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Abstract

An approximation Ansatz for the operator solution,U(z′, z), of a hyperbolic first-
order pseudodifferential equation,∂z + a(z, x,Dx) with Re(a) ≥ 0, is constructed
as the composition of global Fourier integral operators with complex phases. An
estimate of the operator norm inL(H(s),H(s)) of these operators is provided, which
yields a convergence result for the Ansatz toU(z′, z) in some Sobolev space as the
number of operators in the composition goes to∞.

AMS 2000 subject classification: 35L05, 35L80, 35S10, 35S30, 86A15.

0 Introduction

We consider the Cauchy problem

∂zu+ a(z, x,Dx)u = 0, 0 < z≤ Z(0.1)

u |z=0 = u0,(0.2)

with Z > 0 anda(z, x, ξ) continuous with respect to (w.r.t.)zwith values inS1(Rn×Rn)
with the usual notationDx =

1
i ∂x. Further assumptions will be made on the symbol

a(z, x, ξ). We denote byU(z,0) the solution operator of (0.1)–(0.2). Whena(z, x, ξ)
is independent ofx and z it is natural to treat such a problem by means of Fourier
transformation:

u(z, x′) =
Ï

exp[i〈x′ − x|ξ〉 − za(ξ)] u0(x) d−ξ dx,

whered−ξ := dξ/(2π)n. For this to be well defined for allu0 ∈ S (Rn), we shall impose
the real part of the principal symbol ofa to be non-negative. When the symbola
depends on bothx andzwe can naively expect

u(z, x′) ≈ u1(z, x′) :=
Ï

exp[i〈x′ − x|ξ〉 − za(0, x′, ξ)] u0(x) d−ξ dx
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for z small and hence approximately solve the Cauchy problem (0.1)–(0.2) for z ∈
[0, z(1)] with z(1) small. If we want to progress in thez direction we have to solve the
Cauchy problem

∂zu+ a(z, x,Dx)u = 0, z(1) < z≤ Z

u(z, .) |z=z(1) = u1(z(1), .),

which we again approximatively solve by

u(z, x′) ≈ u2(z, x′) :=
Ï

exp[i〈x′ − x|ξ〉 − (z− z(1))a(z(1), x′, ξ)] u1(z(1), x) d−ξ dx.

This procedure can be iterated until we reachz= Z.

If we denote byG(z′,z) the operator with kernel

G(z′,z)(x
′, x) =

∫

exp[i〈x′ − x|ξ〉] exp[−(z′ − z)a(z, x′, ξ)] d−ξ,

then combining all iteration steps above involves composition of such operators: let
0 ≤ z(1) ≤ · · · ≤ z(k) ≤ Z, we then have

uk+1(z, x) = G(z,z(k)) ◦ G(z(k),z(k−1)) ◦ · · · ◦ G(z(1),0)(u0)(x),

whenz≥ z(k). We then define the operatorWP,z for a subdivisionP = {z(0), z(1), . . . , z(N)},
of [0,Z] with 0 = z(0) < z(1) < · · · < z(N) = Z,

WP,z :=



G(z,0) if 0 ≤ z≤ z(1),

G(z,z(k))

1∏

i=k

G(z(i),z(i−1)) if z(k) ≤ z≤ z(k+1).

According to the procedure described above,WP,z(u0) yields an approximation Ansatz
for the solution to the Cauchy problem (0.1)–(0.2) with stepsize∆P = supi=1,...,N(zi −
zi−1). The operatorG(z′,z) is often referred to as thethin-slab propagator(see e.g. [3, 2]).

Note that a similar procedure can be used to show the existence of an evolution system
by approximating it by composition of semigroup solutions of the Cauchy problem with
z ’frozen’ in a(z, x,Dx) [11, 19]. Note that the thin-slab propagatorG(z′,z) is however
not a semigroup nor an evolution family here (see Section 3 for simple arguments).

The approximation Ansatz proposed here is a tool to compute approximations of the
exact solution to the Cauchy problem (0.1)–(0.2). Such computations in applications
to geophysical problems have been used in [3]. In exploration seismology one is con-
fronted with solving equations of the type

(∂z − ib(z, x,Dt,Dx) + c(z, x,Dt,Dx))v = 0,(0.3)

v(0, .) = v0(.),(0.4)

wheret is time,z is the vertical coordinate andx is the lateral or transverse coordinate.
The operatorsb and c are of first order, with real principal parts,b1 and c1, where
c1(z, x, τ, ξ) is non-negative. Note that the Cauchy problem (0.1)–(0.2)studied here is
more general. The Cauchy problem (0.3)–(0.4) is obtained bya (microlocal) decou-
pling of the up-going and down-going wavefields in the acoustic wave equation (see
Appendix A and [21] for details). In practice, the proposed Ansatz can then be a tool
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to approximate the exact solution for the purpose of imagingthe Earth’s interior [3, 2].
As explained in Appendix A the operatorc acts as a damping term that suppresses sin-
gularities in the microlocal region where its symbol does not vanishes. This effect is
recovered in the proposed Ansatz. Seismic imaging aims at recovering the singularities
in the subsurface (see for instance [23, 1]). Thus, geophysists are not only interested
in the convergence of this Ansatz to the exact solution of theCauchy problem (0.3)–
(0.4) but they expect the wavefront set of the approximate solution to be close, in some
sense, to that of the exact solution. We shall investigate the microlocal properties of
the proposed Ansatz in Part II, written in collaboration with Günther Ḧormann.

In the present article, we are interested in the analysis of the convergence of the approx-
imation schemeWP in Sobolev spaces. Section 1 introduces the Cauchy problem we
study and the precise assumptions made on the symbola(z, x, ξ), especially on the real
part,c1, and imaginary part,−b1, of its principal symbol. In Section 2, we shall at first
concentrate our study on the operatorG(z′,z), yet to be properly defined. Under some
assumptions ona(z, x, ξ), we shall prove thatG(z′,z) is a global Fourier integral operator
(FIO) with complex phase and that it mapsS into S , S ′ into S ′ andH(s) into H(s)

for anys. An estimation of‖G(z′,z)‖(H(s),H(s)) will be the first step towards the analysis in
Section 3 of the convergence ofWP,z. In fact we prove that forz′ − zsufficiently small
then (Theorem 2.26)

‖G(z′,z)‖(H(s),H(s)) ≤ 1+ M|z′ − z|,

for some constantM. Such an estimate is achieved by the analysis of the behaviorof
the symbol exp[−∆c1] as an element ofS0

1
2

, in particular as∆ = z′ − z goes to zero.

In Section 3 we study the convergence of the AnsatzWP,z(u0) to the solution of the
Cauchy problem (0.1)–(0.2) in Sobolev spaces as∆P goes to 0. A convergence in norm
ofWP,z to the solution operator of the Cauchy problem (0.1)–(0.2) is actually obtained
(Theorem 3.11):

lim
∆P→0

‖WP,z − U(z,0)‖(H(s+1),H(s)) = 0,

with a convergence rate of order1
2 whena(z, .) is inC 0,α w.r.t.z, α ≥ 1

2. We furthermore
obtain (Theorem 3.18)

lim
∆P→0

‖WP,z − U(z,0)‖(H(s+1),H(s+r)) = 0, 0 ≤ r < 1,

with a convergence rate of order (1− r)/2 while the operatorWP,z strongly converges
to U(z,0) in H(s+1).

At the end Section 3 we relax some regularity property of the symbol a(z, .) w.r.t. z by
the introduction of another, yet natural, Ansatz: following [17], the thin-slab propaga-
tor,G(z′,z), is replaced by the operator̂G(z′,z) with kernel

Ĝ(z′,z)(x
′, x) =

∫

exp[i〈x′ − x|ξ〉] exp[−
∫z′

z a(s, x′, ξ)ds] d−ξ.

In Part II, we shall focus on the microlocal aspects of the operatorWP,z and how it
propagates the singularities of the initial conditionu0. We shall show that the wavefront
set ofWP,z(u0)(z, .) converges in some sense to that of the solutionu(z, .) of the Cauchy
problem (0.1)–(0.2) as∆P goes to 0.
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Multi-composition of FIOs to approximate solutions of Cauchy problems where first
proposed in [16] and [15]. In these articles the exact solution operator of a first or-
der hyperbolic system is approximated with a different Ansatz. The approximation is
made up to a regularizing operator. The technique is based onthe computation and
the estimation of the phase functions and amplitudes of the FIO resulting from these
multi-products, a result know as the Kumano-go-Taniguchi Theorem. The technique
was then further applied to Schrödinger equations with specific symbols [12, 17]. In
these latter works, the multi-product in also interpreted as an iterated integral of Feyn-
man’s type and convergence is studied in a weak sense. In [12]a convergence result in
L2 is proven. This is the type of results sought here for first order hyperbolic equations.
We however do not use the apparatus of multi-phases and rather focus on estimat-
ing the Sobolev regularity of each term in the multi-productof FIOs in the proposed
Ansatz. While the resulting product is an FIO, we do not compute its phase and ampli-
tude. The Sobolev regularity allows us to use a priori energyestimates for the Cauchy
problem (0.1)–(0.2) to prove convergence of the approximating Ansatz to the solution
operator.

In this article, when the constantC is used, its value may change from one line to the
other. If we want to keep track of the value of a constant we shall use another letter.
When we write that a function is bounded w.r.t.z and/or ∆ we shall actually mean that
z is to be taken in the interval [0,Z] and∆ in some interval [0,∆max] unless otherwise
stipulated. We shall generally writeX, X′, X′′, X(1), . . . , X(N) for Rn, according to
variables, e.g.,x, x′, . . . , x(N).

In a standard way, we set〈ξ〉 :=
√

1+ |ξ|2 for ξ ∈ Rp. Throughout the article, we use
spaces of global symbols; a functiona ∈ C∞(Rn × Rp) is in Sm

ρ,δ
(Rn × Rp), 0 < ρ ≤ 1,

0 ≤ δ < 1, if for all multi-indicesα, β there existsCαβ > 0 such that

|∂αx∂
β

ξ
a(x, ξ)| ≤ Cαβ (1+ |ξ|)m−ρ|β|+δ|α|, x ∈ Rn, ξ ∈ Rp.

The best possible constantsCαβ, i.e.,

pαβ(a) := sup
(x,ξ)∈Rn×Rp

(1+ |ξ|)−m+ρ|β|−δ|α||∂αx∂
β

ξ
a(x, ξ)|,

define seminorms for a Fréchet space structure onSm
ρ,δ

(Rn × Rp). As usual we write

Sm
ρ (Rn×Rp) in the caseρ = 1−δ, 1

2 ≤ ρ < 1, andSm(Rn×Rp) in the caseρ = 1, δ = 0.

We shall use, in a standard way, the notation # for the composition of symbols of pseu-
dodifferential operators (ψDO). When given an amplitudep(x, y, ξ) ∈ Sm

ρ,δ
(X×X×Rn),

ρ ≥ δ, we shall also use the notationσ {p} (x, ξ) for the symbol of the pseudodifferen-
tial operator with amplitudep. For p ∈ Sm

ρ,δ
(X × Rn) we shall writep∗ for the symbol

of the adjoint operator. When composingψDOs or computing adjoints ofψDOs we
shall make use of the oscillatory integral representation of the resulting symbol instead
of asymptotic series for two reasons. First, we aim at estimating operator norm in
L(Hs,Hs) while using asymptotic series representations for symbols yields results up
to regularizing operators which norm cannot be estimated. Second, we shall consider
symbols inSm

ρ , for somem, including the caseρ = 1
2 for which the asymptotic formulae

of the calculus ofψDOs cease to hold.

For r ∈ R we let E(r) be theψDO with symbol〈ξ〉r . The operatorE(r) mapsH(s)(X)
ontoH(s−r)(X) unitarily for all s ∈ R with E(−r) being the inverse map.
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1 The homogeneous first-order hyperbolic equation

Let s ∈ R andZ > 0. We consider the Cauchy problem

∂zu+ a(z, x,Dx)u = 0, 0 < z≤ Z,(1.5)

u |z=0 = u0 ∈ H(s+1)(Rn),(1.6)

where the symbola(z, x, ξ) satisfies the following assumption.

Assumption 1.1.

az(x, ξ) = a(z, x, ξ) = −i b(z, x, ξ) + c(z, x, ξ),

where b∈ C 0([0,Z],S1(Rn × Rn)), with real principal symbol b1 homogeneous of de-
gree 1 for|ξ| large enough and c∈ C 0([0,Z],S1(Rn×Rn)) with non-negative principal
symbol c1 homogeneous of degree 1 for|ξ| large enough. Without loss of generality we
can assume that b1 and c1 are homogeneous of degree 1 for|ξ| ≥ 1.

In Section 3 we shall further make the following assumption.

Assumption 1.2. The symbol a(z, .) is assumed to be inL ([0,Z],S1(Rn × Rn)), i.e.
Lipschitz continuous w.r.t. z with values in S1(Rn × Rn), in the sense that,

a(z′, x, ξ) − a(z, x, ξ) = (z′ − z)ã(z′, z, x, ξ), 0 ≤ z≤ z′ ≤ Z

with ã(z′, z, x, ξ) bounded w.r.t. z′ and z with values in S1(Rn × Rn).

The case of Ḧolder continuity will also be addressed. Weaker assumptions will also
be formulated in Section 3, for instance by the introductionof another approximating
Ansatz.

We denote bya1 = −ib1 + c1 the principal symbol ofa and writeb = b1 + b0 with
b0 ∈ C 0([0,Z],S0(Rn × Rn)) andc = c1 + c0 with c0 ∈ C 0([0,Z],S0(Rn × Rn)). As-
sumption 1.1 ensures that the hypotheses (i)–(iii) of Theorem 23.1.2 in [8] are satisfied.
Then there exists a unique solution inC 0([0,Z],H(s+1)(Rn)) ∩ C 1([0,Z],H(s)(Rn)) to
the Cauchy problem (1.5)–(1.6).

Furthermore, we have the following energy estimate [8, Lemma 23.1.1] for any func-
tion in C 1([0,Z],H(s)(Rn)) ∩ C 0([0,Z],H(s+1)(Rn))

(1.7) sup
z∈[0,Z]

exp[−λz] ‖u(z, .)‖H(s) ≤ ‖u(0, .)‖H(s)

+ 2

Z
∫

0

exp[−λz] ‖∂zu+ az(x,Dx)u‖H(s)dz,

with λ large enough (λ solely depending ons).

By Proposition 9.3 in [5, Chapter VI] the family of operators(az)z∈[0,Z] generates a
strongly continuous evolution system. LetU(z′, z) denote the corresponding evolution
system:

U(z′′, z′) ◦ U(z′, z) = U(z′′, z), Z ≥ z′′ ≥ z′ ≥ z≥ 0,

5



with

∂zU(z, z0)u0 + a(z, x,Dx)U(z, z0)u0 = 0, 0 ≤ z0 < z≤ Z,

U(z0, z0)u0 = u0 ∈ H(s+1)(Rn),

while U(z, z0)u0 ∈ H(s+1)(Rn) for all z ∈ [z0,Z]. For the Cauchy problem (1.5)–(1.6)
we takez0 = 0.

2 The thin-slab propagator. Regularity properties.

We follow the terminology introduced in [9, Sections 25.4-5] for FIOs with complex
phase. Letz′, z ∈ [0,Z] with z′ ≥ zand let∆ := z′ − z. Defineφ(z′,z) ∈ C∞(X′ × X×Rn)
as

(2.8) φ(z′,z)(x
′, x, ξ) := 〈x′ − x|ξ〉 + i∆a1(z, x′, ξ)

= 〈x′ − x|ξ〉 + ∆b1(z, x′, ξ) + i∆c1(z, x′, ξ).

Remark 2.1. The functionφ(z′,z) is assumed to be homogeneous of degree one only
when |ξ| ≥ 1. This however is not an obstacle to the subsequent analysis, e.g., FIO
properties, since to define such operators the phase function need not be homogeneous
of degree one for small|ξ|. In the subsequent results concerning the phase function and
FIOs one will then assume that|ξ| is large enough, i.e.,|ξ| ≥ 1.

Lemma 2.2. φ(z′,z) is a nondegenerate complex phase function of positive type (at any
point (x′0, x0, ξ0) where∂ξφ(z′,z) = 0).

