in our flat boundary case is
equivalent to

EE =0,
(3.1)
Ef =

We set E€ to be zero in the lower half space 2% < 0, and thus Maxwell’s system
(1.11) or (1.6) can be rewritten as

iw 3 ouf
—AO 3 Aj_ g _ (€ A Er 51 _ 92
. (x)u” + ]221 oz, +Cu” = f () + Apu” (2',0) ® dzy—0 (3.2)

where the ”boundary” matrix A is given by

0000 0 O
0000 0 O
0000 0O
0000-10
0001 00
0000 0 O

Ay (3.3)

In fact, let us recall that,

02 ES — 93 ES 00 0
rotEE =V AES = | 0E5 —01ES | = | 00—1 | o1 B+
O ES — 93 ES 01 0

001 0-10
000 82E5+ 100 83E5.
—-100 000

As n A E =0, we have that

[ %B5 - 0sE5

rOtEE = V A EE = | 94E¢ — 0,E¢ | . (3.5)
0 ES — 03E%

For the magnetic field HE, let Q C R? be a open domain de R3. Then Vo € C°(Q)3,
one has

/rotHE.cp dz:/HE.rotga dzf/ (n A H).o dx . (3.6)
Q Q a0
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Extending H¢ by zero in the full space, we have
/ rotHE.p dx = HE rotyp dzf/ (nAH).o dx . (3.7)
R3 R3 R3
Here 71 = ,;; thus we get
[ HS - 9sHS HS ® 6,,—0
rotHE = | 93HE — 0 H§ | — | Hf ® 625—0 | =
01 HS — 0sHS 0
(3.8)
) HS ® 64,—0 ) HS
rotHE — | HY ® 64y—0 | =70tHE + | HY | ® 6250
0 0

and using all the above notations, we get (3.2).

Let 6(x) be a test function with compact support that is equal to one on a compact
set K. We multiply «® by 6(z), and thus we can define the semi classical measure
ji on K for the family u €, that we assume uniformly bounded in L2.

More precisely, set

w9 (z) = 0(x)u () (3.9)

and let usve(z,,()) its boundary value, which is meaningfull in some negative
Sobolev space, see [7] for instance. We shall assume that u® 9 are uniformly bounded
in L2(R?) and that u& (2", 0)5,,—0 are uniformly bounded in H~1/2=%(R3) (see
8] or [7)).

We let (after having possibly extracted a suitable sub-sequence) ji and © be the
(matrix valued) semi classical measures of u 9 and ue: 9(:1:' ,0) resp.

Now Maxwell system can be rewritten, with the cuttof function 6, as

3

Z AJ ﬁ1L‘€(:E) +eC(z)u" 0
= Oz (3.10)

:sff 9( )+€Abu€ 002 0)® 64y -

au’

iwA° (x + € Z Al

Let a(x,k) be a matrix-valued test function with compact support in K, with
respect to x. Applying the operator ag¢ = a(x,eD) on both sides of (3.10), and
taking the inner product with u& 9, we get

(ag[iwA°(z)u® 9+€]21A]8u 7 ZAJ—U )+ eCl(x)u 6,9],u5,9) (3.11)

= e(ae[f® (@), w5 9) + €(as[AbU (@' ,0) @ 0gyo), u ) .

This is well defined in view of the usual rules of pseudo differential calculus (at the
scale ¢€).
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To evaluate the limit of the second term of the right hand side in (3.11), let us set
€ .= Ab’uE’ 9(:1:/, 0) ® (533:0

and thus we get that v€ is uniformly bounded in H~/2~¢ for any a > 0, with
a<1/2.
Next, note that

le(ae %] u™ )| < elacfof] [ Ol as) <
(3.12)
€ e, 0 Cs i1, € e, 0
ellae - —na 0% 1= Ol 2 gasy < €210 = |0 O e,
Thus if we choose s = —1/2 — «, we get
1/2
ce
||€(a5[v€],u€;9)||Lz(R3) < o a>0.

It follows that choosing « < 5, one has

lim  e(acf),u®?) =0. (3.13)

e—0

Let us also show that the other terms in (3.11) are bounded (uniformly with respect
to €). Indeed, for the third term of (3.11), one has

3 3
.00 e, 0
|(a5[—€ZlA]a—xju %) < elac ; W€ [[uS | p2rsy <
(3.14)
3. 9 )
ellae||L2(r3)l| ZAJ%UEHN(RB)HUE’ |[z2(rsy < ec
j=1 J
and thus
3
_lim (—ca ; a:cj W), us %) =0 (3.15)
and similary for the terms &(ag[C/(x)u® 9], u 9), and e(ag[f* 9],u€’ 9).
For the second term on the left hand side of (3.11), we set
3 9
Ous»
as —EGJEZA] 81'] ’9),
Jj=1
ac = a(z,eD) , (3.16)
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and using the product rule (2.13), we get that
as = (ae[beus ¥, us9) = (a(x, D) (b(x, D) [uf 0], uf ) ~ ((acbe) s 0], us P)

