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Abstract

An approximation Ansatz for the operator solution, U(z’, z), of a hyper-
bolic first-order pseudodifferential equation, 9, +a(z,z, D) with Re(a) >
0, is constructed as the composition of global Fourier integral operators
with complex phases. An estimate of the operator norm in L(H<S), H(S))
of these operators is provided which yields a convergence result for the
Ansatz to U(2',z) in some Sobolev space as the number of operators in
the composition goes to oco.

AMS 2000 subject classification: 35L05, 85L80, 35510, 35530, 86A15.

0 Introduction

We consider the Cauchy problem

(0.1) du+a(z,x,Dy)u=0, 0<z<Z

(02) u |z:0 = U,

with Z > 0 and a(z,x,&) continuous with respect to (w.r.t.) z with values in
SY(R™ x R™) with the usual notation D, = 19,. Further assumptions will be
made on the symbol a(z, x, ). We denote U(z,0) the solution operator of (0.1)—

(0.2). When a(z,x,€) is independent of x and z it is natural to treat such a
problem by means of Fourier transformation:

u(z, ') = / / expli(e’ — z|€) — za(€)] wol(z) d€ d,

where d¢ := d¢/(2m)™. For this to be well defined for all uy € . (R™) we shall
impose the real part of the principal symbol of a to be non-negative. When the



symbol a depends on both x and z we can naively expect

w(z, ) = u(z, ) //exp i{x' — x|€) — 2a(0,2,&)] uo(x) d€ dx

for z small and hence approximately solve the Cauchy problem (0.1)-(0.2) for
z € [0, 2] with (M) small. If we want to progress in the z direction we have
to solve the Cauchy problem

O,u+ a(z,z,D.)u =0, M <z<z
w(z,.) Leo = ur(zM,)),

which we again approximatively solve by
u(z,2') ~ us(z, )
// expli{x’ — x[€) — (z—z ) (z(l),x/,f)] ul(z(l),x) d¢ dx.

This procedure can be iterated until we reach z = Z.

If we denote by G./ .) the operator with kernel

Go (', 2) = / expli(a’ — o|6)] expl—(2' — 2)a(z, ', €)] d,

then combining all iteration steps above involves composition of such operators:
let 0<20<...<2(B) < Z, we then have

Uk +1(2,7) = G, L) © Gath) Le-1)y © -+ 0 Gy gy (o) (),

when z > z(). We then define the operator Wy, for a subdivision =
{200 202N of [0, 2] with 0= 20 < 20 < ... < 2(N) = 7,

g(z70) if 0 S z S Z(l),
Wy, = -
Bz Q(Z,ZW)HQ(ZU),Z(FU) if 2(F) < 2 < 2(kHD),
i—k

According to the procedure described above, Wy - (uo) yields an approximation
Ansatz for the solution to the Cauchy problem (0.1)-(0.2) with step size Ap =
sup;_;  n(zi — zi—1). The operator G., .) is often referred to as the thin-slab
propagator (see e.g. [3, 2]).

Note that a similar procedure can be used to show the existence of an evolu-
tion system by approximating it by composition of semigroup solutions of the
Cauchy problem with z ’frozen’ in a(z,x, D;) [11, 19]. Note that the thin-slab
propagator G./ ;) is however not a semigroup nor an evolution family here (see
Section 3 for simple arguments).

The approximation Ansatz proposed here is a tool to compute approximations
of the exact solution to the Cauchy problem (0.1)—(0.2). Such computations
in applications to geophysical problems have been used in [3]. In exploration
seismology one is confronted with solving equations of the type

(0.3) (0, —ib(z,2, D¢, Dy) + ¢(z,2, Dy, Dy))v = 0,
(0.4) v(0,.) = v4(0,.),



where t is time, z is the vertical coordinate and x is the lateral or transverse
coordinate. The operators b and ¢ are of first order, with real principal parts, by
and c1, where ¢1(z, z, 7, §) is non-negative. Note that the Cauchy problem (0.1)—
(0.2) studied here is more general. The Cauchy problem (0.3)—(0.4) is obtained
by a (microlocal) decoupling of the up-going and down-going wavefields in the
acoustic wave equation (see Appendix A and [21] for details). In practice, the
proposed Ansatz can then be a tool to approximate the exact solution for the
purpose of imaging the Earth’s interior [3, 2]. As explained in Appendix A the
operator ¢ acts as a damping term that suppresses singularities in the microlo-
cal region where its symbol does not vanishes. This effect is recovered in the
proposed Ansatz. Seismic imaging aims at recovering the singularities in the
subsurface (see for instance [23, 1]). Thus, geophysists are not only interested
in the convergence of this Ansatz to the exact solution of the Cauchy prob-
lem (0.3)—(0.4) but they expect the wavefront set of the approximate solution
to be close, in some sense, to that of the exact solution. We shall investigate the
microlocal properties of the proposed Ansatz in Part 11, written in collaboration
with Gilinther Hérmann.

In the present paper, we are interested in the analysis of the convergence of the
approximation scheme Wy in Sobolev spaces. Section 1 introduces the Cauchy
problem we study and the precise assumptions made on the symbol a(z, x, §),
especially on the real part, ¢, and imaginary part, —b;, of its principal symbol.
In Section 2, we shall at first concentrate our study on the operator G, ., yet
to be properly defined. Under some assumptions on a(z,z,§), we shall prove
that G,/ . is a global Fourier integral operator (FIO) with complex phase and
that it maps .# into .7, .%" into .#’ and H®) into H®) for any s. An estimation
of |Gz )l (), o)y Will be the first step towards the analysis in Section 3 of
the convergence of Wy .. In fact we prove that for 2’ — z sufficiently small then
(Theorem 2.23)

||g(z/7z)H(H(s))H(S)) <1+ |ZI _ Z|M7

for some constant M. Such an estimate is achieved by the analysis of the

behavior of the symbol exp[—Ac;] as an element of S9, in particular as A = 2’ —z
2

goes to zero.

In Section 3 we study the convergence of the Ansatz Wy .(ug) to the solu-
tion of the Cauchy problem (0.1)-(0.2) in Sobolev spaces as Ag goes to 0.
A convergence in norm of Wy, to the solution operator of the Cauchy prob-
lem (0.1)—(0.2) is actually obtained (Theorem 3.11):

Am W2 = U0l rern sy =0

with a convergence rate of order % when a(z,.) is in €% w.r.t. 2, a > % We

furthermore obtain (Theorem 3.18)

lim HWm,Z — U(Z,O)H(H(s+1) H(s+m)y = 0, 0<r<1
Amﬂo ’

with a convergence rate of order (1 — r)/2 while the operator Wy . strongly
converges to U(z,0) in HTD,



At the end Section 3 we relax some regularity property of the symbol a(z,.)
w.r.t. z by the introduction of another, yet natural, Ansatz: following [17], the
thin-slab propagator, G./ .y, is replaced by the operator G, .) with kernel

~

Gl a) = /exp[i(x’ — x[€)] exp[—fzz,a(s,x’,@ds] ac.

In Part II, we shall focus on the microlocal aspects of the operator Wy . and
how it propagates the singularities of the initial condition ug. We shall show
that the wavefront set of Wy .(uo)(z,.) converges in some sense to that of the
solution u(z,.) of the Cauchy problem (0.1)-(0.2) as Ayp goes to 0.

Multi-composition of FIOs to approximate solutions of Cauchy problems where
first proposed in [16] and [15]. In these papers the exact solution operator of
a first order hyperbolic system is approximated with a different Ansatz. The
approximation is made up to a regularizing operator. The technique is based
on the computation and the estimation of the phase functions and amplitudes
of the FIO resulting from these multi-products, a result know as the Kumano-
go-Taniguchi theorem. The technique was then further applied to Schrodinger
equations with specific symbols [12, 17]. In these latter works the multi-product
in also interpreted as an iterated integral of Feynman’s type and convergence is
studied in a weak sense. In [12] a convergence result in L? is proved. This is
the type of results sought here for first order hyperbolic equations. We however
do not use the apparatus of multi-phases and rather focus on estimating the
Sobolev regularity of each term in the multi-product of FIOs in the proposed
Ansatz. While the resulting product is an FIO, we do not compute its phase
and amplitude. The Sobolev regularity allows us use a priori energy estimates
for the Cauchy problem (0.1)—(0.2) to prove convergence of the approximating
Ansatz to the solution operator.

In this paper, when the constant C' is used, its value may change from one line
to the other. If we want to keep track of the value of a constant we shall use
another letter. When we shall write that a function is bounded w.r.t. z and/or
A we shall actually mean that z is to be taken in the interval [0, Z] and A in
some interval [0, A,,q,] unless otherwise stipulated. We shall generally write X,
X X" XM XWN) for R™, according to variables, e.g., z, o/, ..., (V).

Throughout the paper, we use spaces of global symbols; a function a € € (R™ x
RP) is in S;’:‘J(R” xRP), 0 < p<1,0<¢ <1, if for all multi-indices «, 8 there
exists Cqp > 0 such that

050¢ alw, €)| < Cag (1+ [y AP0 e R, £ € RP.
The best possible constants Cyg, i.e.,

pap(a) = sup  (14[g)"m TIN50 00 a(z, ¢)],
(,6)ER™ XRP
define seminorms for a Fréchet space structure on S)'s(R™ x RP). As usual we
write S;*(R™ x RP) in the case p = 1 — 4, 7 < p<1,and S™(R" x RP) in the
case p=1,0 =0.
We shall use, in a standard way, the notation # for the composition of symbols
of pseudodifferential operators (¢)DO). When given an amplitude p(z,y,&) €



Ss(Xx X xR™), p > 6, we shall also use the notation o {p} (z, ) for the symbol
of the pseudodifferential operator with amplitude p. For p € ;’?5(X x R™)
we shall write p* for the symbol of the adjoint operator. When composing
1»DOs or computing adjoints of ¥DOs we shall make use of the oscillatory
integral representation of the resulting symbol instead of asymptotic series for
two reasons. First, we aim at estimating operator norm in L(H*, H*®) while using
asymptotic series representations for symbols yields results up to regularizing
operators which operator norms cannot be controlled. Second, we shall consider
symbols in 57, for some m, including the case p = % for which the asymptotic
formulae of the calculus of ¥y DOs cease to hold.

For 7 € R we let E(") be the ¥DO with symbol (&) := (1 + |£]?)"/2. The
operator E(™) maps H®)(X) onto H*~")(X) unitarily for all s € R with E(~")
being the inverse map.

1 The homogeneous first-order hyperbolic equa-
tion

Let s € R and Z > 0. We consider the Cauchy problem

(1.5) d.u+ta(z,z,Dy)u=0, 0<z<2Z,
(1.6) U |20 = ug € HETD(R™),

where the symbol a(z, z, £) satisfies the following assumption

Assumption 1.1.

a,(z,&) = a(z,z,8) = —ib(z,z,8) + c(z,2,§)

where b € €°([0, Z], SY(R™ x R™)), with real principal symbol by homogeneous of
degree 1 for |€| large enough and c € €°([0, Z], S*(R™ x R™)) with non-negative
principal symbol c1 homogeneous of degree 1 for |€| large enough. Without loss
of generality we can assume that by and ci are homogeneous of degree 1 for

€] > 1.

In Section 3 we shall further make the following assumption.

Assumption 1.2. The symbol a(z,.) is assumed to be in £([0, Z], SY(R"™ x
R™)), i.e. Lipschitz continuous w.r.t. z with values in S*(R™ x R™), in the sense
that,

a(z',z,&) —a(z,x,6) = (' = 2)a(7, z,2,€), 0<2<2' <7

with a(z', z,x,&) bounded w.r.t. 2’ and z with values in S*(R™ x R™).

Weaker assumptions will also be formulated in Section 3, for instance by the
introduction of another approximating Ansatz.

We denote by a; = —iby + ¢ the principal symbol of @ and write b = by +by with
bo € €°([0, Z], S°(R™ x R™)) and ¢ = ¢1 + co with cg € €°([0, Z], S°(R™ x R™)).