Proof. Note that, by Assumption 1.1, Im(φ(z′,z)) ≥ 0 andφ(z′,z) is homogeneous of
degree one;∂xφ(z′,z) = 0 impliesξ = 0. Thus,φ(z′,z) is a phase function of positive type.
Inspecting the partial derivatives of∂ξφ(z′,z) w.r.t. x we conclude that the differentials
d(∂ξ1φ(z′,z)), . . . ,d(∂ξnφ(z′,z)) are linearly independent. �

With a0(z, .) ∈ S0(X×Rn) we have exp[−∆a0(z, .)] ∈ S0(X×Rn) by Lemma 18.1.10 in
[8]. We define

g(z′,z)(x, ξ) := exp[−∆a0(z, x, ξ)].(2.9)

We shall keep this notation (for this symbol and others in thesequel) but it will be useful
however to consider this symbol to depend on the parameterszand∆ instead ofzandz′

in the following analysis. Note thatg(z′,z) is bounded w.r.t.zandC∞ w.r.t.∆with values
in S0(X × Rn). Hence, we may define a distribution kernelG(z′,z)(x′, x) ∈ D ′(X′ × X)

G(z′,z)(x
′, x) =

∫

exp[i〈x′ − x|ξ〉] exp[−∆a(z, x′, ξ)] d−ξ

=

∫

exp[iφ(z′,z)(x
′, x, ξ)] g(z′,z)(x

′, ξ) d−ξ

as an oscillatory integral. We denote the associated operator byG(z′,z). This operator is
often referred to as thethin-slab propagator(see e.g. [3, 2]). We show thatG(z′,z) is a
global FIO inRn.
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Defineα := (x′, x, ξ′, ξ) and

uθ j (α, θ) = ∂x jφ(z′,z)(x
′, x, θ) + ξ j = −θ j + ξ j ,

uξ j (α, θ) = ∂x′j
φ(z′,z)(x

′, x, θ) − ξ′j = θ j − ξ′j + i∆∂x j a1(z, x′, θ),

ux j (α, θ) = ∂θ jφ(z′,z)(x
′, x, θ) = x′j − x j + i∆∂ξ j a1(z, x′, θ),

where j = 1, . . . ,n. We denote byĴ(z′,z) the ideal inC∞(R5n) generated by the func-
tions uθ j ,uξ j , andux j , and we letJ(z′,z) be the subset of the functions in̂J(z′,z) that are
independent ofθ.

Lemma 2.3. There exists∆1 > 0, such that, for all z′, z ∈ [0,Z], with z′ > z and
∆ = z′ − z≤ ∆1, the ideal J(z′,z) is generated by the functions

vξ j (α) = ∂x′j
φ(z′,z)(x

′, x, ξ) − ξ′j(2.10)

= ξ j − ξ′j + i∆∂x j a1(z, x′, ξ) = uξ j |θ=ξ,
vx j (α) = ∂ξ jφ(z′,z)(x

′, x, ξ) = x′j − x j + i∆∂ξ j a1(z, x′, ξ) = ux j |θ=ξ

j = 1, . . . ,n.

Some of the key arguments of the proof are close to that in the proof of Theorem 25.4.4
in [9].

Proof. The idealĴ(z′,z) is also generated by the functions

uθ j , ũξ j := uθ j + uξ j = ξ j − ξ′j + i∆∂x j a1(z, x′, θ), ux j ,

j = 1, . . . ,n. We defineν := (x′, ξ′, θ), µ := (x, ξ). We set a point (ν0, µ0) =
(x′0, ξ

′
0, θ0, x0, ξ0) where these generators vanish and we work in a neighborhoodof this

point. (Note thatθ0 = ξ0.) Sincez 7→ a1(z, .) ∈ S1(X × Rn) is bounded we have that
∃∆1 > 0 such that for 0≤ ∆ ≤ ∆1, and allz ∈ [0,Z],

det∂
(
uθ1, . . . ,uθn, ũξ1, . . . , ũξn,ux1, . . . ,uxn

)
/∂ν , 0

and

det∂
(
vξ1, . . . , vξn, vx1, . . . , vxn

)
/∂(x′, ξ′) , 0.

By Theorem 7.5.7 in [10] we have


x′ − x
ξ′ − ξ
θ

 =
(

Q(ν, µ) P(ν, µ)
0 In

) 
ux

ũξ
−uθ

 +


x̃(µ)
ξ̃(µ)
ξ

 ,

whereP is aC∞ 2n × n matrix andQ is aC∞ 2n × 2n matrix and the functions ˜x, ξ̃
are alsoC∞ in a neighborhood of (ν0, µ0). As the functionswx(ν, µ) := x′ − x − x̃(µ),
wξ(ν, µ) := ξ′−ξ−ξ̃(µ), wθ(ν, µ) := θ−ξ have linearly independent differentials, Lemma
7.5.8 in [10] proves that they generateĴ(z′,z) and the proof of that lemma shows thatQ
is invertible in a neighborhood of (ν0, µ0). Lettingθ = ξ we have

Q(x′, ξ′, θ = ξ, x, ξ)−1

(
wx(ν, µ)
wξ(ν, µ)

)
=

(
ux(x′, x, ξ)
ũξ(x′, x, ξ)

)
=

(
vx(α)
vξ(α)

)
.
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We thus obtained that̂J(z′,z) is generated by the functionsuθ j , vx j , vξ j , j = 1, . . . ,n. We
then see thatJ(z′,z) is generated byvx j , vξ j , j = 1, . . . ,n. In fact, using Theorem 7.5.7 in
[10] again, anyC∞ functionh(α) can be locally written in the form

h(α) =
∑

1≤i≤n

(hx j (α
′, µ)vx j (α

′, µ) + hξ j (α
′, µ)vξ j (α

′, µ)) + r(µ),

with α′ = (x′, ξ′) provided that 0≤ ∆ ≤ ∆1. If h ∈ J(z′,z) thenr ∈ J(z′,z) and Lemma
7.5.10 in [10] implies that∀N ∈ N, ∃CN > 0:

r(µ) ≤ CN max(|Im x̃(µ)|, |Im ξ̃(µ)|)N,

locally. Therefore, Theorem 7.5.12 in [10] yieldsr ∈ I (wx,wξ) = I (vx, vξ); which in
turn impliesh ∈ I (vx, vξ) and thereby completes the proof. �

As the Poisson brackets (for the symplectic 2-formσ′ − σ on T∗(X′ × X), whereσ′

andσ are the symplectic 2-forms onT∗(X′) and T∗(X) respectively) of any two of
the functions in (2.10) vanish identically we obtain that the ideal generated by these
functions is globally a conic canonical ideal in the sense of[9, Definition 25.4.1. and
Section 25.5]. The phase functionφ(z′,z) thus definesJ(z′,z) in the neighborhood of any
point of J(z′,z)R: it thusglobally definesJ(z′,z), which is then of positive type. Therefore
the operatorG(z′,z) is a global FIO with complex phase (see Definitions 25.4.9. and
25.5.1. in [9]).

Proposition 2.4. There exists∆1 > 0 such that if0 ≤ ∆ = z′ − z ≤ ∆1 then the
operatorG(z′,z) is a global Fourier integral operator with complex phase andG(z′,z) ∈
I0(X′ × X, (J(z′,z))′,Ω

1/2
X′×X).

We denote the half density bundle onX′ ×X byΩ1/2
X′×X. Note that (J(z′,z))′ stands for the

twisted canonical ideal, i.e. a Lagrangian ideal (see Section 25.5 in [9]).

Note that, with the following analysis, we could also considerG(z′,z) as a global FIO
with real phase with amplitude inS0

1
2

(X′ × X × Rn) (see e.g. [20]). However such

consideration would be rather technical as one usually restricts oneself to the typeSm
ρ

with ρ > 1
2 for FIOs (see the remark at the end of Section 25.1 in [9]; see also [18,

pages 391-392]). Viewing the thin-slab propagatorG(z′,z) as a FIO with complex phase
is also a good framework to understand the propagation of singularities in Part II. We
shall however make this interpretation forG(z′,z) in Proposition 2.29, below, to apply a
result of Kumano-go [13, Theorem 2.5].

We now establish some global continuity properties of the operatorG(z′,z) stated in a
slightly more general form (for similar results with globalsymbols see for instance
[13], where phase functions are real and other conditions are imposed on the phase
function).

Lemma 2.5. Let A be an FIO with a kernel of the form

KA(x, y) =
∫

exp[iϕ(x, ξ) − i〈y|ξ〉] σA(x, ξ)d−ξ ∈ D ′(Rn × Rn),

whereσA ∈ Sm(Rn × Rn) and ϕ ∈ C∞(Rn × Rn) is such that Im(ϕ(x, ξ)) ≥ 0 and
ϕ is homogeneous of degree one inξ, for |ξ| large enough, and∂xiϕ ∈ S1(Rn × Rn).
Furthermore, for all i= 1, . . . ,n we assume∂ξiϕ(x, ξ) = xi + fi(x, ξ) where fi ∈ S0(Rn×
R

n). Then A mapsS into S continuously.
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Proof. Let u ∈ S . We then have

|Au(x)| ≤
∫

|σA(x, ξ)(1+ |ξ|)−m||(1+ |ξ|)mû(ξ)|d−ξ

≤ C sup
ξ∈Rn
|σA(x, ξ)(1+ |ξ|)−m| sup

ξ∈Rn
|(1+ |ξ|)m+n+1û(ξ)|,

whereC =
∫

(1+ |ξ|)−n−1d−ξ. The operatorA is hence well defined fromS into C (Rn).
If we differentiate we obtain

Dxi Au(x) =
∫

exp[iϕ(x, ξ)]
(
∂xiϕ(x, ξ)σA(x, ξ) − i∂xiσA(x, ξ)

)
û(ξ) d−ξ .

Noting that∂xiϕ(x, ξ)σA(x, ξ) − i∂xiσA(x, ξ) ∈ Sm+1(Rn × Rn) we similarly have

|Dxi Au(x)| ≤ C sup
ξ∈Rn
|(1+ |ξ|)m+n+2û(ξ)|

≤ C′ sup
x∈Rn
|xαDβ

xu(x)| for someα, β ≥ 0.

Iterating we find thatAu ∈ C∞(Rn). Integrating by parts we also have

A(x ju)(x) =
∫

exp[iϕ(x, ξ)]
(
∂ξiϕ(x, ξ)σA(x, ξ) − i∂ξiσA(x, ξ)

)
û(ξ) d−ξ

= x jAu(x) +
∫

exp[iϕ(x, ξ)]
(
fi(x, ξ)σA(x, ξ) − i∂ξiσA(x, ξ)

)
û(ξ) d−ξ.

Since fi(x, ξ)σA(x, ξ) − i∂ξiσA(x, ξ) ∈ Sm(Rn × Rn) we obtain

|x jAu(x)| ≤ C sup
x∈Rn
|xαDβ

xu(x)| +C sup
x∈Rn
|xα′Dβ′

x u(x)|,

for someα, α′, β, β′ ≥ 0. Similar estimates hold for|xαDβ
xAu(x)| because of the hypoth-

esis made onfi , i = 1, . . . ,n. The operatorA thus mapsS into S continuously. �

To show continuity fromS ′ into S ′ we shall need the following lemma.

Lemma 2.6. Let j, k non-negative integers, u∈ S (Rn), f ∈ C k+1(Rn) such that

0 ≤ Im f(x) ≤ C0, x ∈ Rn, | f (r)(x)| ≤ Cr , x ∈ Rn, 1 ≤ r ≤ k+ 1.

Then we have

(2.11) ω j+k
∣∣∣∣∣
∫

u(x)(Im f(x)) j exp[iω f (x)] dx
∣∣∣∣∣

≤ C
∑

|α|≤k

sup
x∈Rn
|Dαu(x)|(| f ′(x)|2 + Im f(x))|α|/2−k, ω > 0,

where the constant C is bounded when the function f stays in a domain ofC k+1(Rn)
where C0, C1, . . . ,Ck+1 can be chosen bounded.

Proof. The proof is the same as that of Theorem 7.7.1 in [10] whereu ∈ C k
0 (Rn). In

fact the further assumptions onf made here allow to give global bounds that are needed
sinceu ∈ S in the present case. �
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Lemma 2.7. Let A be an FIO with a kernel of the form

KA(x, y) =
∫

exp[i〈x− y|ξ〉 + iγ(x, ξ)] σA(x, ξ)d−ξ ∈ D ′(Rn × Rn),

whereσA ∈ Sm(Rn × Rn) andγ ∈ S1(Rn × Rn) is such that Im(γ(x, ξ)) ≥ 0, andγ is
homogeneous of degree one inξ, for |ξ| large enough. Furthermore, we assume that
there exists d≥ 0 such that

|Re(∂xγ(x, ξ)) | ≤ d < 1, x ∈ Rn, ξ ∈ Rn, |ξ| = 1.(2.12)

Then A mapsS ′ into S ′ continuously.

Observe that the differential ofφ(x, ξ) := 〈x−y|ξ〉+γ(x, ξ) does not vanish inR2n×Rn\0.
The functionφ is thus a complex phase function. The differentialsd(∂ξ1φ), . . . ,d(∂ξnφ)
are linearly independent. Henceφ is a nondegenerate complex phase function of pos-
itive type. Note that by (2.12), the function〈x − y|ξ〉 + γ(x, ξ) is an operator phase
function in the sense of [6, Definition 1.4.4.].

Proof. Without loss of generality we may assume thatγ is homogeneous of degree one
for |ξ| ≥ 1. LetAt be the transpose ofA and letu ∈ S , then.

Atu(x) =
∫

exp[−i〈x|ξ〉]
∫

exp[i〈y|ξ〉 + iγ(y, ξ)] σA(y, ξ) u(y) dyd−ξ

Define

v(ξ, η) =
∫

exp[i〈y|ξ〉 + iγ(y, ξ)] σA(y, η) u(y) dy,

and putw(ξ) = v(ξ, ξ). As u ∈ S thenv andw are bothC∞. ThenAtu is the Fourier
transform ofw. The lemma is proven if we show thatu 7→ w(ξ) is continuous fromS

to S .

Let ω = |ξ| ≥ 1 andξ0 = ξ/|ξ| ∈ Sn−1. We then have〈y|ξ〉 + γ(y, ξ) = ω f (y, ξ) with
f homogeneous of degree zero inξ, for |ξ| ≥ 1. Note that∂y f (y, ξ) = ξ0 + ∂yγ(y, ξ0).
With the assumption made on∂yγ we have|∂y f (y, ξ)| ≥ c > 0. Applying Lemma 2.6
and estimate (2.11) we obtain

ωk|v(ξ, η)| ≤ Kk

∑

|α|≤k

sup|Dα
y (σA(y, η)u(y))|

≤ K′k(1+ |η|)m sup
|α|≤k
y∈Rn

|Dαu(y)|, ω ≥ 1

where the constantsKk, K′k can be chosen uniformly w.r.t.ξ, |ξ| ≥ 1 since the constants
C0, C1, . . . ,Ck+1 of Lemma 2.6 can be chosen bounded (asξ0 ∈ Sn−1). Now setting
η = ξ we obtain that for allk ∈ N, ∃K′′k > 0

(1+ |ξ|)k−m|w(ξ)| ≤ K′′k sup
|α|≤k
y∈Rn

|Dαu(y)| , ξ ∈ Rn, |ξ| ≥ 1.(2.13)

We now consider

Dξi w(ξ) =
∫

exp[i〈y|ξ〉 + iγ(y, ξ)]
(
(yi + ∂ξiγ(y, ξ))σA(y, ξ) − i∂ξiσA(y, ξ)

)
u(y)dy.

As yiu(y) ∈ S and∂ξiγ(y, ξ) is homogeneous of degree zero for|ξ| ≥ 1 estimates
similar to those in (2.13) are valid. �
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It is immediate from the structure ofφ(z′,z) in (2.8) that Lemma 2.5 applies toG(z′,z). If
∆ = z′ − z is small enough we have|∆∂xi b1(z, x′, ξ)| ≤ d < 1, due to Assumption 1.1,
and then Lemma 2.7 applies. We thus have the following proposition.

Proposition 2.8. There exists∆2 > 0 such that if z′, z ∈ [0,Z] with 0 ≤ ∆ := z′−z≤ ∆2

thenG(z′,z) mapsS into S andS ′ into S ′ continuously.

Remark 2.9. By the above result, composition of the two FIOsG(z′′,z′) andG(z′,z) is thus
natural without further requirement such as having the operators properly supported.

We now turn toglobal L2 and Sobolev space continuity for the operatorG(z′,z). We shall
use the following lemma.

Lemma 2.10. Let ps(y, η) be bounded w.r.t. the parameter s with values in Sm
ρ (Rp×Rr )

and define

η̃s(∆, y, η) := η − ∆ fs(y, η),

where fs is bounded w.r.t. the parameter s with values in S1(Rp ×Rr ,Rr ) and homoge-
neous of degree one inη, for |η| ≥ 1. Then

p̃s(∆, y, η) := ps(y, η̃(∆, y, η))

is bounded w.r.t. s and∆ with values in Smρ (Rp × Rr ) for ∆3 small enough. In the case
ρ = 1 it is then bounded w.r.t. s with values inC∞([0,∆3],Sm

ρ (Rp × Rr )).

