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Abstract

An approximation Ansatz for the operator soluti&h(Z, z), of a hyperbolic first-
order pseudodlierential equationy, + a(z x, D,) with Re@) > 0, is constructed
as the composition of global Fourier integral operators with complexgshasn
estimate of the operator normiirfH®, H®) of these operators is provided, which
yields a convergence result for the Ansatitz’, z) in some Sobolev space as the
number of operators in the composition goesto

AMS 2000 subject classification: 35L05, 35L80, 35510, 35S30,386A1

0 Introduction

We consider the Cauchy problem

(0.1) ou+a(zx,Du=0, 0<z<Z

(0.2) U |z=0 = Uo,

with Z > 0 anda(z x, £) continuous with respect to (w.r.zwith values inS*(R" x R")
with the usual notatiolDy = %ax. Further assumptions will be made on the symbol
a(z, x,£). We denote byJ(z 0) the solution operator of (0.1)—(0.2). Wha(z, X, &)

is independent ok andz it is natural to treat such a problem by means of Fourier
transformation:

uz x) = [ explitx - xi) - 6] () c dx

whered¢ = dé/(2n)". For this to be well defined for ally € . (R"), we shall impose
the real part of the principal symbol @f to be non-negative. When the symizol
depends on botk andz we can naively expect

Uz X) ~ Uz X) = [ [ expli(X — X&) — z&(0, X, £)] Uo(X) dé dx



for z small and hence approximately solve the Cauchy problem)-{@2) forz €
[0, ZV] with ZV small. If we want to progress in thedirection we have to solve the
Cauchy problem

du+alzx,DJu=0, AV<z<Z

Uz ) Lo = us(ZY, ),

which we again approximatively solve by
Uz X) = ez X) 1= [[ explion = xi) - (2 29a@, X, ] (@, 0 de dx.

This procedure can be iterated until we reachZ.

If we denote byg» , the operator with kernel

Gir(X.X) = [ expli(X — Xi&)] expl-(Z — 2a(z X. )] dé,

then combining all iteration steps above involves compmsiof such operators: let
0<AY <... < A9 < Z we then have

Uks1(Z X) = G(za0) © G0 4c1) © =+ © G0 0)(Uo)(X),

whenz > Z¥. We then define the operat@y; , for a subdivisionp = {Z9,2Y, ..., ZN)},
of [0,Z]with0 =729 < ZAD < ... < AN = 7,

Q(Zo) ifo0<z< Z(l),

. 1
Wez = g(uk))ng(za)jm) if 20 <z< A,
i=k

According to the procedure described aboUé; ,(up) yields an approximation Ansatz

z_1). The operatog» , is often referred to as thhin-slab propagato(see e.g. [3, 2]).

Note that a similar procedure can be used to show the exestadran evolution system
by approximating it by composition of semigroup solutiofithe Cauchy problem with
z'frozen’ in a(z x, Dy) [11, 19]. Note that the thin-slab propagag , is however
not a semigroup nor an evolution family here (see Sectiomn 8ifople arguments).

The approximation Ansatz proposed here is a tool to compppeoaimations of the
exact solution to the Cauchy problem (0.1)—(0.2). Such agatns in applications
to geophysical problems have been used in [3]. In explata@smology one is con-
fronted with solving equations of the type

(0.3) (92— ib(z X, D, Dx) + ¢(z X, D, DY)V = 0,
(0.4) v(0,.) = vo(.),

wheret is time, zis the vertical coordinate andis the lateral or transverse coordinate.
The operatord andc are of first order, with real principal partb; andc;, where
c1(z x, 7, £) is non-negative. Note that the Cauchy problem (0.1)—(&t2Jied here is
more general. The Cauchy problem (0.3)—(0.4) is obtained fyicrolocal) decou-
pling of the up-going and down-going wavefields in the adoustve equation (see
Appendix A and [21] for details). In practice, the proposeatsatz can then be a tool



to approximate the exact solution for the purpose of imaghegearth’s interior [3, 2].

As explained in Appendix A the operatoracts as a damping term that suppresses sin-
gularities in the microlocal region where its symbol doesvamishes. Thisféect is
recovered in the proposed Ansatz. Seismic imaging aimgaveeing the singularities

in the subsurface (see for instance [23, 1]). Thus, geoptsyare not only interested

in the convergence of this Ansatz to the exact solution ofGhachy problem (0.3)—
(0.4) but they expect the wavefront set of the approximaligtisn to be close, in some
sense, to that of the exact solution. We shall investigageamfcrolocal properties of
the proposed Ansatz in Part II, written in collaborationh@iinther Hbrmann.

In the present article, we are interested in the analysiseoébnvergence of the approx-
imation schemeWy in Sobolev spaces. Section 1 introduces the Cauchy problem w
study and the precise assumptions made on the syathol £), especially on the real
part,c;, and imaginary part:-by, of its principal symbol. In Section 2, we shall at first
concentrate our study on the opera@y ), yet to be properly defined. Under some
assumptions oa(z x, £), we shall prove thag, , is a global Fourier integral operator
(FIO) with complex phase and that it magéinto.7, .#” into . andH® into H®

for anys. An estimation of|G(z 5 || 1) Will be the first step towards the analysis in
Section 3 of the convergence®y; ;. In fact we prove that for' — z sufficiently small
then (Theorem 2.26)

Gz 2o Hey < 1+ M|Z -2,

for some constantl. Such an estimate is achieved by the analysis of the behafvior
the symbol expfAc,] as an element d8?, in particular as\ = Z — zgoes to zero.
2

In Section 3 we study the convergence of the Ansiiz ,(up) to the solution of the
Cauchy problem (0.1)—(0.2) in Sobolev spaceag@goes to 0. A convergence in norm
of ‘W ; to the solution operator of the Cauchy problem (0.1)—(G 2)xitually obtained
(Theorem 3.11):

lim (W2 = U(Z O)l[esn Hey =0,
Ay —0

with a convergence rate of ord§whena(z, )ising%w.rt.z, a > % We furthermore
obtain (Theorem 3.18)

AlimO”(Wq;’Z - Uz 0)l[yenpeny =0, 0<r <1,
35—

with a convergence rate of order{Ir)/2 while the operatoiy’y , strongly converges
to U(z 0) in HG+D,

At the end Section 3 we relax some regularity property of shelml a(z,.) w.r.t. z by
the introduction of another, yet natural, Ansatz: follog/fi7], the thin-slab propaga-
tor, G(» », is replaced by the operatgy, , with kernel

Giea(¢) = [ exPI(X — ) expl- [ a(s X, £)dd .

In Part Il, we shall focus on the microlocal aspects of therajoe Wy, and how it
propagates the singularities of the initial conditign We shall show that the wavefront
set of Wy 2(Up)(z .) converges in some sense to that of the soluti{@n) of the Cauchy
problem (0.1)—(0.2) a4y goes to 0.



Multi-composition of FIOs to approximate solutions of Chygroblems where first
proposed in [16] and [15]. In these articles the exact smutperator of a first or-
der hyperbolic system is approximated with &elient Ansatz. The approximation is
made up to a regularizing operator. The technique is baseadleonomputation and
the estimation of the phase functions and amplitudes of tBer&sulting from these
multi-products, a result know as the Kumano-go-Tanigudieédrem. The technique
was then further applied to Sditinger equations with specific symbols [12, 17]. In
these latter works, the multi-product in also interpretedua iterated integral of Feyn-
man’s type and convergence is studied in a weak sense. la[d@jvergence result in
L2 is proven. This is the type of results sought here for firseohyperbolic equations.
We however do not use the apparatus of multi-phases andr faitigs on estimat-
ing the Sobolev regularity of each term in the multi-prodocEIOs in the proposed
Ansatz. While the resulting product is an FIO, we do not corajitistphase and ampli-
tude. The Sobolev regularity allows us to use a priori enesgimates for the Cauchy
problem (0.1)—(0.2) to prove convergence of the approximgainsatz to the solution
operator.

In this article, when the consta@tis used, its value may change from one line to the
other. If we want to keep track of the value of a constant wél sise another letter.
When we write that a function is bounded w.zandor A we shall actually mean that
zis to be taken in the interval [@] and A in some interval [DAnay Unless otherwise
stipulated. We shall generally writ¢, X', X7, X®, .. XN for R", according to
variables, e.gx, x, ..., xN,

In a standard way, we sé&) := /1 + |£]? for & € RP. Throughout the article, we use
spaces of global symbols; a functiare € (R" x RP) is in ngé(R“ xRP),0<p <1,
0 < 6 < 1, if for all multi-indicesa, 8 there exist<,z > 0 such that

|0500a(%, £)] < Cop (1+ €)™ ¥ x e R", £ € RP.
The best possible constaitisg, i.e.,

Pep(@) i= sup  (L+ |&) ™ a(x, £)),
(X&)ERNXRP '

define seminorms for a Echet space structure GE}(R” x RP). As usual we write
SH(R"xRP) in the case = 14, % <p <1, andS™R"xRP)in the casep = 1,6 = 0.

We shall use, in a standard way, the notation # for the cortipngf symbols of pseu-
dodifferential operatorsfDO). When given an amplitudg(x, y, £) € ng&(x x XxXR"),

p > ¢, we shall also use the notation{p} (x, &) for the symbol of the pseuddtiéren-
tial operator with amplitude. Forp € nga(x x R") we shall writep* for the symbol
of the adjoint operator. When composig@®Os or computing adjoints afDOs we
shall make use of the oscillatory integral representatfadheresulting symbol instead
of asymptotic series for two reasons. First, we aim at esingeaoperator norm in
L(HS, H%) while using asymptotic series representations for sympiglds results up
to regularizing operators which norm cannot be estimated¢od, we shall consider
symbols inSp}, for somem, including the casp = % for which the asymptotic formulae
of the calculus of/DOs cease to hold.

Forr € R we letE® be theyDO with symbol{¢)". The operatoE® mapsH®(X)
onto HN(X) unitarily for all s € R with EC being the inverse map.



1 The homogeneous first-order hyperbolic equation

Letse RandZ > 0. We consider the Cauchy problem

(1.5) ou+a(zx,Dyu=0, 0<z<Z
(1.6) U0 = Up € HED(R"),

where the symbad(z x, £) satisfies the following assumption.

Assumption 1.1.

a(x &) = a(z X, &) = —ib(z x,&) + c(z X, &),

where be ¢°([0, Z], SY(R" x R")), with real principal symbol phomogeneous of de-
gree 1 fori¢| large enough and € €°([0, Z], SY(R" x R")) with non-negative principal
symbol ¢ homogeneous of degree 1 férlarge enough. Without loss of generality we
can assume thatkand g are homogeneous of degree 1 fgr> 1.

In Section 3 we shall further make the following assumption.

Assumption 1.2. The symbol &, .) is assumed to be ([0, Z], SY(R" x RM), i.e.
Lipschitz continuous w.r.t. z with values iA(B" x R"), in the sense that,

aZ,x. & -azx &) =(Z -2a7Z,zx¢), 0sz<Z<Z

with &(Z, z x, &) bounded w.r.t.’zand z with values in §R" x R").

The case of Klder continuity will also be addressed. Weaker assumgtioill also
be formulated in Section 3, for instance by the introducttbanother approximating
Ansatz.

We denote bya; = —ib; + ¢; the principal symbol of and writeb = b; + by with
bo € ([0, Z], S°(R" x R")) andc = ¢; + Co with ¢ € ([0, Z], S°(R" x R")). As-
sumption 1.1 ensures that the hypotheses (i)—(iii) of Theo23.1.2 in [8] are satisfied.
Then there exists a unique solutiong?([0, Z], HE*D(RM) N €1([0, Z], HO(RM) to
the Cauchy problem (1.5)—(1.6).

Furthermore, we have the following energy estimate [8, Len23.1.1] for any func-
tion in ([0, Z], HO(R") N €°([0, Z], HEHD(RM))

(1.7)  supexp[-17] [u(Z ke < U0, )il
z€[0,Z]
z
+ 2[ exp[-17] ||0;u + az(x, Dy)ul|nedz
0

with A large enoughA solely depending os).

By Proposition 9.3 in [5, Chapter VI] the family of operatdis).c0 7 generates a
strongly continuous evolution system. L&z, zZ) denote the corresponding evolution
system:

U@Z'.2)oU(Z,2=U(Z.2), Z2Z' 27 >2>0,



with

0U(Z 20)Up + &(Z X, Dx)U(Z 20)up =0, 0<7<z<7Z
U (20, Z0)Uo = Up € HED(RM),

while U(z zo)up € HEFD(RM) for all z € [z, Z]. For the Cauchy problem (1.5)—(1.6)
we takezy = 0.

