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Abstract

In this paper, we study Ruelle’s probability cascades [22] in the framework of time-

inhomogeneous fragmentation processes. We describe Ruelle’s cascades mechanism exhibit-

ing a family of measures (νt, t ∈ [0, 1[) that characterizes its infinitesimal evolution. To this

end, we will first extend the time-homogeneous fragmentation theory to the inhomogeneous

case. In the last section, we will study the behavior for small and large times of Ruelle’s

fragmentation process.
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1 Introduction

Ruelle [22] introduced a cascade of random probability measures in order to study Derrida’s
GREM model in statistical mechanics. This approach was further developed by Bolthausen and
Sznitman [8], who pointed out that an exponential time-reversal transforms Ruelle’s probability
cascades into a remarkable coalescent process. Previously Neveu (unpublished) observed that
Ruelle’s probability cascades were also related to the genealogy of some continuous state branch-
ing process ; we refer to [5] for precise statements and the connexion with Bolthausen-Sznitman
coalescent. Furthermore, Pitman [20] obtained a number of explicit formulas on the law of Ru-
elle’s cascades ; in particular he showed that the latter can be viewed as a fragmentation process
and specified its semi-group in terms of certain Poisson-Dirichlet distributions. Returning to
applications to Derrida’s GREM model, we mention the important works by Bovier and Kurkova
[9, 10, 11] who established in particular properties of the limiting Gibbs measure.
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The purpose of this paper is to dwell on Pitman’s observation that Ruelle’s cascade can be
viewed as a time-inhomogeneous fragmentation process. The theory of time-homogeneous frag-
mentation processes was developed recently (see eg [1, 2, 3]), and we shall briefly show how it
can be extended to the time-inhomogeneous setting. Roughly the basic result is that the distri-
bution of a time-inhomogeneous fragmentation can be characterized by a so-called instantaneous
rate of erosion (which is a non-negative real number that depends on the time parameter), and
an instantaneous dislocation measure (which specifies the rate of sudden dislocation). We shall
establish that for Ruelle’s probability cascades, the instantaneous erosion is zero, and we will
provide several descriptions of the instantaneous dislocation measure. Specifically, the latter is
related to the well-known Poisson-Dirichlet distributions, in particular we shall establish a stick-
breaking construction, compute the corresponding exchangeable partition probability function,
and derive some relations of absolute continuity. In this direction, we mention that related (but
somewhat less precise) results have been proven independently by Marchal [16]. Finally, as ex-
amples of applications, we shall prove some asymptotic results for Ruelle’s probability cascades
at small and large times.

The rest of this work is organized as follows. The next section is devoted to preliminaries,
then we briefly present the extension of the theory of fragmentation processes to the time-
inhomogeneous setting. The main results on Ruelle’s probability cascades are established in
section 4, and finally section deals with applications to the asymptotic behavior.

2 Preliminaries

2.1 Ruelle’s cascades and their representation with stable subordinators

Let us briefly recall the construction of Ruelle’s cascades [5, 8, 22]. Let p > 1 be an integer
and let 0 < x1 < . . . < xp < 1 be a finite sequence of real numbers. For k ∈ {1, . . . , p},
(ηi1,...,ik , i1 . . . ik ∈ N) denotes a family of random variables such that :

• for k ∈ {1, . . . , p}, i1, . . . , ik−1 ≥ 1 fixed, the distribution of (ηi1,...,ik−1,j , j ∈ N) is that of
the sequence of atoms of a Poisson measure on ]0,∞[ with intensity xkr

−1−xkdr, arranged
according to the decreasing order of their sizes,

• the families (ηi1,...,ik−1,j, j ∈ N) for k ∈ {1, . . . , p}, i1, . . . , ik−1 ≥ 1 are independent.

Set θi1,...,ik = ηi1 . . . ηi1,...,ik . We can easily show that C =
∑

i1...ip
θi1,...,ip is almost surely

finite. Next we define Ruelle’s cascades :

θi1,...,ip =
θi1,...,ip

C
and recursively θi1,...,ik−1

=

∞∑

j=1

θi1,...,ik−1,j.

Bertoin and Le Gall [5] have proved we can relate this process to the genealogy of Neveu’s
CSBP (continuous-state branching process). Precisely, they have proved that there exists a
process (S(s,t)(a), 0 ≤ s < t, a ≥ 0) such that :

• ∀0 ≤ s < t, S(s,t) = (S(s,t)(a), a ≥ 0) is a stable subordinator with index e−(t−s),

• ∀p ≥ 2, 0 ≤ t1 ≤ . . . ≤ tp, S(t1,t2), . . . , S(tp−1,tp) are independent and S(t1,tp)(a) =
S(tp−1,tp) ◦ . . . ◦ S(t1,t2)(a).
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Set 0 < t1 < . . . < tp such that

x1 = e−tp and xk = e−(tp−tk−1), k = 2, . . . , p.

Let us fix a > 0. We define recursively, for k = 1, . . . , p, random intervals D
(t1,...,tk,a)
i1,...,ik

in the
following way :
D(a) =]0, a[.
Let k ≥ 1, i1, . . . , ik−1 ∈ N. Let (bi1,...,ik , ik ∈ N) be the jump times of S(tk−1,tk) on the interval

D
(t1,...,tk−1,a)
i1,...,ik−1

listed in the decreasing order of sizes. We set

D
(t1,...,tk,a)
i1,...,ik

=]S(tk−1,tk)(bi1,...,ik−), S(tk−1,tk)(bi1,...,ik)[ and ξ
(t1,...,tk,a)
i1,...,ik

= |D
(t1,...,tk ,a)
i1,...,ik

|. (1)

Bertoin et Le Gall have proved that the families
((

S(0,tp)(a)
)−1

ξi1,...,ip ; i1, . . . , ip ∈ N

)
and

(
θi1,...,ip ; i1, . . . , ip ∈ N

)

have the same law.

2.2 Ruelle’s cascades as fragmentation processes

Using this representation of Ruelle’s cascades in terms of stable subordinators, we can exhibit a
link with fragmentation processes.

Recall that the law β (a, b) has density

Γ (a+ b)

Γ (a) Γ (b)
xa−1 (1 − x)b−1

1[0,1]dx,

and let us introduce some definition :

Definition 2.1 [21] For 0 ≤ α ≤ 1, θ > −α, let (Yn)n≥1 be a sequence of independent random

variables with respective laws β (1 − α, θ + nα). Set

f̂1 = Y1 f̂n = (1 − Y1) . . . (1 − Yn−1)Yn f̂ =
(
f̂n

)

n≥1
.

Then
∑

i f̂i = 1. Let f = (fn)n>0 be the decreasing rearrangement of the sequence (f̂n)n≥1.We

define the Poisson-Dirichlet law with parameter (α, θ), denoted PD (α, θ), as the distribution of

f .

Thereafter S stands for the set of decreasing sequences of non-negative numbers with sum
equal to 1. S is endowed with the uniform distance. S denotes its closure, it is the set of
decreasing sequences of non-negative real numbers whose sum is less than or equal to 1 and is
called the set of mass-partitions. Notice that S is a compact set.

Definition 2.2 Let s = (si, i ∈ N) be an element of S and s(.) = (s(i), i ∈ N) a sequence in S.

Consider the fragmentation of si by s(i), i.e. the sequence s̃(i) = (sis
(i)
j , j ∈ N). The decreasing

rearrangement of all the terms of the sequences s̃(i) as i describes N is called fragmentation

of s by s(.). If P is a probability on S, we define the transition kernel P − FRAG (s, .) as the

distribution of a fragmentation of s by s(.), where s(.) is an iid sequence of random mass-partition

with law P.
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A Markov process (F (t), t ∈ [0, 1[) with values in S is called a fragmentation process if the
following properties are fulfilled :

• F (t) is continuous in probability.

• Its semi-group has the following form :
for all t, t′ ∈ [0, 1[ such that t+ t′ ∈ [0, 1[, the conditional law of F (t + t′) given F (t) = s
is the law of Pt,t+t′ − FRAG(s, ·) where Pt,t+t′ is a probability on S.

The fragmentation is said homogeneous (in time) if Pt,t+t′ depends only on t′. Besides, (F (t), t ∈
[0, 1[) is called a standard fragmentation process if F (0) is almost surely equal to the sequence
1 = (1, 0, . . .).

In the case of Ruelle’s cascades, using the work of Bertoin et Pitman [6] (Lemma 9), we
know that for any integer 2 ≤ k ≤ p, (θi1,...,ik , i1, . . . , ik ≥ 1) is a PD(xk,−xk−1)-fragmentation
of (θi1,...,ik−1

, i1, . . . , ik−1 ≥ 1). More precisely we have :

Proposition 2.3 There exists a time-inhomogeneous fragmentation (F (t), t ∈ [0, 1]) with semi-

group Pt,t+t′ = PD(t+ t′,−t) such that

( (
θi1; i1 ∈ N

)
, . . .