Proof. Let ∆3 be small enough such that|η − ∆ fs(y, η)| ≥ C0 > 0 if |η| = 1 and
∆ ∈ [0,∆3]. We then have

1+C0|η| ≤ 1+ |η − ∆ fs(y, η)| ≤ 1+C1|η|, η ∈ Rr , |η| ≥ 1, ∆ ∈ [0,∆3].

This inequality yields the proper estimates for∂αy∂
β
η p̃s to prove that ˜ps ∈ Sm

ρ (Rp × Rr ).
Bounds w.r.t. to the parameterss and∆ come naturally. In the caseρ = 1, derivatives
w.r.t.∆ do not affect the symbol order and type. The proof is complete. �

Following [22] we introduce the following definition.

Definition 2.11. Let L≥ 2. A symbol q(z, .) bounded w.r.t. z with values in S1(Rp×Rr )
is said to satisfy Property (PL) if it is non-negative and satisfies

(PL) |∂αy∂
β
ηq(z, y, η)| ≤ C(1+ |η|)−|β|+(|α|+|β|)/L

(1+ q(z, y, η))1−(|α|+|β|)/L, z ∈ [0,Z], y ∈ Rp, η ∈ Rr .

We then setρ = 1− 1/L andδ = 1/L.

Remark 2.12. Supposeq(z, .) as in Definition 2.11 and|α| + |β| ≥ L then

(1+ |η|)1−(|α|+|β|)/L ≤ C(1+ q(z, y, η))1−(|α|+|β|)/L, z ∈ [0,Z], y ∈ Rp, η ∈ Rr .

Estimate (PL) is thus clear in this case.

Examples of symbols with such a property withL > 2 are given in [22]. In fact we
prove thatc1 satisfies Property (PL) for L = 2.
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Lemma 2.13. Let q(z, y, η) be bounded w.r.t. z with values in S1(Rp×Rr ). If q ≥ 0 then
q satisfies Property (PL) for L = 2.

Proof. Bounds w.r.t.z are natural; we shall omit the dependence onz in the proof for
concision. We have to prove that

|∂αy∂
β
ηq| ≤ C (1+ |η|) 1

2 (|α|−|β|) (1+ q)1− 1
2 (|α|+|β|)

The property is clearly true for|α|+ |β| = 0 and for|α|+ |β| ≥ 2 by the remark above. Let
us now treat the case|α| + |β| = 1. For this we use Landau’s inequality: letf ∈ C 2(R)
with f ≥ 0 and f ′′ is bounded then (see [4, page 40] and [10, Lemma 7.7.2])

| f ′(t)| ≤ 2 ( f (t))
1
2

(
sup
t∈R
| f ′′(t)|

) 1
2

.

We first treat the case|α| = 1. Definep(y, η) = (1+|η|2)−
1
2 q(y, η). Thenp ∈ S0(Rp×Rr )

and∂2α
y p(y, η) is in S0(Rp × Rr ) and is thus bounded. We thus have

(1+ |η|2)−
1
2 |∂αyq(y, η)| ≤ C ((1+ |η|2)−

1
2 q(y, η))

1
2 ,

which yields

|∂αyq(y, η)| ≤ C (1+ |η|) 1
2 (1+ q(y, η))

1
2 ,

which is the expected estimate. Let us now treat the case|β| = 1, with for instance,
β = (1,0, . . . ,0) andα = (0, . . . ,0). Definep(y, η) = (1 + |η|2)

1
2 q(y, η). Then p ∈

S2(Rp × Rr ) and thus∂2β
η p(y, η) is bounded. We hence have

|∂βηp(y, η)| ≤ C (p(y, η))
1
2 .

With

∂
β
ηp(y, η) = (1+ |η|2)

1
2 ∂

β
ηq(y, η) + η1(1+ |η|2)−

1
2 q(y, η),

the triangular inequality yields

(1+ |η|2)
1
2 |∂βηq(y, η)| ≤ C (p(y, η))

1
2 + |η1|(1+ |η|2)−

1
2 q(y, η)

≤ C (q(y, η))
1
2 ((1+ |η|2)

1
4 + (q(y, η))

1
2 )

≤ C (q(y, η))
1
2 (1+ |η|2)

1
4 .

We finally obtain

|∂βηq(y, η)| ≤ C (q(y, η))
1
2 (1+ |η|)− 1

2 ,

which is the expected estimate. �

Remark 2.14. If the symbolq(z, y, η) satisfies Property (PL) then the amplitudeq(z, y′, η)+
q(z, y, η) also satisfies Property (PL) (with derivatives w.r.t.y, y′ andη).

Proposition 2.15. Let q(z, .) be bounded w.r.t. z with values in S1(Rp×Rr ) with q(z, .) ≥
0. Let q(z, .) satisfy Property (PL) and defineρ∆(z, y, η) = exp[−∆q(z, y, η)]. Let m∈ N.
Then qmρ∆ is smooth w.r.t.∆, bounded w.r.t. z, with values in S0

ρ(R
p × Rr ) for ∆ in any

interval [∆min,∆max] with ∆min > 0.
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Proof. ∂αy∂
β
η(qmρ∆) is a linear combination of terms of the form

∆k(∂a1
y ∂

b1
η q) . . . (∂al

y ∂
bl
η q)(∂α1

y ∂
β1
η q) . . . (∂αk

y ∂
βk
η q)qm−lρ∆

with 0 ≤ l ≤ m anda1 + · · · + al + α1 + . . . αk = α andb1 + · · · + bl + β1 + . . . βk = β.
We can estimate the absolute value of each of these terms, using Property (PL), by

C∆k(1+ |η|)−|β|+
|α|+|β|

L (1+ q)l+k− |α|+|β|L qm−lρ∆ ≤ C(1+ |η|)−|β|+
|α|+|β|

L ∆−m
min

as (1+ q)l+k− |α|+|β|L qm−l∆k+mρ∆ ≤ C. �

While the symbol exp[−∆q(z, y, η)] is bounded w.r.t.z and smooth w.r.t.∆ with ∆ ≥
∆min > 0 with values inS0

ρ(R
p × Rr ), this fails to be true at∆ = 0:

∂∆ exp[−∆q]|∆=0 = −q < S0
ρ(R

p × Rr ).

In fact when we want to control the behavior of exp[−∆q] close to∆ = 0 we shall use
the following definition and lemmas.

Definition 2.16. Let L ≥ 2, ρ = 1 − 1/L and δ = 1/L. Let ρ∆(z, y, η) be a function
in C∞(Rp × Rr ) depending on the parameters∆ ≥ 0 and z∈ [0,Z]. We say thatρ∆
satisfies Property (QL) if the following holds

(QL) ∂αy∂
β
η(ρ∆ − ρ∆|∆=0)(z, y, η) = ∆m+δ(|α|+|β|)ρ

mαβ
∆

(z, y, η),

for |α| + |β| ≤ L, 0 ≤ m≤ 1− δ(|α| + |β|),

whereρmαβ
∆

(z, y, η) is bounded w.r.t.∆ and z with values in Sm−ρ|β|+δ|α|ρ (Rp × Rr ). It
follows thatρ∆(z, y, η) − ρ∆|∆=0(z, y, η) is itself bounded w.r.t.∆ and z with values in
S0
ρ(R

p × Rr ).

Lemma 2.17. Let q(z, .) be bounded w.r.t. z with values in S1(Rp × Rr ) and satisfy
Property (PL). Defineρ∆(z, y, η) = exp[−∆q(z, y, η)]. Thenρ∆ satisfies Property (QL)
for ∆ ∈ [0,∆max] for any∆max > 0. Asρ∆|∆=0 = 1, ρ∆ is itself bounded w.r.t.∆ and z
with values in S0ρ(R

p × Rr ).

Proof. In the proof all the functions and symbols will naturally be bounded w.r.t.z. We
thus drop the variablezhere for concision.

We define

ρ
mαβ
∆

:= ∆−m−δ(|α|+|β|)∂αy∂
β
η(ρ∆ − ρ∆|∆=0).

We first consider the case|α| + |β| = 0 with 0≤ m≤ 1. We need to estimate|∂a
y∂

b
ηρ

m00
∆
|.

The casem = 0, |a + b| = 0 has to be treated independently but is trivial: we clearly
have|ρ000

∆
| = |ρ∆ − 1| ≤ C. We shall now estimate|∂a

y∂
b
ηρ

m00
∆
| = |∆−m∂a

y∂
b
η(ρ∆ − 1)| in the

case wherem> 0 or |a| + |b| > 0. For this we write

ρ∆(y, η) − 1 = −∆
1

∫

0

q(y, η) exp[−s∆q(y, η)]ds.(2.14)
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We then haveρm00
∆

(y, η) = −
1
∫

0
qm
∆
(s, y, η)dswith

qm
∆ (s, y, η) = ∆1−mq(y, η) exp[−s∆q(y, η)].

We prove that

|∂a
y∂

b
ηq

m
∆ (s, y, η)| ≤ C(s)(1+ |η|)m−ρ|b|+δ|a|

with C(s) bounded w.r.t.∆ andL1 w.r.t. s ∈ [0,1]. The result then follows forρm00
∆

.

When computing∂a
y∂

b
ηq

m
∆

we obtain a linear combination of terms of the form

∆1−m(∂a0
y ∂

b0
η q)(−s∆)k(∂a1

y ∂
b1
η q) . . . (∂ak

y ∂
bk
η q) exp[−s∆q],

with a0 + a1 + · · · + ak = a, b0 + b1 + · · · + bk = b,

(wherek can be 0). Using Property (PL) we find that the absolute value of such a term
is bounded by

C∆1−m(s∆)k(1+ |η|)−|b|+δ(|a+b|)(1+ q)k+1−δ(|a+b|) exp[−s∆q]

≤ Csm+δ(|a+b|)−1(1+ |η|)m−ρ|b|+δ|a|∆δ(|a+b|)(s∆(1+ q))−m+k+1−δ(|a+b|) exp[−s∆q],

as 1≤ C(1 + |η|)m(1 + q)−m if m ≥ 0. If l := −m+ k + 1 − δ(|a + b|) ≥ 0 we use that
(s∆(1+ q))l exp[−s∆q] ≤ C if 0 ≤ s ≤ 1, 0 ≤ ∆ ≤ ∆max andq ≥ 0 and we obtain the
following estimate

Csm+δ(|a+b|)−1(1+ |η|)m−ρ|b|+δ|a|∆δ(|a+b|).

If l < 0, (1+ q)l is simply bounded (q ≥ 0) and we obtain the following estimate:

C∆k+1−msk(1+ |η|)m−ρ|b|+δ|a|.

As m+δ(|a+b|)−1 > −1 in the considered case, both estimates exhibit bounds thatare
in L1([0,1]) w.r.t. s. We also have uniform bounds w.r.t.∆ as we have assumedm≤ 1.

We now treat the case 1≤ |α| + |β| ≤ L, 0 ≤ m ≤ 1 − δ(|α| + |β|). We estimate the
absolute value of

∂a
y∂

b
η(ρ

mαβ
∆

) = ∆−m−δ(|α|+|β|) ∂a+α
y ∂

b+β
η ρ∆,

which is a linear combination of terms of the form

∆k−m−δ(|α|+|β|) (∂a1
y ∂

b1
η q) . . . (∂ak

y ∂
bk
η q) exp[−∆q],

with a1 + · · · + ak = a+ α, b1 + · · · + bk = b+ β, wherek ≥ 1. Using Property (PL) we
find that the absolute value of such a term is bounded by

C∆k−m−δ(|α|+|β|)(1+ |η|)−|β|−|b|+δ(|α|+|a|+|β|+|b|)(1+ q)k−δ(|α|+|a|+|β|+|b|) exp[−∆q]

≤ C(1+ |η|)m−ρ(|β|+|b|)+δ(|α|+|a|)(1+ q)−δ(|a|+|b|)(∆(1+ q))k−m−δ(|α|+|β|) exp[−∆q]

≤ C(1+ |η|)m−ρ(|β|+|b|)+δ(|α|+|a|),

ask−m− δ(|α| + |β|) ≥ 1−m− δ(|α| + |β|) ≥ 0 and 0≤ ∆ ≤ ∆max. This completes the
proof. �
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Lemma 2.18. Let p∆(z, y, η) ∈ S0
ρ(R

p × Rr ) satisfy Property (QL), such that p∆|∆=0

is constant. Let f∆(z, y, η) be bounded w.r.t. z and∆ with values in S1(Rp × Rr ) be
homogeneous of degree one inη for |η| ≥ 1. Defineη̃(∆, z, y, η) := η−∆ f∆(z, y, η). Then

p̃∆(z, y, η) := p∆(z, y, η̃(∆, z, y, η))

satisfies property (QL) for ∆ sufficiently small.

Proof. Take∆ small enough such that Lemma 2.10 applies. We first treat the case
α = 0, β = 0. Leth = p∆|∆=0. Property (QL) gives

p̃∆(z, y, η) − p̃∆(z, y, η)|∆=0 = p∆(z, y, η̃(∆, z, y, η)) − h

= ∆mqm00
∆

(z, y, η̃(∆, z, y, η)), 0 ≤ m≤ 1

with qm00
∆

(z, y, η̃(∆, z, y, η)) bounded w.r.t.zand∆ with values inSm
ρ (Rp ×Rr ). Let now

1 ≤ |α| + |β| ≤ L. ∂αy∂
β
η p̃∆(z, y, η) is a linear combination of terms of the form

∂α0
y ∂

β0
η p∆(z, y, η̃(∆, z, y, η)) ∂

α1
y ∂

β1
η η̃(∆, z, y, η) . . . ∂

αk
y ∂

βk
η η̃(∆, z, y, η)

with |β0| = k, β = β1+ · · ·+ βk andα = α0+ · · ·+αk. Note thatk ≥ 1 and|αi |+ |βi | ≥ 1,
i = 1, . . . k. By Property (QL) this term is thus of the form

∆m+δ(|α0|+|β0|)qmα0β0

∆
(z, y, η̃(∆, z, y, η)) ∂α1

y ∂
β1
η η̃(∆, z, y, η) . . . ∂

αk
y ∂

βk
η η̃(∆, z, y, η),(2.15)

with 0 ≤ m≤ 1− δ(|α0| + |β0|) andqmα0β0

∆
(z, y, η̃(∆, z, y, η)) bounded w.r.t.z and∆ with

values inSm−ρ|β0|+δ|α0|
ρ (Rp × Rr ) by Lemma 2.10 .

Assume first that, for this term,|αi |+ |βi | = 1 for all i = 1, . . . , k. Then
∑k

i=1 |αi |+ |βi | = k
and |α0| + |β0| = |α| + |β|. The term∂αi

y ∂
βi
η η̃(∆, z, y, η) in the product (2.15) belongs to

S1−βi (Rp × Rr ) and thus (2.15) is of the form∆m+δ(|α|+|β|)q̃mα0β0

∆
(z, y, η) with q̃mα0β0

∆
in

Sl
ρ(R

p ×Rr ) with l = m− ρ|β0|+ δ|α0|+ k− |β1| − · · · − |βk| = m+ δ(|β0|+ |α0|)− |β|. As
|α0| + |β0| = |α| + |β| we havel = m+ δ(|α| + |β|) − |β| = m− ρ|β| + δ|α|. We thus obtain
the expected result in this case.

Assume now that there existsi ∈ {1, . . . , k} such that|αi | + |βi | ≥ 2. Then the term
∂
αi
y ∂

βi
η η̃(∆, z, y, η) in the product (2.15) is equal to∆∂αi

y ∂
βi
η f∆(z, y, η). Thus the term

(2.15) is of the form∆1+m+δ(|α0|+|β0|) ˜̃qmα0β0

∆
(z, y, η) with ˜̃qmα0β0

∆
in Sl

ρ(R
p × Rr ). As above

l = m + δ(|α0| + |β0|) − |β|. In the present case|α0| + |β0| < |α| + |β| which yields
l < m− ρ|β| + δ|α| and hence the expected result since 1+ m+ δ(|α0| + |β0|) ≥ 1 ≥
m+ δ(|α| + |β|). �

Lemma 2.19. Let f ∈ C∞(R) and q∆(z, y, η) in C∞(Rp×Rr ) that satisfies Property (QL)
and such that q∆(z, .)|∆=0 is independent of y andη. Then f(q∆)(z, y, η) satisfies Property
(QL).