Assumption 1.1 ensures that the hypotheses (i)—(iii) of Theorem 23.1.2 in [§]
are satisfied. Then there exists a unique solution in €°([0, Z], H+D(R™)) N
€'([0, Z], H®)(R™)) to the Cauchy problem (1.5)-(1.6).

Furthermore, we have the following energy estimate [8, Lemma 23.1.1] for any

function in ([0, Z], H®)(R™)) N €°([0, Z], HE+D (R™))

(L7)  sup exp[—Az] [lu(z, )llge < u(0,)]lme
z€[0,Z]

z
+2/ exp[—Az] ||0.u + a.(x, Dy )ul| g dz,
0

with A large enough (A solely depending on s).

By Proposition 9.3 in [5, Chapter VI] the family of operators (a.).c[o,z] gen-
erates a strongly continuous evolution system. Let U(z’,z) denote the corre-
sponding evolution system:

U2 oU(Z,2)=U(",2), Z>2">2>2>0.
with

0.U(z,z0)ug + a(z,2, D) U(z,20)ug =0, 0< 29 <2< Z,
U (20, 20)uo = uo € HETD(R™)

while Ul(z,z0)ug € HETD(R") for all z € [29,Z]. For the Cauchy problem
(1.5)—(1.6) we take zog = 0.

2 The thin-slab propagator. Regularity proper-
ties.

We follow the terminology introduced in [9, Sections 25.4-5] for FIOs with
complex phase. Let z/,z € [0,Z] with 2/ > z and let A := 2’ — z. Define
P(zr,2) € CF(X x X x R™) as

(28) ¢(z’,z)(x/7x7§) = <{El - I|€> + iAal(zvx/af)
= (2' — z|€) + Abi (2,2, &) +ilci (2,2, €).

Remark 2.1. The function ¢, .) is assumed to be homogeneous of degree 1
only when [¢] > 1. This however is not an obstacle to the subsequent analysis,
e.g., FIO properties, since to define such operators the phase function need not
be homogeneous of degree 1 for small |£]. In the subsequent results concerning
the phase function and FIOs one will then assume that [£| is large enough, i.e.,
€l > 1.

Lemma 2.2. ¢,/ . is a non-degenerate complex phase function of positive type
(at any point (x(,xo,&) where Oed(or .y = 0).



Proof. Note that, by Assumption 1.1, Im(¢(./.)) > 0 and ¢ is homogeneous
of degree 1; 0,¢ = 0 implies & = 0. Thus, ¢ is a phase function of positive
type. Inspecting the partial derivatives of O¢¢ w.r.t.  we conclude that the
differentials d(0¢, @), ..., d(0, ¢) are linearly independent. [ ]

With ag(z,.) € S°(X x R™) we have exp[—Aag(z,.)] € S°(X x R") by Lemma
18.1.10 in [8]. We define

(2.9) 9z, (2, §) = exp[—Aaop(2,7,§)].

We shall keep this notation (for this symbol and others in the sequel) but it
will be useful however to consider this symbol to depend on the parameters z
and A instead of z and 2’ in the following analysis. Note that g,/ . is bounded
w.r.t. z and € w.r.t. A with values in S°(X x R"). Hence, we may define a
distribution kernel G ./ .)(2',z) € 2'(X’ x X)

Gyl z) = / expli(e’ — 2[€)] expl—Aa(z, o', £)] dE
= /exp[i(b(z/)z)(:zrl,x,f)] g(z’,z)(xlvg) d-g

as an oscillatory integral. We denote the associated operator by G, .). This
operator is often referred to as the thin-slab propagator (see e.g. [3, 2]). We
show that G,/ .) is a global FIO in R".

Define a := (2/,2,&’,€) and
ug, (0, 0) = g, (o (&, 2,0) + & = —0; + &,
ug, (o, 0) = 813_¢(z/72)(x’,x, 0) — & =05 — & + 1Ay a1(z,27,0),
g, (,0) = 0o, P2 o) (@, ,0) = 3:; —xj +1A0¢,a1(z, 7', 0),

where 7 = 1,...,n. We denote by j(z,7z) the ideal in €°°(R") generated by
the functions ug,, ug,, and u,;, and we let J(./ .y be the subset of the functions

in JA(Z/)Z) that are independent of 6.

Lemma 2.3. There exists A1 > 0, such that, for all 2’z € [0, Z], with 2’ > =z
and A = 2" — 2z < Ay, the ideal Ji.i .y is generated by the functions

(2.10) g (@) = 0ut Br 2y (2, 2,€) = &
=& — &+ 100 a1(z,2,€) = ug lo=¢,
Vg (@) = O, Par o) (2, 2, 8) = & — x5 +iA0¢;a1(2, 2, €) = ua,|o=¢
j=1,...,n.

Some of the key arguments of the proof are close to that in the proof of Theorem
25.4.4 in [9].

Proof. The ideal ,]A(Z/7z) is also generated by the functions

e, e, = mug, +ug, =& — & + Ay a1(z,2',0), ug,,



j=1,...,n. We define v := (2/,&,0), p := (x,&). We set a point (v, po) =
(x5, &0, 0o, o, &) where these generators vanish and we work in a neighborhood
of this point. (Note that 6y = &.) Since z — ai(z,.) € S (X x R") is bounded
we have that 3A; > 0 such that for 0 < A < Ay, and all z € [0, Z],

det O (ugy, ..., Up, , gy -y Uty s Ugyy o5 Uy, ) [OV F O
and

det O (vey s .oy Vg s Vays - -, 0,) /02, ET) # 0.

By Theorem 7.5.7 in [10] we have

' —x y y Ug ()
¢ —¢ _ ( Q(Ov,u) P(Ia,u) > e + 5(#)
0 " —Up f

where P is a ¥ 2n X n matrix and @ is a °° 2n X 2n matrix and the
functions Z, £ are also € in a neighborhood of (o, po). As the functions
we (v, ) =o' —x—a(p), we(v, 1) ==& —E—E&(1), wo(v, p) := 0 —¢ have linearly
independent differentials, Lemma 7.5.8 in [10] proves that they generate j(z/yz)
and the proof of that lemma shows that @ is invertible in a neighborhood of
(vo, po). Letting 8 = £ we have

Q' €0 =&, 2,6)" < we (v, 1) ) _ < um(a:/’,x,f) ) _ < vz () )

we (v, 1) g (2, z,§) ve(a)

We thus obtained that j(z/yz) is generated by the functions ug;, vs;, ve;, J =
1,...,n. We then see that J .) is generated by v, ;, v¢;, j = 1,...,n. In fact,
using Theorem 7.5.7 in [10] again, any € function h(«) can be locally written
in the form

ha) = Y (he, (@ m)vs, (1) + he, (o pyve, (o, 1)) + (),

1<i<n

with o/ = (2/,¢") provided that 0 < A < Ay. If h € J.r ;) then 7 € J./ .y and
Lemma 7.5.10 in [10] implies that VN € N, 3Cn > 0:

r(p) < Cy max(Tm ()|, |Tm £()])",

locally. Therefore, Theorem 7.5.12 in [10] yields r € I(wg,we) = I(vs,ve);
which in turn implies h € I(vy,ve) and thereby completes the proof. ]

As the Poisson brackets (for the symplectic 2-form ¢’ — o on T*(X’ x X)), where
o' and o are the symplectic 2-forms on T*(X') and T*(X) respectively) of
any two of the functions in (2.10) vanish identically we obtain that the ideal
generated by these functions is globally a conic canonical ideal in the sense of
[9, Definition 25.4.1. and Section 25.5]. The phase function ¢ .y thus defines
J(zr,z) in the neighborhood of any point of J./ ,)r: it thus globally defines J(./ ),
which is then of positive type. Therefore the operator G./ .y is a global FIO
with complex phase (see Definitions 25.4.9. and 25.5.1. in [9]).



Proposition 2.4. There exists A1 > 0 such that if 0 < A =2 — 2 < Ay then
the operator G.. .y is a global Fourier integral operator with complex phase and

1/2
G(z’,z) € IO(X/ x X, (J(Z/vz))l’QX/'XX)'

We denote the half density bundle on X’ x X by Q%?X x- Note that (J./ .))’
stands for the twisted canonical ideal, i.e. a Lagrangian ideal (see Section 25.5

in [9]).

Note that, with the following analysis, we could also consider G, ) as a global

FIO with real phase with amplitude in S9 (X’ x X x R") (see e.g. [20]). However
2

such consideration would be rather technical as one usually restricts oneself to
the type S;* with p > 1 for FIOs (see the remark at the end of Section 25.1 in [9];
see also [18, pages 391-392]). Viewing the thin-slab propagator G./ .) as a FIO
with complex phase is also a good framework to understand the propagation of
singularities in Part II. We shall however make this interpretation for G,/ .y in
Proposition 2.26, below, to apply a result of Kumano-go [13, Theorem 2.5].

We now establish some global continuity properties of the operator G/ . stated
in a slightly more general form (for similar results with global symbols see for
instance [13], where phase functions are real and other conditions are imposed
on the phase function).

Lemma 2.5. Let A be an FIO with a kernel of the form

Ka(e,y) = / explig(z, £) — i(y[€)] oa(z, E)TE € F'(R™ x R"),

where o4 € S™(R™xR™) and ¢ € €°(R"xR") is such that Im(¢(x,&)) > 0 and
© is homogeneous of degree 1 in &, for |€] large enough, and 0., € S*(R™ xR™).
Furthermore, for all i = 1,...,n we assume O, o(x,§) = z; + fi(z,&) where
fi € S°(R™ x R™). Then A maps .7 into .# continuously.

Proof. Let u € .. We then have

|Au()| S/IUA(I,f)(1+|§|)’mII(1+|€|)mﬂ(€)ld€

< C sup |oa(e,§)(1+ (€)™ sup |(1+[€)™ T a(g)],
£ER™ £ER™

where C = [(1+¢])""'d@¢. The operator A is hence well defined from .# into
€ (R™). If we differentiate we obtain

DLAU’('I) = /exp[i<p(x,§)] (390#7(3575)014(117,5) - iainA(x7§>) ﬁ,(é) dg.

Noting that 9., p(z,&)oa(z, &) — i0z,04(z,€) € STTHR™ x R™) we similarly
have

|Dy; Au(z)| < C sup |(1+ €)™+ 2a(8)|
£ER™

< C" sup |z*DPu(x)| for some a, § > 0.
zER™



Iterating we find that Au € €°°(R"™). Integrating by parts we also have

Alju)(z) = / explig(z, €)] (Oc, ol €0 a (2, €) — 10,04 (x, £)) (€) A€
— i Aulz) + [ expliole ] (e, 04 (0,6) — 0k, 04(2,) 2(€) e

Since fi(x,€)oa(x,&) —i0c,04(x, &) € S™(R™ x R™) we obtain

|z; Au(z)| < C sup |z*D%u(z)| + C sup |z® D u(z)|,
z€Rn z€Rn

for some «,a’, 3,3 > 0. Similar estimates hold for |z%D? Au(z)| because of
the hypothesis made on f;, i = 1,...,n. The operator A thus maps .¥ into .¥
continuously. |

To show continuity from .’ into ./ we shall need the following lemma.

Lemma 2.6. Let j,k non-negative integers, u € ./ (R"), f € C**1(R") such
that

0< Imf(z) < Co, 2 €RY, [fD@)|<Cp, s R, 1<r<k+1,

Then we have

(2.11) Wtk

/ u(a)(Im () expliwf(z)] dz
<C Y sup (D u@)(If' (@) + I f()/* 7, w >0,
o<k PER”

where the constant C is bounded when the function f stays in a domain of
EFHL(R™) where Cy, Cy,...,Clry1 can be chosen bounded.