(
θi1,...,ip ; i1, . . . , ip ∈ N

)) law
=
(
F (x1), . . . , F (xp)

)
.

In the sequel, we call F , Ruelle’s fragmentation. To study Ruelle’s cascade, it should be
possible to use the fragmentation process theory developed for example in [4], but first, we must
extend this theory to time-inhomogeneous fragmentations.

2.3 Exchangeable random partitions

In this section, we recall the connections between exchangeable random partitions and mass-
partitions. Let us first introduce some useful notation :
we denote by N the set of positive integers. For n ∈ N, [n] denotes the set {1, . . . , n} and
Pn denotes the set of partitions of [n], P∞ the set of partitions of N. For all n < m, for all
π ∈ Pm, π|n denotes the restriction of π to Pn. We endow P∞ with the distance d(π, π′) =

1
sup{n∈N π|n=π′

|n
} . The partition with a single block is denoted by 1. We always label the blocks

of a partition according to the increasing order of their smallest element.
A random partition of N is called exchangeable if its distribution is invariant by the action

of the group of finite permutations of N. Kingman [13] has proved that each block of an
exchangeable random partition has a frequency, i.e. if π = (π1, π2, . . .) is an exchangeable
random partition, then

∀i ∈ N fi = lim
n→∞

♯{πi ∩ [n]}

n
exists a.s.

One calls fi the frequency of the block πi. Therefore, for all exchangeable random partitions,
we can associate a probability on S which will be the law of the decreasing rearrangement of
the sequence of the partition frequencies.

Conversely, given a law P on S, we can construct an exchangeable random partition whose
law of its frequency sequence is P (cf. [13]). Let us specify this construction : we pick s ∈ S
with law P and we draw a sequence of independent random variables Ui with uniform law on
[0, 1]. Conditionally on s, two integers i and j are in the same block of Π iff there exists an
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integer k such that
∑k

l=1 sl ≤ Ui <
∑k+1

l=1 sl and
∑k

l=1 sl ≤ Uj <
∑k+1

l=1 sl. This construction of
a law on the set of partitions from a law on S is often called “paint-box process”.

Kingman’s representation Theorem states that any exchangeable random partition can be
constructed in this way. Therefore, we have a natural bijection between the laws on S and the
laws on the exchangeable random partitions.
We also define an exchangeable measure ρν on P∞ from a measure ν on S by :

ρν(·) =

∫

S
ρu(·)ν(du)

where ρu is the law on P∞ obtained by the paint-box based on the mass-partition u.
For any exchangeable random partition Π, we define a symmetric function p on finite se-

quences of N such that, for every n, n1, . . . , nk integers with n = n1 + . . .+ nk,

p(n1, . . . , nk) = P(Π|n = π),

where π is a partition of [n] with k blocks of size n1, . . . , nk. The fact that P(Π|n = π) depends
only on n1, . . . , nk stems from the exchangeability of Π. One calls p the EPPF (exchangeable
partition probability function) of Π.

Proposition 2.4 [18, 19] Let f̂ =
(
f̂n

)

n∈N

be a sequence of random variables of [0, 1] defined

as in Definition 2.1 . Then there exists an exchangeable random partition with frequency dis-

tribution f̂ , where f̂i is the i-th block frequency and where the blocks are listed order of their

smallest element. It is a (α, θ)-partition. Besides the EPPF of this partition is

pα,θ (n1, . . . , nk) =
[ θ
α ]k

[θ]n

k∏

i=1

−[−α]ni for θ 6= 0 (Ewens-Pitman’s formula) (2)

where [x]n =
∏n

i=1 (x+ i− 1) and n =
∑k

i=1 ni.

For θ = 0, the formula is extended by continuity.

This proposition also proves that the law of the sequence f̂ is invariant by size-biaised
rearrangement.

In the case of Ruelle’s fragmentation, we know that, at time t, F (t) has the PD(t, 0) law.
So we have the following proposition :

Proposition 2.5 The EPPF qt of the random partition associated with Ruelle’s fragmentation

at time t, F (t), is :

qt (n1, . . . , nk) =
(k − 1)!

(n− 1)!
tk−1

k∏

i=1

[1 − t]ni−1 (3)

where n =
∑k

i=1 ni.

Remark 2.6 We can also construct a random partition with distribution pα,θ recursively (Chi-

nese restaurant construction):

First, the integer 1 necessarily belongs to the first block, denoted B1. Suppose the n first integers
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split up in b blocks : Πn = (B1, . . . , Bb), where block Bi has cardinal ni. We now define Πn+1

with the following rule :

P (Πn+1 = (B1, . . . , Bi ∪ {n+ 1}, . . . , Bb)) = ni−α
n+θ

P (Πn+1 = (B1, . . . , Bb, {n + 1})) = bα+θ
n+θ .

Then Π is a (α, θ)-partition (cf. [17]).

We can also define a notion of fragmentation process of exchangeable partitions such that
there is still a bijection with fragmentation processes of mass-partitions :

Set A ⊆ B ⊆ N and π ∈ PA with #π = n. Let π(.) = (π(i), i ∈ {1, . . . , n}), π(i) ∈ PB for all

i. Consider the partition of the i-th block of π,πi, induced by π(i), i.e. π
(i)
|πi

= π̃(i).

As i describes {1, . . . , n}, the blocks of π̃(i) form the blocks of a partition π̃ of A. This partition
is denoted FRAG(π, π(.)). This is the fragmentation of π by π(.).
If P is a probability on PB , define the transition kernel P−FRAG (π, .) as the distribution of a
fragmentation of π by π(.), where π(.) is a sequence of iid partition with law P.
Let (Π(t), t ∈ [0, 1[) be a Markov process on P∞. We call (Π(t), t ∈ [0, 1[) an exchangeable
fragmentation process if the following properties are fulfilled :

• Π(t) is continuous in probability.

• Its semi-group has the following form :
for all t, t

′
≥ 0 such that t + t′ < 1, the conditional law of Π(t + t

′
) given Π(t) = π is

Pt,t′ − FRAG(π, ·), where Pt,t′ is an exchangeable probability on P∞.

The fragmentation is homogeneous if Pt,t′ depends only on t′. Furthermore, (Π(t), t ∈ [0, 1[) is
a standard fragmentation process if Π(0) is equal to 1.

We can check that, with these definitions, if (Π(t), t ∈ [0, 1[) is a fragmentation process
on partitions, then (F (t), t ∈ [0, 1[) the frequency process of Π, is a fragmentation process on
mass-partitions. Furthermore, the converse is true, i.e., if one takes a fragmentation process on
mass-partitions, then one can construct a fragmentation process on partitions Π such that the
frequency process of Π is equal to the initial fragmentation process (cf. [1]).

We also remark that if we consider a fragmentation (Π(t), t ∈ [0, 1[) with semi-group Pt,t′ −
FRAG, then its restriction to Pn, (Π|n(t), t ∈ [0, 1[), is a Markov process with semi-group
Pn

t,t′ − FRAG where Pn
t,t′ is equal to Pt,t′ restricted to Pn (cf. [2]).

For Ruelle’s fragmentation, we have an explicit construction of its corresponding fragmen-
tation on the partitions. Indeed, recall the representation of Ruelle’s cascades with the jumps
of a family of subordinators (cf. Section 2.1). Let (σ∗t , t ∈ [0, 1[) be a family of stable sub-
ordinators such that for every 0 ≤ tp < . . . < t1 < 1, the joint distribution of σ∗t1 , . . . , σ

∗
tp is

the same as that of σt1 , . . . , σtp with σti = τβ1 . . . τβi where ti = β1 . . . βi and τβ1, . . . , τβp are
independent stable subordinators with indices β1, . . . , βp. For t ∈]0, 1[, let Mt be the closure of
{σ∗t (u), u ≥ 0}. Consider then the family of open subsets of [0, 1[ : G(t) = [0, 1[\Mt, for t ∈ [0, 1[.
Then (G(t), t ∈ [0, 1[) is a nested family, i.e. G(t) ⊂ G(s) for 0 < s < t < 1 and furthermore, if
F (t) is the sequence of ranked lengths of component intervals of G(t), then (F (t), t ∈ [0, 1[) has
the law of Ruelle’s fragmentation ; see [6].
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Set 0 ≤ t1 < . . . < tp < 1. Let us now draw (Ui)i∈N, uniform and independent random
variables on ]0, 1[. For 1 ≤ k ≤ p, we construct a partition Π(k) of N with the rule :

i
Π(k)
∼ j ⇔ Ui and Uj are in the same component interval of G(ti).