(3.17)
—»Tr// (z, k)b(z, k)ji(dx, dk) = // (z, k)( ZkAJ (dx, dk).
r3 JR2 r3 JR2 =
For the first term of (3.11), we set
ay = (ag[iwAO(x)uE’e],ue’e) ,
ag = a(x,eD) (3.18)
bg = AO(ZL')
and thus, one has
ay = (agliwb(z,eD)us 9] 9) ~ iw(agbe[u® 9] us,ﬁ)
(3.19)

—war/ / (z, k)b(x, k)ji(dz, dk) szr/ / (z,k)A%(x)ji(dx, dk).
R3 ]R3 R3 RS

Thus all in all, passing to the limit in (3.11), we get

3
Tr/ / a(x, k)[iwA® — iijAj]ﬂ(dx,dk:) =0 (3.20)
RS /R j=1
for all matrix valued test function a(z, k) € S(R® x R?), which is equivalent to (in
S’
3 .
(iwA® =iy "k A)ji =0 (3.21)
j=1
or
3 .
(=A%) Y (A" kAT — iwldlji = 0 (3.22)
=1
Let us set
3
L(z k)= Y (A%)'kA7 . (3.23)
J=1

In order to find the eigenvectors of the 6 x 6 matrix L(z, k), we shall use an or-
thonormal propagation basis of R®. We denote by (k, 2! (k), z2(k)) the orthonormal
propagation triple consisting of the direction of propagation k= k/ | k| and two
transverse unit vectors z'(k), z%(k). In polar coordinates, they are, see for more
details [19], [20]

~ sin @ cos ¢ cos cos ¢ —sin ¢
k= I = | sinfsing | , 2'(k) cosfsing | , 2%(k) =] coso (3.24)
cosf —sind 0

E
I

o
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where |k| = (k7 + k2 + k2)1/2.
Then the eigenvectors (which belong to R%) of the matrix L(z, k) are given by [see
[19], [20]]

1 1 A
by = —=(k,0), b2=—(0k
b= h0), B =—0h
1 1 1 1
bl = (—=21, B, = (=2 ——=2! 3.25
+ ( /—262 /_Q/LZ ) + ( 262 /—2’uz ) ( )
1 1 1 1
bl = (—=2t, — 2%, b2 = (—=2% —=21).
(\/26 V21 ) (\/26 V21 )

The eigenvectors b} and b3 represent the non-propagating longitudinal and the other
eigenvectors correspond to transverse modes of propagation with respect the speed
of propagation v. These eigenvectors correspond to the eigenvalues listed in the
following Lemma, whose proof follows from [20], [19].

Lemma 3. The semi classical measure [i is supported on the set (recall that we
assume that the frequency w # 0)

U={(z,k), wy =w}U{(z,k), w_ =w} (3.26)
where v(r) = ————== s the propagation speed, and wy = wo(x, k) =0 , wy =
e(x)n(x)
wi(x, k) = v(@)|k| , wo = w_(z,k) = —v(x)|k| are the eigenvalues (of constant

multiplicity two) of the dispersion matriz L.

Il follows that the semi classical measure ji(z, k) has the form

Vm@@@@@@@®w@m+ﬁ@wﬁ@M®@@m (3.27)

+ut (2, k)b (2, k) @ bY* (2, k) + p2 (2, k)b% (z, k) @ b** (2, k)

where p} ,pi are two scalar positive measures supported on the set
{(x,k) , wy = w}, and pt , p?, are two scalar positive measures supported on the
set {(z, k), w_ =w}. bl b3 (resp. bl b?) are the two eigenvectors of the matrix
L(z, k) given by (3.25), corresponding to the eigenvalue w; (resp. w_).

In view of the above reduction, we are led to find the transport equations for each
of these four scalar semi classical measures.

For this purpose, using the equation (3.10), we have the following identity
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0 = iw(ac[us 9], u ) — iw(ac[us 9], us ) = (iwac[u® 9], u& 0) + (ac[u® 9], iwus 0)
3 N 3 ‘
= (el 2 (AN @A 0 e 3T () @A ()
j=1 ! j=1 7

(AN (2)C (@) Y+ (A% (@) £ 0 () + (A% (@) ApuS P (2, 0) @ 8,yo], uE O

3 N 3 _
+(ag[u® 9] —€ Z (A%)~H(x) A7 a@x» +e Z (Ao)fl(z)A]%ug(x)
J _7 -1 J

(3.28)

ai (4% @) A0 O] )

3
D08 @), 0F) — elae[(A°) (@) Apu O (0", 0) @ 8,yo], 02O

3
te(acu® ), 3 (A0 @) A ) — e(aclu® 0], (4°) 7 (@) O ()t O], 0

te(aclu® ], (A% (2) Apus O (2, 0) ® 84ym0) -

Recalling that the function 6 is equals to one identically on the support of a(z, k),
the third, fifth and sixth terms vanish at the limit, and thus the last equation can
be rewritten as
& gus Y 0 L0 , 0 0
sl Y. (40 @A T ) o 3 G0 ) )
J=1 J=
= £(as[(4%) " (@) A= 0 (0 ,0) @ by, u ) (3.29)