Proof. The proof is the same as that of Theorem 7.7.1 in [10] where u € GF(R").
In fact the further assumptions on f made here allow to give global bounds that
are needed since u € .% in the present case. |

Lemma 2.7. Let A be an FIO with a kernel of the form:
Ka(e.y) = /exp[i(w — yl6) + (2, ) oA, E)IE € D' (R™ x R™),

where 04 € S™(R™ x R") and v € SY(R™ x R™) is such that Im(y(x,£&)) > 0,
and 7y is homogeneous of degree 1 in &, for |¢| large enough. Furthermore, we
assume that there exists d > 0 such that

(2.12) |Re (0py(x,€)) | <d <1, zeR" £€R" [£ =1

Then A maps . into ' continuously.

Observe that the differential of ¢(z, ) := (x — y|&) + v(z,£) does not vanish in
R2" x R™\0. The function ¢ is thus a complex phase function. The differentials
d(0¢, @), ...,d(0e, @) are linearly independent. Hence ¢ is a non degenerate

complex phase function of positive type. Note that by (2.12) the function (x —
yl&) + v(x, ) is an operator phase function in the sense of [6, Definition 1.4.4.].
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Proof. Without loss of generality we may assume that - is homogeneous of
degree 1 for [£] > 1. Let A? be the transpose of A and let u € .%, then.

Au(e) = [ expl-itale)] [ explityle) + 7] oa0,) uly) du
Define
v(€,n) = /exp[i<y|§> +iv(y, &) oaly,n) u(y) dy ,
and put w(€) = v(&,€). As u € .7 then v and w are both €. Then A'u is

the Fourier transform of w. The lemma is proved if we show that u — w(§) is
continuous from .# to ..

Let w = [¢] = 1 and & = £/|¢] € S"~1. We then have (y[€) +7(y,€) = wf(y, )
with f homogeneous of degree 0 in &, for |{| > 1. Note that 9, (y,{) =& +
Oy (y,&0). With the assumption made on 9,7y we have |9, f(y,§)| > ¢ > 0.

Applying Lemma 2.6 and estimate (2.11) we obtain
WFu(& ) < Ki Y sup | DS (oaly, n)u(y))]
la|<k
< Kip(1+ )™ sup [D%u(y)], w =1
lal<k
yERM

where the constants Ky, K}, can be chosen uniformly w.r.t. £, || > 1 since the
constants C, C1, . .., Crxr1 of Lemma 2.6 can be chosen bounded (as & € 8™~ 1).
Now setting n = £ we obtain that for all k € N, 3K}/ > 0

(2.13) (1+ [N ™ w(&)] < K sup [D%u(y)], £ € R", [¢] = 1.

UER"

We now consider

MM@=/%W@@+M@M

((yi + 0, (y, €))oa(y, &) — idg,0a(y, €))uly)dy .

As yiu(y) € & and O, v(y, €) is homogeneous of degree 0 for |£] > 1 estimates
similar to those in (2.13) are valid. [ |

It is immediate from the structure of ¢(./ .) in (2.8) that Lemma 2.5 applies to
G(r,2). If A =2 — 2 is small enough we have [Ad,,b1(z,2',§)| < d < 1, due to
Assumption 1.1, and then Lemma 2.7 applies. We thus have

Proposition 2.8. There exists Ay > 0 such that if 2/, z € [0, Z] with 0 < A :=
2" — 2 < Ay then Gy maps . into .S and 7" into /" continuously.

Remark 2.9. By the above result, composition of the two FIOs G, .., and
G(z 2 is thus natural without further requirement such as having the operators
properly supported.

We now turn to global L? and Sobolev space continuity for the operator Gz )
We shall use the following lemma.
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Lemma 2.10. Let ps;(y,n) be bounded w.r.t. the parameter s with values in
ST(RP x R™) and define

Ms(A,y,m) :=n— Afs(y,n)

where fs is bounded w.r.t. the parameter s with values in S*(RP x R",R") and
homogeneous of degree 1 in n, for |n| > 1. Then

ZN)S(Aa Y, 77) = ps(ya ﬁ(Aa Y, 77))

is bounded w.r.t. s and A with values in S]*(RP x R")) for Az small enough. In
the case p = 1 it is then bounded w.r.t. s with values in €°°([0, Az, S7*(RP x
R")).

Proof. Let Ag be small enough such that |n — Afs(y,n)| > Co > 0if || =1
and A € [0, Az]. We then have
1+ Colnl <14 [n—Afi(y,m)| <1+ Cilnl, n€R", |n| > 1, A €[0,As].

This inequality yields the proper estimates for 85‘85135 to prove that ps €
SHRP x R"). Bounds w.r.t. to the parameters s and A come naturally. In
the case p = 1, derivatives w.r.t. A do not affect the symbol order and type.
The proof is complete. |
Following [22] we introduce
Definition 2.11. Let L > 2. A symbol q(z,.) bounded w.r.t. z with values in
SL(RP x R") is said to satisfy Property (Pr) if it is non-negative and satisfies

a5 =81+ al+18])/L
(Pr) 10507a(zy,m)| < C(1 + [n])~VPIHUal+I5D/

(1+q(z,y,n)! " eHEVE 2 e [0,2], y e R?, ne R

We then set p=1—1/L and 6 =1/L.
Remark 2.12. Suppose ¢(z,.) as in Definition 2.11 and |«| + | 5] > L then
(L [ =D < O(1 4 q(z,y,m)) '~ 1HIVE 2 €0, 2], y e RP, R

Estimate (Pr) is thus clear in this case.

Examples of symbols with such a property with L > 2 are given in [22]. In fact
we prove that ¢; satisfies Property (Pr) for L = 2.

Lemma 2.13. Let q(z,y,n) be bounded w.r.t. z with values in S*(RP x R"). If
q > 0 then q satisfies Property (Pr,) for L = 2.

Proof. Bounds w.r.t. z are natural; we shall omit the dependence on z in the
proof for concision. We have to prove that

10005q] < C (1+ [n)2Uel=18D (1 4 )13 (al+18D

The property is clearly true for |a|+|8] = 0 and for |a| + |3] > 2 by the remark
above. Let us now treat the case |a| + |§] = 1. For this we use Landau’s
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inequality: let f € C?(R) with f > 0 and f” is bounded then (see [4, page 40]
and [10, Lemma 7.7.2])

PO < 2(F0)} (ggﬂgw(tn)

1

We first treat the case |a| = 1. Define p(y,n) = (1 + |n/*)~2 q(y,n). Then
p € S°(R? xR") and 92%p(y,n) is in SO(R? x R") and is thus bounded. We thus
have

1L+ 0?72 0%y, )| < C (L +n») 7% qly,m)?,

which yields

0%q(y,n)| < C (L + )% (1 +q(y.m)%,

which is the expected estimate. Let us now treat the case |3| = 1, with for
instance, 5 = (1,0,...,0) and a = (0, ...,0). Define p(y,1) = (1+|1|2)2 q(y,n).
Then p € S?(R? x R") and thus 02°p(y, n) is bounded. We hence have

102p(y,m)| < C (p(y,m))>.

With

9lp(y,n) = (1 + [n*)% 02q(y,n) +m (1 + n*)"% qly,n),

the triangular inequality yields

)
1
2

1+ [n2)? 108a(y, )| < C (p(y
)

M) + ml(L+ 1% ™% qly,n)
< C(qly,n))z(

(1+ )7 + (a(y,m)?)
< C(q(y.m)? (1+n?)5.

We finally obtain

0%q(y,m)] < C (a(y. )21+ |n])~ %,

which is the expected estimate. |

Remark 2.14. If the symbol ¢(z,y,n) satisfies Property (Pr,) then the ampli-
tude q(z,9',n) + q(z,y,n) also satisfies Property (Pr,) (with derivatives w.r.t. y,
y and 7).

Proposition 2.15. Let q(z,.) be bounded w.r.t. z with values in S*(RP x R")
with q(z,.) > 0. Let q(z,.) satisfy Property (Pr) and define pa(z,y,n) =
exp[—Aq(z,y,n)]. Let m € N. Then ¢"pa is smooth w.r.t. A, bounded w.r.t. z,
with values in SS(RP X R"™) for A in any interval [Amin, Amaz] with Apin > 0.

Proof. 65‘85 (¢™pa) is a linear combination of terms of the form

AR 03O q) .. (05100 ) (05100 q) ... (0500 )™ pa
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with0 <l <mand a1+ - -+a+a1+...ay =cand by+- - -+b+51+... 0k = 0.
We can estimate the absolute value of each of these terms, using Property (Pr),
by

lo|+]8]

_ _lal+iBl .
CA*(1+ [n)) P27 (14 77 g™ pa
<O+ )P A

min

lal+18]
L

as (1 4 q)H—k— qm—lAk-l-mpA < (. [
While the symbol exp[—Aq(z,y,n)] is bounded w.r.t. z and smooth w.r.t. A
with A > A, > 0 with values in SS(RP x R"), this fails to be true at A = 0:

Oa exp[—Aqlla—o = —q ¢ SS(RP x R").

In fact when we want to control the behavior of exp[—Ag] close to A = 0 we
shall use the following definition and lemmas.

Definition 2.16. Let L > 2, p=1—1/L and § = 1/L. Let pa(z,y,n) be a
function in €°°(RP x R") depending on the parameters A > 0 and z € [0, Z].
We say that pa satisfies Property (Qr) if the following holds

Q) 0905(pa — pala—o)(z,y,n) = AmHUHIED yRaB (5 4y ),

forlo| + |8l < L, 0<m<1-d(al+|8]),
where pR*% (z,y,n) is bounded w.r.t. A and z with values in S’EFPWH(;‘O"(RP X
R"™). It follows that pa(z,y,1) — pala=o(z,y,n) is itself bounded w.r.t. A and
z with values in SY(RP x R").

Lemma 2.17. Let q(z,.) be bounded w.r.t. z with values in S*(RP x R"™) and
satisfy Property (Pr,). Define pa(z,y,n) = exp[—Aq(z,y,n)]. Then pa satisfies
Property (Qr) for A € [0, Apaz] for any Apaz > 0. As pala=o = 1, pa is
itself bounded w.r.t. A and z with values in S’S(RP x R").

Proof. In the proof all the functions and symbols will naturally be bounded
w.r.t. z. We thus drop the variable z here for concision.

We define
pzmﬁ — Afmfé(\ozlﬂﬁl)asag(pA — palazo).

We first consider the case |a| + |5] = 0 with 0 < m < 1. We need to estimate
|8533p’£00 . The case m = 0, |a + b|] = 0 has to be treated independently
but is trivial: we clearly have [pX°| = |pa — 1| < C. We shall now estimate
0200 pR°| = |[A™™92h (pa — 1)| in the case where m > 0 or |a| + [b] > 0. For

this we write

1
(2.14) paly,n) —1= —A/O q(y,n) exp[—sAq(y,n)]ds.

m00

We then have p(y,n) = — fol qR(s,y,n)ds with

1-m

an (s,y,m) = A ""q(y,n) exp[—sAq(y, n)].

14



We prove that
105004 R (s, 5,m)| < C(s)(1+ [y —rlor+olel

with C(s) bounded w.r.t. A and L' w.r.t. s € [0,1]. The result then follows for

00
PR

When computing 8;85’7(]21 we obtain a linear combination of terms of the form

A0 000 q) (—sA)F (95100 q) . .. (954 94k q) exp[—sAq],
with ag +a1+---+ar =a, bg+b1+---+bp =0,

(where k can be 0). Using Property (Pr,) we find that the absolute value of such
a term is bounded by

OAlfm(SA)k(l + |n|)f|b\+6(|a+b|)(1 + q)k+176(|a+b|) exp[—SAq]
< Csm+6(|a+b|)—1(1 + |n|)m—p\b|+5\a\A5(\a+b\)
(sA(1 4 ) HEF=0Ua+8D exp[—sAq),

as 1< CA+n)"1+q)™ifm>0.Ifl:=-m+k+1—0(a+b|) >0 we
use that (sA(1+ ¢q))!exp[—sAq] < Cif0<5<1,0< A< Az and ¢ >0
and we obtain the following estimate

Osm-i—é(\a-‘rb\)—l(l + |n|)m—p\b|+5\a\A6(|a+b|)'
If 1 < 0, (14¢)! is simply bounded (¢ > 0) and we obtain the following estimate:
CAk+17mSk(1 + |n|)mfp\b|+5\a\.