Then (Π(1), . . . ,Π(k)) has the law of a Ruelle’s fragmentation on the partition at times
(t1, . . . , tp).

2.4 Connexion with Bolthausen-Sznitman’s coalescent

Bolthausen et Sznitman [8] have shown that it is possible to formulate Ruelle’s fragmentation
as a coalescent process if we reverse time. Moreover, for a good choice for the time reversal,
the coalescent process is time-homogeneous [8]. Let us first recall the definition of a coalescent
process.

Set s ∈ S and let Π = {B1, B2, . . .} be a partition of N. Set s̃i =
∑

j∈Bi
sj. The Π-coagulation

of s, denoted COAG(s,Π) is the decreasing rearrangement of the sequence (s̃i, i ∈ N).
If P is a probability on S, we define the transition kernel P−COAG (s, .) as the distribution of a
Π-coagulation of s, where Π has the law on P∞ obtained from P by the paint-box construction.
Let (C(t), t ≥ 0) be a Markov process on S. (C(t), t ≥ 0) is a time-homogeneous mass-coalescent
process if the following properties are fulfilled :

• C(t) is continuous in probability.

• Its semi-group has the following form :
for all t, t′ ≥ 0, the conditional law of C(t+t′) given C(t) = s is the law of Pt′−COAG(s, ·)
where Pt′ is a probability on S.

To see that Ruelle’s fragmentation reversed in time is a time-homogeneous coalescent process,
we use the following property :

Proposition 2.7 [19] Set α ∈]0, 1[, β ∈ [0, 1[ and θ > −αβ. The following assertions are

equivalent :

• s has PD (α, θ) distribution and s′ is a PD (β, θ/α)-coagulation of s.

• s′ has PD (αβ, θ) distribution and s is a PD (α,−αβ)-fragmentation of s′.

Thus, if we define C(t) = F (e−t) where (F (t), t ∈ [0, 1[) is Ruelle’s fragmentation, then
(C(t), t ≥ 0) is a homogeneous coalescent process with semi-group PD(e−t, 0)-COAG. This
process is called the Bolthausen and Sznitman’s coalescent.

Just like the case of the fragmentation processes, we can associate a coalescent process on
exchangeable partition to any mass-coalescent process. For the Bolthausen-Sznitman’s coales-
cent process on partitions, we have an explicit construction [19]. It is a simple exchangeable
coalescent process, i.e, at each jump-time of the process Πn(t), only one block can be formed.
The jump rates of this process can be explicitly written. If we start from a partition with b
blocks, each k-uplet of blocks coagulates with rate λb,k that depends only on b and k and which
is equal to :

λb,k =
(k − 2)! (b− k)!

(b− 1)!
=

∫ 1

0
xk−2 (1 − x)b−k dx.
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Remark 2.8 One can be surprised that an homogeneous Markov process becomes an inhomoge-

neous Markov process after time-reversal. In fact, Ruelle’s fragmentation can also be seen as a

homogeneous Markov process, but, if one takes this point of view, it is no longer a fragmentation

process since the evolution of a particle depends on the other particles. Actually, it is known

that if a random variable x = (x1, x2, . . .) ∈ S has the PD(α, 0) law , then lim
n→∞

α lnxn
lnn = −1 (cf.

[21]).

In particular, in the case of Ruelle’s fragmentation, F (t) has law PD(t, 0), therefore

t = − lim
n→∞

lnn

lnxn (t)
.

Let (pt,t+s)t,s>0 be the transition probabilities of F . Suppose that the process is in state x ∈ S.

For all t ∈ [0, 1[, the process F has a Poisson-Dirichlet law, so T (x) = − lim
n→∞

lnn
ln xn

exists and

T (x) determines the considered time. For y ∈ S. We define

qs (x, y) = pT (x),T (x)+s (x, y) .

Then (qs)s∈[0,1[ is a homogeneous transition kernel for F . However, remark that to determine

T (x), we must know the other particles state and the branching property is lost.

3 General theory of time-inhomogeneous fragmentation pro-

cesses

In this section, we extend the theory of time-homogeneous fragmentations to time-inhomogeneous
fragmentations. For this, we will first work on fragmentations of partition and next on mass-
fragmentations.

3.1 Measure of an inhomogeneous fragmentation

Let us first define precisely the class of fragmentations we consider (which includes Ruelle’s
fragmentation). We denote Pn \ {1} by P∗

n.

Hypothesis 3.1 In the sequel, we always suppose that (Π(t), t ∈ [0, 1[) is a standard time-

inhomogeneous exchangeable fragmentation for which the following properties are fulfilled :

• for all n ∈ N, let τn be the time of the first jump of Π|n and λn be its law. We have

∀t ∈ [0, 1[, λn(t) := λn ([t, 1[) > 0

and λn is absolutely continuous with respect to Lebesgue measure with continuous density

gn(t).

• for all π ∈ P∗
n, hn

π(t) = P(Π|n(t) = π | τn = t) is a continuous function of t.
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Let us now define an instantaneous jump rate for a fragmentation fulfilling Hypothesis 3.1.
Set π ∈ P∗

n. Set hn
π (t) = P

(
Π|n (t) = π | τn = t

)
. It is the law of the jump given τn.

We set

fn (t) = lim
s→0

1

s
P (τn ∈ [t, t+ s] | τn ≥ t) =

gn (t)

λn (t)
,

and

qπ,t = hn
π (t) fn (t) = lim

s→0

1

s
P
(
Π|n (τn) = π & τn ∈ [t, t+ s] | τn ≥ t

)
.

It is the probability density that the process Π|n jumps at time t from the state 1 to the
state π given that Π|n has not jump before.

Proposition 3.2 For π ∈ Pn, n′ ≥ n, set Qn′,π = {π
′
∈ Pn′ , π

′

|n = π}. For each t ∈ [0, 1[, there

exists a unique measure µt on P∞ such that

∀n ∈ N ∀π ∈ P∗
n µt (Q∞,π) = qπ,t and µt (1) = 0.

The family of measures (µt, t ≥ 0) characterizes the law of the fragmentation.

Proof. We have
∀n′ > n,∀π ∈ P∗

n

∑

π′∈Qn′,π

qπ′,t = qπ,t. (4)

In fact, at time t, if the process Π|n′ has not jumped yet, it will jump between time t and
time t+ dt to the state such that Π|n = π with probability

∑
π′∈Qn′,π

qπ′,tdt. Besides, we have

the following equality :

P
(
Π|n (τn) = π & τn ∈ [t, t+ dt] | τn ≥ t

)
= P

(
Π|n (τn) = π & τn ∈ [t, t+ dt] | τn′ ≥ t

)
,

because the event that the block [n′] has already split, does not affect the process Π|n. In fact,
as (Π|n(t), t ∈ [0, 1[) is a Markov process, the law of the process (Π|n(t), t ∈ [t0, 1[) depends only
on Π|n(t0). Therefore, we have equality (4).

Let us now define µt(Q∞,π) = qπ,t. By (4), this application can be extended to an additive
application. By Caratheodory’s Theorem, µ can be extended to an unique measure on P∞.

We have now to prove that this family of measures determines the fragmentation law. To this
end we just have to prove that the family of measures (µt, t ∈ [0, 1[) characterizes every jump
rate of Π|n (t). Set π, π′ ∈ Pn, t0 ∈ [0, 1[. Let τ ′n be the time of the first jump of Π|n (t) after t0.

We must express lim
s→0

1
sP
(
Π|n (τ ′n) = π′ & τ ′n ∈ [t, t+ s] | Π|n (t0) = π

)
in terms of (µt, t ∈ [0, 1[).

If π′ can not be obtain from the fragmentation of one block of π, we clearly have :

P
(
Π|n

(
τ ′n
)

= π′ & τ ′n ∈ [t, t+ dt] | Π|n (t0) = π
)

= 0.

Permuting the indices (which does not change the law by exchangeability), we can suppose
π = (A1, . . . , AN ) and π′ = (B1, . . . , Bk, A2, . . . , AN ) where π′′ = (B1, . . . , Bk) ∈ PA1 . Let τ ′[Ai]
be the first jump time of Π|Ai . Then, by the branching property :

P
(
Π|n

(
τ ′n
)

= π′ & τ ′n ∈ [t, t+ dt] | Π|n (t0) = π
)

9



= P
(
Π|A1

(
τ[A1]

)
= π′′ & τ[A1] ∈ [t, t+ dt] | Π|A1

(t0) = 1
) N∏

i=2

P
(
τ[Ai] > t | τ[Ai] > t0

)

= P
(
Π|A1

(
τ[A1]

)
= π′′ & τ[A1] ∈ [t, t+ dt] | τ[A1] > t0

) N∏

i=2

P
(
τ[Ai] > t | τ[Ai] > t0

)

= P
(
Π|A1

(
τ[A1]

)
= π′′ & τ[A1] ∈ [t, t+ dt] | τ[A1] > t0

) N∏

i=1

λ|Ai| (t)

λ|Ai| (t0)
.