Fefaclu® ), (4°) 7 (@) A (', 0) © ,,0)
Using the product rule (2.13), it follows that

EZaE (A%~ ifsz aij I(A%Yag = ¢o(z,eD)+e¢ (z,eD)+e? Re (3.30)

where ¢g , @1, are given by
3 3
do(x, k) = ia(z, k) Y (A") @)k A7 =iy kAT (A%) N ()a(x, k)

, = = , (3.31)

da 0O 1 Oa

d1(z,k) = Dl (axm Aks ZAJ -ZlA A 5
‘7:

jym=1
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and the operators Re are uniformly bounded on L2.

On one hand, using (3.30), and the two relations (2.9), (2.10), we pass to the limit
n (3.29), as € — 0, and obtain

Tr/‘ ¢o(z, k)a(z, k)ji(dz, dk) = 0, Va(z,k) (3.32)
Rr3 JR3

which is already a known result (localization principle).
On the other hand, dividing (3.29) by ¢, and passing to the limit as ¢ — 0, we get

Tr / o1 (s, K)ji(da, k) + lim —(gbo(:c eDY? w0 = lim Be(a) (3.33)
r3 JRS —0¢€

E —
where

Be(a) = (ae[(A%) " (2) Ayuf 0 ©6,,—0], u® )+ (ac[u® 0], (A%) " (2) Ay O (2 )@,y —0) -(3.34)

In order to find the transport equation for the semi classical scalar measure ji, we
use the orthonormal propagation basis, and we consider first a test function a(x, k)
of the form

a(z, k) = ag (2, k)d} (z, k) ® d\(z, k) (3.35)
where a4 (z, k) is any scalar smooth function, and
dl(z, k) = A%(z)b (z, k). (3.36)

Recalling that A% is a symmetric matrix, with the choice (3.35), we note then that
¢o vanishes, while ¢; becomes

m=1

3 3
Day (z, k (A
o) = >0 IR 1 oy e D S

3
_ZMAJ’(AO)_ldi(%’C)®d1+*($’k)

i= 1 aSCj
ad. )1 S
+a+{z dl* Z Ak + d (2, k)
3o (3.37)
8d1*(z k) )l
5> T Z
m=1 =1

3
DA .
—ZAJ(%dﬁr(x,kz) ® d¥ (z, k)

3
- a 1 a 1%
_ ZAJ (AO) ax dl* ZAJ AO 1d1 k) ® a;; }=o¢1u + b2+ i3 .

Jj=1
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where
3 3
da(z, k \ )~
pn="3 %di( k) @ dY (x Z
m=1 Jj=1
Oay(x, k *
$12 = — Z%AJ(AO) Yy (x, k) © dY (e, k)
Jj=1
3 dl 0
LO(A )
o3 B WS e
j=1 (3.38)
0dY* (x, k) 1
®mzl Ok 8zm 2_:
S e e e
]dzll 3 ) adl*
_ZAJ AO + ®d1*( ]{;)_ZAJ(AO)_ld},_(JJ,k)Q? aJ;
z
Jj=1

We shall use the eigenvectors in the orthonormal basis (3.24), and the following
normalization relations,

(A%, b3) = up
(3.39)
(Aby,by) = U]%j-

We can then evaluate the first term ¢y in (3.37). Indeed, we have

<o ji =< 25 @R 0 pgat (o 5 AN i, (z, k)b (2, k)@ (b (2, k))*) > .(3.40)
1 == Ok, T + 1\, < GI%; JH +(, (3.
Since
i Lk ATdL) i AA") 1k Aldtt Z (A%)~ 1k 47— bd;. (3.41)
6907" 7 _ Ox™ ox™ ’
Jj=1 Jj=1 j=1
It follows that
3 3 3
adl 0\—1 .
> ai ) ki ATdL ) =Y (A AJ = => ‘9(;:6; kjAldL . (3.42)
j=1 j=1 j=1

Using the eigenvectors of the dispersion matrix in the orthonormal basis (3.24), one
has

: 8w+ 8d1 3 8d1
A A ¥ I | s o 1 E 0y—1 7

Jj=1 J=1
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Thus the first term in (3.37), becomes

day 1 g1 a(AO) jg1 21
< P11, fl >=< — T (b+,d )(;:1 e k;ATdL bh ), ph >
_ day dwy 0dL O~ ooty 4 0dh
=< g Ggmds + wigme = D (AT A SR ), ik >

j=1

(3.44)

Using (3.39), it follows that
8w+ 1 1 8w+ 071 1 8w+
di,b Ab b — =1,2
(am + ) (axm 9 +) aZCm , M ’ 73
O(AL)
(w+a$—m,bfr):w+(Tm+,bi):O,m:1,2,3 (3.45)