2 The thin-slab propagator. Regularity properties.

We follow the terminology introduced in [9, Sections 25 & FIOs with complex
phase. Ler,z e [0,Z] with Z > zand letA := Z — z Definegy 5 € € (X’ x XxR")
as

(2.8) ¢r(X, X&) = (X = X¢) +iday(z X, &)
= (X' = X&) + Aby(z X, &) +iAci(z X, ).

Remark 2.1. The functiong, » is assumed to be homogeneous of degree one only
when|é| > 1. This however is not an obstacle to the subsequent anaggis FIO
properties, since to define such operators the phase fun@ied not be homogeneous
of degree one for sma|. In the subsequent results concerning the phase functibn an
FIOs one will then assume thigt is large enough, i.el¢| > 1.

Lemma 2.2. ¢ 5 is a nondegenerate complex phase function of positive gipanf/
point (x;, Xo, é0) Whereds¢ ) = 0).

Proof. Note that, by Assumption 1.1, I®¢ ») > 0 and¢ , is homogeneous of
degree onejx¢r ) = 0 impliesé = 0. Thus,¢(, , is a phase function of positive type.
Inspecting the partial derivatives 6f¢( » w.r.t. x we conclude that the fierentials
d(0s, 0z 2); - - - A0, 0z ) are linearly independent. [

With ag(z,.) € S%(X x R") we have expfAag(z .)] € S%(X x R") by Lemma 18.1.10 in
[8]. We define

(2.9) Az (X €) = exp[-Aan(z x, £)].

We shall keep this notation (for this symbol and others irstiuel) but it will be useful
however to consider this symbol to depend on the parameterdA instead ozandz
in the following analysis. Note thaj, ) is bounded w.r.zand%™> w.r.t. A with values
in S°(X x R"). Hence, we may define a distribution ker@)} » (X, X) € 2'(X’ x X)

Gea(XX) = [ expl(x - Xie)] expl-Aalz X, &) de
= [ explira(X x O] g (¥ ) e
as an oscillatory integral. We denote the associated apeyiG, ,. This operator is

often referred to as thehin-slab propagatoi(see e.g. [3, 2]). We show thgf,  is a
global FIO inR".



Definea = (X, X, &, &) and

Up, (a,0) = aquj(z’,z)(XI’ X, 0) + & =-0j +&j,
Ug, (@, 0) = 8x]¢(z/,z)(x', X, 0) — g} =0; - f} +iAdya(z X, 6),
Uy, (@, 0) = Do, bz (X X, 0) = X, — X +1Ada1(z X, ),

wherej = 1,...,n. We denote by]A(z,Z) the ideal ing"*>(R") generated by the func-
tions uy,, Ug;, anduy, and we let), ; be the subset of the functions ¥y , that are
independent of.

Lemma 2.3. There existsA; > 0, such that, for all Zz € [0,Z], with Z > z and
A =7 —z< Ay, the ideal & » is generated by the functions

(210) V'fj (a) = axi ¢(Z’,Z)(X/’ X, f) — fj
= é:j - f; + iAaXJa]_(Z, X/,f) = UérJ |9:g,
VXj (O,’) = a§j¢(z,z)(x/s X, ‘f) = X’j - Xj + IAaEJal(Ze X/3 f) = qu |9:§

j=1,...,n.

Some of the key arguments of the proof are close to that inrthaf pf Theorem 25.4.4
in [9].

Proof. The idealj(z,z) is also generated by the functions

Up, Ug 1= Up + U = &5 — & +1A0ga(z X, 6), Uy,
j = 1,....,n. We definev := (X,&,0), u = (x,£). We set a point¥y,ug) =
(X5 €5 B0, X0, é0) Where these generators vanish and we work in a neighborbfabds

point. (Note tha#y = &.) Sincez — a;(z.) € S}(X x R") is bounded we have that
JA; > 0 such that for < A < A1, and allz€ [0, Z],

deto (U(.)l, ... Ug,» Elé:l, ey an? Uy e v s an) /(?v #0
and
detd (Ve,. ..., Ve,o Vi - -2 Vi) /O(X . €) # O,

By Theorem 7.5.7 in [10] we have

X =X Uy X(w)
é\;/_é; ]:( Q(ga,u) P(r’,u) )[ f]se ]+[ §(,u) ],
0 n —Uy £

whereP is a€™ 2n x n matrix andQ is a¢> 2n x 2n matrix and the functions,
are alsgg* in a neighborhood ofv, o). As the functionswy(v, u) := X' — x — X(u),
We(v, 1) 1= & —£-Eu), Wy(v, 1) := 6—& have linearly independentftérentials, Lemma
7.5.8in [10] proves that they generai@,z) and the proof of that lemma shows ti@at
is invertible in a neighborhood of, o). Lettingd = & we have

, e _ -1 WX(V’,u) _ uX(X/’X’ f) _ VX(Q)
QX.£.6=4%4) ( We(v, 1) )‘( 0(X, . 2) )‘( ve(@) )



We thus obtained thai{m) is generated by the functiomss;, vy, Vg, j = 1,...,n. We
then see thal, , is generated byy, V¢, j = 1,...,n. Infact, using Theorem 7.5.7 in
[10] again, anyg* functionh(«) can be locally written in the form

h((l) = Z (hXj (Q/’M)VXJ' (G.’,, ,U) + h-fj (Q,’ﬂ)vfj (CZ’,/,[)) + r(/")»

1<i<n

with ¢’ = (X, ¢’) provided that 0< A < Aq. If h € Jz 5 thenr € Jz» and Lemma
7.5.10in [10] implies tha?N € N, 9Cy > 0:

r(u) < Cny max(im ()L, Im &))",

locally. Therefore, Theorem 7.5.12 in [10] yieldss 1(wx, W) = 1(Vx, V¢); which in
turn impliesh € 1(vy, v¢) and thereby completes the proof. [

As the Poisson brackets (for the symplectic 2-farfm- o on T*(X’ x X), whereo”’
and o are the symplectic 2-forms of*(X’) and T*(X) respectively) of any two of
the functions in (2.10) vanish identically we obtain that fHeal generated by these
functions is globally a conic canonical ideal in the senspDefinition 25.4.1. and
Section 25.5]. The phase functigg , thus definesl, , in the neighborhood of any
point of J» »r: it thusglobally definesJ» », which is then of positive type. Therefore
the operatoig, , is a global FIO with complex phase (see Definitions 25.4.9d an
25.5.1. in [9]).

Proposition 2.4. There existsA; > 0 such that if0 < A = Z — z < A; then the
operatorGy » is a global Fourier integral operator with complex phase aBg ; €
19X % X, (Jz ) QY2).

We denote the half density bundle &hx X by Qi/,ix. Note that (» »)" stands for the
twisted canonical ideal, i.e. a Lagrangian ideal (see 8e@b.5 in [9]).

Note that, with the following analysis, we could also coesig, , as a global FIO
with real phase with amplitude iB‘i (X’ x X x R") (see e.g. [20]). However such
consideration would be rather technical as one usuallyicesbneself to the typ&}
with p > % for FIOs (see the remark at the end of Section 25.1 in [9]; $&e®[48,
pages 391-392]). Viewing the thin-slab propaga@gr, as a FIO with complex phase
is also a good framework to understand the propagation ghinities in Part Il. We
shall however make this interpretation 8y, , in Proposition 2.29, below, to apply a
result of Kumano-go [13, Theorem 2.5].

We now establish some global continuity properties of theraforG» » stated in a
slightly more general form (for similar results with glotsimbols see for instance
[13], where phase functions are real and other conditioasraposed on the phase
function).

Lemma 2.5. Let A be an FIO with a kernel of the form

Ka(x.y) = f explip(x, &) — i(Yi§)] oa(x, £)dé € 7'(R" x R"),

whereop € STR" x R") and g € €°(R" x R") is such that Infiy(x,&)) > 0 and
¢ is homogeneous of degree oneginfor |¢] large enough, andy ¢ € SY(R" x R").
Furthermore, for all i= 1,...,n we assumé; ¢(x, &) = X + fi(x, &) where f e SO(R"x
R"). Then A maps” into . continuously.



Proof. Letu € .. We then have

AUX)| < f o a(x &)L+ €)™ + IE)™0(E)) dé
< Csuploa(x, €)(1+ €)™ supl(L + )™ )],
£eRN £ERD

whereC = [(1+ |£))™"1d¢. The operatoA is hence well defined fron¥” into %' (R").
If we differentiate we obtain

Dy Au(x) = f explig(X, £)] (9x (X, E)oa(x, &) — i0xoa(x,£)) U(£) de .
Noting thatdy ¢(X, £)oa(X, &) — idxoa(X, £) € S™HR" x R") we similarly have
IDxAUX)| < C SUPI(L + i)™ ™*0(E)

< C’ sup|x*DAu(x)| for somea, > O.

XeRN
Iterating we find thaAu € ¥ (R"). Integrating by parts we also have
A(XjU)() = f explig(x, £)] (0ap(x £)Ta(x,£) - 105 Ta(x £)) (&) dE
= AU + [ explie(x &) (1(x oa(x.&) - i057alx.£)) 0E) .
Sincefi(X, &)oa(X, &) —idgoa(x &) € ST(R" x R") we obtain

IXjAu(X)| < C suplx*D5u(x)| + C sup|x” D5 u(x)L.
XeRN XeRN

for somea, o/, 3,8 > 0. Similar estimates hold fox* D2 Au(x)| because of the hypoth-
esis made orfi, i = 1,...,n. The operatoA thus maps¥ into.# continuously. =

To show continuity from¥” into .#” we shall need the following lemma.
Lemma 2.6. Let j k non-negative integers,@.7(R"), f € €%*1(R") such that
0<Imf(x) <Co, xeR", [fO(X)<C, xeR", 1<r<k+1

Then we have

(2.11) 'k

fu(x)(lm f(x))! expliwf (X)] d><1
<C Z sup|D*u()|(| ' (9P + Im £(x))*V2% w >0,

PR

where the constant C is bounded when the function f stays omaaih of <1(R")
where @, Cq, ..., Cks1 can be chosen bounded.

Proof. The proof is the same as that of Theorem 7.7.1 in [10] whleee%(';(R“). In
fact the further assumptions drmade here allow to give global bounds that are needed
sinceu € . in the present case. [ ]



Lemma 2.7. Let A be an FIO with a kernel of the form
Ka(x) = [ expl(x=yie) + iv(x ] ra(x ) € 7/ (2" x R,

whereoa € ST(R" x R") andy € SY(R" x R") is such that Inty(x,&)) > 0, andy is
homogeneous of degree oneginfor |¢| large enough. Furthermore, we assume that
there exists & 0 such that

(2.12) IRe(0xy(x, &) <d <1, xeR", £eR", |£= 1.

Then A maps”” into .’ continuously.

Observe that the fiierential ofg(x, £) = (x—y|&)+y(x, &) does not vanish iR2"xR"\0.

The functiong is thus a complex phase function. Thé&elientialsd(0g, ¢), . . ., (3¢, ¢)

are linearly independent. Hengds a nondegenerate complex phase function of pos-
itive type. Note that by (2.12), the functigix — y|¢) + y(x, &) is an operator phase
function in the sense of [6, Definition 1.4.4.].

Proof. Without loss of generality we may assume thé& homogeneous of degree one
for |¢] > 1. Let Al be the transpose @ and letu € ., then.

Au() = [ expEioien [ explyle) + vy, &) oa®. ) uy) dyce

Define
VE.) = f explYIE) + iy(y, &)] o aly. ) u(y) dy.

and putw(é) = V(¢,&). Asu € . thenv andw are boths™. ThenAlu is the Fourier
transform ofw. The lemma is proven if we show that— w(¢) is continuous from?”
to.7.