Asm+6(Ja+0b])—1 > —1 in the considered case, both estimates exhibit bounds
that are in L'([0,1]) w.r.t. s. We also have uniform bounds w.r.t. A as we have
assumed m < 1.

We now treat the case 1 < |a|+ 3| < L,0<m <1-4§(la|+|F|). We estimate
the absolute value of

a;af](pgaﬁ) — A—m—0(lal+IB]) agmazwm
which is a linear combination of terms of the form
k—m—46(|a|+|8 ai Qb ax b
A (lal+181) (ay13n1q)'”(5yk5nkq)exp[_Aq]7
with a; +---+ap =a+a, b+ +b,=b+p,

where k > 1. Using Property (P) we find that the absolute value of such a
term is bounded by

CAF~=m=0el+1B1) (1 4 |p|)~18I=bl+o(al+Hal+IBI+bD)
(1+ q)k—é(\a|+\a\+lﬁ\+lb\) exp[—Aq]
< C(1 + |p|ym—rUBlHED+8(al+lal) (1 4 gy=ollal+IbD
(A1 + g))F =m0l HI8D exp[—Ag]
< C(1 + |p|)m—rUslHIbD+o(lal+lal)

ask—m—46(al+18]) >1—m—=45al+|6]) > 0and 0 < A < Apyue. This
completes the proof. ]
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Lemma 2.18. Let pa(z,y,7n) € SS(RP x R") satisfy Property (Qr), such that
PAla=o is constant. Let fa(z,y,n) be bounded w.r.t. z and A with values in
S1(RP x R") be homogeneous of degree 1 in n for |n| > 1. Define fj(A, z,y,m) =
n—Afa(z,y,n). Then

Palz,y.m) = palz, y,1(A, 2,9,1))

satisfies property (Qr) for A sufficiently small.

Proof. Take A small enough such that Lemma 2.10 applies. We first treat the
case « =0, 8 = 0. We denote h = pa|a—o. Property (Qr) gives

ﬁA(Zayun) _ﬁA(27y7n)|A:0 = pA(Zuy7ﬁ(A727yun)) —h
= AR (2,9, 7(A, 2,y,m)), 0<m <1

with g% (2, y,7(A, z,y,7)) bounded w.r.t. z and A with values in S7*(R? xR").

Let now 1 < |a| + |8] < L. 9507pa(z,y,n) is a linear combination of terms of
the form

a;OaSOPA(Zaya ﬁ(Au Z, y?ﬁ)) aglaglﬁ(Au Z, yﬂ?) s az/lkagkﬁ(Au Z, yﬂ?)

with [Bo|l =k, 8=01+ -+ Ok and @« = a9 + - - - + ax. Note that &k > 1 and
lai| +16:| > 1,i=1,...k. By Property (Q) this term is thus of the form

(2.15)  AmFollaoltiBol gneodo (g [N 2 y,m)) 02 OF (A, 2,y,m) . ..
ORI, 2y, m),

with 0 < m <1 —d(|ao| + |Bol) and x> (z,y,7(A, z,y,7)) bounded w.r.t. z
and A with values in S?7p|ﬁ°|+6‘a°|(Rp x R") by Lemma 2.10 .

Assume first that, for this term, |a;| 4+ |8;] = 1 for all ¢ = 1,...,k. Then
Sy lail + (B8] = k and |ao| + |Bo| = |a| + |8]. The term 95 ii(A, z,y, 1)
in the product (2.15) belongs to S'~#(RP x R") and thus (2.15) is of the form
Amo(al+I8D gueo (2 y n) with gr® in SL(RP x R") with | = m — p|Bo| +
Slao|+k =B == [Bk| = m~+6(|Bol + |ao]) = 18] As |ao|+|Bo| = |af+[B] we
have I = m+ 6(|a| +|8]) — |B] = m — p|B| + §|a|. We thus obtain the expected
result in this case.

Assume now that there exists i € {1,...,k} such that |oy| + |3;] > 2. Then
the term Bgi(?giﬁ(A, z,y,n) in the product (2.15) is equal to Aﬁgiagi falz,y,m).
Thus the term (2.15) is of the form Al+m+(laol+Gol) gmavto s, o, ) with greoro
in SL(RP x R"). As above I = m + 6(|ao| + [Bo]) — |8]. In the present case
lao] + |Bo] < || + | 8] which yields I < m — p|8] + §|a| and hence the expected
result since 1 +m + 6(|ag| + |5o]) =1 > m + §(|a] + |8]). |

Lemma 2.19. Let f € €°(R) and ga(z,y,n) in €°(RP x R") that satisfies
Property (Qr) and such that qa(z,.)|a=o is independent of y and 1. Then

flaa)(z,y,m) satisfies Property (Qr).
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Proof. Again bounds w.r.t. z are clear. We first treat the case |a|+|3] = 0. We
write

1
flga) — flaala=o0) = (ga — QA|A:0)/O f'(1 = s)gala=o + sqa)ds.

As gala=o is independent of y and 7, then ga is bounded w.r.t. A with values
in SY(R? x R") by Property (Qr) and so are (1 — s)gala=o + sqa and f'((1 —
5)qala=o + 5ga) by Lemma 18.1.10 in [8] with bounds in S)(R? x R") uniform

with respect to s. We thus obtain that fol F'((1—s)gala=0+ sga)ds is bounded
w.r.t. A with values in S(R? x R"). We conclude using Property (Qr) for
ga — gala=o0. Let us now treat the case 1 < |a| +|8] < L and choose 0 < m <
1—6(|a] +|8]). We see that 9307 f(ga) is a linear combination of terms of the
form

(05100 qa) .. (05707 qa) F*) (qa),

where K > 1, a1+ +ar =, f1+ -+ B = 8. Now choose 0 < m; <
1—0(Jas| +16il), ¢ = 1,...,k, such that m = my + -+ + my. Then Property
(Qr) yields terms of the form

ATHSlea 1D | AmictS(lon 48D graenB ||| gmiane _ Am+(al+18]) gmes
with qzio”ﬁi, i=1,...,k, bounded w.r.t. A with values in S’,T"’*p‘aiHéwi‘ (RP x
R") and qzmﬁ = qzlo‘lﬁl oo qgko"“ﬁ’“. We note that f*)(ga) is bounded w.r.t.
A with values in S5(R? xR"). The symbol ¢*? is bounded w.r.t. A with values
in S Pl Re « R™), which yields the result. |
With Remark 2.14, Lemma 2.19 and the previous lemma we obtain

Corollary 2.20. Let f € €°°(R) and let q(z,.) bounded w.r.t. z with values in
S1(RP x R") satisfy Property (Pr). Define

pa(z,y',y,m) = exp[—A(q(z, v, 1) + a(z,y,m))].

Then f(pa) satisfies Property (Qr). As f(pa)laco = F(1), f(pa) is itself
bounded w.r.t. A and z with values in S)(R*P x R").

Note that the property (Qr) is stable when we go from amplitudes to symbols:

Proposition 2.21. Let ga(z,x,y,§) be an amplitude in SS(RQP x RP) depending
on the parameters A > 0 and z € [0, Z] that satisfies Property (Qr). Then
o{qa} (z,x,€) satisfies property (Qr).

Proof. We use the oscillatory integral representation for the symbol:

olaa} (z,2,8) = // exp[—i(y|n)] qa(z, 2,2 —y,§ —n) dn dy.

Let 0 < |a|+ |8 < Land 0 <m <1—-46(a|+|8]). Computing 8@‘8?(0 {qa} —
o0{qa}|a=0), we obtain a linear combination of terms of the form, with a;+as =
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«,
// exp|—i(y|n)] 8578529y (qa — qala=o)(z,z,x —y,& —n) dn dy

N // exp[—iy|n)] AT HOIITINGRE P g o~y € 1) dp dy

— Am+o(lal+18]) 5 {qTAn(cu,az)ﬁ}

3

where qz(al’%)ﬁ is bounded w.r.t. A and z with values in the symbol space

S’,T*’JWH(;‘O" (R?? x RP). As the map a — o {a} maps bounded sets into bounded
sets the result follows. |

We shall also need the following lemma.

Lemma 2.22. Let ga(z,x,y,£) be an amplitude in SS(RQP x RP) depending
on the parameters A > 0 and z € [0, Z] that satisfies Property (Qr) for 1 <
lal + 18] < 2 and such that ga(z,.)|a=0 is independent of (x,y,§). Let r(z,§) €
S*(RP x RP) for some s € R. Then

o{qa 7} (2,2,8) — qa(z, 2, 2,8) r(z,€) = A" 2NT (2,2,6), 0<m < p— 4,

where the function XX (z,x,§) is bounded with respect to A and z with values in
gpte=(r=0) (Rp x RP),

Proof. For the sake of concision we take p = 1 in the proof but it naturally
extends to p > 1. We write Aa = gar. Using the oscillatory integral represen-
tation of o {ga} we obtain
o {qﬁr} (27 €T, 5) - QA(Z, T, $7€)T‘(£L', 5)
- // exp[—i(yl§ —m](Aa(z,z,2 —y,n) — Aa(z,2,2,1) dn dy.
Taylor’s formula yields
g {qAT} (Zv Zz, g) - qA(Za z, I,f)"”(x, g)
1
= / // —yexp[—i(y|l{ — )] O3Aa(z, 2,2 — sy, ) dn dy ds.
0
With an integration by parts we obtain
g {qAT} (Zv Zz, g) - qA(Za xz, I,f)"”(x, g)
1
= —/ //ieXP[—i<y|§ —n)] 9301Aa (2,2, — sy, n) dn dy ds
0
1
_U{_Z/ 8384)\A(Z,I, (1—S)I+Sy7§) dS},
0
where 0304Aa (2, %,y,§) = (0y0¢qa) (2, 2,y,§) 7(2,£) + Oyqa(z, 2,y,)0er(x, €),

as r does not depend on y. The first term is treated using Property (Qr) while
for the second one we write

aqu 857‘: Am/+5 qz’(o,l)o (95’/‘,
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where 0 < m’ <1-¢ and qz,(o’l)o re S;”/"’S_H“S(R% x RP) by Property (Qr).
We actually take 6 < m’ < 1—§ and write m = m’ — §. We obtain

Oyqader = A™T20 G,

where GX' is bounded w.r.t. A with values in S7""*7#+9(R? x RP) and 0 < m <
1—28 = p—4. We conclude since the map o{.} maps bounded sets into bounded
sets. ]

We are now ready to give an estimate of the operator norm of the thin-slab
propagator, G,/ .y, in L(H®)(X),H®) (X)) for any s € R.

Theorem 2.23. Let s € R. There exists M > 0, Ay > 0 such that
1G¢r )l gy < 14+ AM,

for all 2,z € [0, Z] such that 0 < A =2 — 2z < Ay.

In the proof we assume that c¢; satisfies property P for some L > 2. We
know that it is always true for L = 2 by Lemma 2.13 but special choices for
c1 can be made. As before we use p = 1 —1/L and 6 = 1/L with p > §
for L > 2and p =6 = % for L = 2. In the proof we proceed classically by
computing Q(Z/J)g(*z, 2 and use the classical results on ¢¥DOs (see e.g. [18,

Section 5] and also [7]). Here we however do not content ourself with the
continuity of G,/ .y but we want to obtain a precise estimate of the operator

norm in L(H®)(X), H®)(X")), which will be required in the sequel. Here we
exploit the fact that A can be taken arbitrarily small which allows to carry out
some explicit computations.