3 3 _
adl (A%~ 1pl
(D00 0 9% 1ty = (a0 ST g 108,
X

j=1 j=1

All in all, the first term of (3.37), becomes

w4 Oa
< 1, i >=< Z ax;z ak+ pho> . (3.46)

For the second term ¢4 in (3.37), one has

Oay(z, k)

<¢12,u>——<z o
— J

(AT AL (2, k) @ A2} (x, k), ik >
3 8 (2, k) (3.47)
ay(r s
=< 0k d)((A%) T AL b ), il >

Using the eigenvectors of the dispersion matrix in the orthonormal basis (3.24), and
(3.39), one has

(bL,dL) = (bL, A% ) = 1

_ O (3.48)
((A%)~tA7dL bL) = ((A) "1 ATA L bY) = (ATbL, b)) = 5%
J
and the second term ¢12 in (3.37), becomes
. Owy Oa
< 1o, ji >= — 6k+ a;jr,u}r (3.49)

j=1
For the third term ¢;3 in (3.37), we shall show that

<3, i >=0. (3.50)
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<aq{ Z
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dl*

8d1*(x k) -1

FILE

19

,13

Z

j:1

Tk + d\ (x, k)

3

m=1

-y

j=1

i

Okm

dl*

3 adl.

T=>( (0%, o7 b}r,Zk i
m=1

a(AO)
—Z by, AT =5 —d (0] d))
j=1

3
= (b}, AT(A°)
j=1

We can rewrite (3.51) as

< g3, ji >=< ay [T], p} >

ol

d (2, k) @ di* (z, k)

71

)l (2 d* (z, k) >

ad}: 1 1
k) ® 6.’1] }a :LLJr(za k)dJr(za k) ®
J

3 3
LO(A%)~1 ad]},
)+ > ( b}r,d}r)(b}r,ijAJ(aTL%—*)
m=1 j=1 m

3
L OdY
=) (b}, AT(A%)"
ol
Jj=1

od
61’]‘ ’

=) (0, d}) (3.52)

“ldy)(by

(3.53)

For the first term in (3.52), we use (3.24) and (3.39), to get

ox™

. 3

o [(AO) 1b1

)

3
bi,z

3

> kA

j=1

(3.54)

3
b;,ijAﬂ(aTidi) —0
i=1

and thus the first term in (3.52) vanishes. For the last term in (3.52), we use again

(3.39) to get

3 3
adl ddl.
bl Aj AO 1d1 bl E) = 1 J 0\—1 4071 1
> Zb AT(A) 1ALy (bL axj)
Jj=1 Jj=1
3 1 3 dl 1
od. od - od
Z (b, A7bY)(bL, 8—]) Z(Aﬂb}r,bl ) (bl 8—]) = vk; (b}, 8—:;;) (3.55)
j=1 j=1
72 w‘i’( 1 ad}F)
T Ok Y Ot

(3.51)
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Thus (3.52) becomes

3 3 1 971 3 0y—1 3 1
g1 A%t odL jOAY) ™ (A9 (’)d ® Ow,y ddl.
7(b+,;;k %m T ZA —d ;A (A%~ Ok, O )
For the last term in (3.56), we use (3.24) and (3.39) to get
(v °\ Qw Odl odi _ >\ Qwy Qo 1 ad'. odi _ ° Ow, ( 9 [AOb;])
+ Okj Oxi Ok; ~ T Ox L Ok; - T Oad
ot =t =t (3.57)
Ow p 947, 1409y . Ows 11 400b%
- _ el = b, A —).
;akj {(b+,ajb) (bL Aaj)} ]Zl o, e A )

For the second and third terms in (3.56), we use (3.24) and (3.39) to get

- 8d1 3 AO 1d1
bi,z{ s g = o, Y a2
=1 =1 T (358)
(4, o e
+ ox T :
For the first term in (3.56), we use (3.24) and (3.39) to get
3. 3 -1 3d1 3 3 A(A%)~1 H(A%L)
! J +
b‘“Zl Z_lk 61’7" Zk]A 21 dz™ Ok, )
j=1m= m= (3.59)
Ry ot o
b‘“Z Z ozm A 6kzm)
But
9 0v—1 40, _ O(AD) " o 0y—1 04°
= A A =1,2 .
oy = o ) O i 1as (@)
Thus (3.59) becomes
3 3 3
L O(AY)TE 3b1 , _, 0AY ob!
1 "y ATk (A1 222 7+
3 3
, DAY bl 0A° abl
— _(pl J1..( AO\—1 1 + 1 1 1 3 61
(b+7jzzlA kJ(A ) )(b+7m:1 axm 8km) (b+a +b b+7m: axm 8k )
3
DAY bt
_ 1 +
- “*;(b+’azm T
Thus all in all, (3.56) becomes
0A° 8b1 obL  ow ob!
=- A7b} by, A=) . 62
WJr = 83@3 61{? + O J) 61{/’] ( + 83@3) (3 6 )
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For the second and third terms in (3.62), using the fact that b an eigenvector of
the dispersion matrix, one has

a : 0 1 1.1 a - —1 1 : —1 abl
a—kj{Z(A )"k ATBL ) = %[Z(A kAL 4+ (O (A% "k, AY) ak
Jj=1 Jj=1