Letw = |¢] > 1 andéy = &/)¢] € S™1. We then haveylé) + y(y, &) = wf(y, &) with
f homogeneous of degree zercéinfor |£] > 1. Note thaby f(y, &) = &o + dyy(Y, £o).
With the assumption made @y we haveloy f(y, £)| > ¢ > 0. Applying Lemma 2.6
and estimate (2.11) we obtain

WME )| < Kic D supID (oray, mu(y)
lal<k
< Ki(1 + )™ supD*u(y)l, w > 1

lerl<k
yeRN

where the constantsy, K; can be chosen uniformly w.r4, |£ > 1 since the constants
Co, C1,...,Ck1 Of Lemma 2.6 can be chosen bounded4as S™1). Now setting
n = & we obtain that for alk e N, 3K}/ > 0

(2.13) (L+ 1D MWl < K'supD uy)l, & € R", |¢] = 1.

o<k
yeRrn

We now consider

DsW(£) = f expli(yle) + iy (y, Vi + 0z ¥ (Y, E)oaly €) — 1057 ay, £))u(y)dy-

As yiuly) € 7 anddgy(y, ¢) is homogeneous of degree zero fgr > 1 estimates
similar to those in (2.13) are valid. [
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Itis immediate from the structure @f, , in (2.8) that Lemma 2.5 applies &, 5. If
A = Z - zis small enough we havad, bi(z X', £)| < d < 1, due to Assumption 1.1,
and then Lemma 2.7 applies. We thus have the following piitipns

Proposition 2.8. There exista, > Osuch thatifZze [0,Z] withO< A:=Z-z< A,
thenG(» » maps.” into .7 and.”” into .’ continuously.

Remark 2.9. By the above result, composition of the two FI@g. »y andG, » is thus
natural without further requirement such as having the aipes properly supported.

We now turn toglobal L and Sobolev space continuity for the operagr,. We shall
use the following lemma.

Lemma 2.10. Let ps(y,n) be bounded w.r.t. the parameter s with values fi{i8" xR")
and define

ﬁS(A’ Y, 77) =n- A fS(y’ 77)’

where £ is bounded w.r.t. the parameter s with values #fI x R", R") and homoge-
neous of degree one i for || > 1. Then

ﬁS(A7 y’ ’I) = pS(y’ ﬁ(A’ Y7 77))

is bounded w.r.t. s and with values in §(RP x R") for A3 small enough. In the case
p = 1itis then bounded w.r.t. s with values#t° ([0, Az], ST(RP x R")).

Proof. Let Az be small enough such that — Afs(y,n)] > Co > 0if |y = 1 and
A € [0, As]. We then have

1+Colpl <1+ Ip—Afs(y,n)| <1+ Cilnl, n€R', Il > 1, A €[0,A5].

This inequality yields the proper estimates ﬁ@ﬁﬁ Ps to prove thatps € SJI(RP X R").
Bounds w.r.t. to the parametesandA come naturally. In the cage= 1, derivatives
w.r.t. A do not dfect the symbol order and type. The proof is complete. [

Following [22] we introduce the following definition.

Definition 2.11. Let L> 2. A symbol ¢z .) bounded w.r.t. z with values int@&P x R")
is said to satisfy Property (B if it is non-negative and satisfies

(PL) 1850ha(z Y. m)| < C(L+ [pf) W+lrDit
(L+qzy, )L z¢[0,Z], ye R, peR".
We then seb = 1 — 1/L ands = 1/L.
Remark 2.12. Suppose(z .) as in Definition 2.11 anfl| + |3| > L then
(L+ ) < C1+ gz o) 2 [0.2), y € RP p e R

Estimate P, ) is thus clear in this case.

Examples of symbols with such a property with> 2 are given in [22]. In fact we
prove thatc; satisfies PropertyR) for L = 2.

11



Lemma 2.13. Let oz Y, n7) be bounded w.r.t. z with values it@&P xR"). If g > Othen
g satisfies Property (B for L = 2.

Proof. Bounds w.r.tz are natural; we shall omit the dependencezamthe proof for
concision. We have to prove that

|8§8§q| <C@+ |n|)%(\dl—lﬁ\) 1+ q)l—%(\ﬂHlﬂD

The property is clearly true fae|+ |3 = 0 and forja|+|8| > 2 by the remark above. Let
us now treat the cage| + |8 = 1. For this we use Landau’s inequality: e €(R)
with f > 0 andf” is bounded then (see [4, page 40] and [10, Lemma 7.7.2])

1
2

(0] < 2 (F(D)? (fu]an"(tn)

We first treat the cade| = 1. Definep(y, 7) = (1+[712)2 q(y, 7). Thenp € SO(RPxR")
andaﬁ” p(y,n) is in S°(RP x R") and is thus bounded. We thus have
(L+ )2 13ya@s nl < C (L + P2 a(y,m)?,

which yields

50y, < C (L+n? (1+aW.m)?,
which is the expected estimate. Let us now treat the {#se 1, with for instance,
B =(10,...,0) anda = (0,...,0). Definep(y,n) = (1 + |;7|2)% qly,n). Thenp €
S2(RP x R") and thusag'g p(y, n) is bounded. We hence have
197y )l < C (P(y: m))?.
With
ApW.n) = (L+ )2 Fam) +na(L+ )2 oy ),

the triangular inequality yields

L+ I7®)7 1850y, )l < C (p(y. )? + Inal(L + %) a(y, )
< C(qly, M)Z((L + )7 + (alys m)?)
< C(qly. m)? (1 + )3

We finally obtain

a0y, mI < C (aly, m)? (1 + Inl) 2,
which is the expected estimate. [

Remark 2.14. If the symbolq(z v, n) satisfies PropertyR| ) then the amplitudg(z y', )+
d(z Yy, n) also satisfies Property?() (with derivatives w.r.ty, y’ andn).

Proposition 2.15. Letz .) be bounded w.r.t. z with values it@PxR") with o(z,.) >

0. Let gz .) satisfy Property (P) and definga(z y,n) = exp[-Aq(z Yy, n)]. Let me N.
Then ¢, is smooth w.r.tA, bounded w.r.t. z, with values irﬁﬁip x R") for A in any
interval [Amin, Amax] With Apin > O.
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Proof. ag&f,(qmpA) is a linear combination of terms of the form
A@5: 30 ... (3597 (@) ... (B A)d™ o

withO<l <mandaj+---+a+a1+...ax =aandby +---+ b +B81+...8c = .
We can estimate the absolute value of each of these termg, Bedperty P, ), by

CAN(L+ ) 2% (L + @) ™" g™y < C(L+ Iyl W+ AL

as (1+ g) k"t gmiakm,, < C. n

While the symbol expfAq(z y, n)] is bounded w.r.tz and smooth w.r.tA with A >
Amin > 0 with values inS)(RP x R"), this fails to be true aA = O:

x exp-Ad]la=o = -0 ¢ SHRP X R).

In fact when we want to control the behavior of explg] close toA = 0 we shall use
the following definition and lemmas.

Definition 2.16. LetL > 2, p = 1-1/L and¢ = 1/L. Letpa(zy,n) be a function
in €= (RP x R") depending on the parametefs> 0 and ze< [0,Z]. We say thap,
satisfies Property (Q if the following holds

Q) 8505(oa — pala-o)(z Y. ) = A™ B NP (7 y ),
forla] + |81 <L, 0<m<1-6(al+|8),

wherep(zy,7) is bounded w.rtA and z with values in $*/*(RP x R"). 1t
follows thatoa(z Y, 17) — pala=o(z Y. 1) is itself bounded w.r.tA and z with values in
SO(RP X R").

Lemma 2.17. Let oz .) be bounded w.rt. z with values inf@&P x R") and satisfy

Property (R). Definepa(zy,n) = exp[-Ad(z y,n)]. Thenp, satisfies Property (©Q
for A € [0, Amay for any Apax > 0. ASpala-0 = 1, pa is itself bounded w.r.tA and z
with values in §(RP x R").

Proof. In the proof all the functions and symbols will naturally bmipded w.r.tz. We
thus drop the variablehere for concision.

We define
.Oznﬁ = A7W6(|IY|+W|)3§5§(PA — pala=0).

We first consider the cage| + |8] = 0 with 0 < m < 1. We need to estimat&Zs2o7).
The casam = 0, |]a + b| = 0 has to be treated independently but is trivial: we clearly
have|p3®) = |os — 1| < C. We shall now estimati@2ap = |A""9305(os — 1)] in the
case wheren > 0 or|al + |b| > 0. For this we write

1
(2.14) o) - 1= = [ oty expE-saq. mlds
0
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1
We then have(y, 7) = — [ d7(s.y, n)dswith
0

aN(s.y,m) = Ay, 1) expl-sAq(y, m)]-
We prove that
19505eR (s Y )l < C(S)(L + )™ 1+28
with C(s) bounded w.r.tA andL* w.r.t. s € [0, 1]. The result then follows fop®°.
When computing‘)@‘@,?q? we obtain a linear combination of terms of the form
Ao a)(-sA) (8550 - . . (95+d)va) expl-sAd],
withag+ag +---+a=a bp+by+---+bc=Dh,

(wherek can be 0). Using Property() we find that the absolute value of such a term
is bounded by

CAl_m(SA)k(l + |n|)—|b|+6(\a+bl)(1 + q)k+l—6(\a+b|) eXp[—SAq]
< C§ﬂ+(5(|a+b|)—l(1 + |n|)m—p\bl+6lalA6(Ia+b|)(SA(l + q))—m+k+l—6(|a+b\) eXp[—SAq],

asl<CA+ ™AL +qg)™if m>0. Ifl :=-m+k+1-45(a+bl) >0 we use that
(SA(1 + ) exp[-sAg] < Cif0 <s<1,0< A < Apaxandq > 0 and we obtain the
following estimate

Csm+6(\a+b|)—l(l + |n|)Wp|b\+5|a]A§(\a+b|).
If | <0, (1+q)"is simply boundedd > 0) and we obtain the following estimate:
CAk+1—msk(1 + |n|)m—;)|b|+6\a|.

As m+6(jJa+ b)) -1 > —1in the considered case, both estimates exhibit boundarhat
in LY([0, 1]) w.r.t. s. We also have uniform bounds w.rA.as we have assumea< 1.

We now treat the case £ |o| + |8 < L, 0 < m < 1-6(al + |8]). We estimate the
absolute value of

33(92(pzuﬁ) = A7W6(|w|+|ﬁ|) 6§+aas+ﬂpA’
which is a linear combination of terms of the form
Ak—m—6(|u|+lﬁl) (a;llaglq) N (63k52kq) eXp[—Aq],

withay +---+ax=a+a,b; +---+ b = b+, wherek > 1. Using Property®,) we
find that the absolute value of such a term is bounded by

CAk—m—é(IaHWD(l + |,]|)—WI—\bI+6(I<YI+\aJ+IﬁI+Ib\)(l + q)k—é(IaI+IaI+W\+IbI) exp[—Aq]
<C@l+ |,7|)m—p(vf|+\bl)+6(lwl+\al)(1 + q)—é(lal+\bl)(A(1 + q))k—m—é(\aw)’l) exp[-Adq]
<C(l+ |n|)m—p(LBI+\bI)+6(IaI+\aI)’

ask—m-46(lal+ 8l) =1 -m-4d(lef +|8]) = 0 and 0< A < Amax. This completes the
proof. [
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Lemma 2.18. Let p\(zY,n) € SS(RF’ x R") satisfy Property (Q), such that pla-o
is constant. Let Af(z y,7) be bounded w.r.t. z and with values in $(RP x R") be
homogeneous of degree onejifor || > 1. Definerj(A, 2y, n) := n—Afa(z y, 7). Then

ﬁA(Ze Y, 77) = pA(Ze Y, ﬁ(A’ ZYy, 77))

satisfies property (Q for A syficiently small.

Proof. Take A small enough such that Lemma 2.10 applies. We first treatdle c
a=0,8=0. Leth = pala=o. Property Q.) gives

Bz Y. n) = Pa(z Y. M)la=0o = Pz Y. (A, 2y, m)) = h
= A"qTzy,7i(A, 2y, ), O0<m<1

with q°%(z y. 7(A, 2y, )) bounded w.r.tzandA with values inST(RP x R"). Let now
1<|ol+|8 < L. 6;’6‘; Pa(zy,n) is a linear combination of terms of the form

350, Pa(Z Y. (A 2.y, ) 510, (A 2.y, ) ... OO Ti(A 2. Y. 1)

with |Bol = k, 8 =81+ -+ Bk anda = ag + - - - + ax. Note thatk > 1 andja;| + |Bi| = 1,
i =1,...k By Property Q) this term is thus of the form

(2.15)  Am etz y (A, 2.y, m)) O (A 2 Yom) . O (A 2. Y. ),

with 0 < m < 1 - §(|aol + |Bol) anqu“’Oﬁ"(z, Y, (A, Y, n)) bounded w.r.tzandA with
values inS] *¥o*ol(RP « R") by Lemma 2.10 .