Proof. Let s € R, then the kernel of A,/ .y := G/ .y o E(=%) is given by

A(z’,z) (IE/, 'r) = /exp[i(b(z’,z) (I/a €T, f)] 9(z',2) (I/a 5) <€>7s d§
Computing the kernel D/ .y of D, .y := Ar 2y 0 Az‘z, o) e obtain

D(z/,z)(xlvx)
= /exp [Z<II - I|€> +1A (bl(zvxlvg) - b1(27x7§>)] d(z',z)(xla Iaf) d-g

where

d(z/,z) (Ila Iaf)
= exp[_A(cl (27 :I;/a 5) +c (27 z, 5)] 9z’ ,2) (:I;la 5) 94(z',2) (:I;a 5) <§>725'
We write by (z,2',&) — bi(z,2,&) = (¢/ — z|h(z, 2, 2,£)) where the function h is
smooth, homogeneous of degree one in &, || > 1, and continuous w.r.t. z with

values in S1(X’ x X x R™) by Assumption 1.1 and estimate (1.1.9) in [10]. We
thus obtain that the change of variables { — £ + Ah(z,2',7,&) = H(A 2 ,27,2) (&)
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is a global diffeomorphism for A small enough (uniformly in z € [0, Z]). We
denote &(A, z, 2/, x,8) = H(_1 )(5). We thus have

’
Ajzx!x

D(z’,z)(x/ax) :/exp [Z<I/ - I|€>] d(z/,z)('rlvxvé(AaZaI/vxvg)) jA(Z,.I/,I,f) d§

where Ja(z,2', x, &) is the Jacobian.

Lemma 2.24. The function é(A,z,x',x,&) is homogeneous of degree 1 in &,
for |€] > 1, continuous w.r.t. z, € w.r.t. A with values in S*(R?*" x R™) if A
is small enough, i.e.,

A, >0, €€ E€°([0,2],€°°([0, A4, SHR®™ x R™))).

This lemma is in fact a variant of part of the results of Proposition 1.5 in [14,
Chapter 10].

Proof. Homogeneity is clear. We have
|§~(A7 Z7 xl? x? §)| = |€ - Ah(z7 'r/, :Z:, g(A, Z, :Z:/7 x? g))|
<1+ AC(L+ E(A, 2,2, 2,6))), ¢ =1,

which yields, because of homogeneity,

) ) 1+ AC

for A small enough, uniformly chosen w.r.t. z € [0, Z], 2/, 2 € R™. Differentiat-
ing the j** coordinate of &,

& =E&(A, 2,02, 8) + Ahj(z, 2 2, E(A, 2,2, 2,6)), =1,...,n,
w.r.t. x; yields
(2.16) 90,65 (A, 2,2 2, €) + Ady, hy(2, ) 2, E(A, 2,22, €))
+ A0z hy(z, 7 2, E(A, 2,0 2,€)) 00, E(A, 2,21, €) = 0,
| j=1...,n.

The partial derivatives of h are bounded for |{| = 1. We can hence solve for
02,§(A, 2,2, x,€§) when A is small enough and find the expected estimate from
that obtained for £(A, z, 2/, z, £):

3C >0, [0:,€(A, 2,2/ ,2,8)| < C(1+¢]), o',z eR", £ €R™

Differentiating w.r.t. x}, &, and A yields similar structures and the proper
symbol estimates. The proof carries on by induction. Note that the required size
for A to solve the systems of the form (2.16) remains fixed along the induction
process. |
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Continuation of the proof of Theorem 2.23. From (the proof of) Lemma 2.24 we
also obtain that the Jacobian Ja(z, 2, x, &) is homogeneous of degree zero in &,
|€] > 1, and is continuous w.r.t. z and € w.r.t. A with values in S°(R?" x R™).

We write pa(z, 2, z,€) := exp[—A(c1(z, 2", &) + c1(z, 2, £)]. As ¢; satisfies Prop-
erty (Pr) we then have pa satisfying property (Qr) by Corollary 2.20. Define
pa(z, 2 x,8) :=palz, 2,2, E(A, 2,2/, 2, €)). Since

g(Av va/a I,f) = 5 - Ah(za I/,.I,é(A, 2 I/,.I,g))

Lemma 2.10 and Lemma 2.24 yield that pa € S’g (R?" x R™) for A small enough.
Lemma 2.18 yields that pa satisfies Property (Qr). We then have

d(z/ﬂz)(wl,,’E7g(A,Z,:EI,J:,f)) jA(Z,JJ/,:E,f) :ZpA(Z,LL'/,,’E,f) kA(valvxag)

where ka(z,.) is bounded w.r.t. z and € w.r.t. A with values in §~2%(R?" xR")
and ka(z,.)|a=o = (.)72% by Lemma 2.10 and Lemma 2.24. By Theorem 1.1.9
and formula (1.1.9) in [10] we obtain

ka(z, o' @,6) = (€)% + Aka(z, 2/, 2,8),

where k is bounded w.r.t. z and €°° w.r.t. A with values in S~25(R?" x R").

Call Fror 2y = E®) oDy 0 E®)_ Tts symbol is in S’g (R™ x R™) and is given by

f(z/,z)(xlvg) = (<§>S # U{pA(Z,CEI,:E,f) kA(valvxvg)} # <€>S)($I7€)
= (©)" # o {palz,a, 2,00} # (O, €)
+ A" # o {paza’ @, Ohale,0!, 2,7} # ()@, ©)

As pa bounded w.r.t. z and A, A small enough, with values in S’g (R?" x R")
(Property (Qr)) we obtain that the second term in the equation above satisfies
the same property and thus we can write

Forsy = Flor oy + A}‘(lz,yz)

where f(‘lz/ 2) has for symbol

(€)" # o {palz,a’,2,)(E) 7>} # ()", ¢)

and ||-7:(1z/,z)||(L2,L2) < K', uniformly in 2 € [0,Z] and A, A small enough,
by the Calderén-Vaillancourt theorem (see [14, Chapter 7, Sections 1,2] or [25,
Section XIII-2]) in the case L = 2 and by Theorem 18.1.11 in [8] in the case
L > 2. With Lemma 2.22 we see that

o {pA(Z,$/,$,€)<§>725} _pA(Zux/ax/7§)<§>i2s = A)‘A(Zaxlag)

where Aa is bounded w.r.t. A and z with values in S;?$(R™ x R"). We thus
obtain

a . b 2
f(z/,z) - f(zlﬁz) + A]:(z/,z)
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where f(l’z,yz) has for symbol

fA(z, 2, €) = ((€)° # palz, o, 2’ (€)™ # (£)°)(z,2,€)
= ((&)* # palz,2',27,€)(&) ") (2,2, €)

and ||-7:(2z/,z)||(L2,L2) < K? uniformly in z € [0, Z] and A, A small enough.

For the rest of the proof, if we don’t write it explicitly, by pa and pa(z,z, &) we
shall actually mean pa(z,z,x,§).

Lemma 2.25.
(<>S # pA(Zv ')<'>_S)(27x7§) _pA(vaag) = AMA(Z=$7€)7

where pa(z,x,€) is bounded w.r.t. z and A with values in S5(X x R™).

Proof. We write

pa(zz,€) = / / expl—ilyl€ — m)] (n)° pa(z,x,€) dy dy

and thus obtain, with the oscillatory integral representation for the composition
formula,

() # Al )0 ™) (22, €) — pa(e, . ) =
// expl—ilyl€ — m)] (1)° (pa(z,x — y.€) — palz,z,£)) dn dy.

With Taylor’s formula and applying an integration by part, we find (we have
supposed n = 1 for the sake of simplicity but it naturally extends to n > 1)

() # palz ) ) (2 2,€) — palz, o, €) =
///zexp iyle = m)] By(n)* Bupa(z,w —ry,€) dn dy dr.

Using Property (Qr) with m =1 — ¢ we find

S 4 pale, ) (o1 €) — palz1.6) = —AE) ™
///p i(yle —m] Bytn)® ¢z, (1 = 1)z + vz — y), €) dn dy dr
= —A&) 7 (0:(€)° # G (2,4, %,9))u=s

where

1
(2,2, €) = / Bz, (1= r)u +re,€) dr
0

As X' is bounded w.r.t. A and z with values in S}(R*" x R™) we obtain the
result. u
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End of the proof of Theorem 2.23. With the previous lemma we see that
b __ TcC 3
f(z/)z) - f(z/)z) + Af(z/7z)
where F¢,, _ has for symbol pa(z,2',2",€) and | ¢, [l (z2,02) < K uniformly
in z € [0,Z] and A, A small enough.

To estimate ||.7:Z ) || (£2,1.2) we follow the procedure at the end of the proof of
Theorem 18.1.11 in [8]. Let A := 1+ A. Define

va(z, 7', &) = \/A2 lpa(z, o, x, &),
which satisfies Property (Qr) by Lemma 2.19. Then define ra by

va # VA = A* —pa # pA —Ta.
Note that

va # VZ(Z,ZE/,{') = U{VA(valvg)m(zvx7§>} (Z,:E,f)

It is easy to check that va(z,2,&)Va(z, z, ) satisfies Property (Qr) for |a] +
|B] > 1. The same applies to pa(z,2’,&)Pa(z,x,£). Lemma 2.22 applies and
with m = p — § we thus obtain that rA = A7a with 7o bounded w.r.t. z and A
with values S9(X x R™). Thus

1FEr ol czz, 2y = 1 FCr o) Nze,r2y < V(1 + A2+ AC <1+ AK,

for some K* > 0 large enough. We thus obtain that || ./ .|(z2,r2) <1+ AK
where K = K + K2 + K® + K*. With the definition of F(,/ .y it follows that

1Gcr ) | e oy = (G ) (o mey < VI+AK
which concludes the proof of Theorem 2.23. |

We observe that for A small enough, the function (2/|¢) + Aby(z,2’, £) satisfies
the conditions (P)-(i), (P)-(ii), and (P)-(i4¢) in [13, page 2]. With Lemmas 2.13
and 2.17, we observe that an FIO with phase function QS(ZQZ)(x’, z,¢) and am-
plitude in o4(z,2’,§) in S™(X x R) may actually be understood as an FIO with
real phase (z’ —x|&) + Aby(z, 2/, €) and amplitude o4 (z, 2, ) exp[—Aci(z, ', )]
in §7*(X xR). Applying Theorem 2.5 and the following remark in [13] we obtain

Proposition 2.26. Let A ) be the global FIO with kernel

A(z’,z) (xlu :E) = /exp[i¢(z/,z) (xlu &, 6)] 0A (27 xlv 5) d‘g

with ca(z,.) bounded w.r.t. z with values in S™(X x R™), m € R. Then for all
s € R there exists M = M(s,m) >0, As > 0 such that

A o)l (e me—my < M ploa(z,.))

for all z € [0,Z], and 0 < A < Ay, where p(.) is some appropriately chosen
semi-norm in S™(X x R™).

This proposition could also be proved by adapting the proof of Theorem 2.23
to this case. Note that in the case 04 = g(./.) we were able, in the proof
of Theorem 2.23, to achieve a finer estimate. The proof heavily relies on the
particular structure of the phase function and the amplitude that can be taken as
“close” as we want to those of the identity operator by taking A small enough.
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3 The approximation Ansatz. Convergence in
Sobolev spaces

We first define the Ansatz that approximates the solution operator to (1.5)—
(1.6). We chose to use a constant-step subdivision of the interval [0, Z] but the
method and results presented here can be naturally adapted to any subdivision
of [0, Z].

Definition 3.1. Let P = {20 2 . 2N be o subdivision of [0, Z] with
0=29 <0 <... < 20N) = Z such that 20+ — z(0 = Ag. The operator
Wa - is defined as

9(2,0) if 0<2<2M),
W, = -
L g(z,zw))Hg(z(i),z(i—l)) if 2 <z <D,
ik

The following proposition will be useful in the sequel.

Proposition 3.2. Lets € R. There exists K > 0 such that for every subdivision
P = {200 2 0f 0, 2] with 0 =20 < 20 < ... <2(N) =7 and
Wa.» as defined in Definition 3.1 we have

V2 € [0,Z], Wyl ney < K,

if Ag is small enough.

