
HAL Id: hal-00003784
https://hal.science/hal-00003784v1

Preprint submitted on 5 Jan 2005 (v1), last revised 19 Jun 2007 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Objective Caml on .NET: The OCamIL Compiler and
Toplevel

Raphaël Montelatici, Emmanuel Chailloux, Bruno Pagano

To cite this version:
Raphaël Montelatici, Emmanuel Chailloux, Bruno Pagano. Objective Caml on .NET: The OCamIL
Compiler and Toplevel. 2004. �hal-00003784v1�

https://hal.science/hal-00003784v1
https://hal.archives-ouvertes.fr

Objective Caml on .NET:
The OCamIL Compiler and Toplevel

Raphaël Montelatici1, Emmanuel Chailloux2, and Bruno Pagano3

1 Equipe Preuves, Programmes et Systèmes (CNRS UMR 7126)
Université Denis Diderot (Paris 7) - 2 place Jussieu, 75005 Paris, France

Raphael.Montelatici@pps.jussieu.fr,
2 Equipe Preuves, Programmes et Systèmes (CNRS UMR 7126)

Université Pierre et Marie Curie (Paris 6) - 4 place Jussieu, 75005 Paris, France
Emmanuel.Chailloux@pps.jussieu.fr,

3 Esterel technologies, 679 Av Julien Lefèbvre
06270, Villeneuve-Loubet, France

Bruno.Pagano@esterel-technologies.com

Abstract. We present the OCamIL compiler for Objective Caml that
targets .NET. Our goal is to understand whether this new generation
of virtual machines and runtime environment can help us compile ML
programs and produce executables of reasonable efficiency. We aim at
compatibility with the original language, and its advanced programming
features (functional values, exceptions, parameterized modules, objects).
We detail the bootstrapping cycle producing OCamIL itself as a .NET
component. This entails the building of an interactive loop (toplevel)
which may be embedded within .NET applications.

1 Introduction

The .NET4 platform claims to be a melting pot that allows the integration of dif-
ferent languages in a common framework, sharing a common type system, CTS,
and a runtime environment, CLR (Common Language Runtime). Each com-
piler generates portable MSIL bytecode (MicroSoft Intermediate Language). By
assuming compliance to the CTS type system, components interoperate safely.

This has motivated the adaptation of numerous languages, such as C#, J#,
A#5 Eiffel6, Scheme7, Sml8, F#9, P#10, Mercury11.

4 www.microsoft.com/net
5 www.usafa.af.mil/dfcs/bios/mcc_html/a_sharp.html
6 www.msdnaa.net/Resources/display.aspx?ResID=811
7 www-sop.inria.fr/mimosa/fp/Bigloo
8 www.cl.cam.ac.uk/Research/TSG/SMLNET/
9 research.microsoft.com/projects/ilx/fsharp.aspx

10 www.dcs.ed.ac.uk/home/jjc/
11 www.cs.mu.oz.au/research/mercury/dotnet.html

2

Even though the main implementation runs under Windows, some Open
Source efforts adapt .NET for Unix BSD and Windows (Rotor12) and Linux
(Mono13). That recalls Java’s motto : “COMPILE ONCE, RUN EVERYWHERE”.

We eventually get a safe and efficient multi-language platform with a unique
runtime, that could run on different systems. We intend to check this claim by
writing a .NETcompiler for our beloved language, Objective Caml[1].

Objective Caml is an ML dialect : it is a functional/imperative statically
typed language, featuring parametric polymorphism, an exception mechanism,
an object layer and parameterized modules. Its implementation includes a byte-
code and a native code compiler, which generates efficient programs. However,
new virtual machines like Java’s JVM or .NET CLR are not necessarily relevant
for functional languages, because functional values do not fit well in an object
model. Moreover, static typing is ignored by the corresponding runtimes, which
perform typechecking at code loading time. Appel’s motto “Runtime Tags Aren’t
Necessary” [2] does not hold anymore.

The OCamIL14 compiler can help widespread Objective Caml applications.
Hence, its main constraint is compatibility with Objective Caml. To achieve
that, we open within the Objective Caml compiler itself a new code generation
branch that generates typed MSIL. The OCamIL compiler is written in Caml
itself, enabling bootstrapping as a severe compatibility test. Taking advantage
of the .NET reflection API, OCamIL can dynamically execute the code that
it produces, a feature that lead us to build a toplevel interaction loop. Both
compiler and toplevel can be redistributed as .NET components.

We first present the relevant features of .NET platform from a compiler
writer’s point of view, then describe OCamIL implementation and detail the
steps leading to a bootstrapped compiler, and a toplevel system. The toplevel
runs as a .NET component and therefore can be embedded in any .NET applica-
tion, adding the power of Objective Caml machinery to third-party components.
We also present application examples and finally test OCamIL against other
ML compiler, such as F# and SML.NET. A short conclusion outlines our future
work.

2 .NET Platform

Microsoft claims the .NET platform to be the next reference technology in the
development of desktop applications as well as smart clients and Web services. It
is supposed to enhance security and error management, and should help getting
rid of Windows shared libraries issues 15.
The .NET platform specifies a runtime environment16 mainly composed of a

12 msdn.microsoft.com/net/sscli
13 www.go-mono.com/
14 www.pps.jussieu.fr/~montela/ocamil
15 “The End of DLL Hell”, msdn.microsoft.com/netframework/
16 CLR : Common Language Runtime.