7 ! (3.63)
0 Ow by
bl + bl
Ak, W) = b T g 6k:
which implies that
; 8w+ 3b1
AlpL = a—ijObﬁr + A0w+— Zk At
and thus second and third terms in (3.62) become
ab 8(.4.)+ 3b1
—(AbL, o )+ o o) (b}, AO Zk AJ— — A% +ak§). (3.64)
Thus all in all, we have
DA 9b!. 6b1 : ab1 ob},
- _ 1 J 0 +
T = w+(b+, > Gar 8l<: Zk A —A “’*akm)
)= (3.65)

3
aw_;,_ 8b1
=Y (A%, = =1,2

Zaz]( +5akj>+0 0 , M ) 73

Jj=1
which yields (3.50).
Now, using (3.46), (3.49), (3.50), and integrating by parts, (3.33) becomes
3

8w+ anr 1 Z 8w+ anr 1

b > =y < ———L
a9z Ok, H T Ha

3
< P11, ji > 4 < Pro, i >+ < Pi3, i >= >
mzzl Ok; Oz (3.66)

=< a4, Viwy Vori — Vowy Vipl >= limO Be(a) .
€
There remains to determine the right hand side of (3.66). Recall first that

Be(a) = (ae[(A°) (@) Ayu® ¥ (2, 0)©6,,—0), u O) + (ae[uF 9], (4°) (@) Apu® ¥ (2, 0)@6,,-0).(3.67)

Note that each term in (3.67) is of order e~%/27% for any o > 0 as can be seen
from the H*® estimates, since u® o(x/,O) ® 6g5—0 is uniformly bounded in H*® for
s=—-1/2—a, for any o > 0.

To get the limit of (3.67), we shall first use a special class of matrices a(x, k) of the
form

a(z, k) = alx, k) [ L(x, k) — wl] (3.68)
where L(z, k) is the dispersion matrix (3.23) and for any matrix a(z, k) satisfying

a(x, k)| L(z, k) — wl| = [L*(x, k) —wl]a(z, k) . (3.69)
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Using the test function (3.68) and the product rule (2.13), the first term of (3.67)
can be worked as follows

(acl(4®) @) Apus O @ 6, 0] w9
= ((L*(@, k) = wla(z, D) [(A%) (@) Apu™ ¥ @ 8,z 0 ?)
~ (127 (@, k) = wI](@,eD)a(x, eD)[(A°) ~ (2) Apu™ ¥ @ 8, =0), u" )
= ((ValL* (@, k) = I Vad) (e D)(A) (@) A= ¥ @ by o), 0 ) + 220 o

~ ((d(:z:, eD)[(A%) () ApuS ¥ © 6,yo], [L(z, k) — wI)(x, e D)’ 9)

5
1

((ValL* (@, k) = wI]. 9,0)(2,eD)[(A%) (@) Ay @ b,0m0],u™ 0 ) + £2Qc .

with a term Qe uniformly bounded.

The two last terms of the above formulae are uniformly bounded and vanishes to
the limit.
Indeed, for the first term, recall that

3 0
4au€a
. A
DI
Jj=1

We then use (3.11) and (3.71), to rewrite (3.70) as

= wA%S (3.71)

(ag[(AO)_l(x)Abu57 0 ® 6,y0], uS 9)

For the second term of (3.67), still using the test function (3.68) and the product
rule (2.13), we get that

(afu= ], (49) "1 (@) 4% 0 (@) © 6,0 )
— ((d[L(g;, k) — wl|(z,eD)[u® 9], [(AO)_l(HC)AbUE’ 0 ® 513:0}) (3.73)
~ ((d(z,sD) [[L(z, k) — wIlul], [(AO)—l(z)Abufve ® 5%:0}) |

= (V4. ValL(a, k) = wI))(z,2D), [(4%) " 2) Ay ® 2 6,0 ) + £ Re
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with Re uniformly bounded.
We use (3.11) and (3.71) to rewrite (3.73) as

(acfu® 9], (497 (@) A (a') © 6200 ) = (al,eD)(=(A) 7 @) 4™ O (@) © 8o

€/ 40y-1 0 <0 0 e, 0 (8.74)
(47 @) Ay, () @) A O @) © 8s0]) -
Using these asymptotic expansions, passing to limit in (3.70), as € — 0, we obtain
finally
lim Bg(a) =0. (3.75)
e—0

Now, we consider the general case of test functions in order to pass to the limit in
the boundary term. For this purpose, we note that it is possible to write every test
function a4 as

ar(z, k) = ao(x, k) + ay(x, k ks + az(z, k) (v]k] — w) (3.76)

where k = (k:,, k3) and ag , a1 and a3 are scalar test functions, uniquely determined
by a4. For this point, we refer to [23].
In view of (3.76), we shall set