Proof. Again bounds w.r.t.zare clear. We first treat the case|α| + |β| = 0. We write

f (q∆) − f (q∆|∆=0) = (q∆ − q∆|∆=0)

1
∫

0

f ′((1− s)q∆|∆=0 + sq∆)ds.
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As q∆|∆=0 is independent ofy andη, thenq∆ is bounded w.r.t.∆ with values inS0
ρ(R

p×
R

r ) by Property (QL) and so are (1−s)q∆|∆=0+sq∆ and f ′((1−s)q∆|∆=0+sq∆) by Lemma
18.1.10 in [8] with bounds inS0

ρ(R
p × Rr ) uniform with respect tos. We thus obtain

that
∫1

0 f ′((1 − s)q∆|∆=0 + sq∆)ds is bounded w.r.t.∆ with values inS0
ρ(R

p × Rr ). We
conclude using Property (QL) for q∆−q∆|∆=0. Let us now treat the case 1≤ |α|+ |β| ≤ L
and choose 0≤ m ≤ 1− δ(|α| + |β|). We see that∂αy∂

β
η f (q∆) is a linear combination of

terms of the form

(∂α1
y ∂

β1
η q∆) . . . (∂

αk
y ∂

βk
η q∆) f (k)(q∆),

wherek ≥ 1,α1+ · · ·+αk = α, β1+ · · ·+βk = β. Now choose 0≤ mi ≤ 1−δ(|αi |+ |βi |),
i = 1, . . . , k, such thatm= m1 + · · · +mk. Then Property (QL) yields terms of the form

∆m1+δ(|α1|+|β1|) . . .∆mk+δ(|αk|+|βk|)qm1α1β1

∆
. . . qmkαkβk

∆
= ∆m+δ(|α|+|β|)qmαβ

∆

with qmiαiβi

∆
, i = 1, . . . , k, bounded w.r.t.∆ with values inSmi−ρ|αi |+δ|βi |

ρ (Rp × Rr ) and

qmαβ
∆

:= qm1α1β1

∆
. . . qmkαkβk

∆
. We note thatf (k)(q∆) is bounded w.r.t.∆ with values in

S0
ρ(R

p × Rr ). The symbolqmαβ
∆

is bounded w.r.t.∆ with values inSm−ρ|α|+δ|β|
ρ (Rp × Rr ),

which yields the result. �

With Remark 2.14, Lemma 2.19 and the previous lemma we obtainthe following corol-
lary.

Corollary 2.20. Let f ∈ C∞(R) and let q(z, .) bounded w.r.t. z with values in S1(Rp ×
R

r ) satisfy Property (PL). Define

p∆(z, y
′, y, η) = exp[−∆(q(z, y′, η) + q(z, y, η))].

Then f(p∆) satisfies Property (QL). As f(p∆)|∆=0 = f (1), f (p∆) is itself bounded w.r.t.
∆ and z with values in S0ρ(R

2p × Rr ).

Note that the property (QL) is stable when we go from amplitudes to symbols.

Proposition 2.21. Let q∆(z, x, y, ξ) be an amplitude in S0ρ(R
2p ×Rp) depending on the

parameters∆ ≥ 0 and z ∈ [0,Z] that satisfies Property (QL). Thenσ {q∆} (z, x, ξ)
satisfies property (QL).

Proof. We use the oscillatory integral representation for the symbol

σ {q∆} (z, x, ξ) :=
Ï

exp[−i〈y|η〉] q∆(z, x, x− y, ξ − η) d−η dy.

Let 0≤ |α|+ |β| ≤ L and 0≤ m≤ 1− δ(|α|+ |β|). Computing∂αx∂
β

ξ
(σ {q∆} −σ {q∆} |∆=0),

we obtain a linear combination of terms of the form, withα1 + α2 = α,
Ï

exp[−i〈y|η〉] ∂α1
2 ∂

α2
3 ∂

β

4(q∆ − q∆|∆=0)(z, x, x− y, ξ − η) d−η dy

=

Ï

exp[−i〈y|η〉] ∆m+δ(|α|+|β|)qm(α1,α2)β
∆

(z, x, x− y, ξ − η) d−η dy

= ∆m+δ(|α|+|β|)σ
{
qm(α1,α2)β
∆

}
,

whereqm(α1,α2)β
∆

is bounded w.r.t.∆ andz with values inSm−ρ|β|+δ|α|
ρ (R2p × Rp). As the

mapa 7→ σ {a} maps bounded sets into bounded sets the result follows. �
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We shall also need the following lemma.

Lemma 2.22. Let q∆(z, x, y, ξ) be an amplitude in S0ρ(R
2p × Rp) depending on the pa-

rameters∆ ≥ 0 and z∈ [0,Z] that satisfies Property (QL) for 1 ≤ |α|+ |β| ≤ 2 and such
that q∆(z, .)|∆=0 is independent of(x, y, ξ). Let r(x, ξ) ∈ Ss(Rp × Rp) for some s∈ R.
Then

σ {q∆ r} (z, x, ξ) − q∆(z, x, x, ξ) r(x, ξ) = ∆m+2δλm
∆ (z, x, ξ), 0 ≤ m≤ ρ − δ,

where the functionλm
∆
(z, x, ξ) is bounded w.r.t.∆ and z with values in Sm+s−(ρ−δ)

ρ (Rp ×
R

p).

Proof. For the sake of concision we takep = 1 in the proof but it naturally extends to
p ≥ 1. We writeλ∆ = q∆r. Using the oscillatory integral representation ofσ {q∆} we
obtain

σ {q∆r} (z, x, ξ) − q∆(z, x, x, ξ)r(x, ξ)

=

Ï

exp[−i〈y|ξ − η〉](λ∆(z, x, x− y, η) − λ∆(z, x, x, η) d−η dy.

Taylor’s formula yields

σ {q∆r} (z, x, ξ) − q∆(z, x, x, ξ)r(x, ξ)

=

1
∫

0

Ï

−yexp[−i〈y|ξ − η〉] ∂3λ∆(z, x, x− sy, η) d−η dy ds.

With an integration by parts we obtain

σ {q∆r} (z, x, ξ) − q∆(z, x, x, ξ)r(x, ξ)

= −
1

∫

0

Ï

i exp[−i〈y|ξ − η〉] ∂3∂4λ∆(z, x, x− sy, η) d−η dy ds

= σ


−i

1
∫

0

∂3∂4λ∆(z, x, (1− s)x+ sy, ξ) ds


,

where∂3∂4λ∆(z, x, y, ξ) = (∂y∂ξq∆)(z, x, y, ξ) r(x, ξ) + ∂yq∆(z, x, y, ξ)∂ξr(x, ξ), asr does
not depend ony. The first term is treated using Property (QL) while for the second one
we write

∂yq∆ ∂ξr = ∆
m′+δ qm′(0,1)0

∆
∂ξr,

where 0≤ m′ ≤ 1 − δ andqm′(0,1)0
∆

r ∈ Sm′+s−1+δ
ρ (R2p × Rp) by Property (QL). We

actually takeδ ≤ m′ ≤ 1− δ and writem= m′ − δ. We obtain

∂yq∆∂ξr = ∆
m+2δ q̃m

∆ ,

whereq̃m
∆

is bounded w.r.t.∆ with values inSm+s−ρ+δ
ρ (R2p × Rp) and 0≤ m≤ 1− 2δ =

ρ − δ. We conclude since the mapσ{.} maps bounded sets into bounded sets. �
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We shall need the following result.

Proposition 2.23. Let 1
2 ≤ ρ ≤ 1 and setδ = 1− ρ. Let p(x, ξ) be a real non-negative

C∞ function that satisfies

‖p(x, ξ)‖ ≤ C〈ξ〉,(2.16)

‖∂αx p(x, ξ)‖ ≤ Cα〈ξ〉, |α| = 1, ‖∂β
ξ
p(x, ξ)‖ ≤ Cβ, |β| = 1,(2.17)

and

∂αx∂
β

ξ
p(x, ξ) ∈ Sρ−δ+δ|α|−ρ|β|

ρ (X × Rn), for |α + β| = 2.(2.18)

Then there exists a non-negative constant C such that

Re(p(x,D)u,u)(L2,L2) ≥ −C‖u‖2L2, u ∈ S (Rn).

The constant C can be chosen uniformly if the symbol p remainsin a set such that
the constants in (2.16)–(2.17) are uniform and if∂αx∂

β

ξ
p(x, ξ), |α + β| = 2, remain in

bounded domains of Sρ−δ+δ|α|−ρ|β|ρ (X × Rn) respectively.

In other words, for the partial differentiation of order zero and one the symbolp be-
haves like an elementS1

1,0 and like an element ofSρ−δ
ρ for higher-order derivatives. The

result we prove is of the form of the sharp Gårding inequality. Note that considering
p(x, ξ) to be inS1

ρ(X×Rn), we cannot directly apply the usual sharp Gårding inequality
to obtain a lowerL2 bound when1

2 ≤ ρ < 1.

Proof. We follow the proof of the sharp Gårding inequality as given in [14, Section
3.4] and [25, Chapter VII]. We introduce the following function

F(ξ, ζ) = 〈ξ〉−n/4q(〈ξ〉− 1
2 (ζ − ξ)),(2.19)

whereq is real, even, belongs toC∞(|ξ| ≤ 1) and satisfies
∫

q(ξ)2 dξ = 1 and we set

µ(ζ, x, ξ) =
∫

F(ζ, η)p(x, η)F(ξ, η) dη,

which is the so-called Friedrichs’ symmetrization of the symbol p. By Theorem 3.4.2
in [14], since p(x, ξ) ∈ S1

ρ(X × Rn), the functionµ(ζ, x, ξ) is a double symbol that

belongs toS1,0
ρ (Rn×X×Rn). For the notion of double symbols see [14]. Note that since

we are not interested in an asymptotic formula forµ(ζ, y, ξ) the first part of the proof
of Theorem 3.4.2 in [14] applies to the caseρ = δ = 1

2. Then we haveµ(Dx, y,Dy) =
ν(x,Dx), with the symbolν(x, ξ) ∈ S1

ρ(X × Rn) given by [14, Theorem 2.2.5]

ν(x, ξ) =
Ï

exp[−i〈y|ξ − ζ〉]µ(ζ, x− y, ξ) dy d−ζ,

as an oscillatory integral. The operatorν(x,Dx) is formally self-adjoint andν(x,Dx) is
non-negative as an operator, i.e., foru ∈ S (Rn) we have [14, Theorem 3.4.3]

(ν(x,Dx)u,u)(L2,L2) ≥ 0.
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Next, we study the properties of (ν − p)(x, ξ). We set

ν0(x, ξ) = µ(ξ, x, ξ) =
∫

F(ξ, η)2p(x, η)dη =
∫

p(x, ξ + σ〈ξ〉 1
2 )q(σ)2 dσ

= p(x, ξ) +
∫

1
∫

0

(1− s)∂2
ξ p(x, ξ + sσ〈ξ〉 1

2 ;σ〈ξ〉 1
2 , σ〈ξ〉 1

2 ) ds q(σ)2 dσ,

by the second-order Taylor formula using that
∫

q(σ)2dσ = 1 and thatq is even. We
observe that|σ| ≤ 1 on the support of the functionq(σ) which gives

C〈ξ〉 ≤ 〈ξ + 〈ξ〉 1
2σ〉 ≤ C′〈ξ〉.(2.20)

From (2.18) we thus obtain thatν0(x, ξ) − p(x, ξ) ∈ S0
ρ(X × Rn). We now prove the

following lemma.

Lemma 2.24. The symbol(ν − ν0)(x, ξ) belongs to S0ρ(X × Rn).

Proof. We first define

ν1(x, ξ) = −i
∑

j

∂x j∂ζ jµ(ζ, x, ξ)|ζ=ξ = −i
∑

j

∫

∂ξ j F(ξ, η) ∂x j p(x, η) F(ξ, η) dη(2.21)

and prove thatν1(x, ξ) ∈ S0
ρ(X × Rn). From [14, Lemma 3.4.1]∂ξ j F(ξ, η) has the form

∂ξ j F(ξ, η) = 〈ξ〉−n/4
∑

|γ|≤1, γ1≤γ
ψγ,γ1(ξ)

(
(η − ξ)〈ξ〉− 1

2

)γ1
(∂γσq)((η − ξ)〈ξ〉− 1

2 ),

whereψγ,γ1 ∈ S
−1+ 1

2 |γ−γ1|
1,0 (Rn). From the definition ofF in (2.19) we write thejth term

in the sum in (2.21) as

ν
( j)
1 (x, ξ) = −i〈ξ〉−n/2

∑

|γ|≤1, γ1≤γ
ψγ,γ1(ξ)

∫ (
(η − ξ)〈ξ〉− 1

2

)γ1
(∂γσq)((η − ξ)〈ξ〉− 1

2 )(2.22)

× ∂x j p(x, η) q((η − ξ)〈ξ〉− 1
2 ) dη

= −i
∑

|γ|≤1, γ1≤γ
ψγ,γ1(ξ)

∫

σγ1(∂γσq)(σ) q(σ) ∂x j p(x, ξ + 〈ξ〉 1
2σ) dσ,

after a change of variable. There are two cases to consider inthe sum in (2.22): a)
γ1 = γ and b)γ1 = 0 and |γ| = 1. From (2.20), and (2.17) and from the fact that
ψγ,γ ∈ S−1

1,0(Rn) we find that the contribution from casea), i.e.,

ν
( j,a)
1 (x, ξ) = −i

∑

|γ|≤1

ψγ,γ(ξ)
∫

σγ(∂γσq)(σ) q(σ) ∂x j p(x, ξ + 〈ξ〉 1
2σ) dσ,

satisfies|ν( j,a)
1 (x, ξ)| ≤ C. Computing∂αx∂

β

ξ
ν

( j,a)
1 (x, ξ) we find it to be a linear combina-

tion of terms of the form
∑

|γ|≤1

∂
β1

ξ
ψγ,γ(ξ)

∫

σγ(∂γσq)(σ) q(σ) ∂αx∂
β2

ξ
∂x j p(x, ξ + 〈ξ〉 1

2σ) dσ, with β1 + β2 = β.

19



From (2.20) and (2.18) we see that∂αx∂
β2

ξ
∂x j p(x, ξ + 〈ξ〉 1

2σ) is in Sδ|α|+ρ(1−|β2|)
ρ (X × Rn)

uniformly w.r.t.σ, |σ| ≤ 1 and∂β1

ξ
ψγ,γ(ξ) is in S−1−|β1|

1,0 (X × Rn). As a result,ν( j,a)
1 (x, ξ)

belongs toS0
ρ(X × Rn). We now consider the contribution from case b) in the sum in

(2.22), i.e.,

ν
( j,b)
1 (x, ξ) = −i

∑

|γ|=1

ψγ,0(ξ)
∫

(∂γσq)(σ) q(σ) ∂x j p(x, ξ + 〈ξ〉 1
2σ) dσ.

We write

∂x j p(x, ξ + 〈ξ〉 1
2σ) = ∂x j p(x, ξ) + 〈ξ〉 1

2

∑

l

σl

1
∫

0

(∂ξl∂x j p)(x, ξ + tσ〈ξ〉 1
2 ) dt.

Since
∫

∂
γ
σq(σ) q(σ) dσ = 0 (q is even), the first term gives no contribution and we

obtain

ν
( j,b)
1 (x, ξ) = −i〈ξ〉 1

2

∑

|γ|=1,l

ψγ,0(ξ)
∫

1
∫

0

(∂γσq)(σ) q(σ) σl(∂ξl∂x j p)(x, ξ + tσ〈ξ〉 1
2 ) dt dσ.

Since by (2.18),∂ξl∂x j p(x, ξ) ∈ S0
ρ(X × Rn) andψγ,0(ξ) ∈ S

− 1
2

1,0(Rn) we obtain that

ν
( j,b)
1 (x, ξ) ∈ S0

ρ(X × Rn) from (2.20).

We have thus proven thatν1(x, ξ) ∈ S0
ρ(X × Rn). We now compute (ν − ν0)(x, ξ).