Thus we have :

lim
s→0

1

s
P
(
Π|n

(
τ ′n
)

= π′ & τ ′n ∈ [t, t+ s] | Π|n (t0) = π
)

= µt

(
Q∞,π′′

) N∏

i=1

λ|Ai| (t)

λ|Ai| (t0)

and λn is easily expressed as a function of µt (cf. below).

Proposition 3.3 The application from [0, 1[ to the set of measures on P∞ which at t associates

µt constructed according to the proposition above, verifies :

• µt is an exchangeable measure such that

µt{1} = 0 and ∀n ∈ N µt

(
{π ∈ P∞, π|n 6= 1}

)
<∞,

• ∀n ∈ N ∀t ∈ [0, 1[ we have
∫ t
0 µu

(
{π ∈ P∞, π|n 6= 1}

)
du <∞.

Proof. The exchangeability is clear and we have

µt

(
{π ∈ P∞, π|n 6= 1}

)
= fn (t)

and ∫ t

0
µu

(
{π ∈ P∞, π|n 6= 1}

)
du = − ln (λn (]t, 1]))

which is finite by Hypothesis 3.1.2

Set εi = {{i}, {N\{i}}} and ε =
∑

i δεi . So ε is a measure on P∞. According to Bertoin [2], we
know that for each exchangeable measure µ such that µ{1} = 0 and µ

(
{π ∈ P∞, π|n 6= 1}

)
<∞,

we can find a measure ν on S (dislocation measure) verifying ν(1) = 0 and
∫
S (1 − s1)ν(ds) <∞,

and a constant c ≥ 0 (erosion coefficient) such that

µ = ρν + cε

where ρν denotes the measure on P∞ associated to ν by the paint-box process.
So for t ∈ [0, 1[ fixed, we can write µt = ρνt + ctε where νt and ct are the instantaneous

dislocation and erosion rates of the fragmentation.

Proposition 3.4 We have µt = ρνt + ctε where νt and ct fulfill the following properties :

•

∀t ∈ [0, 1[ νt (1) = 0 and

∫

S
(1 − s1) νt (ds) <∞, (5)
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•

∀u ∈ [0, 1[

∫ u

0

∫

S
(1 − s1) νt (ds) dt <∞ and

∫ u

0
ctdt <∞. (6)

Proof : The property (5) is clear. For the formula (6), we shall look at the proof of the
theorem in the time-homogeneous case (cf. [2]). During the proof, we obtain the following
upper bound : ∫

S
(1 − s1) νt (ds) ≤ µt

(
{π ∈ P∞, π|2 6= 1}

)
.

Then use Proposition 3.3.
For the upper bound concerning ct we remark :

ct = µt ({1},N \ {1}) − ρνt ({1},N \ {1}) = µt ({1},N \ {1}) .2

Hence the law of a time-inhomogeneous fragmentation is characterized by a family (νt, ct)0≤t<1

where (νt)0≤t<1 and (ct)0≤t<1 fulfill (5) and (6). One calls νt the instantaneous dislocation rate
and ct the instantaneous erosion rate at time t of the fragmentation. We will next give a
probabilistic interpretation of this family.

As for the time-homogeneous fragmentations, we can construct a fragmentation with measure
(µt, t ∈ [0, 1[) considering a Poisson measure M on [0, 1[×P∞ × N with intensity µt(dπ)dt ⊗ ♯
where ♯ is the counting measure. Let Mn be the restriction of M to [0, 1[×P∗

n × {1, . . . , n}.
According to Proposition 3.3, the intensity of the measure is finite on the interval [0, t]. Then,
we are in a similar case as a time-homogeneous fragmentation (refer to [2] for a proof in the
homogeneous case). Let us rearrange the atoms of Mn according to their first coordinate. For

n ∈ N, (π, k) ∈ Pn × N, let ∆
(.)
n (π, k) be the following sequence of partition of [n] :

∆(i)
n (π, k) = 1 if i 6= k and ∆(k)

n (π, k) = π|n.

We construct the process (Π|n(t), t ≥ 0) in Pn with the following rules :
Π|n(0) = 1.
(Π|n(t), t ≥ 0) is a jump process which jumps at times s, atoms of Mn. More precisely, if (s, π, k)

is an atom of Mn, we have Π|n(s) = FRAG(Π|n(s−),∆
(.)
n (π, k)). We can then check that this

construction is compatible with the restriction and the constructed process is a fragmentation
with measure µt.

We have also a Poissonian construction for a mass-fragmentation (cf. [1]). First we use
that if F = (F (t), t ∈ [0, 1[) is a mass-fragmentation with parameters (νt, 0)0≤t<1, then F̃ =

(e−
∫ t
0 csdsF (t), t ∈ [0, 1[) is a mass-fragmentation with parameters (νt, ct)0≤t<1. So, we remark

that the family of instantaneous erosion coefficients plays only a deterministic role in the frag-
mentation. To find a Poissonian construction for the mass-fragmentations (F (t), t ∈ [0, 1[) with
parameters (νt, 0)0≤t<1, consider then a fragmentation on partitions (Π(t), t ∈ [0, 1[) such that
F = Λ(Π) where Λ is the application which associates to a partition its frequency sequence. So
Π can be constructed from a Poisson measure M . Consider K, image of M by the application

P∞ × N −→ S × N ∪∞

(∆(·), k(·)) 7−→ (Λ(∆(·)), f(·, k(·))),

where f is the function which associates to k the frequency rank of the block Bk(t
−).

Berestycki [1] then proves that K is a Poisson measure on [0, 1[×S × N with intensity measure

11



ν(ds)dt⊗ ♯.
Set

K = (t, S(t), k(t))t∈[0,1[ = (t, (s1(t), s2(t), . . .), k(t))t∈[0,1[.

Then, if (t, S(t), k(t)) is an atom of K, then at time t, the k(t)-th largest block of the fragmen-
tation at time t− will be fragmented according to S(t).

Let us now determine the effects of a deterministic change-time on a fragmentation.

Proposition 3.5 Let (Π(t), t ∈ [0, 1[) be a fragmentation with parameter (ct, νt). Set Π′(t) =

Π(β(t)) where β : [0, 1[→ R+ is a strictly increasing derivable function. Let J be the image of

[0, 1[ by β (J is thus an interval of R+).

Then (Π′(t), t ∈ J) is a fragmentation with parameter (c′t; ν
′
t)t∈J where

c′t = β′(t)cβ(t) ν ′t = β′(t)νβ(t).

Proof. A Markov process remains a Markov process after a deterministic time-change. The
law of Π′(t + t′) given Π′(t) = π, is FRAG(π, π(·)), where π(·) is an iid sequence with law
Pβ(t),β(t+t′)−β(t). Thus Π′ is a fragmentation.
Let us calculate its jump rates q′π,t.

q′π,tdt = P

(
Π′

|n

(
τ ′n
)

= π & τ ′n ∈ [t, t+ dt] | τ ′n ≥ t
)

= P
(
Π|n

(
β(τ ′n)

)
= π & τ ′n ∈ [t, t+ dt] | τ ′n ≥ t

)

= P
(
Π|n (τn) = π & τn ∈ [β(t), β(t + dt)] | τn ≥ β(t)

)

∼ P
(
Π|n (τn) = π & τn ∈ [β(t), β(t) + β′(t)dt)] | τn ≥ β(t)

)

∼ β′(t)qπ,β(t)dt.

So q′π,t = β′(t)qπ,β(t). We thus deduce similar relations between νt and ν ′t and between ct
and c′t. 2

3.2 Law of the tagged fragment

An application of the above decomposition is for example to calculate the law of the frequency
of the block containing 1, |Π1 (t) |, for an exchangeable standard fragmentation. This quantity
is interesting because it represents the law of a size-biased picked block. We have the following
theorem :

Theorem 3.6 There exists a process (ξ(t), t ∈ [0, 1[) with independent increments such that

|Π1 (t) | = exp (−ξt). Its law is characterized by the identity :

E

(
|Π1 (t) |q

)
= E

(
exp(−qξt)

)
= exp

(
−

∫ t

0
φu (q) du

)
, q > 0

where φt (q) = ct (q + 1) +

∫

S

(
1 −

∞∑

i=1

sq+1
i

)
νt (ds).
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In the sequel, we will also use the notation ψ(t, q) =
∫ t
0 φu (q) du.