To(ay) = ao, Ti(ay) = ay and Th(ay) = as. (3.77)
Then any a of the form (3.35) can be written as

a(z, k) = (ao(z, k') + a1(z, k Yks) A% (z)

ao(z,k/) +al(1',k/)k3 1 L
d d
ok + - ®d- (3.78)

2
“0(5“”“)““ 7,k ks S dh @ d)L — wi](z, k) .
j=1

+(as(z, k)d ® d +

Now, we note that the spectral representation of the matrix L — wl can be written
as

L—wl=(ws —w)bl @dy + (w- —w)b! @d™ + (wo —w)b’ @d” . (3.79)

Recall that that the last term in (3.78) has the same form of the test function
a = a[L — wl] of (3.68), and thus we can conclude for the limit of this term and we
find that

lim Bg(az) =0. (3.80)

E —

Therefore, it is enough to find the limits for Be(a) only for the first two terms.
For this purpose, denote by @’ = ag(x, k' )A°(z) the first term in (3.78). Multiplying
it by a suitable cutoff function, q§(€3k3), with support compact, equal to one on a
neighbourhood of zero, set

at = a'9(cks) = lao(w, k') A°(2)|6(c s) - (3.81)
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Using the product rule, the first term Bie(a”) leads to
Bic(a") = Be (aZ[(4%) " Ayl © 8,,—o), w5 )

~ (ao(@,2D) A (@) (e*ks) (%) Ay ¥ © 8,20, u™?) (3.82)

- /us’o*(z)dz/ (2(?)36%%0(%€k,)¢(€3k3)AbU;‘s(\k’)

and similarly for the second term

Bae(a”) = Be (af[u 9], (%) 405 9 (') @ 6]

oo f ok e - (3.83)
/ug’ *(z)dx /Wem T ao(z’, 0,k ) (e ks) Apuss O (k) .
Thus for the first term in (3.67), and for the test function written as (3.76), one

has

lim Be(a) = lim Bie(ag) + lim Bae(ag) = Tr / Apao(z',0,k)di (3.84)
e—0 e—0

e—0

where i is the semi classical measure of the boundary term uf (z',0).
For the second term in (3.67), denoting by @’ = ag(x, k' )ks A°(z), in the same way,

we have
Bie(d") = Be (aZ[(A) 1 A0 @ b, u®f)
— (@ DA @O k(A A= 2 6] )  (355)
dk / 7
= /us’a*(x)dx/—e““'zal(x,ak Veksp(e2ks) Ayuss O (k') .
(2m)?
Also

Bae(a”) = Be (af[u 9], (4°)7 405 0 (') @ 6]
= (al(ac, eD)ks ALY, (A%) 1 A O () @ 6z3:o]) (3.86)

’ ’ ]{J ot 4 ’ ’ 5
- / w0 (a')da / <zdﬂ>3e““ ay (2, 0,k)p(e ks) Apus: O (k)

Thus, we have

" " 6’9* k 3 , — ,
Big(a )+ Bae(a ) ~ *%/au (z)dz/ d e*%a(z, ek )¢(53k3)Abu5a9(k)

O3 (2m)3
— (3.87)
€ g, 0% ! LT ! N3 Ou
+Z./u (z)dx /(2@36 ar(@, 0,k )p(e k) Ay =55 (k) -

Passing to limit in (3.87), we get

lim (Blg(a“) + Bzg(a”)) = Tr/[;l kA — wAY (2, 0)]ar (o, 0,k )div . (3.88)

E —
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Thus all in all, we get the limit of the boundary term (3.67) as

2

lim Be(a) = Tr/[Ab(:c’,o,kz’)ao(x’,o,k’)—(z kj AT —wA%(z,0))as (x, 0,k )]dir .(3.89)

e—0 —
j=1

Note that if the test function a(w, k) inside is supported away from 23 = 0 this
limit equals zero, as it should be.

Now, because we are using special test functions satisfying (3.35), and since we are
dealing only with u}‘_, we can as well assume that we are only seing the following
part of ¥ given by

o U DL R) @ B () + g DL (K) @ B (7 )+

b DL (67) @ b (KY) 4 b, b (k) @ by (k7).

This follows from the corresponding localization principle on the boundary.
Next, note that

2
D (AT AT — wId| b (kF) = —ki A%bL (kF)
=1

for scalar measures.

We have also

(Apbl (k)3 (k) =0,
(A% (k), L (k) = vk;
(A%} (k7),0} (k7)) =0, (3.90)
(Apb} (kF), b3 (k7)) =0,
O kAT — wA ) (k) = —k3 A%D] (KF) .