Proof. By Theorem 2.23 there exits M > 0 such that if A = 2’ — z is small
enough then [|G.r o)ll(g gy < 1+ AM for all 2 € [0, Z]; we then obtain
IWe 2l () oy < (1+ApM)N = (1+ZX)N which is bounded as it converges
to exp[ZM] as N goes to co. |

It should be first noticed that Wy . is not the solution to problem (1.5)-(1.6)
even in the case where the symbols b and ¢ depend only on the transversal vari-
able, (z). While singularities propagates along the bicharacteristics associated
with ia; = by, observe however that, with the form of the phase function ¢,/ .)
in (2.8), the operator G,/ .) propagates singularities along straight lines. See
Part II, for further details, in particular regarding the set Ji./ .yr that replaces
the canonical relation for the propagation of singularities for FIOs with complex
phase [9, Sections 25.4-5].

Furthermore, by composing the operators G~ .y and G,/ .y, one convinces
oneself that

g(zu)z) ;A g(z//)z/) [©] g(z/7z)

in general if 2’/ > 2’ > z € [0, Z] (use again that singularities propagate along
straight lines). The family of operators (G.s .))(z’,2)e[0, 2] is thus neither a semi-
group nor an evolution system.

We now proceed towards the proof of the convergence of Wy . to the solution
operator to problem (1.5)—(1.6) in the sense of Sobolev norms as N = 3| goes
to oo.
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Lemma 3.3. Let s € R and 2,2 € [0, Z], with z < 2". The map 2" — G/ .y,
for 2/ € [2,2"], is Lipschitz continuous with values in L(HHD(X), H®) (X)),
for 2" — z = A small enough. More precisely there exists C > 0 such that for
all ug € HEHD(X) and 2, 23 € [z, 2"

(3.17) 1G22 2) — Gz 2y) (o) | oy < Cl2® — 20 [Jug | e -
Proof. Let 20, 2() € [2”, 2] and let ug € H*T1(X). Write

(Gi@ ) = G 2 (uo) (@) =

— /Z(j) // expli(z’ — z[€) — (' — 2)a(z,2",&)] a(z,2',€) uo(x) dx d€ dz'.

When A is small enough we can apply Proposition 2.26 and obtain (3.17) M

Lemma 3.4. Let s € R, 2,z € [0, Z], with z < 2", and let ug € HEH(X).
Then the map 2" +— G+ 2y (uo) is in €O([z, 2"], HH)(X)NE [z, 2], H®) (X))
for 2" — z = A small enough.

Proof. Let z() € [2,2"] and let ¢ > 0. Choose 2" — z small enough such
that Theorem 2.23 and Lemma 3.3 apply and Choose u; € H®t2) such that
luo — w1 gres+1y < €. Then for 22 € [z, 2"]

(3.18) Gz 2y (u0) = Grovy 2y (uo) | gs+n < Gz 2y (w0 — wa)[l gt
Gz 2y (u1) = G 2y (W)l gern + G ) (wo — ur) || gero
<21+ AM)e + C|2® — 2O |||u | greosa -

The continuity of the map follows. Differentiating G ./ .)(ug) w.r.t. 2’ we can
prove that the resulting map 2’ +— 0./G(.s .y(uo) is Lipschitz continuous with
values in L(H+2), H®)) following the proof of Lemma 3.3: there exists C' > 0
such that for all v € HG+2)(X)

102Gz 2y — 02 Gy o) (@)l gy < Clz® = 2W]J0]] e

We also see that the map v +— 0./G(./ .)(v) is continuous from HG+ into
H®) with bounded continuity module according to Proposition 2.26. With
ug € H®HY(X) we make a similar choice for u; € H®+2)(X) and obtain an
estimate for

102Gz 2 (w0) = =G 2y (uo) [ o)
of the same form as in (3.18). |

The two previous lemmas yield

Proposition 3.5. Let s € R, P a subdivision of [0,Z] as in Definition 3.1
and let ug € HSTY(X). Then the map Wi .(uo) is €°([0, Z], HE+D (X)) and
piecewise €1([0, Z), H®) (X)) if P is chosen such that Ay is small enough. The
map z — W »(uo) is in fact globally Lipschitz with C' > 0 such that

W 2 (u0) = W 2 (uo) | gy < Cl2" = 2]||uol| s -
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We recall that U(z’, z) is the solution operator of the Cauchy problem (1.5)—
(1.6). We can then apply the energy estimate (1.7) to U(z,0)(uo) — W2 (uo)
(adapt the proof of Lemma 23.1.1 in [8] to the case of a Lipschitz piecewise C!
function) and obtain

(3.19) S[up ]exp[—)\z] |U(2,0)(uo) = Wap,=(uo) |l
z€[0,Z

z
<2 [ expl-3a] 0. + a (o, D) Wa.o (o) o
0
Let ug € HEHD(X) and let P = {20, ... 2 We take z €]z(F), 2(kF+1)],
Then
(9: + az(z, Dz)) Wi, (uo)
1
= (0. +ax(z, D.)) (g(z,zw))Hg(zu),zu1))(U0)>

i=k
= (9: + a: (2, Dy)) (G o0y (ur))

1

with u := [[Gq.o -1y (uo) which is in HE+D(X) by Theorem 2.23. We
i=k

first turn our attention towards the term (9, + a.(x, Dy)) (g(z7z(k))(u)) for any

u € HEHD(X) as the norm of uy, in H+)(X) remains under control even if
|B| = N becomes very large by Proposition 3.2:

(320) 1K >0, ||uk||H(s+1> < K||UO||H(S+1)7 ke {0, ey N},
N =|P| €N, up € H*TD(X),
if Agp is small enough.

We shall need the following lemma which is a variant to Lemma 2.22

Lemma 3.6. Let ga(z,,y,&) be an amplitude in S’S(R2p x RP) depending on
the parameters A > 0 and z € [0, Z] that satisfies Property (Qr) and such that
an(z,)azo = 0. Let r(x,y,£) € S*(R? x RP) for some s € R. Then

o {aa 1} (z,2,8) —qalz,@,2,) r(w,x,&) = A"TPAR(2,2,€), 0<Sm < p -3,

where the function NX (2, x, ) is bounded with respect to A and z with values in
Srts= (=9 (Rp  RP).

Proof. We proceed as in the proof of Lemma 2.22 (we take p = 1 for the sake
of concision). We obtain

g {QAT} (Z,.I,g) - qA(Za xz, I,f)"”(.f,x,g)
1
= -0 {Z/ 83(94)\A(Z,(E,(1_5)$+Sy,§) dS},
0
where here

8364)\A(27x7y7§) = (8y35QA)(ZafE7yaf) T(,’E,y,f) + 8qu(Z,$,y,€)ag’f'($,y,£)
+ 8£QA(27x7y7€)ayr(xay7£) + QA(Zaxa%f)aya&T’(%yaﬁ)-
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The first two terms are treated like in the proof of Lemma 2.22. For the Third
term, with Property (Qr) we write

deqn Oyr = A qz/(OO)l Oyr, 0<m' <1-9

where qzl(o’o)l d,r € ST Hs=P(R? x RP). We actually take § < m’ < 1—§ and
write m = m’ — §. We obtain

Oeqn Oyr = AT an,

where g is bounded w.r.t. A with values in S’,’)’”‘S—PM(R?” xRP) and 0 < m <
1 —2§ = p — 4. For the fourth term we write

ga =A™ g0 0 <m’ <1,

where qz’(o,o)o € S’,’)”/ (R?? x RP) by Property (Qr) since qala—o = 0. We
actually take 26 < m’ <1 and write m = m’ — 26. Then

m-+25 ~m
A ;

qn ayaﬁr = qn

where ¢ is bounded w.r.t. A with values in S5~ "7 (R2P x RP) as m + s —
14+20=m+s—(p—0)and 0 <m <1—26 =p—3J. We conclude like in the
proof of Lemma 2.22. ]

For the next proposition we shall need the following assumption as announced
in Section 1

Assumption 3.7. The symbol a(z,.) is assumed to be in Z([0, Z], SLH(R"™ x
R™)), i.e. Lipschitz continuous w.r.t. z with values in S*(R™ x R™), in the sense
that,

G(Z/,I,f) - a(z,:z:,f) = (Z/ - Z)&(ZI,,?,',,I,g), 0 <z< ZI < Z
with a(2', z,x,€) bounded w.r.t. 2’ and z with values in S*(R™ x R™).

Proposition 3.8. Let s € R. There exists Ag > 0 and C > 0 such that for
Z—z=A, A€l0,Aq],

102 + az (@, Da))Gier o)l a1 ey < CAZ.

Like in the proof of Theorem 2.23 we assume that c¢; satisfies property Pr, for
some L > 2. We know that it is always true for L = 2 by Lemma 2.13 but
special choices for ¢; can be made. As before weuse p=1—1/L and § =1/L
withp>6forL>2andp:6=%forL:Z

Proof. With Assumption 3.7 and Theorem 2.23, we have
||((IZ(LL', Dw) - az’(xa Dw))g(z’,z)H(H(S)ﬁH(S*U) < CA.
It is thus sufficient to prove

(02 + az(x, D2))G(zr )l (o mes-ny < CA:.
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Let A .y be 0./G. .y and B,/ .y be a.(z, D) 0 G(. -y with respective kernels
Az (@', x) and B,/ . (2’ z). We have

A ) == [ explile’ = 2l9)] expl-a(z. o', O] alz,',€) de.
Let us define
D(z’,z) = (A(z’,z) + B(z’,z)) o E72S o (A(z’,z) + B(z’,z))*'

We prove in the following lemma that for r,s € R, ||’D(Z/1Z)||(H<T)7H(r+zsf2>>) <
CA uniformly w.r.t. z € [0, Z] for A small enough. The conclusion then follows:
if C(z/)z) = Esfl o D(z’,z) o E571 then ||C(z’,z)||(L2,L2) < CA (take r=—Ss+ 1);
then ||ES_1 o (.A(z/’z) + B(zlﬁz)) o E_S||(L2,L2) < CA:z. |

Lemma 3.9. Let 7,5 € R. Then D ol (g ger2a-2y) < CA uniformly
w.r.t. z € [0, Z] for A small enough.

Proof. The operator D,/ .y is made up of four terms:
Di(erz) = A ) 0 BT 0 AL ), Daerz) = A2y 0 E72° 0 B, ),
Dy (2r,2) = By 0 E"* 0 Al ), Daerz) 7= B2y 0 E*° 0 B, .
The kernel of Dy (./ .y is given by
Dy (o (@, )
— [ exp i’ i) + 18 (e, €) = 12,2, )] da(o's,6) €
where

Jlﬁz(x/axaf) = w(z’,z)(x/axaf) a(Z,I/,g) E(Z,.I,g),

and

W(z',z) (:Elu (E,é-) =9(z,2) (:I;/a 5) 9(z',2) (:I;a 6) eXP[_A(Cl (27 :I;/u 5) +c (27 z, 5))]
(€=

with g ) given in (2.9). Following the proof of Theorem 2.23 we write
bi(z,2',€) — bi(z,x,8) = (¢/ — x|h(z,2',2,£)) where h is homogeneous of de-
gree one in &, |£| > 1. The function h and continuous w.r.t. z with values in
S1(X x R™). We thus obtain that the change of variables £ — £ + Ah(z, 2, 2, )
is a global diffeomorphism for A small enough (uniformly in z € [0, Z]). The
Jacobian Ja(z, ', x,€) is homogeneous of degree zero in £, €°° w.r.t. A and
bounded w.r.t. z with values in S°(R?*" x R"). We then have

Dl,(z’,z)(xlax) = /exp [’L<II—I|€>] CZLZ(II,ZE,g(A,f)) j(szvxlvxvg) d§

The function 5(A, z, 2’ 2, §), written g(A,ﬁ) for concision, is bounded w.r.t. z
and €°° w.r.t. A in S*(R?" x R") and homogeneous of degree 1 in £ as shown in
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Lemma 2.24. It follows that sz(x’, x, 5(A, &) J(A, z, o', z,€) is then bounded
w.r.t. z and A with values in §>72*(R*” x R") by Lemma 2.10 and the proof of

Theorem 2.23. Note that if A = 0 then (A, &) = £. The operator Dy (a2 I8
thus in W2~>% with symbol

i o1 (@',€) = 0 {1 (@', 2, 6(8,9)) T(A, 2,02, } (,9).