This result is very close to the corresponding result in the homogeneous case. We just loose
the stationarity of the increments of ξ(t). The demonstration itself is similar to the homogeneous
case and we just sketch the proof here. For more details, refer to [2].

We use the equality :
P[Π|k+1 (t) = 1] = E[|Π1 (t) |k],

which we get by conditioning on |Π1 (t) |. Then remark the event {Π|k+1 (t) = 1} corresponds,
looking at the Poissonian construction, to an absence of Poisson atom in the subset [0, t]×{π ∈
P∞, π|k+1 (t) 6= 1} × {1}.
So the formula is true for every positive integer. Besides, we remark that the law of |Π1 (t) | is
characterized by its moments, thanks to the independence of the increments (when you take the
logarithm) and because the process takes values in [0, 1].
By uniqueness of the analytic continuation, we deduce that the formula is true for every q > 0.
And by the monotone convergence theorem, ψ(t, q) is continuous in q at 0. 2

Thanks to this formula, we can characterize the processes which have proper frequencies, i.e.
with

∑∞
i=1 |πi| = 1.

Proposition 3.7 We have :

P (Π (t) is proper ) = 1 ⇔

(

cu = 0 and νu

(
∑

i

si < 1

)

= 0 for 0 ≤ u ≤ t a.e.

)

.

Proof. First remark

lim
k→0

E[|Π1 (t) |k] = lim
k→0

E[|Π1 (t) |k1|Π1(t)|6=0] = E[1|Π1(t)|6=0] = 1 − P (|Π1 (t) | = 0) .

Then we have :

P (Π (t) is proper ) = 1 ⇔ P (|Π1 (t) | = 0) = 0

⇔ exp (−ψ(t, 0)) = 1

⇔ ψ(t, 0) = 0

⇔ φu (0) = 0 for 0 ≤ u ≤ t a.e.2

Recall from [4] that if (X (t) , t ∈ [0, 1[) is a time-homogeneous mass-fragmentation, φ the
Laplace exponent associated to the tagged fragment and Ft = σ (X (s) , s ≤ t), then

exp (tφ (p))

∞∑

i=1

Xp+1
i (t) is a Ft-martingale.

We can obtain a similar theorem in the time-inhomogeneous case.

Proposition 3.8 Consider (Π(t), t ∈ [0, 1[) a time-inhomogeneous fragmentation on partitions.

Let X (t) = (Xi (t)) ∈ S be its decreasing sequence of frequencies. Set Ft = σ (X (u) ;u ≤ t).

Let φu be its instantaneous Laplace exponent and ψ(t, p) =
∫ t
0 φu(p)du. Then

M(t, p) = exp (ψ(t, p))
∞∑

i=1

Xp+1
i (t) is a Ft-martingale.

Proof. It is the same idea as in the time-homogeneous case. Set Gt = σ (Π (u) , u ≤ t). Then
E (t, p) = exp(−pξt + ψ(t, p)) is an Gt-martingale and we remark that M(t, p) is the projection
of E (t, p) on Ft. 2
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4 Application to Ruelle’s cascades

4.1 Jump rates of Ruelle’s fragmentation

Let (Π(t), t ∈ [0, 1[) be Ruelle’s fragmentation with values in partitions. For each integer n,
(Π|n, t ∈ [0, 1[) is a Markov process in the finite space of partition of [n]. The law of such a
process is entirely determined by its jump rates from one state to another.

Let us calculate its jump rates. Set π = (π1, . . . , πk) ∈ P∗
n. Fix t ∈ [0, 1]. Let qt (n1, . . . , nk)

be the probability that Π|n (t) has blocks with size (n1, . . . , nk). Recall (cf. Proposition 2.5)
that

qt (n1, . . . , nk) =
(k − 1)!

(n− 1)!
tk−1

k∏

i=1

[1 − t]ni−1.

So from Proposition 2.3 and 2.4

P

(
τn ∈ [t, t+ s], Π̂|n (τn) = π | τn ≥ t

)
= P

(
Π̂|n (t+ s) = π | Π̂|n (t) = 1

)

= pt+s,−t(n1, . . . , nk)

=

[
−t
t+s

]

k

[−t]n

k∏

i=1

−[−t]ni

∼ s
(−1)k+1(k − 2)!

∏k
i=1 [−t]ni

t[−t]n
.

Remark that we could also have calculated this quantity using Proposition 2.7 and Bayes’
Formula. So we obtain the following proposition :

Proposition 4.1 For π = (π1, . . . , πk) ∈ P∗
n and for t ∈ [0, 1[ we have :

qπ,t =
qt (n1, . . . , nk)

t (k − 1) qt (n)
.

4.2 Instantaneous erosion coefficient and dislocation measure

It is well known that the Bolthausen-Sznitman’s coalescent is a process with proper frequencies
(cf. Proposition 3.7). So, the erosion coefficient ct should be identically zero. We can check this

with a short calculation. In fact, consider π = ε1 =
{
{1},N \ {1}

}
and πn = π|n.

According to Proposition 4.1, we have qπn,t = qt(1,n−1)
tqt(n) = 1

n−1−t . And ct = limn→∞ qπn,t = 0.

Thus ct = 0 for all t ∈ [0, 1[.

Let us denote by S̃ the set of the positive sequence with sum 1. From a measure η on S̃, we
can define a measure p on P∞ (cf. [20] p. 61) :
Conditionally on a sequence (si, i ≥ 1) drawn with respect to the measure η, we construct the
following law on partitions :
1 is in the first block. Fix n ≥ 1. Suppose Πn has k blocks. The integer n+ 1 will be :

• in the block j with probability sj (for j ≤ k),

• in a new block with probability 1 −
∑k

i=1 si.
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So we have

p(π) = Eη
( k∏

i=1

sni−1
i

k−1∏

i=1

(1 −

i∑

j=1

sj)
)
, (7)

where π = (π1, . . . , πk) et |πi| = ni.
If the measure η is a dislocation measure (i.e verifies

∫
S (1 − s1)η(ds) < ∞), then p is finite

on P∗
n. In fact, for all k ≥ 2, we have∏k

i=1 s
ni−1
i

∏k−1
i=1 (1 −

∑i
j=1 sj) ≤ 1 − s1.

Let us now look at the dislocation measure. In this direction, let us introduce the following
measure :

Definition 4.2 Fix α ∈]0, 1[. Consider the measure ηα defined as follows on S̃ : first,

ηα(s1 ∈ dx) = αx−α(1 − x)−110<x<1dx,

and second, conditionally on s1 = x, the sequence (si+1/(1 − x), i ∈ N) has the law of a random

variable with law PD(α, 0) of which the terms have been size-biased rearranged. We denote

PD(α,−α) the image of ηα by ranking the si in the decreasing order. PD(α,−α) is then an

infinite measure on S.

Remark that the construction of the measure PD(α,−α) is similar, except for the nor-
malization, to the construction of a Poisson-Dirichlet measure with the forbidden parameter
θ = −α.

Proposition 4.3 Define pα as the measure on P∞ associated to ηα as above. Then pα is an

exchangeable measure on P∞. Its EPPF for the partitions non-reduced to one block is :

pα(n1, . . . , nk) =
(k − 2)!

−[−α]n

k∏

i=1

−[−α]ni for all k ≥ 2. (8)

Proof. Let us first check
∫
S (1 − s1)ηα(ds) <∞.

∫

S
(1 − s1)ηα(ds) =

∫ 1

0
(1 − s1)αs

−α
1 (1 − s1)

−1ds1 =
α

1 − α
. (9)

Using formula (7) and the definition of ηα, we have :

pα(π) =

(∫ 1

0
xn1−1(1 − x)

∑k
i=2 niηα(s1 ∈ dx)

)
pα,0(n2, . . . , nk)

= α

(∫ 1

0
xn1−1−α(1 − x)n−n1−1dx

)
pα,0(n2, . . . , nk)

= α
Γ(n1 − α)Γ(n− n1)

Γ(n− α)

(k − 2)!

α(n− n1 − 1)!

k∏

i=2

−[−α]ni according to (2)

=
[−α]n1

[−α]n
(k − 2)!

k∏

i=2

−[−α]ni

=
(k − 2)!

−[−α]n

k∏

i=1

−[−α]ni .
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So, we find the foretold formula and this one is symmetric in the variables (n1, . . . , nk), thus
the measure is an exchangeable measure (cf. [20] Theorem 24). We also deduce that ηα is the
image of PD(α,−α) by a size-biaised reordering and pα = ρPD(α,−α) (where ρPD(α,−α) is the
measure on P∞ obtained from PD(α,−α) by the paint-box construction.)2

Next, we observe that for every partition π not reduced to one block, we have

qπ,t =
1

t
pt(π).