Assume first that, for this term|+|8i| = 1 for alli = 1,..., k. ThenXK, |ai| + (8] = k
and|ag| + |Bol = la| + |B]. The termﬁﬁ‘c’)ﬁiﬁ(A,z,y, n) in the product (2.15) belongs to
SYA(RP x R") and thus (2.15) is of the form™ (BT (z y ) with & in
SL(RP X R") with | = m— p|Bo| + Slaol + k= [B1] = - - - = Bl = M+ 6(|Bol + o) — |BI. As
laol + |Bol = || + |8l we havel = m+ §(|a| + |B]) — |8l = m— p|B| + §la|. We thus obtain
the expected result in this case.

Assume now that there exisitss {1,...,k} such thata;| + |8i| = 2. Then the term
63‘65'77(A,z,y, n) in the product (2.15) is equal ma;'iafj' fa(zy,n). Thus the term
(2.15) is of the formpt+m+olacBad Geof(z v ) with " in S}(RP x R"). As above
I = m+ §(aol + |Bol) — |B8l. In the present caseo| + |Bol < || + |8 which yields
I < m-p|B| + Slal and hence the expected result since h + 6(|aol + [Bol) = 1 >
m+ 6(lal + |Bl). [

Lemma2.19. Let f € ¥°(R) and ay(z Y, n) in €~ (RPxR") that satisfies Property (Q
and such that g(z .)|a=o is independent of y ang Then {q,)(z Y, n) satisfies Property

(Qu).

Proof. Again bounds w.r.tzare clear. We first treat the cajgé¢+ |8] = 0. We write

1
£(0s) — F(Gslazo) = (ds — Galao) f #((1 - 90alaco + SGr)ds
0
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As gnla-0 is independent of andn, theng, is bounded w.r.tA with values insg(Rp X
R") by Property Q) and so are (2 5)gala-o0+ S and f’((1—9S)dala-0+Sq) by Lemma
18.1.10 in [8] with bounds itsg(Rp x R") uniform with respect te. We thus obtain
thatfol f((1 - 9)gala=o + su)dsis bounded w.r.tA with values inSS(Rp x R"). We
conclude using Property( ) for g —gala-o. Let us now treat the case<l|a|+|8] < L
and choose @ m< 1 - 6(la| + |8]). We see thaﬁ‘y’aﬁf(qA) is a linear combination of
terms of the form

(050 a) - (95407 on) T,

wherek > 1, a3+ +ax = a,B1+---+ B« = B. Now choose & my < 1-6(|ai| + |Bil),
i=1,...,k suchtham=my +--- + me. Then Property@,) yields terms of the form

AMuto(adl+Bal) Aw+6(lwk|+lﬁk\)qz1mﬁl . qzwkﬁk _ Am+6(\a\+WI)qznﬁ

with o', i = 1,...,k bounded w.r.tA with values inS)' *“**Pl(rP x R") and
qr? = gL g We note thatf®(q,) is bounded w.r.tA with values in

SY(RP x R"). The symbol{"” is bounded w.r.tA with values inS]"****(RP x "),

which yields the result. [

With Remark 2.14, Lemma 2.19 and the previous lemma we offtaifollowing corol-
lary.

Corollary 2.20. Let f € ¥(R) and let dz .) bounded w.r.t. z with values int&P x
R") satisfy Property (P). Define

Pa(zY,Y.n) = expl-A(Q(z Y, m) + Az Y. m)]-

Then f(p,) satisfies Property (Q. As f(pa)lazo = (1), f(pa) is itself bounded w.r.t.
A and z with values in §R?P x R").

Note that the property(, ) is stable when we go from amplitudes to symbols.
Proposition 2.21. Let g;(z x.y.£) be an amplitude in XR?” x RP) depending on the
parametersA > 0 and z € [0, Z] that satisfies Property (Q. Theno {gs} (z X, &)
satisfies property (Q.

Proof. We use the oscillatory integral representation for the syimb

o (0} @ X&) = ff expl-icyin)] da(z X X—y. & — ) dy dy.

LetO<|a/+|8 < Land 0<m< 1-6(al+|8]). Computing@‘;é‘ij(o-{qA} — o {Oa}|a=0),
we obtain a linear combination of terms of the form, with+ a»> = «,

[[ expticyim) a5 - aala-o)(@ x X y.& - 1) cn y

= ff expl-iyn)] Am+5(lfll+|ﬁ\)q?(01,az)ﬁ(z’ X, X -V, & — 1) di dy
— Am+6(\a\+|ﬁ\)o_ {qz‘(al,az)ﬁ} ’

whered**? is bounded w.r.tA andz with values inS) "#"*|(r? x RP). As the
mapa — o {a} maps bounded sets into bounded sets the result follows. [ |
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We shall also need the following lemma.

Lemma 2.22. Let oy(z X, Y. £) be an amplitude in FR? x RP) depending on the pa-
rametersA > 0 and ze [0, Z] that satisfies Property (Q for 1 < |a| + |8] < 2 and such
that o (z .)la=0 is independent ofx, y, £). Let r(x, &) € S3(RP x RP) for some se R.
Then

o (s H(Z % €) = a2 X % €) 1(%,8) = A™® A0 (2 x,£), 0<m< p -5,

where the function}'(z x, ¢) is bounded w.r.tA and z with values in S*S_(’"‘”(Rp X
RP).

Proof. For the sake of concision we tale= 1 in the proof but it naturally extends to

p > 1. We writed, = gar. Using the oscillatory integral representationoofg,} we
obtain

a {qAr} (L X, ";:) - qA(Z X, X, f)r(X, é:)
- f f expLi Y — MI(Aa(Z X X~ y.1) — Aa(2 % X, 7 iy dly.

Taylor's formula yields
O-{qAr} (L X, é:) - qA(Z X, X, f)r(X, é:)

1
- f f f —yexpl-icylé — )] 31a(z X, x — sy.1) dip dy ds
0

With an integration by parts we obtain
o {qAr} (Z, X, f) - qA(ZJ X, X, f)r(X, f)

1
_ f f f | XLy — )] D3dala(z X X — Sy.7) dy dy ds
0

1
- o-{—i f 030aa(Z X, (1= X+ sy &) dst |
0

wheredsdada(z X, Y, £) = (Oy0da)(Z X Y, €) T(X.€) + OyUa(Z X, Y, £)r (X, &), asr does
not depend ory. The first term is treated using Proper,( while for the second one
we write

aqu agr — An’{+é qu(o,l)o agr,

where 0< ' < 1- 6 andq) @ r e ST+ 1+(R?P x RP) by Property Q). We
actually takes < m' < 1 -6 and writem=m — §. We obtain

aquagr — Am+26 qrAn’

whered" is bounded w.r.tA with values inS)"****°(R?" x RP) and 0<s m< 1 - 26 =
p — 6. We conclude since the mag{.} maps bounded sets into bounded sets. =
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We shall need the following result.

Proposition 2.23. Letl <p < landset = 1—p. Let f(x, &) be a real non-negative
%> function that satisfies

(2.16) I Il < &),
(217) 1O <Coa@, ol =1 10PN <Cp 1BI=1,

and

(2.18) A50Lp(x &) € SR X R, for o+l = 2.
Then there exists a non-negative constant C such that
Re(p(x, D)u, U)22 > —CllulZ,, ue 7 (R").

The constant C can be chosen uniformly if the symbol p remaiasset such that
the constants in (2.16)—(2.17) are uniform anaﬁ‘jﬂ?p(x, &), la + Bl = 2, remain in

bounded domains offS™ " #l(X x R") respectively.

In other words, for the partial fierentiation of order zero and one the sympdbe-
haves like an eIemeﬂio and like an element cSZ“; for higher-order derivatives. The
result we prove is of the form of the sharp Garding inequalMgte that considering
p(x, &) to be inSé(Xx]R”), we cannot directly apply the usual sharp Garding ineguali
to obtain a lowel.? bound wherj < p < 1.

Proof. We follow the proof of the sharp Garding inequality as giver{i4, Section
3.4] and [25, Chapter VII]. We introduce the following fuimt

(2.19) (&) = &)™ (&) (L - &),

whereq is real, even, belongs ©6>(|¢] < 1) and satisfieg q(¢)? d¢ = 1 and we set

WL %.8) = [ F(Z.)p(x n)F (€. 1) o,

which is the so-called Friedrichs’ symmetrization of thenbpl p. By Theorem 3.4.2
in [14], sincep(x, &) € S,}(X x R, the functionu(Z, x, £) is a double symbol that

belongs tcSé’o(R“xXxR”). For the notion of double symbols see [14]. Note that since
we are not interested in an asymptotic formula s, y, £) the first part of the proof

of Theorem 3.4.2 in [14] applies to the case § = % Then we have:(Dy,y, Dy) =

v(X, Dy), with the symbob(x, &) € S},(X x R") given by [14, Theorem 2.2.5]

w08 = [[ explicyie - Olute. x- y.&) dy .

as an oscillatory integral. The operaigk, D) is formally self-adjoint and/(x, Dy) is
non-negative as an operator, i.e., o .”(R") we have [14, Theorem 3.4.3]

(v(x, Dy)u, u)(LZ,LZ) > 0.
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Next, we study the properties of £ p)(x, £). We set

(e = ue.x.8) = [ Flenplemdn = [ pocé + ooy do
1
= p(x9) + [ [(@- 932pix € + @k r@, o) ds do)? dor
0

by the second-order Taylor formula using thiad(c)?de = 1 and that is even. We
observe thajr| < 1 on the support of the functiag(c-) which gives

(2.20) ClE) < (E+(&)2a) < CE).

From (2.18) we thus obtain thag(x, &) — p(x, &) € SS(X x R"). We now prove the
following lemma.

Lemma 2.24. The symbo(y — vo)(x. £) belongs to §(X x R").

Proof. We first define

(221) vi(x&) = =i ) 0, 051(& X E)lpme = =1 ) | f 0, F(£,m) 9, p0x, ) F(,m)
] ]

and prove thati(x, &) € SS(X X RM). From [14, Lemma 3.4.14;, F (¢, 77) has the form

G5FEM=©™" D 1@ (1-8©7)" @b - )© ),

[yI<1, y1<y

1+dy—
wherey, ,, € Sljley 7I(RM). From the definition of in (2.19) we write thejth term
in the sumin (2.21) as

(222) W) =-ike™ > 40 f (- 8x@72)" @) - £ 7?)

YI<L, ya<y

x 3, P(x. 1) ((n — £)€)"%)
=i DT U@ [ 07 (0N0) ) Pk £ + @) dor

[yI<1, y1<y

after a change of variable. There are two cases to considéeisum in (2.22): a)
v1 = y and b)y; = 0 andly| = 1. From (2.20), and (2.17) and from the fact that
Yy, € SI’%)(R”) we find that the contribution from casg, i.e.,

WO =i Y 1,0 [ o7 @) 6r) 35 P+ @) dor

Iyl

satisfiesjv(li’a)(x, ol <C. Computinga(;a?v(lj’a)(x, &) we find it to be a linear combina-
tion of terms of the form

AT f o (@)(e) o) B0y, P £ +(€)20) o, with By + B = .

lyl<1
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From (2.20) and (2.18) we see thgo”d, p(x. £ + (€)70) is in SHEPD(x x )

uniformly w.rt.o, o] < 1 andaﬁlzpy,y(g) is in Si%)_w(x xR"). As a resulty(lj’a)(x, &)

belongs toSS(X x R"). We now consider the contribution from case b) in the sum in
(2.22), i.e.,
W0 = i ) ol®) [(@1a(e) o) By P+ (@) ) o
=1

We write
1
By P4 €+ (©20) = 0P +©F Yo [(@sdPIxE + tr@ D
' 0

Since [ d}.q(o) g(o) do- = 0 (g is even), the first term gives no contribution and we
obtain

1
W0 = i@ Y 0ol [ [@10) 60) (050 P + 1@ dt o
0

=1l

Since by (2.18)0;0x,p(x.¢) € SS(X x R") andy,o(¢) € SL%(R”) we obtain that
VP (x,€) € SYX x R") from (2.20).