Similarly we prove that A/ .o E~2%o0 gg;,ﬁz) is the ¥ DO with amplitude

_W(z’,z)(xlaxaé(Aag)) a(zvx/aé(Aag)) j(A,Z,II,I,f).

The operator Dy (s .y is thus in ¥2~2*(X) with symbol

d2,(z’,z)(x/7§)
= —0 {w(z’,z)(x/7$7g(A7€)) G(Z,.’L'/,g(A,g))j(A,Z,L[:/,,’E,é‘)} # a*(Z,{I;/,g)

Similarly we find that the operators Ds (s .y and Dy (. .y are in \I/i_% (X) with
respective symbols

d3,(z’,z) ($/,§) = —a(z,x’,g)
# U{w(z’,z)(:Equ?g(Aug)) j(A,Z,,’E’,,’E76) E(Z,,T?g(A,g))}

and

d4,(z’,z)(II7§) = a(z, Ilvg) # o {w(z/,z)(xlvxvé(Aaf)) j(Aa 2, Ilvxvg)}
# a*(z,2/,¢),
For q(’, z,¢) an amplitude we define
Sa} (@', €) = a{(€)™* alz,2',€) q(a’,x.€) a(z,2,€)}
- U{<€>_2S Q(Z,.I/,g) q(II,ZE,f)} # a*(z,x',g)

+a(z,2',€) # o{(€) 7 q(a’, 2,6} a*(2,2,€)
- a('Z"’EI?g) # U{<§>_2S q(x/7x7 5) a(27‘/'[:7 g)}'

The operator D,/ .) is thus in ¥2725(X) with symbol
d(z’,z) = dl,(z’,z) + d2,(z’,z) + dS,(z’,z) + d4,(z’,z)'

Such a symbol is bounded w.r.t. A, for A small enough, as the composition
formula for symbols is a bounded map. Note that

9z’ ,2) (:E/ug(Aug)) g(z’,z)(wag(Aug)) <g(A7§)>72S j(A,z,x/,x,S) =
(€)% + Aka(z, 2, x,€)

with ka bounded w.r.t. z and > w.r.t. A with values in S725(X’ x X x R")

as g(z’,z)(x/ag(Aag)) g(z’,z)(xag(Av5))<§(Aa€)>725 j(A,z,x’,x,ﬁ) is itself ">
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w.r.t. A by Lemma 2.10 (case p = 1) and equal to (£)~2* when A = 0. With a
similar reasoning on a,(z’,£(A,€)) and a,(x,&(A,€)) we thus obtain

D(z’,z) = ,Dl(lz’,z) + A,Z)(lz’,z)
with symbols
d((lz’,z) = E{pA(27 :Ela Z, 5)}7

and d%z,)z) which is bounded w.r.t. z and A with values in S272%(X’ x X x R").
The symbol pa was defined in the proof of Theorem 2.23 as

pA(Z7 xlv I,é-) = ﬁA(Zu xla x, g(Aa 2 xlu x?é-))
Recall that it satisfies Property (@) by Lemma 2.18.

The Calderén-Vaillancourt theorem (see [14, Chapter 7, Sections 1,2] or [25,
Section XIII-2]) in the case L = 2 or Theorem 18.1.11 in [8] in the case L > 2
yields ||D(12,7z)||(H(T>1H<T+zsfz))) < K. Note that for a symbol ¢(z’,¢) we have
S{q(2',&)} = 0 since

0’{(](&[:’,6) E(Z,J:,f)} = Q(xlvg) # a*(z,x’,f) = U{q($/,§)} # a*(z,x’,ﬁ),

for any symbol g. Thus d*(2',2) = ¥{(pa(z,2’,2,£) — 1)}. Lemma 3.6 allows
us to write (take m = p — ¢)

U{<€>_2S(pﬁ(zvxlvx7§) - 1)@(2,1/,5)6(2’,,%,6)}
= <§>72S(pA(va/a z/af) - l)a(za x’,f)a(z,x’,f) + AAA,l(va/af)

where Aa 1 bounded w.r.t. z and A with values in S5*2S(X’ x R™). We also
write

a{{&) " (palz,a’,2,) = Dalz,2",€)} # a*(z,2',€)
= (&) (palz, 2,2, &) = Va(z,2',€)) # a*(z,2',€)
+ Adao(z, 2", &) # a*(z,2/,€)
= o{(&) P (palz,2',2',€) — Da(z, 2", &)a(z,2,)}
+ Adao(z,2',&) # a*(z,2/,€)
= (&) (pa(z, o', 2", &) — Da(z, 2, &)a(z, ', €)
+AAas(z,2,8) + Aaa(z, 2, &) # a*(z,2',€))

where Aa 2 and Aa 3 are bounded w.r.t. z and A with values in S’;_%(X’ x R™)
and Sﬁ‘QS(X " x R™) respectively. Similarly we have

a{(&) " (palz,2',2,6) = 1)} # a’(z,2',€)
= (&) (pa(z, 2 2", 6) — 1)) # a*(z,2,&) + Aaa(z, 2/, &) # a*(z,2',€)
=o{(&) " (palz,2',2',€) = 1)a(z,z,6)} + Adaa(z,2',€) # a*(2,2',€)
= (&) 7" (palz, 2’2", €) — Da(z,2",€)
+AAas(z,2,8) + Aaa(z, 2, &) # a*(z,2',€))
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where Aa 4 and Aa 5 are bounded w.r.t. z and A with values in S;2S(X’ x R™)
and S}72*(X’ x R") respectively and

U{<§>725(pA(Z,ZE/,JJ,§) - 1)6(271"75)}
= <€>_2S(pA(Zaxlax17§) - 1)5(2,.%/,5) + A)\A,G(zv'r/aé.)

where Aa ¢ bounded w.r.t. z and A with values in S}7>*(X” x R™). We thus
obtain

d((lz/7z) = A()\A,l +Aa3+Aan # a* +a # Aas+a # Aaa # a*) = Ad((lzl7z)

with ci‘(lz/ .y bounded w.r.t. z and A with values in S372°(X" x R"). This con-
cludes the proof. |

We have thus obtained a convergence result in the Sobolev space H()(R™) for
Wy . (up) if the initial data ug is in HC+D(R™). The result is actually the
convergence of the Ansatz Wy . to the solution operator U(z,0) in the norm of
L(H(S+1)(Rn),H(S) (]Rn)):

Theorem 3.10. Assume that a(z,.) is in £([0, Z], ST (R™ x R"™)), i.e. Lipschitz

continuous w.r.t. z with values in S*(R™ x R™), in the sense that,
a(z,2,&) —a(z,x,6) = (' = 2)a(7, z,2,€), 0<2<2 <7

with a(2', z,z, &) bounded w.r.t. 2’ and z with values in ST (R™ x R™). Let s € R.
Then the approzimation Ansatz Wy . converges to the solution operator U(z,0)
of the Cauchy problem (1.5)-(1.6) in L(H+tD(R™), HE) (R™)) uniformly w.r.t.
z as Aqp goes to 0 with a convergence rate of order %

1
Wap,2 = U(2,0)[[ (v, ey < CAg, 2 €0, Z].
Proof. Using (3.19) and (3.20) we obtain

sup exp[—Az] [|U(z,0)(uo) — W,z (uo) || o
z€[0,Z]

Z 1 1
< 2/ expl=Az] ALCK [[uo s+ dz < CAL ol s
0
The result follows. [ |

If we change the assumption made on the symbol a(z,.) to some Holder type
continuity, then the corresponding change in the proof of Lemma 3.8 yields the
following weaker result

Theorem 3.11. Assume that a(z,.) is in €°%([0, Z], SL(R" x R™)), i.e. Holder
continuous w.r.t. z with values in S'(R™ x R™), in the sense that, for some
0<ax<l

a(z',z, &) —a(z,z,8) = (2" —2)* a(?, z,2,), 0<2<2' <7
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with a(2', z,x, &) bounded w.r.t. 2’ and z with values in S*(R™ x R™). Let s € R.
Then the approzimation Ansatz Wy . converges to the solution operator U(z,0)
of the Cauchy problem (1.5)~(1.6) in L(H®D(R™), HE)(R™)) uniformly w.r.t.

z as Ay goes to 0 with a convergence rate of order (B:
Weg - — U(Z,O)|‘(H(s+1))H(s)) < OA%, z €10, 7],
withﬂ:af0r0<a§% andﬂ:%for%§a<1.

A result similar to that of the previous theorems can be obtained with weaker
assumptions, namely without assumptions on the symbol a(z, .) like those made
in Theorems 3.10 and 3.11, by introducing another, yet natural, Ansatz to
approximate the exact solution to the Cauchy problem (1.5)—(1.6). For a symbol
q(z,y,m) € €°([0, Z], S™(R? x R")) we define . .y (y,n) € €°([0, Z]*, S™(RP x
R"))

’

1 z
,_Z/Z q(s,y,n) ds.

a(z’,z) (y7 77) = 2

Then we define
(3:21) ooy (@', 2,6) = (2 — @) +iAay (s (2, )
= <{El - I|§> + Abl(z/,z) (I/a 5) + Z.Aa\l(z/,z) ({El, 5)
and
(322) §(Z/1Z)(:v,§) = eXp[—AaO(z/ﬁz)(,T,f)].

and finally, following [17], we denote QA(Z/)Z) the FIO with distribution kernel

é(z/,z) (xlu ,’E) = /exp[i(:v' - $|§>] exp[_Aa(z’,z) (xlu 5)] df
= /exp[ia(z’,z) (xla z, 5)] /g\(z’,z)(xla 5) df

with the associated approximation Ansatz

Definition 3.12. Let P = {0 2D ... 2} be a subdivision of [0, Z] with
0=29 <M <... <« 20N) = Z such that 201 — z() = Ag. The operator
Wy . is defined as

Q\(z,O) /Lf 0<z2< 2(1)7

— 1
Wp, =L -~ ~ ‘
¥ Q(z,zw))HQ(zu),z(i—l)) if 20 <z < k4D,
ik

Most results of Sections 2 and 3 apply to this new Ansatz. We give some details
about how to adapt some of the proofs. We have

Lemma 3.13. Let q(z,y,1) € ¢°([0, Z], SL(RP x R")) that satisfies Property
(Pr). Then q(.r . (y,n) also satisfies Property (Pr).

32



Property (Pr,) in Definition 2.11 is now to be understood w.r.t. to two parame-
ters 2’ and z.

Proof. Uniform bounds w.r.t. z and 2z’ will be immediate. The case |a|+|3] > L
is clear by Remark 2.12. Let then |a| + |3| < L and observe that

/ 8°‘dﬁ (s,y,m) ds

|8 nq,z z)(y 77

C(1 + )18+l +18D/E / (1 + q(z, )1~ (el 180/ 2 g

/
2 —zJ,

«@ 1 Zl
C(1 + |n|) 181+ (al+18D/L (Hﬁ/ q(z,y,n)dS)

=C(1+ |n|)—\ﬁ|+(\a|+\ﬁ|)/L(1 + Q) (Y, n))l—(IaHIB\)/L,

1=(lal+IB8)/L

by Jensen inequality as t +— —(14-t)'~(I+18D/L i5 convex when |a|+|3| < L. W

As a consequence of Lemma 2.17 we have
Lemma 3.14. Let q(z,y,m) € €°([0, Z], SY(RP x R")) that satisfies Property
(Pr). Then pa = exp[—Aq(.,.)(y,n)] satisfies Property (Qr).

The result of Theorem 2.23 thus applies to the modified thin-slab propagator
G(z,») (Lemma 2.24 has to be slightly modified). The proof of Lemma 3.3 applies
with the aid of Proposition 2.26 as

G,y = ot ) (o) (+') =
L@
[ [ explita’ a1~ = 2@ ) a2, wnla) ds d

To adapt the proof of Lemma 3.4 we need

Lemma 3.15. Let s € R and 2",z € [0,Z]. The map 2’ — BZ/Q\(Z/)Z), for
2 €[22, is continuous with values in L(H®12)(X), H®)(X)), for 2" —z = A
small enough.