(ν − ν0)(x, ξ) =
Ñ

exp[−i〈y|ξ − ζ〉]F(ζ, η)p(x− y, η)F(ξ, η) dy d−ζ dη

−
∫

F(ξ, η)2p(x, η) dη

=

Ñ

exp[−i〈y|ξ − ζ〉]F(ζ, η) (p(x− y, η) − p(x, η)) F(ξ, η) dy d−ζ dη

=

1
∫

0

∑

j

Ñ

−y j exp[−i〈y|ξ − ζ〉]F(ζ, η)∂x j p(x− sy, η)F(ξ, η) dy d−ζ dη ds

= −i

1
∫

0

∑

j

Ñ

exp[−i〈y|ξ − ζ〉]∂ζ j F(ζ, η)∂x j p(x− sy, η)F(ξ, η) dy d−ζ dη ds,

after an integration by parts. Arguing similarly, computing (ν−ν0−ν1)(x, ξ), we obtain

(ν−ν0 − ν1)(x, ξ) = −i

1
∫

0

∑

j

Ñ

exp[−i〈y|ξ − ζ〉]∂ζ j F(ζ, η)

×
(
∂x j p(x− sy, η) − ∂x j p(x, η)

)
F(ξ, η) dy d−ζ dη ds

= −
1

∫

0

1
∫

0

s
∑

j,l

Ñ

exp[−i〈y|ξ − ζ〉]∂2
ζ j ,ζl

F(ζ, η)

× ∂2
x j ,xl

p(x− s′sy, η)F(ξ, η) dy d−ζ dη ds ds′

= −σ



1
∫

0

1
∫

0

s
∑

j,l

∫

∂2
ζ j ,ζl

F(ζ, η)∂2
x j ,xl

p((1− s′s)x+ s′sy, η)F(ξ, η)dηds ds′


.
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Observing that

p̃(x, y, η) :=

1
∫

0

1
∫

0

s∂2
x j ,xl

p((1− s′s)x+ ss′y, η) ds ds′

is in S1
ρ(X × Y × Rn) by (2.18), and then following the proof of Theorem 3.4.2 in [14]

we find that its Friedrichs’ symmetrization,

µ̃(x, ζ, y, ξ) =
∫

F(ζ, η)p̃(x, y, η)F(ξ, η) dη,

is in S1,0
ρ (X × Rn × Y × Rn) and thus∂2

ζ j ,ζl
µ̃(x, ζ, y, ξ) is in S0,0

ρ (X × Rn × Y × Rn)

and finally we find (ν − ν0 − ν1)(x, ξ) ∈ S0
ρ(X × Rn) by Theorem 2.2.5 in [14]. With

ν1(x, ξ) ∈ S0
ρ(X × Rn) as proven above, this concludes the proof. �

End of the proof of Proposition 2.23.As a consequence of the previous lemma we find
that (ν − p)(x, ξ) ∈ S0

ρ(X × Rn) and we have

Re(p(x,Dx)u,u)(L2,L2) = (ν(x,Dx)u,u)(L2,L2) + Re((p− ν)(x,Dx)u,u)(L2,L2)

≥ −C‖u‖2L2,

by the Caldeŕon-Vaillancourt Theorem (see [14, Chapter 7, Sections 1,2]or [25, Sec-
tion XIII-2]). �

The following result is at the heart of the precise Sobolev operator-norm estimation of
the thin-slab propagatorG(z′,z).

Theorem 2.25. Letρ∆(z, x, ξ) = exp[−∆q(z, x, ξ)] with q(z, x, ξ) satisfying Property (PL).
There exist∆4 > 0 and C≥ 0 such that

‖ρ∆(z, x,Dx)‖(L2,L2) ≤ 1+C∆,

for all z′, z ∈ [0,Z] such that0 ≤ ∆ = z′ − z≤ ∆4.

Proof. In the proof, we shall always assume that∆ is sufficiently small to apply the
invoked properties and results. By Lemma 2.17ρ∆(z, x, ξ) satisfies Property (QL). We
prove that (ρ∆(z, x,Dx)◦ρ∆(z, x,Dx)∗u,u)(L2,L2) ≤ (1+C∆)‖u‖2L2 for all u ∈ S (Rn). The
ψDO ρ∆(z, x,Dx) ◦ ρ∆(z, x,Dx)∗ admits the amplitude

p∆(z, x, y, ξ) = exp[−∆(q(z, x, ξ) + q(z, y, ξ))],

which satisfies Property (QL) by Corollary 2.20. We then obtain

σ {p∆(z, x, y, ξ)} − exp[−2∆q(z, x, ξ)] = ∆λ∆(z, x, ξ),

whereλ∆(z, x, ξ) is bounded w.r.t.z and∆ with values inS0
ρ(X × Rn) by Lemma 2.22

(usingm= ρ−δ). By the Caldeŕon-Vaillancourt Theorem (see [14, Chapter 7, Sections
1,2] or [25, Section XIII-2]), we shall obtain the desired estimate for (ρ∆(z, x,Dx) ◦
ρ∆(z, x,Dx)∗u,u)(L2,L2) if we prove Re(exp[−2∆q(z, x,Dx)]u,u)(L2,L2) ≤ (1 + C∆)‖u‖2L2

for all u ∈ S (Rn).
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We setr∆(z, x, ξ) = (1 − exp[−2∆q(z, x, ξ)])/∆ for ∆ > 0 and observe thatr∆(z, x, ξ)
satisfies the conditions listed in Proposition 2.23 uniformly w.r.t. z and∆. In fact, a
first-order Taylor formula gives‖r∆(z, x, ξ)‖ ≤ C〈ξ〉. By Property (QL) we obtain

‖∂αxr∆(z, x, ξ)‖ ≤ C〈ξ〉, |α| = 1, ‖∂β
ξ
r∆(z, x, ξ)‖ ≤ C, |β| = 1,

usingm= ρ in (QL) in both cases. Finally, if|α + β| = 2, we obtain that∂αx∂
β

ξ
r∆(z, x, ξ)

is bounded uniformly w.r.t.z and∆ with values inSρ−δ+δ|α|−ρ|β|
ρ (X × Rn) by choosing

m= ρ − δ in (QL).

By Proposition 2.23 we thus obtain Re(r∆(z, x,Dx)u,u)(L2,L2) ≥ −C‖u‖2L2 for all u ∈
S (Rn) which yields

‖u‖2L2 − Re(exp[−2∆q(z, x,Dx)]u,u)(L2,L2) ≥ −C∆‖u‖2L2,

which concludes the proof. �

We are now ready to give an estimate of the operator norm of thethin-slab propagator,
G(z′,z), in L(H(s)(Rn),H(s)(Rn)) for anys ∈ R.

Theorem 2.26. Let s∈ R. There exists M> 0, ∆5 > 0 such that

‖G(z′,z)‖(H(s),H(s)) ≤ 1+ M∆,

for all z′, z ∈ [0,Z] such that0 ≤ ∆ = z′ − z≤ ∆5.

In the proof we assume thatc1 satisfies property (PL) for someL ≥ 2. We know that
it is always true forL = 2 by Lemma 2.13 but special choices forc1 can be made. As
before we useρ = 1− 1/L andδ = 1/L with ρ > δ for L > 2 andρ = δ = 1

2 for L = 2.
In the proof we proceed classically by computingG(z′,z) ◦ G∗(z′,z) and use the classical
results onψDOs (see e.g. [18, Section 5] and also [7]). Here we however donot content
ourselves with the continuity ofG(z′,z) but we want to obtain a precise estimate of the
operator norm inL(H(s)(X),H(s)(X′)), which will be required in the sequel. Here we
exploit the fact that∆ can be taken arbitrarily small which allows to carry out some
explicit computations.

Proof. Let s ∈ R, then the kernel ofA(z′,z) := G(z′,z) ◦ E(−s) is given by

A(z′,z)(x
′, x) =

∫

exp[iφ(z′,z)(x
′, x, ξ)] g(z′,z)(x

′, ξ) 〈ξ〉−s d−ξ.

Computing the kernelD(z′,z) ofD(z′,z) := A(z′,z) ◦ A∗(z′,z) we obtain

D(z′,z)(x
′, x) =

∫

exp
[
i〈x′ − x|ξ〉 + i∆

(
b1(z, x′, ξ) − b1(z, x, ξ)

)]
d(z′,z)(x

′, x, ξ) d−ξ

where

d(z′,z)(x
′, x, ξ) = exp[−∆(c1(z, x′, ξ) + c1(z, x, ξ)] g(z′,z)(x

′, ξ) g(z′,z)(x, ξ) 〈ξ〉−2s.

We writeb1(z, x′, ξ) − b1(z, x, ξ) = 〈x′ − x|h(z, x′, x, ξ)〉 where the functionh is smooth,
homogeneous of degree one inξ, |ξ| ≥ 1, and continuous w.r.t.zwith values inS1(X′ ×
X×Rn) by Assumption 1.1 and estimate (1.1.9) in [10]. We thus obtain that the change
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of variablesξ → ξ+∆h(z, x′, x, ξ) = H(∆,z,x′,x)(ξ) is a global diffeomorphism for∆ small
enough (uniformly inz ∈ [0,Z]). Let ξ̃(∆, z, x′, x, ξ) = H−1

(∆,z,x′,x)(ξ). We thus have

D(z′,z)(x
′, x) =

∫

exp
[
i〈x′ − x|ξ〉] d(z′,z)(x

′, x, ξ̃(∆, z, x′, x, ξ)) J∆(z, x′, x, ξ) d−ξ

whereJ∆(z, x′, x, ξ) is the Jacobian.

Lemma 2.27. The functioñξ(∆, z, x′, x, ξ) is homogeneous of degree one inξ, for |ξ| ≥
1, continuous w.r.t. z,C∞ w.r.t.∆ with values in S1(R2n ×Rn) if ∆ is small enough, i.e.,

∃∆5 > 0, ξ̃ ∈ C
0([0,Z],C∞([0,∆5],S1(R2n × Rn))).

This lemma is in fact a variant of part of the results of Proposition 1.5 in [14, Chapter
10].

Proof. Homogeneity is clear. We have

|ξ̃(∆, z, x′, x, ξ)| = |ξ − ∆h(z, x′, x, ξ̃(∆, z, x′, x, ξ))|
≤ 1+ ∆C(1+ |ξ̃(∆, z, x′, x, ξ)|), |ξ| = 1,

which yields, because of homogeneity,

|ξ̃(∆, z, x′, x, ξ)| ≤ 1+ ∆C
1− ∆C

(1+ |ξ|), |ξ| ≥ 1,

for ∆ small enough, uniformly chosen w.r.t.z ∈ [0,Z], x′, x ∈ Rn. Differentiating the
jth coordinate ofξ,

ξ j = ξ̃ j(∆, z, x
′, x, ξ) + ∆h j(z, x

′, x, ξ̃(∆, z, x′, x, ξ)), j = 1, . . . ,n,

w.r.t. xi yields

(2.23) ∂xi ξ̃ j(∆, z, x
′, x, ξ) + ∆∂xi h j(z, x

′, x, ξ̃(∆, z, x′, x, ξ))

+ ∆
∑

l

∂ξ̃l
h j(z, x

′, x, ξ̃(∆, z, x′, x, ξ)) ∂xi ξ̃l(∆, z, x
′, x, ξ) = 0,

j = 1, . . . ,n.

The partial derivatives ofh are bounded for|ξ| = 1. We can solve for∂xi ξ̃(∆, z, x
′, x, ξ)

when∆ is sufficiently small and find the expected estimate from that obtained for
ξ̃(∆, z, x′, x, ξ):

∃C > 0, |∂xi ξ̃(∆, z, x
′, x, ξ)| ≤ C(1+ |ξ|), x′, x ∈ Rn, ξ ∈ Rn.

Differentiating w.r.t.x′i , ξi , and∆ yields similar structures and the proper symbol esti-
mates. The proof carries on by induction. Note that the required size for∆ to solve the
systems of the form (2.23) remains fixed along the induction process. �

Continuation of the proof of Theorem 2.26.From (the proof of) Lemma 2.27 we also
obtain that the JacobianJ∆(z, x′, x, ξ) is homogeneous of degree zero inξ, |ξ| ≥ 1, and
is continuous w.r.t.zandC∞ w.r.t.∆ with values inS0(R2n × Rn).
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We write p̃∆(z, x′, x, ξ) := exp[−∆(c1(z, x′, ξ)+c1(z, x, ξ)]. As c1 satisfies Property (PL)
we then have ˜p∆ satisfying property (QL) by Corollary 2.20. Definep∆(z, x′, x, ξ) :=
p̃∆(z, x′, x, ξ̃(∆, z, x′, x, ξ)). Since

ξ̃(∆, z, x′, x, ξ) = ξ − ∆h(z, x′, x, ξ̃(∆, z, x′, x, ξ))

Lemma 2.10 and Lemma 2.27 yield thatp∆ ∈ S0
ρ(R

2n × Rn) for ∆ small enough.
Lemma 2.18 yields thatp∆ satisfies Property (QL). We then have

d(z′,z)(x
′, x, ξ̃(∆, z, x′, x, ξ)) J∆(z, x′, x, ξ) =: p∆(z, x

′, x, ξ) k∆(z, x
′, x, ξ),

wherek∆(z, .) is bounded w.r.t.z andC∞ w.r.t. ∆ with values inS−2s(R2n × Rn) and
k∆(z, x′, x, ξ)|∆=0 = 〈ξ〉−2s by Lemma 2.10 and Lemma 2.27. By Theorem 1.1.9 and
formula (1.1.9) in [10] we obtain

k∆(z, x
′, x, ξ) = 〈ξ〉−2s + ∆k̃∆(z, x

′, x, ξ),

wherek̃∆ is bounded w.r.t.zandC∞ w.r.t.∆ with values inS−2s(R2n × Rn).

CallF(z′,z) := E(s) ◦ D(z′,z) ◦ E(s). Its symbol is inS0
ρ(R

n × Rn) and is given by

f(z′,z)(x
′, ξ) := (〈ξ〉s #σ

{
p∆(z, x

′, x, ξ) k∆(z, x
′, x, ξ)

}
# 〈ξ〉s)(x′, ξ)

= (〈ξ〉s #σ
{
p∆(z, x

′, x, ξ)〈ξ〉−2s
}

# 〈ξ〉s)(x′, ξ)

+ ∆(〈ξ〉s #σ
{
p∆(z, x

′, x, ξ)k̃∆(z, x
′, x, ξ)

}
# 〈ξ〉s)(x′, ξ).

As p∆ is bounded w.r.t.zand∆, ∆ small enough, with values inS0
ρ(R

2n×Rn) (Property
(QL)) we obtain that the second term in the equation above satisfies the same property
and thus we can write

F(z′,z) = F a
(z′,z) + ∆F 1

(z′,z),

whereF a
(z′,z) has for symbol

(〈ξ〉s #σ
{
p∆(z, x

′, x, ξ)〈ξ〉−2s
}

# 〈ξ〉s)(x′, ξ)

and‖F 1
(z′,z)‖(L2,L2) ≤ K1, uniformly inz ∈ [0,Z] and∆,∆ small enough, by the Calderón-

Vaillancourt Theorem (see [14, Chapter 7, Sections 1,2] or [25, Section XIII-2]) in the
caseL = 2 and by Theorem 18.1.11 in [8] in the caseL > 2. With Lemma 2.22 we see
that

σ
{
p∆(z, x

′, x, ξ)〈ξ〉−2s
}
− p∆(z, x

′, x′, ξ)〈ξ〉−2s = ∆λ∆(z, x
′, ξ),

whereλ∆ is bounded w.r.t.∆ andzwith values inS−2s
ρ (Rn × Rn). We thus obtain

F a
(z′,z) = F b

(z′,z) + ∆F 2
(z′,z),

whereF b
(z′,z) has for symbol

f b
∆(z, x′, ξ) := (〈ξ〉s # p∆(z, x

′, x′, ξ)〈ξ〉−2s # 〈ξ〉s)(z, x′, ξ)
= (〈ξ〉s # p∆(z, x

′, x′, ξ)〈ξ〉−s)(z, x′, ξ)

and‖F 2
(z′,z)‖(L2,L2) ≤ K2 uniformly in z ∈ [0,Z] and∆, ∆ small enough.

For the rest of the proof, if we don’t write it explicitly, byp∆ and p∆(z, x, ξ) we shall
actually meanp∆(z, x, x, ξ).
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Lemma 2.28.

(〈.〉s # p∆(z, .)〈.〉−s)(z, x, ξ) − p∆(z, x, ξ) = ∆µ∆(z, x, ξ),

whereµ∆(z, x, ξ) is bounded w.r.t. z and∆ with values in S0ρ(X × Rn).

Proof. We write

p∆(z, x, ξ) = 〈ξ〉−s
Ï

exp[−i〈y|ξ − η〉] 〈η〉s p∆(z, x, ξ) d−η dy

and thus obtain, with the oscillatory integral representation for the composition for-
mula,

(〈.〉s # p∆(z, .)〈.〉−s)(z, x, ξ) − p∆(z, x, ξ) =

〈ξ〉−s
Ï

exp[−i〈y|ξ − η〉] 〈η〉s (p∆(z, x− y, ξ) − p∆(z, x, ξ)) d−η dy.