Jj=1

Using (3.90), (3.78) and (3.76), the term (3.89) becomes

{ lim Be(a) :/ui+(dx’,dk’)ukgﬁga1+/u}3+(dx’,dk’)vkﬁ;a1 (3.91)

e—0

1
Recall that v(r) = ———= is the propagation speed, the tangential vector
e(z)n(z)
k' € R?, and the wave vector k* (k') = (k', ki) is defined by

o w?
k3($,0):i W_k&-
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By using formulas linked with the wave vectors, and in particuliar definitions given
n (3.77), the above formulae reduces to

lim Bg(a) =
e—0
C o (3.92)
= /yéJr(dx ydk ks k3 Ty (ay)(2',0,k) + /Vé+(d.r ,dk Yk ki Ti(ay) (2,0, k).

Combining (3.92) and (3.66), we get the following distributional form of the trans-
port equation for the (scalar) positive measure v} (z, k)

ViwsVaoph = Vows Vih = vkskalva Ti6, o + v 16 41600 (3.93)
The other semi-classical measures in the formula are also dealt with in the same
way as above, and we get

Viws Vi = Vows Vil = vkakalvg Ti6, o + 5,16, 41600 (3.94)

kaJr.Vzul, — V1W+.Vk,LL£ = ’ngiﬂg [Vgt*Tlékg:k; + Vé*Tl(Skg:k;]ézBZO (395)

Viw i Vop? — Vawy Vip? = vksks Vo T8,y +V3-T10y,_+10a,=0 (3.96)

3.2. Proof of Theorem 1.2, Calderon type boundary condition

In this case, for the exterior problem (1.13) (given in R%), extending by zero in the
full space R3, we have the following eikonal equation for the exterior problem

ezt&'@

,L'wAe:nt,O( )( ext, €, 9 AJ A_] emt,E(z>
Z Z (3.97)
+€Cezt(x)(uemt,€,9) — €f€’9($> + EASUemt,E,o(z 70> ® 51320.

Note that, on the contrary of the perfect conductor case, we have not at this level
taken into account Calderon transmission condition. We have also includede in the
exterior field the incident one, using the same notations. Above the matrix A°*40(z)

is given by
emtId 0
Acet0 = (€ 3.98
( 0 nemtId ( )
where €%t 7%t are smoth functions in C1(R3), and the matrices A7 are given by
(1.8), and the matrix C*** is given by
emtId 0
cert = (7 3.99
(70 0) (3.99)

with ¢t a smooth function in C(R?), and u*+9(2",0) is the boundary term
for the interior problem (i.e. 3 < 0). In this case, we obtain that the dispersion
matrix for the exterior problem is given by
3
Loz, k) =y (A“H0)" ;AT (3.100)
j=1
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Recall that the matrix L** has also three eigenvalues which constant multiplicity
two. They are

wgmt -0 ,Wizt eztlk | Wt — Uemt|k’|
. 1 . . .
where v°**(x) = ———————is the propagation speed for the exterior problem.
eext (z)nezt (SC)

As in the perfect conductor case, it follows that the associated semi classical measure
ji¢**(z, k) has the form

{’uext(x’ k) — uizt 1( ’k)bimt,l(x’ k) ® bj—zt,l*(x, k) + uizt 2( ,k)bi_Zt’2(.’L', k) ® bj—zt,Q* ((E, k)

(3.101)
+,Lteixt"1($, k>b(izt,1(z, k) ® b(i:ct,bw(:c7 k) + uixt,Q(x7 k)biztz(l', k) ® b(i:ct,2* (:L', k)

t,1 £,2 ..
where p5" ,pS"" are two scalar positive measures supported on the set

{(2,k), w$* =w}, and peteh2 are two scalar positive measures supported
on the set { 2, k), wt =w}. bft ! ,bft’Q (resp. b1 b2 are the two eigen-

vectors of the matrix L¢*(z, k) given by (3.100), corresponding to the eigenvalue

ext emt)

Wit (resp. w

The semi classical measure ji®*

is supported on the set

U={(zk), i =w}U{(z,k), " =w} . (3.102)
For instance, the transport equation for the first scalar measure is given by
VWS Vo p S = Vw0 = 0oty [uf;f’lék et +ygfrt 16k32k§::t,+]6z3:0(3.103)

t1 t,1 :
where v i7" gt are scalar measures corresponding to the boundary term

urh e 9(x ,0), and the wave vector k% (k') = (k' k") is defined by

ext,+ _ w?
k3 (xl,o) —i\/w —k/2 .

In fact, as in the previous sub-section, these (measures) coeflicients come the fol-

lowing decomposition of the boundary semiclassical measure (seing only the first
part of the set U)

l-)emt ~ V;T’lbilt’l(kelt’+) ® bimt,l*(kezt,+) + 2mﬁt+1bemt l(kemt +) ® bizt’l*(k/’emt’_)—i-

+ gzt+lbext 1(kezt ) bezt 1*(kext +> iy eact 1bext 1(kezt ) bj_znl*(kezt’i).
For the interior problem (1.14), (given in Ri ), we have the following eikonal equa-
tion

(uznt g, 9

3
’Lw(Aint’O)(.T)(umt’E’e) + e A] A] mt,E(x)
; Z (3.104)

+€cint(x)(uint,€,9) — Ef{:',e(x) +EAznt’U/6Zt’E’9((E ,0) ® 513:0 .
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where the matrix A%%(z) is given by
. zntId 0
A0 — (€ . 3.105
( 0 nznt]‘_d ( )
where €t | pi"t are smooth functions in C*(R?), and the matrices A7 are given by
(1.8) and the matrix C™ is given by

int
Cint = ( 0 0) (3.106)

with 0™ a smooth function in C*(R3).