Indeed, this follows from Proposition 4.1 and formula (3) of Pitman. In conclusion, we may
now state the following theorem :

Theorem 4.4 The instantaneous dislocation measure νt of Ruelle’s fragmentation at time t is

given by :

νt =
1

t
PD(t,−t).

4.3 Absolute continuity of the dislocation measure and PD(α, 0)

Let us recall that, if Π is a random partition with law pα,0 and Kn the number of block of Π|n,
then the limit of Kn/n

α exists almost surely and has the Mittag-Leffler law with index α (cf.
[20] Theorem 31)

Proposition 4.5 For each α ∈]0, 1[ the measure pα is absolutely continuous with respect to the

measure pα,0. More precisely, we have :

pα(dπ) = Γ(1 − α)S−1
α pα,0(dπ) where Sα = lim

n→∞

Kn

nα
.

Proof. Let (Fn)n≥1 be the filtration of Π|n.

Fix k ≥ 2. Set pk
α = pα1P∗

k
. We consider

Mk
α,n =

dpk
α

dpα,0

∣∣∣Fn.

Using formula (3) and (8), we have :

Mk
α,n =

Γ(1 − α)Γ(n)

Γ(n− α)(Kn − 1)
1P∗

k
for n ≥ k,

where Kn denotes the number of block of Π|n. Mk
α,n is a positive martingale, thus it converges

almost surely to a random variable Mk
α.

Let now use

Kn

nα
→ Sα Pα,0 − a.s. and

Γ(1 − α)Γ(n)

Γ(n− α)(Kn − 1)
∼

Γ(1 − α)nα

Kn
.

We deduce

Mk
α =

dpk
α

dpα,0
= Γ(1 − α)S−1

α 1P∗
k

Pα,0 − a.s.

So, according to martingale theory (cf. [12] p.210), for all A ⊂ P∗
k , we have :
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pα(A) = Eα,0

(
Γ(1 − α)S−1

α 1A

)
+ pα(A ∩ {S = 0}),

where S = lim sup Kn

nα .
Set x ∈]0, 1[. Let us define qα(·) = cpα( · | |Π1| = x) where c is chosen such that qα is
a probability. Let s = (s1, . . .) ∈ S be the frequency sequence of a partition with law qα.
According to the construction of pα, we have

(si+1)i∈N

law
= (1 − x)(pi)i∈N,

where (pi)i∈N has the PD(α, 0) law.
According to Lemma 34 of Pitman’s course [20], for a random partition, S exists and belongs

almost surely to ]0,∞[ iff there exists Z random variable on ]0,∞[ such that Pi ∼ Zi−1/α, where
Pi is the decreasing sequence of the frequencies. Here we know the existence of such a random
variable Z ∈]0,∞[ for a PD(α, 0) law. Set Y = (1 − x)Z then

si ∼ Y i−1/α.

So we have
pα(S = 0 | |Π1| = x) = 0.

Thus
pα(S = 0) = 0.

We conclude that

∀A ∈ P∞ such that 1 6∈ A pα(A) = Eα,0

(
Γ(1 − α)S−1

α 1A

)
.2

Theorem 4.6 The dislocation measure of Ruelle’s fragmentation at time t is absolutely contin-

uous with respect to the measure PD(t, 0). More precisely, we have for all continuous function

f on S :

νt(f) =
1

t
E(t,0)

(
L−1

t f(V )
)

where Lα = lim
n→∞

nV α
n .

Proof. We use that if (si)i≥1 ∈ S is the frequency sequence of an (α, 0)-partition Π∞, then
Γ(1−α)Lα exists almost surely and it is equal almost surely to Sα = lim

n→∞

Kn

nα (cf. [20] Theorem

36).
Use Theorem 4.4 to finish the proof. 2

Remark 4.7 Lα is not a continuous function on S.

4.4 Law of the tagged fragment

In this section, we determine the law of the tagged fragment. Actually, its law has already been
determined by Pitman [19]. He proves that |Π1 (t) | has a β (1 − t, t) law. So we check that we
find the same result.

17



Hence, according to Section 3.2, we shall calculate φt (k) =
∫
S

(
1 −

∑∞
i=1 s

k+1
i

)
νt (ds). Re-

call that pt denotes the measure on P∞ associated to the measure PD(t,−t).
We have

E[|Π1 (t) |k] = exp

(
−

∫ t

0
φu (k) du

)
.

Thus

φt (k) = Evt

(
ρs

(
Π|k+1 6= 1

)
|s
)

=
1

t
pt

(
Π|k+1 6= 1

)
.

So we must calculate pt

(
Π|k+1 6= 1

)
. We will do this recursively.

For k = 1, we have

pt

(
Π|2 6= 1

)
=

[−t]21
−[−t]2

=
t

1 − t
,

and for k ≥ 2

pt

(
Π|k+1 6= 1

)
= pt

(
Π|k 6= 1

)
+ pt

(
Π|k+1 =

{
{1, . . . , k}, {k + 1}

})
= pt

(
Π|k 6= 1

)
+

t

k − t
.

Thus we have :

pt

(
Π|k+1 6= 1

)
=

k∑

i=1

t

i− t
and so

∫ t

0
φu (k) du = ln

(
k∏

i=1

i

i− t

)
.

So we deduce

E[|Π1 (t) |k] =
k∏

i=1

i− t

i
.

The right-hand side coincides with the k-th moment of a β (1 − t, t) law. So |Π1 (t) | has a
β (1 − t, t) law and we deduce :

∀k > 0, E[|Π1 (t) |k] =
Γ (k + 1 − t)

Γ (1 − t) Γ (k + 1)
.

More generally, we can determine the law of the process (|Π1 (t) |, t ∈ [0, 1[). By the ho-

mogeneous property of fragmentation in space, the process
(
|Π1(t+s)|
|Π1(t)| , s ∈ [0, 1 − t[

)
is inde-

pendent of |Π1 (t) | (cf. Theorem 3.6). So we can calculate the finite dimensional law of the
process (|Π1 (t) |, t ∈ [0, 1[) and we deduce that the process has the same law as the process(

γ(1−t)
γ(1) , t ∈ [0, 1[

)
(result already proved by Pitman [19]).

Remark 4.8 We have also an expression for ψ(t, p) :

ψ(t, p) = ln

(
Γ (1 − t) Γ (k + 1)

Γ (k + 1 − t)

)
.
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5 Behavior of the fragmentation at large and small times

5.1 Convergence of the empirical measure

Let (Π(t), t ∈ [0, 1[) be a Ruelle’s fragmentation on the partitions. Let (X(t), t ∈ [0, 1[), X(t) =
(Xi(t))i≥1 ∈ S be its process of ranked frequencies.
We are interested in the empirical measure ρt defined by :

ρt =

∞∑

i=1

Xi(t)δ(t−1) ln Xi(t).

Proposition 5.1 For every bounded continuous function f on R+:

lim
t→1

∫
f(y)ρt(dy) =

∫ ∞

0
f(y)e−ydy in L2.

We split the proof in two parts. We will successively prove the following two points:

lim
t→1

E

(∫
f(y)ρt(dy)

)
=

∫ ∞

0
f(y)e−ydy, (10)

lim
t→1

E

[(∫
f(y)ρt(dy)

)2
]

=

(∫ ∞

0
f(y)e−ydy

)2

. (11)

Set ξt = − ln |Π1(t)|. Let us recall

|Π1 (t) | ∼ β (1 − t, t) ,

and observe :

E

(∫
f(y)ρt(dy)

)
= E

(
f((1 − t)ξt)

)
.

The following lemma clearly implies (10).

Lemma 5.2 Set ξt = − ln |Π1(t)| where Π(t) is the Ruelle’s fragmentation. Then

lim
t→1

(1 − t)ξt = e in distribution

where e denotes the exponential law with parameter 1.

Proof. Let us calculate the Laplace transform of (1 − t)ξt.

E

(
e−q(1−t)ξt

)
= E

(
|Π1(t)|

q(1−t)
)

=
Γ (q(1 − t) + 1 − t)

Γ (1 − t) Γ (q(1 − t) + 1)

−→
t→1

1

q + 1
.

Since 1
q+1 is the Laplace transform of the exponential law, by Lévy’s Theorem, (1 − t)ξt

converges in law to e. 2
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To prove (11), we consider ξ
′

t = − ln |Π2(t)| where Π2(t) is the block containing the integer
2. Observe that ξt and ξ

′

t have the same law but are not independent, and that

E

[(∫
f(y)ρt(dy)

)2
]

= E

[
f
(
(1 − t)ξt

)
f
(
(1 − t)ξ

′

t

)]
.