With Taylor’s formula and applying an integration by part, we find (we have supposed
n = 1 for the sake of simplicity but it naturally extends ton ≥ 1)

(〈.〉s # p∆(z, .)〈.〉−s)(z, x, ξ) − p∆(z, x, ξ) =

− 〈ξ〉−s

1
∫

0

Ï

i exp[−i〈y|ξ − η〉] ∂η〈η〉s ∂xp∆(z, x− ry, ξ) d−η dy dr.

Using Property (QL) with m= 1− δ we find

(〈.〉s # p∆(z, .)〈.〉−s)(z, x, ξ) − p∆(z, x, ξ) = −∆〈ξ〉−s

1
∫

0

Ï

i exp[−i〈y|ξ − η〉] ∂η〈η〉s qm10
∆

(z, (1− r)x+ r(x− y), ξ) d−η dy dr

= −∆〈ξ〉−s(∂ξ〈ξ〉s # q̃m10
∆

(z,u, x, ξ))|u=x,

where

q̃m10
∆

(z,u, x, ξ) =

1
∫

0

qm10
∆

(z, (1− r)u+ rx, ξ) dr.

As q̃m10
∆

is bounded w.r.t.∆ andzwith values inS1
ρ(R

2n × Rn) we obtain the result. �

End of the proof of Theorem 2.26.With the previous lemma we see that

F b
(z′,z) = F c

(z′,z) + ∆F 3
(z′,z)

whereF c
(z′,z) has for symbolp∆(z, x′, x′, ξ) and ‖F 3

(z′,z)‖(L2,L2) ≤ K3 uniformly in z ∈
[0,Z] and∆, ∆ small enough.

From Theorem 2.25 we have‖F c
(z′,z)‖(L2,L2) ≤ 1+∆K4, for someK4 ≥ 0. We thus obtain

that‖F(z′,z)‖(L2,L2) ≤ 1+∆K whereK = K1+K2+K3+K4. With the definition ofF(z′,z)

it follows that

‖G(z′,z)‖(H(s),H(s)) = ‖(G(z′,z))
∗‖(H(s),H(s)) ≤

√
1+ ∆K,

which concludes the proof of Theorem 2.26. �
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We observe that for∆ small enough, the function〈x′|ξ〉+∆b1(z, x′, ξ) satisfies the con-
ditions (P)-(i), (P)-(ii ), and (P)-(iii ) in [13, page 2]. With Lemmas 2.13 and 2.17, we
observe that an FIO with phase functionφ(z′,z)(x′, x, ξ) and amplitude inσA(z, x′, ξ) in
Sm(X×R) may actually be understood as an FIO with real phase〈x′−x|ξ〉+∆b1(z, x′, ξ)
and amplitudeσA(z, x′, ξ) exp[−∆c1(z, x′, ξ)] in Sm

ρ (X×R). Applying Theorem 2.5 and
the following remark in [13] we obtain the following proposition.

Proposition 2.29. LetA(z′,z) be the global FIO with kernel

A(z′,z)(x
′, x) =

∫

exp[iφ(z′,z)(x
′, x, ξ)] σA(z, x′, ξ) d−ξ

with σA(z, .) bounded w.r.t. z with values in Sm(X × Rn), m ∈ R. Then for all s∈ R
there exist M= M(s,m) ≥ 0 and∆6 > 0 such that

‖A(z′,z)‖(H(s),H(s−m)) ≤ M p(σA(z, .))

for all z ∈ [0,Z], and0 ≤ ∆ ≤ ∆6, where p(.) is some appropriately chosen seminorm
in Sm(X × Rn).

This proposition could also be proven by adapting the proof of Theorem 2.26 to this
case. Note that in the caseσA = g(z′,z) we were able, in the proof of Theorem 2.26,
to achieve a finer estimate. The proof heavily relies on the particular structure of the
phase function and the amplitude that can be taken as “close”as we want to those of
the identity operator by taking∆ small enough.

3 The approximation Ansatz. Convergence in Sobolev spaces

We first define the Ansatz that approximates the solution operator to (1.5)–(1.6). We
choose to use a constant-step subdivision of the interval [0,Z] but the method and
results presented here can be naturally adapted to any subdivision of [0,Z].

Definition 3.1. LetP = {z(0), z(1), . . . , z(N)} be a subdivision of[0,Z] with 0 = z(0) <

z(1) < · · · < z(N) = Z such that z(i+1) − z(i) = ∆P. The operatorWP,z is defined as

WP,z :=



G(z,0) if 0 ≤ z≤ z(1),

G(z,z(k))

1∏

i=k

G(z(i),z(i−1)) if z(k) ≤ z≤ z(k+1).

The following proposition will be useful in the sequel.

Proposition 3.2. Let s ∈ R. There exists K> 0 such that for every subdivision
P = {z(0), z(1), . . . , z(N)} of [0,Z] with 0 = z(0) < z(1) < · · · < z(N) = Z andWP,z as
defined in Definition 3.1 we have

∀z ∈ [0,Z], ‖WP,z‖(H(s),H(s)) ≤ K,

if ∆P is small enough.

Proof. By Theorem 2.26 there exitsM > 0 such that if∆ = z′ − z is small enough
then ‖G(z′,z)‖(H(s),H(s)) ≤ 1 + ∆M for all z ∈ [0,Z]; we then obtain‖WP,z‖(H(s),H(s)) ≤
(1 + ∆PM)N = (1 + ZM

N )N which is bounded as it converges to exp[ZM] as N goes to
∞. �
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It should be first noticed thatWP,z is not the solution to problem (1.5)–(1.6) even in the
case where the symbolsb andc only depend on the transversal variable,x. While sin-
gularities propagate along the bicharacteristics associated with−Im(a1) = b1, observe
however that, with the form of the phase functionφ(z′,z) in (2.8), the operatorG(z′,z)

propagates singularities along straight lines. See Part II, for further details, in partic-
ular regarding the setJ(z′,z)R that replaces the canonical relation for the propagation of
singularities for FIOs with complex phase [9, Sections 25.4-5].

Furthermore, by composing the operatorsG(z′′,z′) andG(z′,z), one convinces oneself that

G(z′′,z) , G(z′′,z′) ◦ G(z′,z)

in general ifz′′ ≥ z′ ≥ z ∈ [0,Z] (use again that singularities propagate along straight
lines). The family of operators (G(z′,z))(z′,z)∈[0,Z] is thus neither a semigroup nor an evo-
lution system.

We now proceed towards the proof of the convergence ofWP,z to the solution operator
to problem (1.5)–(1.6) in the sense of Sobolev norms asN = |P| goes to∞.

Lemma 3.3. Let s ∈ R and z′′, z ∈ [0,Z], with z < z′′. The map z′ 7→ G(z′,z), for
z′ ∈ [z, z′′], is Lipschitz continuous with values in L(H(s+1)(X),H(s)(X)), for z′′ − z= ∆
small enough. More precisely there exists C> 0 such that for all u0 ∈ H(s+1)(X) and
z(1), z(2) ∈ [z, z′′]

‖(G(z(2),z) − G(z(1),z))(u0)‖H(s) ≤ C|z(2) − z(1)|‖u0‖H(s+1).(3.24)

Proof. Let z(1), z(2) ∈ [z′′, z] and letu0 ∈ Hs+1(X). Write

(G(z(2),z) − G(z(1),z))(u0)(x′) =

−
z(2)
∫

z(1)

Ï

exp[i〈x′ − x|ξ〉 − (z′ − z)a(z, x′, ξ)] a(z, x′, ξ) u0(x) dx d−ξ dz′.

When∆ is small enough we can apply Proposition 2.29 and obtain (3.24). �

Lemma 3.4. Let s ∈ R, z′′, z ∈ [0,Z], with z< z′′, and let u0 ∈ H(s+1)(X). Then the
map z′ 7→ G(z′,z)(u0) is in C 0([z, z′′],H(s+1)(X)) ∩ C 1([z, z′′],H(s)(X)) for z′′ − z = ∆
small enough.

Proof. Let z(1) ∈ [z, z′′] and letε > 0. Choosez′′ − z small enough such that Theo-
rem 2.26 and Lemma 3.3 apply and chooseu1 ∈ H(s+2) such that‖u0 − u1‖H(s+1) ≤ ε.
Then forz(2) ∈ [z, z′′]

(3.25) ‖G(z(2),z)(u0) − G(z(1),z)(u0)‖H(s+1) ≤ ‖G(z(2),z)(u0 − u1)‖H(s+1)

+ ‖G(z(2),z)(u1) − G(z(1),z)(u1)‖H(s+1) + ‖G(z(1),z)(u0 − u1)‖H(s+1)

≤ 2(1+ ∆M)ε +C|z(2) − z(1)|‖u1‖H(s+2).

The continuity of the map follows. DifferentiatingG(z′,z)(u0) w.r.t. z′ we can prove that
the resulting mapz′ 7→ ∂z′G(z′,z)(u0) is Lipschitz continuous with values inL(H(s+2),H(s))
following the proof of Lemma 3.3: there existsC > 0 such that for allv ∈ H(s+2)(X)

‖(∂z′G(z(2),z) − ∂z′G(z(1),z))(v)‖H(s) ≤ C|z(2) − z(1)|‖v‖H(s+2).
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We also see that the mapv 7→ ∂z′G(z′,z)(v) is continuous fromH(s+1) into H(s) with
bounded continuity module according to Proposition 2.29. With u0 ∈ H(s+1)(X) we
make a similar choice foru1 ∈ H(s+2)(X) and obtain an estimate for

‖∂z′G(z(2),z)(u0) − ∂z′G(z(1),z)(u0)‖H(s)

of the same form as in (3.25). �

The two previous lemmas yield the following proposition.

Proposition 3.5. Let s∈ R, P a subdivision of[0,Z] as in Definition 3.1 and let u0 ∈
H(s+1)(X). Then the mapWP,z(u0) isC 0([0,Z],H(s+1)(X)) and piecewiseC 1([0,Z],H(s)(X))
if P is chosen such that∆P is small enough. The map z7→ WP,z(u0) is in fact globally
Lipschitz with C> 0 such that

‖WP,z′ (u0) −WP,z(u0)‖H(s) ≤ C|z′ − z|‖u0‖H(s+1).

We recall thatU(z′, z) is the solution operator of the Cauchy problem (1.5)–(1.6). We
can then apply the energy estimate (1.7) toU(z,0)(u0) −WP,z(u0) (adapt the proof of
Lemma 23.1.1 in [8] to the case of a Lipschitz piecewiseC 1 function) and obtain

(3.26) sup
z∈[0,Z]

exp[−λz] ‖U(z,0)(u0) −WP,z(u0)‖H(s)

≤ 2

Z
∫

0

exp[−λz] ‖(∂z + az(x,Dx))WP,z(u0)‖H(s)dz.

Let u0 ∈ H(s+1)(X) and letP = {z(0), . . . , z(N)}. We takez ∈]z(k), z(k+1)[. Then

(∂z + az(x,Dx))WP,z(u0)

= (∂z + az(x,Dx))

G(z,z(k))

1∏

i=k

G(z(i),z(i−1))(u0)



= (∂z + az(x,Dx))
(
G(z,z(k))(uk)

)

with uk :=
1∏

i=k

G(z(i),z(i−1))(u0) which is in H(s+1)(X) by Theorem 2.26. We first turn our

attention towards the term (∂z + az(x,Dx))
(
G(z,z(k))(u)

)
for any u ∈ H(s+1)(X) as the

norm ofuk in H(s+1)(X) remains under control even if|P| = N becomes very large by
Proposition 3.2:

∃K > 0, ‖uk‖H(s+1) ≤ K‖u0‖H(s+1), k ∈ {0, . . . ,N},(3.27)

N = |P| ∈ N, u0 ∈ H(s+1)(X), if ∆P is small enough.

We shall need the following lemma which is a variant to Lemma 2.22

Lemma 3.6. Let q∆(z, x, y, ξ) be an amplitude in S0ρ(R
2p × Rp) depending on the pa-

rameters∆ ≥ 0 and z∈ [0,Z] that satisfies Property (QL) and such that q∆(z, .)|∆=0 = 0.
Let r(x, y, ξ) ∈ Ss(R2p × Rp) for some s∈ R. Then

σ {q∆ r} (z, x, ξ) − q∆(z, x, x, ξ) r(x, x, ξ) = ∆m+2δλm
∆ (z, x, ξ), 0 ≤ m≤ ρ − δ,

whereλm
∆
(z, x, ξ) is bounded with respect to∆ and z with values in Sm+s−(ρ−δ)

ρ (Rp×Rp).
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Proof. We proceed as in the proof of Lemma 2.22 (we takep = 1 for the sake of
concision). We obtain

σ {q∆r} (z, x, ξ) − q∆(z, x, x, ξ)r(x, x, ξ) = −σ


i

1
∫

0

∂3∂4λ∆(z, x, (1− s)x+ sy, ξ) ds


,

where here

∂3∂4λ∆(z, x, y, ξ) = (∂y∂ξq∆)(z, x, y, ξ) r(x, y, ξ) + ∂yq∆(z, x, y, ξ)∂ξr(x, y, ξ)

+ ∂ξq∆(z, x, y, ξ)∂yr(x, y, ξ) + q∆(z, x, y, ξ)∂y∂ξr(x, y, ξ).

The first two terms are treated like in the proof of Lemma 2.22.For the third term, with
Property (QL) we write

∂ξq∆ ∂yr = ∆
m′+δ qm′(00)1

∆
∂yr, 0 ≤ m′ ≤ 1− δ,

whereqm′(0,0)1
∆

dyr ∈ Sm′+s−ρ
ρ (R2p × Rp). We actually takeδ ≤ m′ ≤ 1 − δ and write

m= m′ − δ. We obtain

∂ξq∆ ∂yr = ∆
m+2δ q̃m

∆ ,

whereq̃m
∆

is bounded w.r.t.∆ with values inSm+s−ρ+δ
ρ (R2p × Rp) and 0≤ m≤ 1− 2δ =

ρ − δ. For the fourth term we write

q∆ = ∆
m′qm′(0,0)0
∆

, 0 ≤ m′ ≤ 1,

whereqm′(0,0)0
∆

∈ Sm′
ρ (R2p × Rp) by Property (QL) sinceq∆|∆=0 = 0. We actually take

2δ ≤ m′ ≤ 1 and writem= m′ − 2δ. Then

q∆∂y∂ξr = ∆
m+2δq̂m

∆ ,

whereq̂m
∆

is bounded w.r.t.∆ with values inSm+s−(ρ−δ)
ρ (R2p × Rp) asm+ s− 1+ 2δ =

m + s − (ρ − δ) and 0 ≤ m ≤ 1 − 2δ = ρ − δ. We conclude like in the proof of
Lemma 2.22. �

For the next proposition we shall need the following assumption as announced in Sec-
tion 1

Assumption 3.7. The symbol a(z, .) is assumed to be inL ([0,Z],S1(Rn × Rn)), i.e.,
Lipschitz continuous w.r.t. z with values in S1(Rn × Rn), in the sense that,

a(z′, x, ξ) − a(z, x, ξ) = (z′ − z)ã(z′, z, x, ξ), 0 ≤ z≤ z′ ≤ Z

with ã(z′, z, x, ξ) bounded w.r.t. z′ and z with values in S1(Rn × Rn).

Proposition 3.8. Let s∈ R. There exists∆7 > 0 and C≥ 0 such that for z′ − z = ∆,
∆ ∈ [0,∆7],

‖(∂z′ + az′ (x,Dx))G(z′,z)‖(H(s),H(s−1)) ≤ C∆
1
2 .

Like in the proof of Theorem 2.26 we assume thatc1 satisfies property (PL) for some
L ≥ 2. We know that it is always true forL = 2 by Lemma 2.13 but special choices for
c1 can be made. As before we useρ = 1− 1/L andδ = 1/L with ρ > δ for L > 2 and
ρ = δ = 1

2 for L = 2.
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Proof. With Assumption 3.7 and Theorem 2.26, we have

‖(az(x,Dx) − az′ (x,Dx))G(z′,z)‖(H(s),H(s−1)) ≤ C∆.

It is thus sufficient to prove

‖(∂z′ + az(x,Dx))G(z′,z)‖(H(s),H(s−1)) ≤ C∆
1
2 .

LetA(z′,z) be∂z′G(z′,z) andB(z′,z) beaz(x,Dx)◦G(z′,z) with respective kernelsA(z′,z)(x′, x)
andB(z′,z)(x′, x). We have

A(z′,z)(x
′, x) = −

∫

exp[i〈x′ − x|ξ〉] exp[−∆a(z, x′, ξ)] a(z, x′, ξ) d−ξ.

Let us define

D(z′,z) := (A(z′,z) + B(z′,z)) ◦ E−2s ◦ (A(z′,z) + B(z′,z))
∗.