Proof. We choose A = 2" — z sufficiently small such that the results of Section 1
apply. Let 2| 2(®) € [z, 2"]. Then we have

(92/@(/2(2))2)(95’, JJ) - 62/6(2(1)%) ({EI, {E)
(2)

—— [exolite’ - ale)) (a2, expl 7 a(s.',6) d]

L)
~a(z0, 2", ) expl- [ a(s, ') ds]) dg
= A(z(2),z(1),z) (xlv 'r) + B(z(2),z(1),z) (Ila I)a
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where

A w0, 1= — [ explita’ = alg)] a2, ',6)
(exp[—fz(2)a(s,x',§) ds] — exp[—fz(l)a(s,x',f) ds]) e,

and

B o (@ @) = — /eXP[i@/ — z|§)]
)

(a(z@,2',€) —a(zM,2',€)) exp[— [T a(s,a’,€) ds] de.

We write

e
A(Zu),z(l),z)(ﬂﬁlw) = /(1) /exp[i(x/ — z[¢)]
a(z®),2,€) a(s,2',€) exp|—(s — 2)a(s,.) (¢, €)] ds dE.

and for the associated operator, A(Z(2)7z(1))z) we obtain by Proposition 2.26
that [ A @ .o o ll(ge ge) < C|2? — 2|, For the second term we can
apply Proposition 2.26 which gives the estimate, for the associated operator,
1B 20y (@ @) | g2 oy < C pla(z,.) —a(z1),.)), with p a seminorm
in S1(X x R™). The continuity of z — a(z,.) in S1(X x R") (Assumption 1.1)
yields the result. ]

With the previous lemma we can easily adapt the proof of Lemma 3.4 and obtain
the same result for G,/ ..

Lemma 3.16. Let s € R, 2",z € [0, Z], with z < 2", and let uy € HH(X).
Then the map 2’ — G.r .y (uo) is in €°([z, 2], HED(XN)NE([2, 2], HO (X))

for 2" — z = A small enough.

This allows to use the energy estimate (1.7).

We now note that in the proof of Lemma 3.9, with the new thin-slab propa-
gator, G(./ .y, the amplitudes of the operators D1, ..., Dy only involve the term
a(z',z,§) instead of both a(z’,x, &) and a(z, x,§) (as 0. ((2' — 2)a(zr 2 (', €)) =
a(z’,x,€)). Thus the proof of Lemma 3.9 does not require any assumption like
Assumption 3.7 made in Theorem 3.10 or assumptions of Holder type regularity
on the symbol a(z,.) made in Theorem 3.11. Consequently we obtain

Theorem 3.17. Let s € R. Then the approximation Ansatz V/\z‘pyz converges in
L(HGTY(R™), HE)(R™)) to the solution operator U(z,0) of the Cauchy prob-
lem (1.5)-(1.6) uniformly w.r.t. z as Ag goes to 0 with a convergence rate of
order %
— 1
||Wq37z — U(Z,O)H(H(s+1))H(s)) < CA%, FAS [0, Z]

We may now state the main theorem of this section
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Theorem 3.18. Assume that a(z,.) is in €%%([0, Z], SL(R" x R™)), i.e. Holder
continuous w.r.t. z with values in S'(R™ x R™), in the sense that, for some
O<ax<l

G(Z/,I,f) - a(z,:z:,f) = (Z/ - Z)a ZL(Z/,Z,ZE,f), 0 <z< Z/ < Z7

or Lipschitz (a = 1), with a(z’, z,2,£) bounded w.r.t. 2/ and z with values in
SIR™ x R"). Let s € R and 0 < r < 1. Then the approzimation Ansatz
Wy, converges to the solution operator U(z,0) of the Cauchy problem (1.5)-
(1.6) in L(HGTY(R™), HEF(R™)) uniformly w.r.t. z as Ay goes to 0 with a
convergence rate of order 3(1 —r):

(W, — U(Z,O)||(H(s+1)7H(s+r)) < CA%(l_T), z €10,7],

with B =« for0 < a < % and § = %for% < a < 1. Furthermore, Wy . strongly
converges to the solution operator U(z,0) in L(HETD(R™), HEHD(R™)) uni-
formly w.r.t. z € [0, Z].

With the sole assumption of the continuity of the symbol a(z,.) w.r.t. z with
values in ST(R™ x R™) (Assumption 1.1) the same results hold for the operator

1? for the operator convergence in

Wa 2, with a convergence rate of order
L(HGHD(R™), HETM(R™)).

Proof. From energy estimate (1.7) for s + 1 [8, Theorem 23.1.2] we have

(3.23) U (2, 0)(wo)ll zrs+1 < Clluol| s+ -
From Proposition 3.2 we obtain

(3.24) W,z (wo) | gs+1 < Clluol e+ -

and thus

(3.25) Wi, (o) — U2, 0) (o) | s < Cllao s

uniformly w.r.t. z € [0, Z]. The interpolation inequality
[0l reem < ollizehy lollfern, 0<r<1
then yields
Wip.= (o) = U (2, 0) (wo)l| e+ < CAG ol grien, 0 <7 <1,
uniformly w.r.t. z € [0, Z]. For V/\Zpyz a similar inequality for g = % is obtained
with Assumption 1.1 alone.

Let ug € H®t1 and let € > 0. For the strong convergence in H**1 we proceed
as in Lemma 3.4 and choose u; € H*?) such that ||ug — 1|/ g+ < e We
then write
Wi, =(u0) = U(z,0)(uo)l| gesv < [Wap 2 (o — ur) || s
+ (W 2 (u1) = U(2,0)(ur) [ g+ + [|U (2, 0) (o — ur) || e+
< Ce + CAG|us | gres+a)

from estimates (3.23) and (3.24) and Theorems 3.10, 3.11 and 3.17, with g as
above. This last estimate is uniform w.r.t. z € [0, Z] and yields the result. W
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A A diagonalization/decoupling of the acoustic
wave equation

We give here an overview of [21], which gives a motivation for approximat-
ing solutions of the Cauchy problem (1.5)—(1.6), for instance in the context of
geophysics.

We first consider the scalar wave equation

(A.26) —p te 20 + Zajpflaj u=F,

j=1

as encountered in acoustics, where p is the fluid density, and c is the wavespeed.
Both these functions are assumed to be independent of time ¢ and to be in
€>°(R™). We further assume that 0 < py < p(y) < p1 and 0 < ¢o <
c(y) < e, y € R". We denote z = y, and z = (y1,...,yn—1) and write
p(z,2,D, Dy, D) = p~ e 2D? — Z;le Djp™'D; — D.p~'D, where D = 1.
Its principal symbol is pa(t, x, 2, 7,£,¢) = p~L(c 272 — |¢|? — ¢?).

Note that 7 # 0 in Char(p). We put (A.26) in a matrix form

(A.27) D,w(t,z,z) = G(z,z,Di, Dy)w(t,z,2z) + f(t,z,2) mod €,

. (0 Ap _ Au (0
e (4] () (2).

where A is a first-order elliptic ¥'DO, say for instance |D; »|, and

n—1
A=p e ?DINTT — Z Djp DA,

j=1
with A~! denoting a parametrix for A.

Following [21], we introduce

Iy = {(z,2,7,&) | 7 #0,|c(x, 2)7 €| < sin O},

Ie = {(t,,2,7,6,0) | (z,2,7,6) € Io, I(| < cg'll},

where © € (0,%). The inequality || < ¢(x,2) !|r| on Char(p) explains the
condition [¢| < ¢5|7| above. We choose an angle © € (0, %) and work in the
microlocal region Ig assuming that WF(u) C Io. Figure 1 illustrates the set Ig
at a given (z, z) and a given frequency 7. An angle 6 € [—©, O] corresponds to
a propagation angle. Restricting the analysis to Ig corresponds to staying away
from horizontal propagation. Note that in Ig we have c(z, z) 272 — [£]? > 0,
which is the main purpose of the restriction to such a microlocal region.

In Ie, G is a first-order ¢»DO by Theorem 18.1.35 in [8]. In Ig we can follow the
method of [25, Chapter IX] (see also [24]) to decouple the up-going and down-
going wavefields. We briefly recall the method here. Define n*(z,z,7,¢) =
+(c(z, 2) 7272 — |€2)2, which are the two roots of det(nla — G1) = 0 with G4
the (matrix-)principal symbol of G. The matrix G1(z, z, 7, €) is diagonalizable
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Figure 1: The shaded area corresponds to Io at a given (¢,x,z) and a given

frequency 7. 0 is the propagation angle. The set Char(p) is represented dotted.

and we choose a matrix V(z,z,7,£) € S°(I§), invertible, such that VG,V ~!
is diagonal; V' van be chosen homogeneous of degree 0.
V(z,z, D¢, D;)w we obtain

If we write w(® =
Daw @ (t,2,2) = GOw® (t,2,2) + fO(t,2,2) mod €,

GO = (D,V)V' 4+ VGV~ mod ¥ in Ig,

fO=vs.
We write G = G{” + G with G{” € ¥! in Io and diagonal and G € W0 in

We then write w™) = (1 + KM (z, 2, D, D,))w®, with K € ¥~ in Ig of
the form

g [0 KD
KMo
We then obtain

Io. By V! we denote a parametrix for V with principal symbol V (z, z, 7, &)~}
(an abuse of notations, which will occur below again).

D.w® = Ggo)w(l) + [K(l),Ggo)]w(l) +G(()O)’LU(1) +f(1) L RWyp®  1od %>,
RV e tinly, fO=1+KM)fO,
making use of
(1+ KOG (1+ KO)™ =60 + KO, 611+ kW)~
and the fact that L(1 + K(l))_l — L e U™ lif [ € U™ Lemma 2.1 in [24]

shows that K(*) can be chosen so as to have [K(}), Ggo)] + G((JO) diagonal up to
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an operator in U~! in Jg. The procedure goes on by choosing K(?) € U~2 in
Io in order to diagonalise the term of order -1, etc. We thus obtain Q € ¥V in
Io such that @ = Q~'w satisfies

Do =G+ f mod €™, [f=Q '

with G = G(x, z, Dy, D,;) € ¥° in Ig, diagonal up to a regularizing operator

- (b 0O
G_(O b_).

In [21], Stolk shows that by can be chosen selfadjoint. This is achieved by first
choosing selfadjoint operators with principal symbols equal to n*(z, z, 7, ) and
then replace (1 + K@) by exp[K (] in the iteration process described above.
Various choices of @) are presented in [21].

We define the set Joy of points (o, zo, 20, 70, &0, (o) such that the bicharac-
teristics associated with by, parametrized by z, (t(z),z(z),7(2),&(z)), pass-
ing through (to,xo,70,&0) at z = 20, is such that for all z € [0, Z], the point
(x(2),2,€(2),7(2)) remains in I§. In other words, with the interpretation given
by Figure 1 the propagation angle, §(z) along the bicharacteristics should never
exceed O.

We now choose 0 < ©1 < ©3 < 3. We choose a real non-negative symbol
c(z,2,7,€) € SHR x R"! x R x R"™1) such that ¢ = 0 in Ig, and elliptic in
the complement of Ig,. After extendig smoothly b4 outside Ig, such that b, is
real homogeneous of degree 1, we now consider the Cauchy problem

(0, —iby(z,2, D¢, D) + ¢(z,2, Dy, D))v = 0,
U(Oa ) = er(Oa ')a

wz(ZJr):Q_lw:Q_l(p/}gzu)'

With Assumption (33) and (34) in [21] we obtain that

where

v=v4 mod € in Jg,+,
v=0 mod ¥ in the complement of Jg,.

See [21] and [22] for details. A similar results holds for the other ‘one-way’ wave
operator 0, — ib_ + c.

Acknowledgement: The author wishes to thank G. Hérmann for numerous
discussions on many proofs in the paper, especially that of Theorem 2.23 and
dicussions on the content of Appendix A. The author also thanks F. Boyer for
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