We have thus proven that(x, £) € SJ(X x R"). We now computey(— vo)(X, £).
0= vo)x.&) = [[[ expl-ityie - OIF (. m)p(x - y.m)Fe.m dy o i
- [ Feem?pocn dy
= [[[ expl-icvie - 1F () (x - yom) = pOx ) F(em) ly i

1
= —Yj expl=i{yl§ — OIF (L, m)dx; p(x — sy, mF (&, ) dy & dip ds
[S [ ol SYFEN

1
=i [ 3 [[] expl-icyte - 15 F(e.n)os, pix - syn)Fe.n) dy e dy ds
o J

after an integration by parts. Arguing similarly, compatiw —vo — v1)(X, &), we obtain

(=v0 = V() = -i fl > [[[ exeticsie - 10 Feen
o |

x (85 p(x — sy, ) — x P(x.m)) F (&, n) dy & dy ds

_ fl fl S-Zl f f f expl-iylé - 0107  F(¢.n)
00 )

X %, P(x— Sy, n)F (&) dy & dyp ds ds

11
_ _G{U Szllfaz’éw’”)aii’x' (L - $9x+ §' sy, 7)F(& mdnds dé}.
00 )
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Observing that
11
BOcy.n) i= [ [ 5% (2~ 9%+ ssy.m) ds d
00

isin Sl{(X x 'Y x R") by (2.18), and then following the proof of Theorem 3.4.21d]
we find that its Friedrichs’ symmetrization,

Ax.v.8) = [ FEnpixyFEm dn

is in S%(X x R" x Y x R") and thusd? ,fi(x.¢,y.€) is in SPPX x R" x Y x R")
and finally we find ¢ — vo — v1)(X, &) € SS(X x R") by Theorem 2.2.5 in [14]. With

vi(x, &) € SS(X x R") as proven above, this concludes the proof. [ ]

End of the proof of Proposition 2.22s a consequence of the previous lemma we find
that ¢ — p)(x,£) € SY(X x R") and we have

Re(p(x, Dy)u, )22y = (v(X, Dx)u, U)2,12) + Re((p — v)(X, Dyx)u, U) 2 12)

2
> —Cllull{z,

by the Caldedn-Vaillancourt Theorem (see [14, Chapter 7, Sectionsdr,225, Sec-
tion XIII-2]). [
The following result is at the heart of the precise Sobolesrafor-norm estimation of
the thin-slab propagat@; ;.

Theorem 2.25. Letpa(z X, &) = exp[-Aq(z X, £)] with (z, x, &) satisfying Property (P).
There exisi\4, > 0 and C > 0 such that

lloa(z X, Dy)llz,2) < 1+ CA,

forallzZ,ze[0,Z] suchthaD < A =7 —z< A4.

Proof. In the proof, we shall always assume thats suficiently small to apply the
invoked properties and results. By Lemma 2oLz, X, &) satisfies Propertyd.). We
prove that fa(z X, Dx) 0 pa(z X, Dx)*U, U)2,12) < (1+CA)||u||f2 forallue #(R"). The
WDO pa(z X, Dy) o pa(z X, Dy)* admits the amplitude

Pa(z X Y.€) = expA(A(z x.) + q(z Y. )],
which satisfies PropertyQ ) by Corollary 2.20. We then obtain

o {Pa(z XY, €)} — exp[-2Ad(z X, £)] = Ada(z X, €),

whereda(z X, €) is bounded w.r.tzand A with values inSE(X x R") by Lemma 2.22
(usingm = p—¢). By the Caldebn-Vaillancourt Theorem (see [14, Chapter 7, Sections
1,2] or [25, Section XllI-2]), we shall obtain the desirediemte for px(z X, Dy) o
Pa(Z X, Dy)*u, u) 2,12 if we prove Re(expf2Aq(z x, Dy)Ju, )22y < (1 + CA)||u||ﬁ2

for allu e .7 (R").
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We setra(z x, &) = (1 — exp[-2Aq(z x, £)])/A for A > 0 and observe thaty(z x, &)
satisfies the conditions listed in Proposition 2.23 unifigrm.r.t. zandA. In fact, a
first-order Taylor formula givelira(z x, £)|| < C(£). By Property Q) we obtain

oAz X I <CE, ld=1  [8frazxdl<C 1B=1

usingm = p in (Q) in both cases. Finally, itr + 8| = 2, we obtain thaﬁ(;a?rA(z, X, &)
is bounded uniformly w.r.z and A with values inS;* "X x R") by choosing
m=p-4in(Qu).

By Proposition 2.23 we thus obtain Rg(z X, Dx)u, U)2,2) > —C||u||f2 forallu €
< (R™ which yields

[lull?, — Re(expF2Aq(z X, Dy)Ju, U)z 2 > —CAJlulZ,,
which concludes the proof. [ ]
We are now ready to give an estimate of the operator norm dhtheslab propagator,
Gz, IN LHO®R"), HORM) for anys € R.
Theorem 2.26. Let se R. There exists M> 0, As > 0 such that

IGz 2llHo,HEY < 1+ MA,
forallz,ze[0,Z] suchthaD <A =7 —z< As.
In the proof we assume thet satisfies propertyR,) for someL > 2. We know that
it is always true folL = 2 by Lemma 2.13 but special choices f@rcan be made. As
before we use = 1 - 1/L ands = 1/L with p > for L > 2andp = ¢ = § for L = 2.
In the proof we proceed classically by computi@g ) o Gz and use the classical
results onyDOs (see e.g. [18, Section 5] and also [7]). Here we howeveaotioontent
ourselves with the continuity @ » but we want to obtain a precise estimate of the
operator norm irL.(H®(X), H®(X")), which will be required in the sequel. Here we

exploit the fact thatA can be taken arbitrarily small which allows to carry out some
explicit computations.

Proof. Lets € R, then the kernel i, ) := G 5 o EC is given by
A X) = [ expldea(X. O] gealX.8) (€ °d

Computing the kernéD(z , of Dz 5 := Ar .5 © A, ,) We obtain

D(Z'»Z)(X/’ X) = fexp[KX/ - le) +iA (bl(zv Xl? ‘(;:) - bl(z; X, f))] d(Z',Z)(X/7 X, f) dg

where

d(Z’,Z) (X/’ X, é:) = EXp[—A(Cj_(Z, X,’ ‘i:) + C]_(Z, X, ‘(;:)] g(Z’,Z)(X/’ g) g(Z’,Z)(X’ ‘f) <€:>723-

We writeby(z X', &) — bi(z x, &) = (X' — x|h(z X, X, £)) where the functiom is smooth,
homogeneous of degree onetiné| > 1, and continuous w.r.zwith values inS*(X’ x
XxRM by Assumption 1.1 and estimate (1.1.9) in [10]. We thus iokiteat the change
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of variablest — £+Ah(z X', X, &) = Hia zx x/(£) is @ global difeomorphism foA small

enough (uniformly irz € [0, Z]). Let £(A,z X, X, &) = H(_Al,zx/,x)(f)- We thus have

D(Z’,Z)(X/’ X) :f eXp[KX/ - X|§>] d(Z’,Z)(le X, E(A’ Z, X,5 X, é:)) jA(Z’ X/a X, é:) df

whereJx(z X, x, &) is the Jacobian.

Lemma 2.27. The functioré(A, z X', x, £) is homogeneous of degree onejrior |¢] >
1, continuous w.r.t. &> w.r.t. A with values in $(R?" x R") if A is small enough, i.e.,

AAs > 0, &€ €9([0,Z], ([0, As], S* R x RM)).

This lemma is in fact a variant of part of the results of Prafp@s 1.5 in [14, Chapter
10].

Proof. Homogeneity is clear. We have
(A, 2 X, X &) = 1€ — ANz X, X, E(A, 2 X, X, €))|
<1+ AC(+ €A Z X, %,8)), é=1,
which yields, because of homogeneity,

1+A

EA 2 X %8l < T- A§(1+ €, 1€l = 1,

for A small enough, uniformly chosen w.rz< [0, Z], X, x € R". Differentiating the
j" coordinate of,

& = E(A2X, %8 + Az X, % E(A, X, x.€), j=1,....n,
w.r.t. x yields
(223) 6Xigj (A7 Za X,’ X’ g) + Aaxl h](27 X,’ X? S(A’ Z? X,9 X’ f))
+A Z 9zhi(Z X, % E(A, 2, X, X,€)) 0x&(A, 2 X, X, €) =0,
]
i=1,...,n

The partial derivatives dfi are bounded folg| = 1. We can solve foBNS(A, Z X, X&)
when A is suficiently small and find the expected estimate from that obthifor
§(A,Z X, %, &):

3C > 0, |0xE(A, Z X, %, &) < C(A+ &), X,xeR", £ e R".

Differentiating w.r.tx/, &, andA yields similar structures and the proper symbol esti-
mates. The proof carries on by induction. Note that the reqisize forA to solve the
systems of the form (2.23) remains fixed along the inductiocess. [ |

Continuation of the proof of Theorem 2.2Brom (the proof of) Lemma 2.27 we also
obtain that the Jacobiafix(z X/, X, &) is homogeneous of degree zerdiné| > 1, and
is continuous w.r.zand% ™ w.r.t. A with values inS°(R?" x R").
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We write pa(z X', X, &) := exp[-A(c1(z X, &) + c1(z X, £)]. As c; satisfies PropertyR )
we then havep, satisfying property @ ) by Corollary 2.20. Defingoa(z X', X, &) =
Pa(z X, X, E(A, 2, X, X, £)). Since

S(A’ Z Xl7 X&f) = é‘: - Ah(z: XI’ X,S(A, Z le X, é:))

Lemma 2.10 and Lemma 2.27 yield that € SJ(R* x R") for A small enough.
Lemma 2.18 yields thab, satisfies Propertyd, ). We then have

dz (X, % E(A, 2 X, %, &) Ta(z X, % &) =: pa(z X, %, &) ka(z X, %, £),

wherek,(z .) is bounded w.r.tzand > w.r.t. A with values inS=25(R?" x R") and
Ka(z X', X, E)la=0 = (£)7% by Lemma 2.10 and Lemma 2.27. By Theorem 1.1.9 and
formula (1.1.9) in [10] we obtain

Ka(z X, %, €) = (€)% + Aka (2. X, X, €),
wherek, is bounded w.r.tzand¢™ w.r.t. A with values inS=25(R2" x R").

Call Fizz = EO® 0 Dz 5 o EO. Its symbol is inSI(R" x R") and is given by

fza(X,&) = (O #o (palz X, %, &) Ka(Z X, %, &)} #(£)°)(X, €)
= (©°# o {Pa@ X, % &)%) #(&))(X.€)
+ AU # 0 {paz X, % Oka(2 X, %, €)} #(E))(X.£).

As p, is bounded w.r.zandA, A small enough, with values iB(R*" x R") (Property
(QL)) we obtain that the second term in the equation above sstitfe same property
and thus we can write

1
Feo = ?:(Ezl',z) + A7:(z’,z)’

whereff(;z)

has for symbol
(& # o {palz X, % E)E) %} #(£)°)(X, )

and|[ 7 ,llaz1z) < K*, uniformly inz € [0, Z] andA, A small enough, by the Caldn-
Vaillancourt Theorem (see [14, Chapter 7, Sections 1,226y $ection XIII-2]) in the
casel = 2 and by Theorem 18.1.11 in [8] in the cdse 2. With Lemma 2.22 we see
that

o {Paz X, X EXE) ) = pa(z X, X, ()% = Ala(z. X, &),
whereA, is bounded w.r.tA andz with values inS;ZS(R” x R"). We thus obtain
Feo=Tea* Mo
where?—‘(’;’z) has for symbol

f2(z X, &) 1= (&) # paz X, X, E)E Z# () X, €)
= (O #paz X, X, EXE )z X, €)

and|lF »lloz.2) < K? uniformly in z € [0,Z] andA, A small enough.

For the rest of the proof, if we don’t write it explicitly, bgx and pa(z x, £) we shall
actually mearpa(z x, X, £).
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Lemma 2.28.

(Y # a2 )2 X E) = Palz X&) = Aua(z X, €),
whereua(z x, &) is bounded w.r.t. z and with values in $(X x RM).

Proof. We write

Pa(z X&) = (&) f f expI-i(ylé — )] (7)° paz X &) di dy

and thus obtain, with the oscillatory integral represeéatafor the composition for-
mula,

(Y #paz ) )Z X E) — palz x.é) =
&s ff expl=iylE — m] () (pa(z X =V, &) — pa(z %, &)) dn dy.