We prove in the following lemma that forr, s ∈ R, ‖D(z′,z)‖(H(r),H(r+2s−2))) ≤ C∆ uniformly
w.r.t. z ∈ [0,Z] for ∆ small enough. The conclusion then follows: ifC(z′,z) := Es−1 ◦
D(z′,z) ◦ Es−1 then‖C(z′,z)‖(L2,L2) ≤ C∆ (taker = −s+ 1); then‖Es−1 ◦ (A(z′,z) +B(z′,z)) ◦
E−s‖(L2,L2) ≤ C∆

1
2 . �

Lemma 3.9. Let r, s ∈ R. Then‖D(z′,z)‖(H(r),H(r+2s−2))) ≤ C∆ uniformly w.r.t. z∈ [0,Z] for
∆ small enough.

Proof. The operatorD(z′,z) is made up of four terms:

D1,(z′,z) := A(z′,z) ◦ E−2s ◦ A∗(z′,z), D2,(z′,z) := A(z′,z) ◦ E−2s ◦ B∗(z′,z),
D3,(z′,z) := B(z′,z) ◦ E−2s ◦ A∗(z′,z), D4,(z′,z) := B(z′,z) ◦ E−2s ◦ B∗(z′,z).

The kernel ofD1,(z′,z) is given by

D1,(z′,z)(x
′, x) =

∫

exp
[
i〈x′ − x|ξ〉 + i∆

(
b1(z, x′, ξ) − b1(z, x, ξ)

)]
d̃1,z(x

′, x, ξ) d−ξ,

where

d̃1,z(x
′, x, ξ) = ω(z′,z)(x

′, x, ξ) a(z, x′, ξ) a(z, x, ξ)

and

ω(z′,z)(x
′, x, ξ) := g(z′,z)(x

′, ξ) g(z′,z)(x, ξ) exp[−∆(c1(z, x′, ξ) + c1(z, x, ξ))]〈ξ〉−2s,

with g(z′,z) given in (2.9). Following the proof of Theorem 2.26 we writeb1(z, x′, ξ) −
b1(z, x, ξ) = 〈x′ − x|h(z, x′, x, ξ)〉 whereh is homogeneous of degree one inξ, |ξ| ≥ 1.
The functionh is continuous w.r.t.z with values inS1(X′ × X × Rn). We thus obtain
that the change of variablesξ → ξ + ∆h(z, x′, x, ξ) is a global diffeomorphism for∆
small enough (uniformly inz ∈ [0,Z]). The JacobianJ∆(z, x′, x, ξ) is homogeneous of
degree zero inξ, C∞ w.r.t.∆ and bounded w.r.t.zwith values inS0(R2n×Rn). We then
have

D1,(z′,z)(x
′, x) =

∫

exp
[
i〈x′ − x|ξ〉] d̃1,z(x

′, x, ξ̃(∆, ξ)) J(∆, z, x′, x, ξ) d−ξ.
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The functionξ̃(∆, z, x′, x, ξ), written ξ̃(∆, ξ) for concision, is bounded w.r.t.z andC∞

w.r.t.∆ in S1(R2n×Rn) and homogeneous of degree one inξ as shown in Lemma 2.27.
It follows that d̃1,z(x′, x, ξ̃(∆, ξ)) J(∆, z, x′, x, ξ) is bounded w.r.t.z and∆ with values
in S2−2s

ρ (R2n × Rn) by Lemma 2.10 and the proof of Theorem 2.26. Note that if∆ = 0
thenξ̃(∆, ξ) = ξ. The operatorD1,(z′,z) is thus inΨ2−2s

ρ with symbol

d1,(z′,z)(x
′, ξ) = σ

{
d̃1,z(x

′, x, ξ̃(∆, ξ)) J(∆, z, x′, x, ξ)
}
(x′, ξ).

Similarly we prove thatA(z′,z) ◦ E−2s ◦ G∗(z′,z) is theψDO with amplitude

−ω(z′,z)(x
′, x, ξ̃(∆, ξ)) a(z, x′, ξ̃(∆, ξ)) J(∆, z, x′, x, ξ).

The operatorD2,(z′,z) is thus inΨ2−2s
ρ (X) with symbol

d2,(z′,z)(x
′, ξ) = −σ

{
ω(z′,z)(x

′, x, ξ̃(∆, ξ)) a(z, x′, ξ̃(∆, ξ))J(∆, z, x′, x, ξ)
}

# a∗(z, x′, ξ).

Similarly we find that the operatorsD3,(z′,z) andD4,(z′,z) are inΨ2−2s
ρ (X) with respective

symbols

d3,(z′,z)(x
′, ξ) = −a(z, x′, ξ) #σ

{
ω(z′,z)(x

′, x, ξ̃(∆, ξ)) J(∆, z, x′, x, ξ) a(z, x, ξ̃(∆, ξ))
}

and

d4,(z′,z)(x
′, ξ) = a(z, x′, ξ) #σ

{
ω(z′,z)(x

′, x, ξ̃(∆, ξ)) J(∆, z, x′, x, ξ)
}

# a∗(z, x′, ξ).

For q(x′, x, ξ) an amplitude we define

Σ{q}(x′, ξ) := σ{〈ξ〉−2s a(z, x′, ξ) q(x′, x, ξ) a(z, x, ξ)}
− σ{〈ξ〉−2s a(z, x′, ξ) q(x′, x, ξ)} # a∗(z, x′, ξ)

+ a(z, x′, ξ) #σ{〈ξ〉−2s q(x′, x, ξ)}# a∗(z, x′, ξ)

− a(z, x′, ξ) #σ{〈ξ〉−2s q(x′, x, ξ) a(z, x, ξ)}.

The operatorD(z′,z) is thus inΨ2−2s
ρ (X) with symbol

d(z′,z) = d1,(z′,z) + d2,(z′,z) + d3,(z′,z) + d4,(z′,z).

Such a symbol is bounded w.r.t.∆, for ∆ small enough, as the composition formula for
symbols is a bounded map. Note that

g(z′,z)(x
′, ξ̃(∆, ξ)) g(z′,z)(x, ξ̃(∆, ξ)) 〈ξ̃(∆, ξ)〉−2sJ(∆, z, x′, x, ξ) = 〈ξ〉−2s + ∆k∆(z, x

′, x, ξ),

with the functionk∆ bounded w.r.t.zandC∞ w.r.t.∆ with values inS−2s(X′ × X × Rn)
asg(z′,z)(x′, ξ̃(∆, ξ)) g(z′,z)(x, ξ̃(∆, ξ))〈ξ̃(∆, ξ)〉−2s J(∆, z, x′, x, ξ) is itself C∞ w.r.t. ∆ by
Lemma 2.10 (caseρ = 1) and equal to〈ξ〉−2s when∆ = 0. With a similar reasoning on
az(x′, ξ̃(∆, ξ)) andaz(x, ξ̃(∆, ξ)) we thus obtain

D(z′,z) = Da
(z′,z) + ∆D1

(z′,z),

with symbols

da
(z′,z) := Σ{p∆(z, x′, x, ξ)}
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andd1
(z′,z) which is bounded w.r.t.zand∆with values inS2−2s

ρ (X′×X×Rn). The symbol
p∆ was defined in the proof of Theorem 2.26 as

p∆(z, x
′, x, ξ) = p̃∆(z, x

′, x, ξ̃(∆, z, x′, x, ξ))

= exp[−∆(c1(z, x′, ξ̃(∆, z, x′, x, ξ)) + c1(z, x, ξ̃(∆, z, x′, x, ξ)))].

Recall that it satisfies Property (QL) by Lemma 2.18.

The Caldeŕon-Vaillancourt theorem (see [14, Chapter 7, Sections 1,2]or [25, Sec-
tion XIII-2]) in the caseL = 2 or Theorem 18.1.11 in [8] in the caseL > 2 yield
‖D1

(z′,z)‖(H(r),H(r+2s−2)) ≤ K1. Note that for a symbolq(x′, ξ) we haveΣ{q(x′, ξ)} = 0 since

σ{q(x′, ξ) a(z, x, ξ)} = q(x′, ξ) # a∗(z, x′, ξ) = σ{q(x′, ξ)} # a∗(z, x′, ξ),

for any symbolq. Thusda(z′, z) = Σ{p∆(z, x′, x, ξ) − 1}. Lemma 3.6 allows us to write
(takem= ρ − δ)

σ{〈ξ〉−2s(p∆(z, x
′, x, ξ) − 1)a(z, x′, ξ)a(z, x, ξ)}
= 〈ξ〉−2s(p∆(z, x

′, x′, ξ) − 1)a(z, x′, ξ)a(z, x′, ξ) + ∆λ∆,1(z, x′, ξ),

whereλ∆,1 is bounded w.r.t.zand∆ with values inS2−2s
ρ (X′ × Rn). We also write

σ{〈ξ〉−2s(p∆(z, x
′, x, ξ) − 1)a(z, x′, ξ)} # a∗(z, x′, ξ)

= (〈ξ〉−2s(p∆(z, x
′, x′, ξ) − 1)a(z, x′, ξ)) # a∗(z, x′, ξ)

+ ∆λ∆,2(z, x′, ξ) # a∗(z, x′, ξ)

= σ{〈ξ〉−2s(p∆(z, x
′, x′, ξ) − 1)a(z, x′, ξ)a(z, x, ξ)}

+ ∆λ∆,2(z, x′, ξ) # a∗(z, x′, ξ)

= 〈ξ〉−2s(p∆(z, x
′, x′, ξ) − 1)a(z, x′, ξ)a(z, x′, ξ)

+ ∆(λ∆,3(z, x′, ξ) + λ∆,2(z, x′, ξ) # a∗(z, x′, ξ)),

whereλ∆,2 and λ∆,3 are bounded w.r.t.z and∆ with values inS1−2s
ρ (X′ × Rn) and

S2−2s
ρ (X′ × Rn), respectively. Similarly we have

σ{〈ξ〉−2s(p∆(z, x
′, x, ξ) − 1)} # a∗(z, x′, ξ)

= (〈ξ〉−2s(p∆(z, x
′, x′, ξ) − 1)) #a∗(z, x′, ξ) + ∆λ∆,4(z, x′, ξ) # a∗(z, x′, ξ)

= σ{〈ξ〉−2s(p∆(z, x
′, x′, ξ) − 1)a(z, x, ξ)} + ∆λ∆,4(z, x′, ξ) # a∗(z, x′, ξ)

= 〈ξ〉−2s(p∆(z, x
′, x′, ξ) − 1)a(z, x′, ξ)

+ ∆(λ∆,5(z, x′, ξ) + λ∆,4(z, x′, ξ) # a∗(z, x′, ξ)),

whereλ∆,4 and λ∆,5 are bounded w.r.t.z and ∆ with values inS−2s
ρ (X′ × Rn) and

S1−2s
ρ (X′ × Rn), respectively, and

σ{〈ξ〉−2s(p∆(z, x
′, x, ξ) − 1)a(z, x, ξ)}

= 〈ξ〉−2s(p∆(z, x
′, x′, ξ) − 1)a(z, x′, ξ) + ∆λ∆,6(z, x′, ξ),

whereλ∆,6 is bounded w.r.t.zand∆ with values inS1−2s
ρ (X′ × Rn). We thus obtain

da
(z′,z) = ∆(λ∆,1 + λ∆,3 + λ∆,2 # a∗ + a # λ∆,5 + a # λ∆,4 # a∗) = ∆d̃a

(z′,z)

with d̃a
(z′,z) bounded w.r.t.z and∆ with values inS2−2s

ρ (X′ × Rn). This concludes the
proof. �
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We have thus obtained a convergence result in the Sobolev spaceH(s)(Rn) forWP,z(u0)
if the initial datau0 is in H(s+1)(Rn). The result is actually the convergence of the Ansatz
WP,z to the solution operatorU(z,0) in the norm ofL(H(s+1)(Rn),H(s)(Rn)).

Theorem 3.10. Assume that a(z, .) is in L ([0,Z],S1(Rn × Rn)), i.e., Lipschitz contin-
uous w.r.t. z with values in S1(Rn × Rn), in the sense that,

a(z′, x, ξ) − a(z, x, ξ) = (z′ − z)ã(z′, z, x, ξ), 0 ≤ z≤ z′ ≤ Z

with ã(z′, z, x, ξ) bounded w.r.t. z′ and z with values in S1(Rn×Rn). Let s∈ R. Then the
approximation AnsatzWP,z converges to the solution operator U(z,0) of the Cauchy
problem (1.5)–(1.6) in L(H(s+1)(Rn),H(s)(Rn)) uniformly w.r.t. z as∆P goes to zero with
a convergence rate of order12:

‖WP,z − U(z,0)‖(H(s+1),H(s)) ≤ C∆
1
2

P
, z ∈ [0,Z].

Proof. Using (3.26) and (3.27) we obtain

sup
z∈[0,Z]

exp[−λz] ‖U(z,0)(u0) −WP,z(u0)‖H(s)

≤ 2

Z
∫

0

exp[−λz] ∆
1
2

P
CK‖u0‖H(s+1)dz≤ C∆

1
2

P
‖u0‖H(s+1).

The result follows. �

If we change the assumption made on the symbola(z, .) to some Ḧolder type continuity,
then the corresponding change in the proof of Lemma 3.8 yields the following result.

Theorem 3.11. Assume that a(z, .) is in C 0,α([0,Z],S1(Rn × Rn)), i.e., Hölder contin-
uous w.r.t. z with values in S1(Rn × Rn), in the sense that, for some0 < α < 1

a(z′, x, ξ) − a(z, x, ξ) = (z′ − z)α ã(z′, z, x, ξ), 0 ≤ z≤ z′ ≤ Z

with ã(z′, z, x, ξ) bounded w.r.t. z′ and z with values in S1(Rn×Rn). Let s∈ R. Then the
approximation AnsatzWP,z converges to the solution operator U(z,0) of the Cauchy
problem (1.5)–(1.6) in L(H(s+1)(Rn),H(s)(Rn)) uniformly w.r.t. z as∆P goes to 0 with a
convergence rate of orderβ:

‖WP,z − U(z,0)‖(H(s+1),H(s)) ≤ C∆β
P
, z ∈ [0,Z],

with β = α for 0 < α ≤ 1
2 andβ = 1

2 for 1
2 ≤ α < 1.

A result similar to that of the previous theorems can be obtained with weaker as-
sumptions, namely without assumptions on the symbola(z, .) like those made in The-
orems 3.10 and 3.11, by introducing another, yet natural, Ansatz to approximate the ex-
act solution to the Cauchy problem (1.5)–(1.6). For a symbolq(z, y, η) ∈ C 0([0,Z],Sm(Rp×
R

r )) we define ˆq(z′,z)(y, η) ∈ C 0([0,Z]2,Sm(Rp × Rr ))

q̂(z′,z)(y, η) :=
1

z′ − z

z′
∫

z

q(s, y, η) ds.
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Then we define

(3.28) φ̂(z′,z)(x
′, x, ξ) := 〈x′ − x|ξ〉 + i∆â1(z′,z)(x

′, ξ)

= 〈x′ − x|ξ〉 + ∆b̂1(z′,z)(x
′, ξ) + i∆ĉ1(z′,z)(x

′, ξ)

and

ĝ(z′,z)(x, ξ) := exp[−∆â0(z′,z)(x, ξ)](3.29)

and finally, following [17], we denote bŷG(z′,z) the FIO with distribution kernel

Ĝ(z′,z)(x
′, x) =

∫

exp[i〈x′ − x|ξ〉] exp[−∆â(z′,z)(x
′, ξ)] d−ξ

=

∫

exp[iφ̂(z′,z)(x
′, x, ξ)] ĝ(z′,z)(x

′, ξ) d−ξ,

with the associated approximation Ansatz in the following definition.

Definition 3.12. LetP = {z(0), z(1), . . . , z(N)} be a subdivision of[0,Z] with 0 = z(0) <

z(1) < · · · < z(N) = Z such that z(i+1) − z(i) = ∆P. The operator̂WP,z is defined as

ŴP,z :=



Ĝ(z,0) if 0 ≤ z≤ z(1),

Ĝ(z,z(k))

1∏

i=k

Ĝ(z(i),z(i−1)) if z(k) ≤ z≤ z(k+1).

Most results of Sections 2 and 3 apply to this new Ansatz. We give some details about
how to adapt some of the proofs. We have the following lemma.

Lemma 3.13. Let q(z, y, η) ∈ C 0([0,Z],S1(Rp×Rr )) that satisfies Property (PL). Then
q̂(z′,z)(y, η) also satisfies Property (PL).