Set T = inf {t > 0,Π1(t) 6= Π2(t)}, so T is almost surely finite and conditionally on T , ξT
and ξ

′

T , the processes (ξt, t ≥ T ) and (ξ
′

t, t ≥ T ) are independent. From this, we deduce (11)
and then the L2-convergence of

∫
f(y)ρt(dy) (refer to [4] for details).2

So, informally, this proposition proves that, if we consider the size of a typical fragment
X(t), then, as t tends to 1, we have

| logX(t)| ∼
C

1 − t

where C is a random factor.

5.2 Additive martingale

In this section, we aim at studying the convergence of the martingale M(t, p) defined in Section
3.2 and we follow the ideas of Bertoin and Rouault [7] who introduce a new probability to prove
the convergence.

Recall the following notation :
Ft = σ (Xi (u) , u ≤ t) is the filtration of the frequency sequence.
Gt = σ (Π (u) , u ≤ t) is the filtration of the fragmentation process on the partitions.
So we have Ft ⊆ Gt.
Set ξt = − ln (|Π1 (t) |). It is an increasing process with independent increments.
M (t, p) = exp (ψ (t, p))

∑∞
i=1 |Xi (t) |p+1. M (·, p) is then a Ft-martingale.

E (t, p) = exp (ψ (t, p) − pξt) . E (·, p) is a Gt-martingale.
As E(|Π1(t)|

p | X(t)) =
∑

iXi(t)
p+1, we have E (E (t, p) | Ft) = M (t, p).

We denote Q the probability on G defined by :

dQ|Gt = E (t, p) dP|Gt. So we have also dQ|Ft = M (t, p) dP|Ft .

Proposition 5.3 Fix p > 0. We have :

lim
t→1

M(t, p) = 0 P-a.s.

Proof. A martingale theorem (cf. [12] p.210) asserts that if lim supM (t, p) = ∞ Q-a.s., then
limM (t, p) = 0 P-a.s.

We have

M (t, p) ≥ exp (ψ (t, p)) |Π1 (t) |p+1 = exp (ψ (t, p) − (p+ 1) ξt) .

Set Nt = ψ (t, p) − (p+ 1) ξt. We will prove that lim supNt = ∞ Q-a.s.
Let us recall that, under P, |Π1 (t) | has β (1 − t, t) law. So for all λ ≥ 0 we have :

Q (ξt ≥ λ) = EP
(
E (t, p)1{ξt≥λ}

)
=

Γ (p+ 1)

Γ (p+ 1 − t) Γ (t)

∫ e−λ

0
xp−t (1 − x)t−1 dx.
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So for A ≤ ψ (t, p) ,

Q (Nt ≤ A) = Q

(
ξt ≥

ψ (t, p) −A

p+ 1

)
=

Γ (p+ 1)

Γ (p+ 1 − t) Γ (t)

∫ e
−
ψ(t,p)−A
p+1

0
xp−t (1 − x)t−1 dx.

Recall ψ (t, p) ∼ − ln(1 − t) as t ↑ 1. Choose A (t) = −1
3 ln(1 − t). So for t large enough, we

have ψ (t, p) −A (t) ≥ −1
3 ln(1 − t).

Set g (t) = (1 − t)
1

3(p+1) . We have :

Q (Nt ≤ A (t)) ≤
Γ (p+ 1)

Γ (p+ 1 − t) Γ (t)

∫ g(t)

0
xp−t (1 − x)t−1 dx

≤
Γ (p+ 1)

Γ (p+ 1 − t) Γ (t)
(1 − g (t))t−1 1

p+ 1 − t
g (t)p+1−t

≤ εp (t) ,

where εp (t) is a function with limit 0 at t = 1.
So lim

t→1
Q (Nt ≥ A (t)) = 1 and then Q (lim supNt <∞) = 0. We deduce :

lim sup
t→1

M (p, t) = lim sup
t→1

N (p, t) = ∞ Q-a.s. and so lim
t→1

M (p, t) = 0 P-a.s. 2

Remark 5.4 In the case p = 0, as the process has proper frequencies, we have M (0, t) = 1 P-as

for all t ∈ [0, 1[.

5.3 Small times behavior

In this section, we obtain information on the behavior of the two largest blocks of Ruelle’s
fragmentation at small times. In this direction, we use the following results due to Berestycki
[1].

LetXk(t) be the frequency of the k-th largest block at time t of Ruelle’s fragmentation. Recall
that Ruelle’s fragmentation can be constructed from a Poisson measure K on [0, 1[×S ×N with
intensity (νt(ds)dt) ⊗ ♯. Set

K = (t, S(t), k(t))t∈[0,1[ = (t, (s1(t), s2(t), . . .), k(t))t∈[0,1[.

Let (S(i)(t), t ∈ [0, 1[) = (s
(i)
1 (t), s

(i)
2 (t), . . . , t ∈ [0, 1[) be the Poisson measure obtained from K

restricted to the atoms such that k(t) = i. So, it is a Poisson measure with intensity νt(ds)dt.
Set

R(t) = max
s≤t

s
(1)
2 (s).

Lemma 5.5 • For t small enough, we have X1(t) = exp(−ξt)a.s. where ξt is an increasing

process with independent increments and such that :

∀k > 0, E [exp(−kξt)] =
Γ (k + 1 − t)

Γ (1 − t) Γ (k + 1)
.

•

X2(t) ∼ R(t) as t→ 0+ a.s.
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Proof. The proof is the same as in Berestycki [1], since there, time-homogeneity of the
fragmentation plays no role. 2

Let us now determine the behavior of R(t).

Proposition 5.6 Fix T0 ∈]0, 1/2[. Then there exists three strictly positive constants C1,C2, C3

such that for all λ > 0 and for all t ∈]0, T0[,

exp(−C1λ− C3t) ≤ P

(
R(t) ≤ exp

(
−
λ

t

))
≤ exp(−C2λ+ C3t).

To estimate the distribution of R(t), we study νt(s2 ≥ ε) for a fixed ε. Indeed,

P(R(t) ≤ ε) = exp(−

∫ t

0
νu(s2 ≥ ε)du),

and Proposition 5.6 follows from the following lemma :

Lemma 5.7 Fix T0 ∈]0, 1/2[. Then there exists three strictly positive constants C1,C2, C3 such

that for all ε ∈]0, 1[ and for all t ∈]0, T0[,

−t(C2 ln ε+ C3) ≤

∫ t

0
νu(s2 ≥ ε)du ≤ −t(C1 ln ε−C3).

Proof. We begin with the upper bound. If (si)i≥1 is an element of S, we denote (s̃i)i≥1 a
size-biaised rearrangement. We have :

s2 ≥ ε⇒ s1 ≤ 1 − ε⇒ s̃1 ≤ 1 − ε,

so
νt(s2 ≥ ε) ≤ νt(s1 ≤ 1 − ε) ≤ νt(s̃1 ≤ 1 − ε).

According to Theorem 4.4, we know the law of s̃1 under νt :

νt(s̃1 ≤ 1 − ε) =

∫ 1−ε

0
(1 − y)−1y−tdy

≤

(∫ 1/2

0
2y−tdy +

∫ 1−ε

1/2
2t(1 − y)−1dy

)

≤

(
−2t ln ε+

2t

1 − t

)

≤ 2 (− ln ε+ 2) for t ≤
1

2
.

So we obtain ∫ t

0
νu(s2 ≥ ε)du ≤ −t(2 ln ε− 4).

Let us now prove the lower bound. First, we will find a lower bound for
∫ t
0 νu(s̃2 ≥ ε)du and

then we will deduce the lemma.
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νt(s̃2 ∈ dx) =

∫ 1−x

0
νt(s̃1 ∈ dy)νt(s̃2 ∈ dx | s̃1 ∈ dy)

=
1

Γ(1 − t)Γ(t)

∫ 1−x

0
(1 − y)−1y−t

(
x

1 − y

)−t(
1 −

x

1 − y

)t−1 dx

1 − y
dy

=
x−tdx

Γ(1 − t)Γ(t)

∫ 1−x

0
(1 − y)−1y−t (1 − y − x)t−1 dy.

Set

A =

∫ 1

ε

∫ 1−x

0
x−t(1 − y)−1y−t (1 − y − x)t−1 dydx,

so

νt(s̃2 ≥ ε) =
1

Γ(1 − t)Γ(t)
A.