With Taylor’s formula and applying an integration by parg find (we have supposed
n = 1 for the sake of simplicity but it naturally extendsrt@ 1)

(P #PAZ )Nz X E) - palz x. &) =
1
— f f f | expLiYIE — )] 8,y(1)° xPa(z X — 1y, &) di dy d.
0

Using Property Q) with m= 1 -6 we find

(O # Paz ) )2 X&) — Paz X&) = —AE)™S
1
f f f | exploitylé - m] 8, Az (L - 1)x + r(X— ), &) dy dy dr
0

= —AE)(0E)° # U2 U, X, ))luxs

where
1
Az U x.8) = f A (@ -nu+ g dr
0

As G is bounded w.r.tA andz with values inS}(R*" x R") we obtain the result. m

End of the proof of Theorem 2.28/ith the previous lemma we see that
Fea=Tea* MGy

Wheregf(;’z) has for symbolpa(z, X, X', &) and||7—'(§yz)||(Lz,L2) < K3 uniformly in z €
[0,Z] and A, A small enough.

From Theorem 2.25 we ha‘Mé’ﬁé,’z)”(Lz’LZ) < 1+ AK?, for someK* > 0. We thus obtain
that||F(, llz2 < 1+AK whereK = K+ K2 + K3+ K. With the definition ofF(, ,
it follows that

Gz 2 lHo 1) = (G z.2) lHo Hoy < VI+AK,

which concludes the proof of Theorem 2.26. [
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We observe that fat small enough, the functiofx’|£) + Aby(z X, &) satisfies the con-
ditions P)-(i), (P)-(ii), and @)-(iii) in [13, page 2]. With Lemmas 2.13 and 2.17, we
observe that an FIO with phase functigg (X, x,£) and amplitude inra(z X', ¢) in
S™M(XxR) may actually be understood as an FIO with real pRasex|é) + Aby(z, X, &)
and amplitudera(z X', &) exp[-Aci(z X', £)] in S(Xx R). Applying Theorem 2.5 and
the following remark in [13] we obtain the following proptien.

Proposition 2.29. LetA , be the global FIO with kernel

A (X, %) = [ explid(z(X. X £)] oAz X. &) d

with oa(z .) bounded w.r.t. z with values in"§X x R"), m € R. Then for all s€ R
there exist M= M(s,m) > 0 andAg > 0 such that

||57[(Z"Z)||(H(S),H(S’m)) <M p(O'A(Z, ))

forall z € [0,Z], and0 < A < Ag, Where (§.) is some appropriately chosen seminorm
in SM(X x R").

This proposition could also be proven by adapting the prédfteorem 2.26 to this
case. Note that in the case, = g, we were able, in the proof of Theorem 2.26,
to achieve a finer estimate. The proof heavily relies on thiéquéar structure of the
phase function and the amplitude that can be taken as “chxsele want to those of
the identity operator by taking small enough.

3 The approximation Ansatz. Convergence in Sobolev spaces

We first define the Ansatz that approximates the solutionaipeto (1.5)—(1.6). We
choose to use a constant-step subdivision of the interval] [But the method and
results presented here can be naturally adapted to anysibdiof [0, Z].

Definition 3.1. Let$ = (Z9,2Y, .. ZV} be a subdivision of0, Z] with 0 = Z9 <
2V < ... <AV = Z such that ¥V — 20 = Ag. The operatorWy , is defined as

Q(Lo) if 0<z< Z(l),

1
(Ws = .
$.z Q(Lz(k))l_[g(z(i)’z(ifl)) if zK <z< A,
i=k

The following proposition will be useful in the sequel.

Proposition 3.2. Let s € R. There exists K> 0 such that for every subdivision
P = (29,249, .., ANV} of [0,Z] with0 = Z0 < ZV < ... < ZN) = Z and Wy, as
defined in Definition 3.1 we have

Vze [0’ Z]s ||(W*B,z||(H(S),H(S)) <K,

if Ay is small enough.
Proof. By Theorem 2.26 there exitsl > 0 such that ifA = Z — zis small enough
then |Gz »lloney < 1+ AM for all z € [0,Z]; we then obtain| Wy Alle ne)y <

(L+AgM)N = (1 + Z¥)N which is bounded as it converges to eZp] as N goes to
00, |
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It should be first noticed tha’y; , is not the solution to problem (1.5)—(1.6) even in the
case where the symbdbsandc only depend on the transversal variableWhile sin-
gularities propagate along the bicharacteristics astatiaith —Im(a;) = by, observe
however that, with the form of the phase functigg , in (2.8), the operatoG ,
propagates singularities along straight lines. See Pdfidrlfurther details, in partic-
ular regarding the sel, »r that replaces the canonical relation for the propagation of
singularities for FIOs with complex phase [9, Sections Z4.4

Furthermore, by composing the operatGs ») andG» ), one convinces oneself that

Gz *Gzz2)°Gz2

in general ifz’ > Z > z € [0, Z] (use again that singularities propagate along straight
lines). The family of operator€z ) 20,71 is thus neither a semigroup nor an evo-
lution system.

We now proceed towards the proof of the convergencB/gf; to the solution operator
to problem (1.5)—(1.6) in the sense of Sobolev normil as|3| goes toco.

Lemma 3.3. Let se R and Z,z € [0,Z], with z < Z’. The map z~ Gy, for
Z €[z 7’], is Lipschitz continuous with values ifHL*D(X), HO(X)), for 2/ —z= A
small enough. More precisely there exists@ such that for all g € HS*D(X) and
20,22 ¢ [2,2']

(3.24) (G2 — G 2) (Ul < CIZ2 = 29 lugllisrn-
Proof. LetZV, 22 € [27, 7] and letup € HS(X). Write

(G2, — Gz ) (Uo)(X) =
2
- f ff expli{X' — X&) = (Z — 2a(z X, &)] a(z X, &) upg(X) dx d¢ dZ.
2
WhenA is small enough we can apply Proposition 2.29 and obtai®}3.2 [
Lemma 3.4. Let se R, 7,z € [0,Z], with z< Z’, and let iy € HE*D(X). Then the

map z = G .5(Uo) is in €°([z 2], HED(X)) n € ([z 2], HO(X)) for 2" —z = A
small enough.

Proof. Let 2V € [z Z’] and lete > 0. Choose?’ — z small enough such that Theo-
rem 2.26 and Lemma 3.3 apply and chooses H$*2) such that|ug — Uyl < &.
Then forZ? e [z, 2']

(3.25) IG2,5(Uo) — G 2 (Uo)llHen < |G (22,2 (Uo — Un)llHes
+ 1G22 (U1) = G 2 (U)llHew + |Gz .2 (Uo — Un)llHe
< 2(1+ AM)e + C|Z? — ZY)|juy|lye2.

The continuity of the map follows. EerentiatingG» »(Up) W.r.t. Z we can prove that
the resulting mag — 8, Gz »(Uo) is Lipschitz continuous with values L(H 2, HO)
following the proof of Lemma 3.3: there exigBs> 0 such that for all € HE*2)(X)

102G (2.2 — 02 G20 ) V)llHe < Cl12? = Z9|Vl|ys.
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We also see that the map— 9,G (V) is continuous fromH®D into H® with
bounded continuity module according to Proposition 2.29thW, € H®E D (X) we
make a similar choice far; € H®*2)(X) and obtain an estimate for

102 G 2.2 (Uo) — Oz G(zv 2 (Uo)llHe

of the same form as in (3.25). [

The two previous lemmas yield the following proposition.

Proposition 3.5. Let se R,  a subdivision of0, Z] as in Definition 3.1 and letqle
HED(X). Then the maghy ,(uo) is €°([0, Z], HE (X)) and piecewis&™ ([0, Z], HO (X))
if B is chosen such thaty is small enough. The map-2z Wy ,(Up) is in fact globally
Lipschitz with C> 0 such that

I'Wy 7 (Uo) — Wes 2(Uo)llne < ClZ — Zl|Uollyes.
We recall that(Z, 2) is the solution operator of the Cauchy problem (1.5)—(1V8§

can then apply the energy estimate (1.7Vi@, 0)(ug) — Wy (Uo) (adapt the proof of
Lemma 23.1.1 in [8] to the case of a Lipschitz piecevii&efunction) and obtain

(3.26) ?ouzF]) exp[-17] |lU(z 0)(uo) — We 2(Uo)llne
z[0,

VA
<2 f expl=A7] 113 + (% Dy)) W o(Uio)lls Az
0

Letug € HED(X) and letP = {29, ..., ZV}. We takez €]Z9, Z<Y[. Then
(02 + az(x, Dy)) Wy 2(uo)

1
= (02 + a;(x, Dy)) [g(zz(k))l_[g(z('),z('l))(UO)
i=k

= (07 + 8(X, Dx)) (G (W)

1

with uy := l_lg(z(i)’z(ifl))(uo) which is in H&D(X) by Theorem 2.26. We first turn our
i=k

attention towards the ternd{+ a,(x, D)) (G.z»)(u)) for anyu € HED(X) as the

norm ofu, in HE*D(X) remains under control even|i| = N becomes very large by
Proposition 3.2:

(3.27) IK >0, (ludlpen < Klluollhes, K€ {0,..., N},
N = [B| € N, ug € HE(X), if Ay is small enough.
We shall need the following lemma which is a variant to Lemn222

Lemma 3.6. Let qy(z x.Y.£) be an amplitude in R x RP) depending on the pa-
rametersA > 0 and ze [0, Z] that satisfies Property (Q and such that g(z, .)|a=0 = 0.
Let r(x,y, &) € SS(R?P x RP) for some s R. Then

o {0 H(Z % €) = Qa2 X% X%, 8) 1(X%, X&) = A™ PNz x,£), 0<m< p -5,

wheredT(z x, £) is bounded with respect tvand z with values in &> ¢~ (RP x RP).
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Proof. We proceed as in the proof of Lemma 2.22 (we tgke- 1 for the sake of
concision). We obtain

1
o {Oar} (z X, &) — Qa(Z, X, X, E)r (X, X, &) = —(r{i f 0304AA(Z X, (L — 9)X + 8y, &) ds},
0

where here

0304AA(Z X, ¥, &) = (0y0:Ur)(Z X, ¥, €) T (X, ¥, &) + OyAa(Z X, Y, €)OeT (X, Y, €)
+ aqu(Z, X, y’ ‘f)ayr (X7 y? ‘f) + qA (Z; X, y’ -f)aya-fr(x’ y’ ‘i:)

The first two terms are treated like in the proof of Lemma 2R&.the third term, with
Property QL) we write

DeQa Dyr = AT qf(oo)l or, 0<m' <1-¢,

whered]' ®?* dyr € SJTTP(R? x RP). We actually takes < nt < 1 - & and write
m=m —¢§. We obtain

aqu 6yl’ = Am+2§ qT,

whered" is bounded w.r.tA with values inS)****°(R?" x RP) and 0s m< 1 - 26 =
p — 6. For the fourth term we write

Q= A" o< <1,
whereq]] % ¢ Sy (R?P x RP) by Property Qi) sincedala-o = 0. We actually take
26 <m <1 and writem= ' — 26. Then

Oadyder = A™ 2N,

whered? is bounded w.r.ta with values inS)™> ¥ ) (R? x RP) asm+ s~ 1+ 25 =
m+s—(p—-6)and 0<m=< 1-25 = p—-65. We conclude like in the proof of
Lemma 2.22. [ |

For the next proposition we shall need the following assimnps announced in Sec-
tion 1

Assumption 3.7. The symbol &, .) is assumed to be it¥’([0, Z], S*(R" x R"), i.e.,
Lipschitz continuous w.r.t. z with values iR(B" x R"), in the sense that,

aZ,x &) -azx¢é)=(Z-247Z,2x¢), 0<z<Z<Z
with &(Z, z x, &) bounded w.r.t.”zand z with values in §R" x R").

Proposition 3.8. Let se R. There exista\; > 0 and C > 0 such that for z— z = A,
Ae [0, A7], .
102 + az (X, D)G(z 2o He) < CAZ.