In this case, the interior dispersion matrix is given by
3
L™ (z, k) Z (A0~ Ad (3.107)

has three eigenvalues with constant multiplicity two. They are

Wit =0 ,wy = vi"t|k,| ,W_ = —vmt|k,|
. 1
where v""t(2) = ———————— 1is the propagation speed of the interior problem.
Gznt(x)nznt ((E)

Again, it follows that the associated semi classical measure ji*"!(x, k) has the form
{W(x,kz) = " (KB (k) @ BN (o, )+ R (o, T (s k) @ B (3, )

. . , (3.108)
+/LTt’1(.’L', k/’)th’l( k) ® bznt 1*($ k) + Mznt 2( ,I{Z)th’2((E, k) ® th,Q* (.’L', ]{3)

1 int,2 .
where uf ,pf are two scalar positive measures supported on the set

{(z, k), wint = w} and p "t 2 are two scalar positive measures supported
on the set { (z, k), W =w}. bft ! ,bft’Q (resp. b1 b"™"?) are the two eigen-

vectors of the matrix Li"t(:c, k) given by (3.107), corresponding to the eigenvalue

wit (resp. wint)

The semi classical measure ji

S.

1" is supported on the set

U= { x, k), mt—w}u{(:n,k), wi_”t:w} ) (3.109)
s an example, the transport equation for the first scalar measure 1s then
A le, the t t tion for the first scal is th
kaTt-sz}rint_vmth-ka}rint mtk [ int, 1(5k —int ——|—ygj: 16k3:ként,+](5lszo .(3.110)

where Vint,l znt 1
o+ Vgt

sure corresponding to the boundary term ui”t’g"g(x’ ,0), and the wave vector
kimtE (R = (K, k"% is defined by

int,+ _ w?
kg (x/70)i\/mk/2.

Let us end by making some remarks about the scalar measures appearing the right

are scalar measures associated with the semiclassical mea-

hand sides of each transport equation, in the exterior as well as in the interior case.
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Due to the Calderon transmission condition, it follows that one has the following,
on the boundary zo =0

it € 0 _ M.t € 0

where

100000
010000
000000
000100
000010
000000

It follows that (M? = M)

l-/-int — MﬁEZt.
For instance, to get the scalar measure uﬁﬁﬁ’l, it is enough to take the trace of the
above relation with d]'"! (k") @ d7""* (k™) (where we use left eigenvectors)

and we get in this way

Vet = Tr(Myeet d7 (R @ dE T (R T)).

3.3. Remarks on the curved interface case

In this case, we consider Maxwell’s system above the surface given by I' : z3 =
¢(x'), where 2 = (x1,22), and ¢ € W2(R2 R) is a scalar function. We consider
this system in time harmonic form, in the high frequency limit, and we consider a
perfect boundary condition on I" . Again, we rewrite this system as a symetric one

Zj

. 3
%AO(:C)UE +y AJ% + Cue = fe(x) + APue(r',0) © pppery  (3.111)
=0

with C'(z) given by (1.10), and fe € L*(R3)3 and A° , A7 are given in (1.7), (1.8).
We shall reduce this curved case to a plane one, by introducing the new coordinates

y=1 z=x35-¢(z'),7=(y,2). (3.112)

Extending when necessary by zero in the all space R?, and thus (3.111) becomes

. 3
w s < 0ve(y,2)  ~ : <
W30, 2ol 213 A EE D Gy 2) = ey, )+ A, 000, (3.113)

A" = (e(yvoz)fd n(y,(l)fd) 0= (U(y,OZ)Id 8) (8:114)

are 3 X 3 matrix valued smoth functions, with €(y, z) ,n(y, z) , o(y, z) smooth func-
tions in C1(R3).



January 9, 2005 22:17 WSPC/INSTRUCTION FILE
Semi-classical. hyper23342

30

Set
v (y,2) = 0y, 2)ve(y, ) (3.115)

and the matrix of dispersion

Bk) = ((A%) 'k A7 (3.116)

j=1

where 0 is a test function of compact support that is equal to one on a set compact
K.

Thus Maxwell system can be rewritten, with the cutoff function, as

ol (y, 09(y, ~
iwA(y, 2)l(y, 2 +52AJ .2 ZAJ W2) () + 2Clw. .2
J

= (3.117)

= e f2(y, z) + EAbvs(y, 0) ®d2=0 -
Then we can follow exactly the same steps as in the flat case.
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