We now calculate a lower bound for A :

A =

∫ 1−ε

0

∫ 1−y

ε
x−t(1 − y)−1y−t (1 − y − x)t−1 dxdy

=

∫ 1−ε

0

(∫ 1

ε
1−y

z−t (1 − z)t−1 dz

)
(1 − y)−1y−tdy

=

∫ 1

ε

(∫ 1

ε
y

z−t (1 − z)t−1 dz

)

y−1(1 − y)−tdy

≥

∫ 1

ε

(∫ 1

ε
y

(1 − z)t−1 dz

)
y−1(1 − y)−tdy

≥
1

t

∫ 1

ε

(
1 −

ε

y

)
y−1(1 − y)−tdy

≥
1

t

∫ 1

ε

(
1 −

ε

y

)
y−1dy

≥
1

t
(− ln ε− 1) .

So

νt(s̃2 ≥ ε) ≥
1

Γ(1 − t)Γ(t)t
(− ln ε− 1) .

As Γ(1 − t)Γ(t)t = πt
sin(πt) is a positive function which is bounded on ]0, T0[, let 1/C2 be its

maximum. By integration, we obtain :

∫ t

0
νu(s̃2 ≥ ε)du ≥ tC2 (− ln ε− 1) .

We would like now to deduce the lower bound for
∫ t
0 νu(s2 ≥ ε)du. We use

νu(s2 ≥ ε) ≥ νu(s̃2 ≥ ε) − νu(s̃2 > s2),

and

νu(s̃2 > s2) = νu(s̃2 = s1) ≤ νu(s̃1 6= s1) =

∫

S
(1 − s1)νu(ds) ≤

∫

S
(1 − s̃1)νu(ds).
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We have already seen that
∫

S
(1 − s̃1)νu(ds) =

1

1 − u
(cf. Formula (9)).

So, for all t ≤ T0, we have

∫ t

0
νu(s̃2 > s2)du ≤ − ln(1 − t) ≤

1

1 − T0
t.

Hence ∫ t

0
νu(s2 ≥ ε) ≥ t (−C2 ln ε− C3) .2

We can then deduce the lower-asymptotic behavior of X2(t) from this theorem.

Proposition 5.8 There exists a constant δ > 0 such that almost surely

{
lim inft→0 | ln t|

γ/tX2(t) = 0 if γ < δ

lim inft→0 | ln t|
γ/tX2(t) = ∞ if γ > δ.

Proof. According to Theorem 5.5, we just have to prove the proposition replacing X2(t) by

R(t). Set γ > 1
C2

. Choose β > 0 such that γ > eβ

C2
. Set ti = e−iβ and f(t) = γ ln(− ln t). For

t ∈ [0, e−1[, f(t) is a decreasing positive function.
For t ∈ [ti+1, ti], we have

R(t) ≥ R(ti+1) and exp

(
−
f(ti)

ti

)
≥ exp

(
−
f(t)

t

)
.

So if we prove

R(ti+1) ≥ exp

(
−
f(ti)

ti

)
(12)

almost surely for i large enough, then we will deduce

∀γ >
1

C2
lim inf

t→0
(ln

1

t
)γ/tR(t) ≥ 1 a.s. and so ∀γ >

1

C2
lim inf

t→0
(ln

1

t
)γ/tR(t) = ∞ a.s.

To prove (12), we apply Borel-Cantelli’s Lemma. Using Proposition 5.6, we obtain :

P

(
R(ti+1) ≤ exp

(
−
f(ti)

ti

))
≤ K(βi)−C2γe−β .

Thanks to the choice of γ and β, the serie converges.
For the second part of the proposition, we use an extension of Borel-Cantelli’s Lemma when

the sum diverges but the events are not independent (cf. [14]) :
Let (Hi)i≥1 be a sequence of events such that

∑
P(Hi) diverges and

∀N ≥ 1,

∑N
i,j=1 P(Hi ∩Hj)
(∑N

i=1 P(Hi)
)2 ≤M. (13)

Then the set {i, ω ∈ Hi} is infinite with a probability larger than 1/M .
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In our case, we fix a γ < 1/C1 and a ε > 0 such that (1 + ε)γC1 < 1. Set ti = e−i1+ε and
Hi = {R(ti) ≤ (ln(1/ti))

γ/ti}. Fix i, j ≥ 1. Recall R(t) is the record process of a point Poisson
process. So we have

P(Hi ∩Hj+i) = P(Hi)P(Hi+j) exp

(∫ ti+j

0
νu(s2 ≥ (ln(1/ti))

γ/ti)du

)

≤ KP(Hi)P(Hi+j) exp
(
(1 + ε)C1γ ln ie−(1+ε)iε

)

≤ K ′P(Hi)P(Hi+j).

(We have used (i + j)1+ε − i1+ε ≥ (1 + ε)iε for all i, j ≥ 1). With this upper bound, we
deduce that the sequence Hi verifies (13). We now have to prove that the sum of probabilities
diverges. Using Proposition 5.6, we obtain :

∑

i

P(Hi) ≥ K
∑

i

i−C1γ(1+ε).

Thus this series diverges thanks to our choice of γ and ε. We now apply the 0-1 law to prove
that the probability that the set {i, ω ∈ Hi} is infinite equal to 1.

So we have proved

{
lim inft→0(ln

1
t )

γ/tR(t) = 0 a.s. ∀γ < 1
C1

lim inft→0(ln
1
t )

γ/tR(t) = ∞ a.s. ∀γ > 1
C2
.

Thus we deduce that there exists almost surely a (random) critical γc ∈]1/C1, 1/C2[ such
that {

lim inft→0(ln
1
t )

γ/tR(t) = 0 ∀γ < γc

lim inft→0(ln
1
t )

γ/tR(t) = ∞ ∀γ > γc.

By the 0-1 law, the law of γc is trivial, i.e. it exists δ verifying Proposition 5.8 2

We can also determine the upper asymptotic behavior of X2(t) :

Proposition 5.9 We have almost surely
{

lim supt→0 exp(1
t (− ln(t))−β)X2(t) = ∞ if β > 1

lim supt→0 exp(1
t (− ln(t))−β)X2(t) = 0 if β ≤ 1.

Proof. We use the same approach as for the infimum. Fix β > 1. Set ti = e−i and
f(t) = exp(−1

t (− ln(t))−β). We want to prove that R(t) ≤ f(t) almost surely for t small
enough. As f is a decreasing function and R(t) an increasing process, we have R(t) ≤ R(ti) and
f(ti+1) ≤ f(t). So we just have to prove that R(ti) ≤ f(ti+1) almost surely for i large enough.

We have

P (R(ti) ≥ f(ti+1)) ≤ 1 − exp
(
−C3e

−i − C1e(i+ 1)−β
)

≤ C1ei
−β + o(i−β).

This serie converges. So, thanks to Borel-Cantelli’s Lemma, we can conclude.
Let us now prove the case β ≤ 1. Set ti = e−i and f(t) = exp(−1

t (− ln(t))−β). Set
Hi = {R(ti) ≥ f(ti)}. Then we have

N∑

i=1

P(Hi) ≥
N∑

i=1

(
1 − exp

(
C3e

−i − C2i
−β
))

.
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The right term is equivalent to
∑N

i=1 C2i
−β , so it diverges.

We have now to check the condition (13) to apply the generalized Borel-Cantelli’s Lemma.

P(Hi ∩Hi+j) = 1 − P(Hi) − P(Hi+j) + P(Hi ∩Hi+j)

= 1 − P(Hi) − P(Hi+j) + P(Hi)P(Hi+j) exp

(∫ ti+j

0
νu(s2 ≥ f(ti))du

)

≤ P(Hi)P(Hi+j) + exp

(∫ ti+j

0
νu(s2 ≥ f(ti))du

)
− 1.

Then remark

exp

(∫ ti+j

0
νu(s2 ≥ f(ti))du

)
≤ exp

(
C3e

−i−j + C1i
−βe−j

)
.

Hence we deduce

N∑

i,j=1

(
exp

(∫ ti+j

0
νu(s2 ≥ f(ti))du

)
− 1

)
≤ K

N∑

i=1

i−β .

So

∑N
i,j=1

(
exp

(∫ ti+j
0 νu(s2 ≥ f(ti))du

)
− 1
)

∑N
i=1 P(Hi)

is bounded and thus the condition (13) is true.
So, we can conclude for the case β < 1. For β = 1, we just have

lim sup
t→0

R(t) exp

(
−

1

t ln t

)
≤ 1 a.s.

Remark then that the same demonstration works with γf(t) instead of f(t) with γ positive
constant. So, we have

lim sup
t→0

R(t) exp

(
−

1

t ln t

)
≤ γ a.s.

and thus

lim sup
t→0

R(t) exp

(
−

1

t ln t

)
= 0 a.s. 2
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