Like in the proof of Theorem 2.26 we assume tbatatisfies propertyR ) for some

L > 2. We know that it is always true fdr = 2 by Lemma 2.13 but special choices for
c; can be made. As before we yse= 1 - 1/L andé = 1/L with p > § for L > 2 and
p=6=3forL=2.
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Proof. With Assumption 3.7 and Theorem 2.26, we have
ll(@z(x, Dx) — @z (X, Dx))Gz 2o 1y < CA.
It is thus sdficient to prove
102 + a(X Dx)Gz s sy < CAZ.

Let Az bed, Gz » andB(z » beay(x, Dy) 0 G(» 5 With respective kerneld (X', X)
andB » (X', X). We have

Az (X, X) = - f expli(x’ — xi&)] exp[-Aa(z X, &)] a(z, X', &) d¢.
Let us define
Dy = Az +Bra) o E o0 (Axy + Bra)

We prove in the following lemma that fors € R, [| Dz 3 llno, He2s2ny < CA uniformly
w.r.t. z € [0,Z] for A small enough. The conclusion then follows:Cfy , := ES o
Dz o Es? thenllC(Z,z)ll(Lz,Lz) < CA (taker = —s+ 1); then||E*1 o (ﬂ(zyz) + B(Z,z)) o
E_S||(|_2’|_2) < CA:. |

Lemma 3.9. Letr,se R. Then||D 5|0 Hewes2y) < CA uniformly w.rt. ze [0, Z] for
A small enough.

Proof. The operato, , is made up of four terms:

Diey = Ay o B0 Ay, Doy = Ay o E 0B,
Dieg =By o B0 Ay, Day=BrgoE 0B,

The kernel ofD(» 5 is given by
D1 rp(X.) = [ exXPliCX = XE) +1A (ba(z X&) - ba(z X )] ol ) .
where

al,Z(Xl7 X’ é:) = w(Z’,Z)(X/’ X’ f) a(21 X” g) é(zv X7 é‘:)

and

Wz (X, % &) 1= Gz (X, &) Tz (%, &) eXPl-A(Ca(z X, &) + Cu(z X, E)(E) 2,

with gz 2 given in (2.9). Following the proof of Theorem 2.26 we wiiitz, X', &) —
bi(z x, &) = (X' — xlh(z, X, X, &)y whereh is homogeneous of degree onefiné| > 1.
The functionh is continuous w.r.tz with values inS*(X’ x X x R"). We thus obtain
that the change of variablés— ¢ + Ah(z X, x,¢) is a global difeomorphism forA
small enough (uniformly iz € [0, Z]). The Jacobiafa(z X, X, £) is homogeneous of
degree zero ig, > w.r.t. A and bounded w.r.z with values inS°(R?" x R"). We then
have

D1z (X, X) = f expli(X — X&) dia(X, %, E(A, €)) T(A,z X, X, &) dé.
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The functioné(A, z X, x, &), written £(A, &) for concision, is bounded w.rzand%>
w.r.t. A in SY(R?" x R") and homogeneous of degree oné s shown in Lemma 2.27.
It follows that &LZ(X’, X, E(A, &) J(A,z X, x,£) is bounded w.r.tzand A with values
in S772(R™ x R") by Lemma 2.10 and the proof of Theorem 2.26. Note thatf 0

thené(A, £) = £. The operatoDy is thus in¥2-2° with symbol

diz (X, €) = o {dio(X, X E(A, £) T(A, 2 X, % &)} (X, ).

Similarly we prove thatA(, , o E%5o Gz 2 is theyDO with amplitude

—wz(X, % EA, ) az X, E(A, €) T (A, 2 X, %, £).

The operatoD;z 5 is thus inW2-25(X) with symbol

dZ,(Z’,Z)(X” é':) = -0 {w(Z’,Z)(X/’ X, E(A7 6)) a(Z, X,’ g(A’ f))j(A’ Z X/’ X, f)} #a (Z, X,’ f)

Similarly we find that the operato®s» ; andDa,z ) are inW3-(X) with respective
symbols

daz (X, €) = —az X, &) # o (0@ (X, R E(A, £) T(A, 2 X, %.£) &z X &(A, £))]

and

Aoz (X&) = AZ X, &) # o {wia (X, X E(A,£) T(A, 2 X, %, &)} #a'(2 X, £).

Forq(x, x, &) an amplitude we define

{aH(X. €) i= (&) alz X, €) q(X, X, £) Az X, £))
—o{(&) P az X, &) q(X, X, ) #a'(z X, £)
+az X, &) #ol(&) ® X, x O a'(z X, €)
—a(z X, &) #o(€&) > q(X, x.&) Az x. &)}.

The operatoDy, , is thus in¥2-25(X) with symbol

iz =iz + oz + O3z + daz ).

Such a symbol is bounded w.rA, for A small enough, as the composition formula for
symbols is a bounded map. Note that

9z (X, (A, ) Tz (% E(A, €)) E(A, €))% T (A, 2 X, %, &) = (€)% + Aka(Z X, X, &),

with the functionk, bounded w.r.tzand%= w.r.t. A with values iINS™2(X’ x X x R")
as g(Z’,Z) (X/’ E(A’ é‘)) g(Z’,Z)(X7 f(A, é:))<f(A’ é:))*ZS j(Aa Z X/’ X, é:) is itself €= w.r.t. A by
Lemma 2.10 (case = 1) and equal t@¢)~2s whenA = 0. With a similar reasoning on
a (X, &(A, ) anda,(x, £(A, £)) we thus obtain

Dey = z)Eiz,z) + AD(lz,z)’
with symbols

di 2 = Zpa(z X, % €))
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anddy, , which is bounded w.r.zandA with values inS3-2(X’ x XxR"). The symbol
pa was defined in the proof of Theorem 2.26 as
PA(Z X, %, €) = Pa(z X, %, E(A, 2, X, X, £))
= exp[-A(C(z X, £(A, 2 X, X, §)) + Ca(Z X, £(A, Z X, X, £)))].
Recall that it satisfies Propert®() by Lemma 2.18.

The Caldebn-Vaillancourt theorem (see [14, Chapter 7, Sections d;2p5, Sec-
tion XIlI-2]) in the caseL = 2 or Theorem 18.1.11 in [8] in the case> 2 yield
DG, llHo Hezs-2) < Ki. Note that for a symbai(x', £) we havez{q(x, £)} = 0 since
o{a(X, &) az x, &)} = q(x, &) #a'(z X, €) = o{q(X, )} #a'(z X, €),
for any symbolg. Thusd®(Z,2) = Z{pa(z X, X, &) — 1}. Lemma 3.6 allows us to write
(takem=p —6)
(&) 2 (palz X, %,&) - Da(z X, £)a(z %, £))
= (@ 7(pa(z X, X, &) - 1)az X, §Az X, €) + Aa1(2 X, &),
where, 1 is bounded w.r.tzandA with values inS5-25(X’ x R"). We also write

(&) (palz X, x. &) - Da(z X, )} #a'(z X &)
= (&) (palz XX, &) - Daz X, &) #a'(z. X, €)
+ A2z X, ) #aA (2 X, &)
= (&) (palz X, X, &) - Da(z X, £)a(z. x, £))
+ A2z X, ) #a (2 X, )
= (&) (palz X, X, €) - Da(z X, £)a(z X, €)
+A(Aa3(Z X, €) + A2z X, E) # A (Z X, €)),

where 12 and 1,3 are bounded w.r.z and A with values inS}~25(X’ x R") and
S2-25(X’ x R"), respectively. Similarly we have

(&) (palz X, %, &) — 1) #a'(z X, €)
= (&) 2 (pa(z X, X, &) — 1)) #a' (2 X, €) + Adaa(z X, &) #a' (2 X ,€)
= (&) (pa(z X, X, ) = DAz X )} + Apa(z X, &) #a' (2 X, £)
= (& (pa(z X, X, &) - DAz X, £)
+AAas(Z X, €) + Ana(z X, E) #a' (2 X, £)),
where 1,4 and 1,5 are bounded w.r.tz and A with values in S;ZS(X’ x R") and
SI-(X’ x R"), respectively, and
(&) (palz X, %, &) - 1Az x.£))
= (&) 2(Paz X, X, &) — DAz X, &) + Adpe(z. X, &),
where, s is bounded w.r.tzandA with values inS}25(X’ x R"). We thus obtain
A%, = Aag + Apz + Ao #a +a#tdps +a# Qg #a’) = A,

with &E"Z!Z) bounded w.r.tz and A with values inS2-25(X’ x R"). This concludes the

proof. [
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We have thus obtained a convergence result in the Sobolee BIF&(R") for Wi (Uo)
if the initial dataug is in HS*D(RM). The result is actually the convergence of the Ansatz
‘Wi 2 to the solution operatdd (z 0) in the norm ofL(HSD(R™), HO(RM)).

Theorem 3.10. Assume that(@, .) is in £([0, Z], S}(R" x R")), i.e., Lipschitz contin-
uous W.r.t. z with values in*gR" x R"), in the sense that,

alZ,x. &) —-alzx &) =(Z-2a7Z,zx¢), 0<z<7Z<Z

with &(Z, z x, &) bounded w.r.t.’zand z with values in §R"xR"). Let se R. Then the
approximation Ansatd#y; , converges to the solution operator(zJ0) of the Cauchy
problem (1.5)—(1.6) in (HEDRM), HO(RM) uniformly w.r.t. z as\y goes to zero with
a convergence rate of ordén

1
[We 2= U(Z 0)llen ney < CAZ, z€[0,Z].

Proof. Using (3.26) and (3.27) we obtain

sup exp[-17] [[U(z 0)(uo) — Wy 2(Uo)lle
z€[0,Z]

Z
1 1
< 2[ exp[-17 A%CK||u0||H<s+1)dzs CA$||uo||H(M).
0

The result follows. ]

If we change the assumption made on the symafwl) to some Hblder type continuity,
then the corresponding change in the proof of Lemma 3.8 yitklel following result.

Theorem 3.11. Assume that(@.) is in €%¢([0, Z], SY(R" x R")), i.e., Holder contin-
uous w.r.t. z with values in’g§R" x R"), in the sense that, for sonfe< a < 1

aZ,x.¢&) -alzx &) =(Z-2"&7Z,zx¢), 0<z<7Z<Z

with &(Z, z x, £) bounded w.r.t.’zand z with values in §R" x R"). Let se R. Then the
approximation Ansatddy; , converges to the solution operator(zJ0) of the Cauchy
problem (1.5)—(1.6) in (HEDRM), HO(RM) uniformly w.r.t. z as\y goes to 0 with a
convergence rate of ordex.

W2 = U(Z Ol sy < CAY. z€[0.2],

withp=aforO<e<iandpg=3fori <e<l

A result similar to that of the previous theorems can be obktiwith weaker as-
sumptions, namely without assumptions on the synaipl) like those made in The-
orems 3.10 and 3.11, by introducing another, yet naturadafato approximate the ex-

act solution to the Cauchy problem (1.5)—(1.6). For a symml, ) € €°([0, Z], S™(RPx
R")) we defineqy 4 (y. n) € ¢°([0. )%, S"(RP x R))

z

. 1

Uza(Y.m) = Z,—_ZIQ(SV, n) ds
z
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Then we define

(3.28) P (X, %, &) 1= (X = X&) + 1Az »(X, &)
= (X = X€) + Abyiz (X, €) + 1AC1 (X, )

and
(3.29) Oz.2(X.&) 1= exp[-Ado (X €)]

and finally, following [17], we denote b@\(z,z) the FIO with distribution kernel

Giea(X.X) = [ expl(x - X expl-Ade (¢ &) de
= [ expldiea(x. x &) Bea(¥. &) .

with the associated approximation Ansatz in the followiegmition.

Definition 3.12. LetP = (29,29, ..., AV} be a subdivision 00, Z] with 0 = 29 <
2V < ... < AN = Z such that ¥V — 20 = Ag. The operatorWy , is defined as

G0) if 0<z<Zb,

1
g(zz(k))l_[g(z(i)’z(ifl)) if 20 <z< D,
i=k

(W*B,Z =

Most results of Sections 2 and 3 apply to this new Ansatz. We gpme details about
how to adapt some of the proofs. We have the following lemma.

Lemma 3.13. Letzy,7n) € €°([0, Z], SY(RP xR")) that satisfies Property (B. Then
G2 (Y. 17) also satisfies Property (B.