Property (PL) in Definition 2.11 is now to be understood w.r.t. to two parametersz′ and
z.

Proof. Uniform bounds w.r.t.zandz′ will be immediate. The case|α|+ |β| ≥ L is clear
by Remark 2.12. Let then|α| + |β| < L and observe that

|∂αy∂
β
ηq̂(z′,z)(y, η)| = |

1
z′ − z

z′
∫

z

∂αydβηq(s, y, η) ds|

≤ C(1+ |η|)−|β|+(|α|+|β|)/L 1
z′ − z

z′
∫

z

(1+ q(z, y, η))1−(|α|+|β|)/Lds

≤ C(1+ |η|)−|β|+(|α|+|β|)/L

1+
1

z′ − z

z′
∫

z

q(z, y, η)ds



1−(|α|+|β|)/L

= C(1+ |η|)−|β|+(|α|+|β|)/L(1+ q̂(z′,z)(y, η))
1−(|α|+|β|)/L,

by Jensen inequality ast 7→ −(1+ t)1−(|α|+|β|)/L is convex when|α| + |β| < L. �
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As a consequence of Lemma 2.17 we have the following lemma.

Lemma 3.14. Let q(z, y, η) ∈ C 0([0,Z],S1(Rp×Rr )) that satisfies Property (PL). Then
ρ̂∆ := exp[−∆q̂(z′,z)(y, η)] satisfies Property (QL).

The result of Theorem 2.26 thus applies to the modified thin-slab propagator̂G(z′,z)

(Lemma 2.27 has to be slightly modified). The proof of Lemma 3.3 applies with the
aid of Proposition 2.29 as

(Ĝ(z(2),z) − Ĝ(z(1),z))(u0)(x′) =

−
z(2)
∫

z(1)

Ï

exp[i〈x′ − x|ξ〉 − (z′ − z)â(z′,z)(x
′, ξ)] a(z′, x′, ξ) u0(x) dx d−ξ dz′.

To adapt the proof of Lemma 3.4 we need

Lemma 3.15. Let s∈ R and z′′, z ∈ [0,Z]. The map z′ 7→ ∂z′Ĝ(z′,z), for z′ ∈ [z′′, z], is
continuous with values in L(H(s+2)(X),H(s)(X)), for z′′ − z= ∆ small enough.

Proof. We choose∆ = z′′ − zsufficiently small such that the results of Section 1 apply.
Let z(1), z(2) ∈ [z, z′′]. Then we have

∂z′Ĝ(z(2),z)(x
′, x) − ∂z′Ĝ(z(1),z)(x

′, x)

= −
∫

exp[i〈x′ − x|ξ〉]
(
a(z(2), x′, ξ) exp[−

∫z(2)

z a(s, x′, ξ) ds]

−a(z(1), x′, ξ) exp[−
∫z(1)

z a(s, x′, ξ) ds]
)
dξ

= A(z(2),z(1),z)(x
′, x) + B(z(2),z(1),z)(x

′, x),

where

A(z(2),z(1),z)(x
′, x) := −

∫

exp[i〈x′ − x|ξ〉] a(z(2), x′, ξ)
(
exp[−

∫z(2)

z a(s, x′, ξ) ds] − exp[−
∫z(1)

z a(s, x′, ξ) ds]
)

d−ξ,

and

B(z(2),z(1),z)(x
′, x) := −

∫

exp[i〈x′ − x|ξ〉]

(a(z(2), x′, ξ) − a(z(1), x′, ξ)) exp[−
∫z(1)

z a(s, x′, ξ) ds] d−ξ.

We write

A(z(2),z(1),z)(x
′, x) =

z(2)
∫

z(1)

∫

exp[i〈x′ − x|ξ〉]

a(z(2), x′, ξ) a(s, x′, ξ) exp[−(s− z)â(s,z)(x
′, ξ)] ds d−ξ

and for the associated operator,A(z(2),z(1),z), we obtain by Proposition 2.29 that

‖A(z(2),z(1),z)‖(H(s+2),H(s)) ≤ C|z(2) − z(1)|.
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For the second term we can apply Proposition 2.29 which givesthe estimate, for the
associated operator,‖B(z(2),z(1),z)(x′, x)‖(H(s+2),H(s)) ≤ C p(a(z(2), .) − a(z(1), .)), with p a
seminorm inS1(X×Rn). The continuity ofz 7→ a(z, .) in S1(X×Rn) (Assumption 1.1)
yields the result. �

With the previous lemma we can easily adapt the proof of Lemma3.4 and obtain the
same result for̂G(z′,z).

Lemma 3.16. Let s∈ R, z′′, z ∈ [0,Z], with z< z′′, and let u0 ∈ H(s+1)(X). Then the
map z′ 7→ Ĝ(z′,z)(u0) is in C 0([z, z′′],H(s+1)(X)) ∩ C 1([z, z′′],H(s)(X)) for z′′ − z = ∆
small enough.

This allows to use the energy estimate (1.7).

We now note that in the proof of Lemma 3.9, with the new thin-slab propagator,̂G(z′,z),
the amplitudes of the operatorsD1, . . . ,D4 only involve the terma(z′, x, ξ) instead of
both a(z′, x, ξ) anda(z, x, ξ) (as∂z′ ((z′ − z)â(z′,z)(x′, ξ)) = a(z′, x, ξ)). Thus the proof
of Lemma 3.9 does not require any assumption like Assumption3.7 made in Theo-
rem 3.10 or assumptions of Hölder type regularity on the symbola(z, .) made in Theo-
rem 3.11. Consequently we obtain

Theorem 3.17. Let s ∈ R. ThenŴP,z converges in L(H(s+1)(Rn),H(s)(Rn)) to the
solution operator U(z,0) of the Cauchy problem (1.5)–(1.6) uniformly w.r.t. z as∆P
goes to 0 with a convergence rate of order1

2:

‖ŴP,z − U(z,0)‖(H(s+1),H(s)) ≤ C∆
1
2

P
, z ∈ [0,Z].

We may now state the main theorem of this section

Theorem 3.18. Assume that a(z, .) is in C 0,α([0,Z],S1(Rn × Rn)), i.e., Hölder contin-
uous w.r.t. z with values in S1(Rn × Rn), in the sense that, for some0 < α < 1

a(z′, x, ξ) − a(z, x, ξ) = (z′ − z)α ã(z′, z, x, ξ), 0 ≤ z≤ z′ ≤ Z,

or Lipschitz (α = 1), with ã(z′, z, x, ξ) bounded w.r.t. z′ and z with values in S1(Rn×Rn).
Let s∈ R and0 ≤ r < 1. Then the approximation AnsatzWP,z converges to the so-
lution operator U(z,0) of the Cauchy problem (1.5)–(1.6) in L(H(s+1)(Rn),H(s+r)(Rn))
uniformly w.r.t. z as∆P goes to 0 with a convergence rate of orderβ(1− r):

‖WP,z − U(z,0)‖(H(s+1),H(s+r)) ≤ C∆β(1−r)
P

, z ∈ [0,Z],

with β = α for 0 < α < 1
2 and β = 1

2 for 1
2 ≤ α ≤ 1. Furthermore,WP,z strongly

converges to the solution operator U(z,0) in L(H(s+1)(Rn),H(s+1)(Rn)) uniformly w.r.t.
z ∈ [0,Z].

With the sole assumption of the continuity of the symbol a(z, .) w.r.t. z with values in
S1(Rn×Rn) (Assumption 1.1) the same results hold for the operatorŴP,z, with a con-
vergence rate of order1−r

2 for the operator convergence in L(H(s+1)(Rn),H(s+r)(Rn)).

Proof. From energy estimate (1.7) fors+ 1 [8, Theorem 23.1.2] we have

‖U(z,0)(u0)‖H(s+1) ≤ C‖u0‖H(s+1).(3.30)
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From Proposition 3.2 we obtain

‖WP,z(u0)‖H(s+1) ≤ C‖u0‖H(s+1)(3.31)

and thus

‖WP,z(u0) − U(z,0)(u0)‖H(s+1) ≤ C‖u0‖H(s+1),(3.32)

uniformly w.r.t.z ∈ [0,Z]. The interpolation inequality

‖v‖H(s+r) ≤ ‖v‖1−r
H(s) ‖v‖rH(s+1), 0 ≤ r ≤ 1

then yields

‖WP,z(u0) − U(z,0)(u0)‖H(s+r) ≤ C∆β(1−r)
P
‖u0‖H(s+1), 0 ≤ r < 1,

uniformly w.r.t. z ∈ [0,Z]. For ŴP,z a similar inequality forβ = 1
2 is obtained with

Assumption 1.1 alone.

Let u0 ∈ H(s+1) and letε > 0. For the strong convergence inH(s+1) we proceed as in
Lemma 3.4 and chooseu1 ∈ H(s+2) such that‖u0 − u1‖H(s+1) ≤ ε. We then write

‖WP,z(u0) − U(z,0)(u0)‖H(s+1) ≤ ‖WP,z(u0 − u1)‖H(s+1)

+ ‖WP,z(u1) − U(z,0)(u1)‖H(s+1) + ‖U(z,0)(u0 − u1)‖H(s+1)

≤ Cε +C∆β
P
‖u1‖H(s+2)

from estimates (3.30) and (3.31) and Theorems 3.10, 3.11 and3.17, withβ as above.
This last estimate is uniform w.r.t.z ∈ [0,Z] and yields the result. �

A A diagonalization/decoupling of the acoustic wave equati on

We give here an overview of [21], which gives a motivation forapproximating solutions
of the Cauchy problem (1.5)–(1.6), for instance in the context of geophysics.

We first consider the scalar wave equation
−ρ

−1c−2∂2
t +

n∑

j=1

∂ jρ
−1∂ j

 u = F,(A.33)

as encountered in acoustics, whereρ is the fluid density, andc is the wavespeed. Both
these functions are assumed to be independent of timet and to be inC∞(Rn). We
further assume that 0< ρ0 ≤ ρ(y) ≤ ρ1 and 0< c0 ≤ c(y) ≤ c1, y ∈ Rn. We denote
z= yn andx = (y1, . . . , yn−1) and writep(x, z,Dt,Dx,Dz) = ρ−1c−2D2

t −
∑n−1

j=1 D jρ
−1D j−

Dzρ
−1Dz whereD = 1

i ∂. Its principal symbol isp2(t, x, z, τ, ξ, ζ) = ρ−1(c−2τ2−|ξ|2−ζ2).

Note thatτ , 0 in Char(p). We put (A.33) in a matrix form

(A.34) Dzw(t, x, z) = G(x, z,Dt,Dx)w(t, x, z) + f (t, x, z) mod C
∞,

with G =

(
0 Λρ

A 0

)
, w =

(
Λu

ρ−1Dzu

)
, f =

(
0
F

)
,

37



Θ

|ζ |

|ξ|

τc−1

θ

Figure 1: The shaded area corresponds toIΘ at a given (t, x, z) and a given frequency
τ. θ is the propagation angle. The set Char(p) is represented dotted.

whereΛ is a first-order ellipticψDO, say for instance|Dt,x|, and

A = ρ−1c−2D2
tΛ
−1 −

n−1∑

j=1

D jρ
−1D jΛ

−1,

with Λ−1 denoting a parametrix forΛ.

Following [21], we introduce

I ′Θ = {(x, z, τ, ξ) | τ , 0, |c(x, z)τ−1ξ| ≤ sinΘ},
IΘ = {(t, x, z, τ, ξ, ζ) | (x, z, τ, ξ) ∈ I ′Θ, |ζ | ≤ c−1

0 |τ|},

whereΘ ∈ (0, π2). The inequality|ζ | ≤ c(x, z)−1|τ| on Char(p) explains the condition
|ζ | ≤ c−1

0 |τ| above. We choose an angleΘ ∈ (0, π2) and work in the microlocal regionIΘ
assuming that WF(u) ⊂ IΘ. Figure 1 illustrates the setIΘ at a given (t, x, z) and a given
frequencyτ. An angleθ ∈ [−Θ,Θ] corresponds to a propagation angle. Restricting the
analysis toIΘ corresponds to staying away from horizontal propagation. Note that in
IΘ we havec(x, z)−2τ2 − |ξ|2 > 0, which is the main purpose of the restriction to such a
microlocal region.

In IΘ, G is a first-orderψDO by Theorem 18.1.35 in [8]. InIΘ we can follow the method
of [25, Chapter IX] (see also [24]) to decouple the up-going and down-going wave-
fields. We briefly recall the method here. Defineη±(x, z, τ, ξ) = ±(c(x, z)−2τ2 − |ξ|2)

1
2 ,

which are the two roots of det(ηI2−G1) = 0 withG1 the (matrix-)principal symbol ofG.
The matrixG1(x, z, τ, ξ) is diagonalizable and we choose a matrixV(x, z, τ, ξ) ∈ S0(I ′

Θ
),

invertible, such thatVG1V−1 is diagonal;V can be chosen homogeneous of degree 0.
If we write w(0) = V(x, z,Dt,Dx)w we obtain

Dzw
(0)(t, x, z) = G(0)w(0)(t, x, z) + f (0)(t, x, z) mod C

∞,

G(0) = (DzV)V−1 + VGV−1 modΨ−∞ in IΘ, f (0) = V f.

We writeG(0) = G(0)
1 + G(0)

0 with G(0)
1 ∈ Ψ1 in IΘ and diagonal andG(0)

0 ∈ Ψ0 in IΘ.
We use the notationV−1 for a parametrix ofV with principal symbolV(x, z, τ, ξ)−1 (an
abuse of notations, which will occur below again).
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We then writew(1) = (1+ K(1)(x, z,Dt,Dx))w(0), with K(1) ∈ Ψ−1 in IΘ of the form

K(1) =

(
0 K(1)

1
K(1)

2 0

)
.

We then obtain

Dzw
(1) = G(0)

1 w(1) + [K(1),G(0)
1 ]w(1) +G(0)

0 w(1) + f (1) + R(1)w(1) mod C
∞,

R(1) ∈ Ψ−1 in IΘ, f (1) = (1+ K(1)) f (0),

making use of

(1+ K(1))G(0)
1 (1+ K(1))−1 = G(0)

1 + [K(1),G(0)
1 ](1 + K(1))−1

and the fact thatL(1 + K(1))−1 − L ∈ Ψm−1 if L ∈ Ψm. Lemma 2.1 in [24] shows that
K(1) can be chosen so as to have [K(1),G(0)

1 ] + G(0)
0 diagonal up to an operator inΨ−1

in IΘ. The procedure goes on by choosingK(2) ∈ Ψ−2 in IΘ in order to diagonalise the
term of order -1, etc. We thus obtainQ ∈ Ψ0 in IΘ such that ˜w = Q−1w satisfies

Dzw̃ = G̃w̃+ f̃ mod C
∞, f̃ = Q−1 f ,

with G̃ = G̃(x, z,Dt,Dx) ∈ Ψ1 in IΘ, diagonal up to a regularizing operator

G̃ =

(
b+ 0
0 b−

)
.

In [21], Stolk shows thatb± can be chosen selfadjoint. This is achieved by first choosing
selfadjoint operators with principal symbols equal toη±(x, z, τ, ξ) and then replace (1+
K(i)) by exp[K(i)] in the iteration process described above. Various choicesof Q are
presented in [21].

We define the setJΘ+ of points (t0, x0, z0, τ0, ξ0, ζ0) such that the bicharacteristics asso-
ciated withb+, parametrized byz, (t(z), x(z), τ(z), ξ(z)), passing through (t0, x0, τ0, ξ0)
at z = z0, is such that for allz ∈ [0,Z], the point (x(z), z, ξ(z), τ(z)) remains inI ′

Θ
. In

other words, with the interpretation given by Figure 1 the propagation angle,θ(z) along
the bicharacteristics should never exceedΘ.

We now choose 0< Θ1 < Θ2 <
π
2 . We choose a real non-negative symbolc(z, x, τ, ξ) ∈

S1(R × Rn−1 × R × Rn−1) such thatc = 0 in IΘ1 and elliptic in the complement ofIΘ2.
After extending smoothlyb+ outsideIΘ, such thatb+ is real homogeneous of degree 1,
we now consider the Cauchy problem

(∂z − ib+(z, x,Dt,Dx) + c(z, x,Dt,Dx))v = 0,

v(0, .) = v+(0, .),

where

w̃ =

(
v+
v−

)
= Q−1w = Q−1

(
Λu

ρ−1Dzu

)
.

With Assumption (33) and (34) in [21] we obtain that

v = v+ mod C
∞ in JΘ1+,

v = 0 modC
∞ in the complement ofJΘ2+.

See [21] and [22] for details. A similar results holds for theother ‘one-way’ wave
operator∂z − ib− + c.
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