Property PL) in Definition 2.11 is now to be understood w.r.t. to two paesensz and
z

Proof. Uniform bounds w.r.tzandZ will be immediate. The cade|+|8| > L is clear
by Remark 2.12. Let theja| + |8] < L and observe that

1

10908z 5 (v )| = IZ, —

z
[ et v @

z
= @/ 1 —(|e]
< C(L+ [y e f (1 + 2y, n) - B)/Lds
z

, 1-(lal+B)/L
1
< C(L + [pf) Wt/ [1 o f adzy. U)ds}
z

=C(1+ |n|)—|ﬂ‘\+(\a\+W\)/L(1 + QoY n))l—(IaI+I/3I)/L’

by Jensen inequality ds— —(1 + t)2-(2+B)/L s convex whena| + |8 < L. n
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As a consequence of Lemma 2.17 we have the following lemma.
Lemma 3.14. Letzy,7n) € €°([0, Z], SY(RP xR")) that satisfies Property (. Then
P = exp[-AQ 2 (Y, n)] satisfies Property (Q.

The result of Theorem 2.26 thus applies to the modified thib-propagato@\(z,z)
(Lemma 2.27 has to be slightly modified). The proof of Lemnta&pplies with the
aid of Proposition 2.29 as

(G202 — Gz 2)(Uo)(X) =
22

~ [ [ exptcx —xer - 2 - 9.0 aZ. X&) vl dx e 7.

20
To adapt the proof of Lemma 3.4 we need

Lemma 3.15. Let se R and 7,z € [0,Z]. The map z— ;G 5, for Z € [/, 7, is
continuous with values in(H®2(X), H®(X)), for z’ — z = A small enough.

Proof. We choose\ = z’ — z sufficiently small such that the results of Section 1 apply.
LetZY, 22 € [z Z’]. Then we have

92 G0 (X X) — 32 Gan (X, X)
= - [ explx - %] (a2, . O expl- /2 a(s. . ) dS
—a(zY, X&) expl- 3 al(s . £) d ) o
= A2 .02 (X, X) + Ba a0 2 (X', X),
where
Ao 205X, X) = = f expli(x - x¢)] a(Z?, X, £)
(expE-/3"als X&) A - expl- 2 "a(s X, ) d ) az,

and

Bomy (X, %) 1= - f expli{x" — X&)]
(@2, X, &) - a2, X, &) expl- 2 a(s X, €) dd d.
We write

o)
Ao 202X, X) = ] f expli(x’ = x|&)]

2D
a(Z?.x. &) a(s X&) expl-(s— 2asy(X.&)] ds &
and for the associated operat@t 1 ,, we obtain by Proposition 2.29 that

A2 9 2l sy < ClZ2 — 2.
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For the second term we can apply Proposition 2.29 which giveestimate, for the
associated operatofBa 4 »(X, Wlimeaney < C p@aiE?,.) — a@y,.), with p a
seminorm inSY(X x R"). The continuity ofz — a(z.) in SY(X x R") (Assumption 1.1)
yields the result. [

With the previous lemma we can easily adapt the proof of LerBmand obtain the
same result foG 5.

Lemma 3.16. Let se R, 7,z € [0, Z], with z< z’, and let y € HE(X). Then the
map 2 - G (o) is in €°([z 2’], HED(X)) N €Y([z 2’], HO(X)) for 2/ — z = A
small enough.

This allows to use the energy estimate (1.7).

We now note that in the proof of Lemma 3.9, with the new thﬂbqbropagato@zl%
the amplitudes of the operataf3;, . . ., D4 only involve the terma(Z, x, £) instead of
botha(z, x,&) anda(z x,¢) (asd-((Z — Dax »(X,€)) = a(Z, x,&)). Thus the proof
of Lemma 3.9 does not require any assumption like Assumg@i@mmade in Theo-
rem 3.10 or assumptions ofdttler type regularity on the symba(z .) made in Theo-
rem 3.11. Consequently we obtain

Theorem 3.17. Let s € R. ThenWs, converges in (HED(RM), HORM) to the
solution operator Wz 0) of the Cauchy problem (1.5)—(1.6) uniformly w.r.t. z/as
goes to 0 with a convergence rate of orc%r

— 1
[Wgz— U@ OllHevney < CAE,  2€[0,2].

We may now state the main theorem of this section

Theorem 3.18. Assume that(@.) is in €%¢([0, Z], SY(R" x R")), i.e., Holder contin-
uous w.r.t. z with values in*gR" x R"), in the sense that, for sonfe< a < 1

a(Z,,X,_f)—a(Z,X,_f) = (Z,_Z)a a(z’,Z,X,é:), 0<z<Z< Z’

or Lipschitz ¢ = 1), with&(Z, z x, ¢) bounded w.r.t.’zand z with values in §R"xR").
Let se Rand0O < r < 1. Then the approximation Ansai#’y, , converges to the so-
lution operator Uz, 0) of the Cauchy problem (1.5)—(1.6) ifHS*D(R™), HE(RM))
uniformly w.r.t. z as\q goes to 0 with a convergence rate of orgt — r):

1Wy.2 = U(Z O)en ey < CAL, 2€0,2],

withg = afor 0 < @ < 3 andg = 1 for 3 < o < 1. Furthermore, Wy, strongly
converges to the solution operator(z)0) in L(HED(RM), HED(RM) uniformly w.r.t.
z€]0,Z7].

With the sole assumption of the continuity of the symifml)aw.r.t. z with values in
SHR"x R™) (Assumption 1.1) the same results hold for the operatéy ,, with a con-
vergence rate of ordek;" for the operator convergence in(HS™)(R"), HE(RM).

Proof. From energy estimate (1.7) fer+ 1 [8, Theorem 23.1.2] we have

(3.30) IU(z 0)(Uo)llnen < Clluollne.
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From Proposition 3.2 we obtain

(3.31) W 2(Uo) s < CllUollesy
and thus
(3.32) W 2(Uo) — U(z 0)(Uo)llHe < Clluollnes,

uniformly w.r.t.z € [0, Z]. The interpolation inequality

1—
IMInen < Ml IMIgen, 0<T <1

then yields

Wy (Uo) = U(Z 0) (o)l < CAR llugllpen, 0 <1 <1,

uniformly w.r.t.z € [0, Z]. For ‘TA\/\B,Z a similar inequality fo = % is obtained with
Assumption 1.1 alone.

Letup € H® and lete > 0. For the strong convergence itfs*Y) we proceed as in
Lemma 3.4 and choosg € H®*2 such thatjuy — Uy ||y < &. We then write

I'Wg 2(Ug) — U (Z 0)(Uo)llHsn < W 2(Uo — Ul
+ [[We 2(ug) — U(zZ 0)(Ug)llesn + [IU(Z 0)(Uo — Ul
<Ce+ CA{;nulnHM

from estimates (3.30) and (3.31) and Theorems 3.10, 3.1Bdnq withg as above.
This last estimate is uniform w.rz.€ [0, Z] and yields the result. [

A A diagonalization/decoupling of the acoustic wave equati on

We give here an overview of [21], which gives a motivationdpproximating solutions
of the Cauchy problem (1.5)—(1.6), for instance in the cxtrégeophysics.

We first consider the scalar wave equation

n
(A.33) —plc 202 + Z d;p0;[u=F,
j=1

as encountered in acoustics, whgris the fluid density, and is the wavespeed. Both
these functions are assumed to be independent of ttiamel to be in&*([R"). We
further assume that @ pg < p(y) < pr and 0< ¢y < ¢(y) < ¢1, Yy € R". We denote
z=Yypandx = (y1.....Yn1) and writep(x, z Dy, Dy, D) = p~*c2DZ- £} Djp D -
D,o~'D, whereD = 14. Its principal symbol i,(t, X, z 7, £, {) = p~H(c 22— |£2- ).

Note thatr # 0 in Char(p). We put (A.33) in a matrix form

(A.34) Dw(t, x,2) = G(X,z Dy, DOw(t, x,2) + f(t,x,2) mod &,

. (0 Ap _ Au (0
WIthG—(A 0 ) W—(p—lDZu)’ f—(F)’
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1q

® ¢l

€1

Figure 1. The shaded area correspondkptat a given {, X, 2) and a given frequency
7. 6 is the propagation angle. The set Chnyiig represented dotted.

whereA is a first-order elliptiayDO, say for instancéd; 4|, and
n-1
A=plc?DIA - ) Dp DA
=1
with A= denoting a parametrix fok.
Following [21], we introduce
16 = (%278 | T #0,lc(x 27 < sin@},
lo = {(t X 276,01 (x 27.€) € 15, 12 < ¢},

where® € (0, 3). The inequalityl{] < c(x, 2)~Y|z| on Charg) explains the condition

IZ] < 051|T| above. We choose an angdec (0, 5) and work in the microlocal regioky
assuming that Wkl c lg. Figure 1 illustrates the séf at a given {, x, z2) and a given
frequencyr. An angled € [-0, ®] corresponds to a propagation angle. Restricting the
analysis tolg corresponds to staying away from horizontal propagatiooteNhat in

lo we havec(x, 2)~272 — |£]? > 0, which is the main purpose of the restriction to such a
microlocal region.

Inlg, Gis afirst-ordeyDO by Theorem 18.1.35in [8]. Iy we can follow the method

of [25, Chapter IX] (see also [24]) to decouple the up-going down-going wave-
fields. We briefly recall the method here. Defifidx, z,7,£) = +(c(x, 2212 — |¢)z,
which are the two roots of detl,—G1) = 0 with G; the (matrix-)principal symbol d&.

The matrixG,(x, z 7, &) is diagonalizable and we choose a ma¥Yf{x, z, 7, ¢) € SO(Ié),
invertible, such tha¥ G,V is diagonal;V can be chosen homogeneous of degree 0.
If we write W@ = V(x, z, Dy, Dy)w we obtain

DWOt, X, 2) = GOWOt, x, 2) + FO(t,x,2) mod£™,
GO =(DV)VI+VGV?!T mod¥=inlg, fO=VH

We write G©@ = G(lo) + Gg)) with G(lo) € ¥'in lg and diagonal and;go) € ¥%in le.
We use the notatiol~* for a parametrix o¥/ with principal symboN(x, z, 7,£)™* (an
abuse of notations, which will occur below again).
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We then writew? = (1 + KO (x, z Dy, D)W, with K € =1 in I of the form
o KM
K@ = 1 )
KO o
We then obtain

DY = GOWD + [KD, GOIWD + GOWY + £ 1+ ROWD  mod ¢,
RY ewtinlg, fO = (1+ KD)fO,
making use of
@+ KMGPA+KD)? =G0 + [KD, 6011 + KD)?

and the fact that (1 + KM)™t — L e ¥™1if L € ¥™. Lemma 2.1 in [24] shows that

K® can be chosen so as to hak}, G”] + G diagonal up to an operator I

in le. The procedure goes on by choosk@ € ¥~2in lg in order to diagonalise the

term of order -1, etc. We thus obta@e ¥° in lg such thaw'= Q1w satisfies
DW=GW+f modé™, f=0Q7f,

with G = G(x, z Dy, Dy) € ¥ in lg, diagonal up to a regularizing operator

~ b, O
(% 2)
In[21], Stolk shows that.. can be chosen selfadjoint. This is achieved by first choosing
selfadjoint operators with principal symbols equaktdx, z 7, £) and then replace (&

KD by expK®"] in the iteration process described above. Various chaife3 are
presented in [21].

We define the selg, of points (o, X, 20, 70, &0, (o) SUch that the bicharacteristics asso-
ciated withb,, parametrized by, (t(2), X(2), 7(2), £(2), passing throughtd, X, 70, £o)
atz = z, is such that for alk € [0, Z], the point &(2),z £(2), 7(2)) remains inlg. In
other words, with the interpretation given by Figure 1 thegaigation anglej(2) along
the bicharacteristics should never excéed

We now choose & ©; < @, < 5. We choose a real non-negative symb@ x, 7, ¢) €
SHR x R x R x R™1) such that = 0 in 1, and elliptic in the complement df, .
After extending smoothl, outsidelg, such thab, is real homogeneous of degree 1,
we now consider the Cauchy problem

(02 —iby(z, %, Dy, Dy) + ¢(z X, D¢, Dy))v =0,
v(0,.) = v,(0,.),

where

AR

With Assumption (33) and (34) in [21] we obtain that

v=v, mod%*in Jo,,
v=0 mod%* inthe complement odg,..

See [21] and [22] for details. A similar results holds for thiber ‘one-way’ wave
operatord, — ib_ + c.
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