3

stack-based virtual machine17 and a support library (BCL18). The virtual ma-
chine runs a so-called MSIL bytecode and checks whether it is compliant with
respect to a typed class model CTS. The files which package executable MSIL
opcodes together with eventual inlined ressource data are called PE files19. At
runtime, the bytecode is Just-In-Time compiled to machine code, as sketched in
figure 1.

JIT

P
E

P
E -

-
�-

-

Compilation :

CLR
Execution :

Source
Code

Code
Native BCL

Compiler

Ressources

MSIL

Ressources

MSIL

Fig. 1. Compilation and execution

Let us detail the main features of the .NET platform :

MSIL bytecode It looks like typed machine code : each location where values
are stored or passed across, is given a type. We distinguish Reference Types (for
heap-allocated objects) from stack-allocated Value Types (which are not reduced
to base types and may have a complex structure). Bytecode instructions (box
and unbox) can be used to switch between the two kinds of representation.
Objects have fields and methods which may use a pool of local variables. As for
control, the virtual machine handles method calls (with an optional late-binding
mechanism or even through indirection), branching within a same method and
exceptions.

Deployment The base .NET component is called an assembly : it is a self-
contained unit of deployment. Assemblies can be signed with a cryptographic
key so that the hosting computer can trust the embedded code : this allows
sharing a piece of software, by installing the assembly in the GAC : Global
Assembly Cache, a special assembly repository. This also helps versionning and
localization management.

Execution Safety An executable file can be made of components compiled
from different source languages. In order to avoid typing inconsistencies, the
17 VES : Virtual Execution System.
18 Base Class Library.
19 Portable Executable files

4

MSIL code has to be statically typed. Moreover, any assembly compiled for the
CLR can be checked by a verification tool PEVerify that detects stack incon-
sistencies, errors while resolving external assemblies dependencies (for instance
erroneous calls to externally declared methods), and even some runtime typing
errors. Typing information is kept along with code and is used at runtime : in
case of a dynamic type error, the CLR raises an exception. These features are
greatly valuable for the development of a compiler that targets MSIL. The MSIL
bytecode conforming to typing and verification constraints is called “managed
code”. However the platform enables calls to unmanaged code, which is still
necessary for low-level operations.

Note that the runtime environment features a Garbage Collection mecha-
nism, which frees the developper from tricky memory management issues.

Performances The platform relies on a systematic Just In Time compilation
mechanism (there is no complicated heuristic here : each method is natively
compiled at first call). It is possible to bypass this behaviour by pre-compiling
an assembly to a native image.

Methods can be tail-called (i.e. without stacking a new method frame), which
is particularly useful for functionnal languages implementation.

Reflection Last but not least, the platform features a fairly complete reflec-
tion library, which enables dynamic code management (generation, loading and
execution).

3 The OCamIL Compiler

3.1 General Scheme

Our main goal is to port Objective Caml to the .NET platform and be as compat-
ible as possible with the reference implementation. Efficiency issues are left aside
in the first place. Writing a new compiler from scratch, for a modern functional
language like Objective Caml, with imperative and object-oriented features, a
parametric module system and a static typing system with type inference, is not
an easy task. Our experiment consists in writing a compiler that takes advan-
tage of the standard INRIA compiler by modifying its back-end component. We
branch on the standard Objective Caml compilation chain, after parsing and
typing operations. We do not compile a source file from scratch : we get the in-
ternal representation Clambda from the standard Caml compiler, see figure 2 for
details. Clambda explicitly manages closures.We introduce a new intermediate
representation Tlambda which rebuilds types information : we discuss its use in
sub-section 3.4.

OCamIL compiles a .ml Caml implementation file to a .cmx object file (a
specific file format which mainly is roughly MSIL with unresolved references),
and links a list of cmx files to a single assembly in a portable executable file, that
references external assemblies such as the BCL components and the OCamIL

5

�
�

�
�

�
�

�
��

�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

ocamilocamlc ocamlopt

standard INRIA compilers OCamIL project

OCaml Bytecode
Instructions

Tlambda Code

Clambda Code

Cmm Code

Mach Code

Native Code

Syntax Tree

Lambda Code

Abstract

MSIL Bytecode
Instructions

Fig. 2. OCamIL inside Objective Caml.

runtime support library core_camil.dll. It may also produce shared library
.dll files. The generated code relies on the CLR environment and its libraries
in order to perform low-level tasks (memory management, IO . . .).

3.2 Data Representation

Basic Types Mapping Caml base types to .NET types is not a big deal, we
translate base types according to the following correspondences :

Caml bool int float char string unit
.NET int32 int32 float64 char StringBuilder void

– Objective Caml strings are mutable, so we cannot use the base type string.
– .NET has unicode built in, so we have 16-bits characters. A strictly-compliant

version of OCamIL library restores original 8-bits Caml characters.

Structured Values Tuples, arrays, records, lists and sum type values are tradi-
tionnaly represented in memory by means of heap-allocated tagged blocks (in the
case of a sum type value, the tag is used to code the involved type constructor).

We compile such blocks to object arrays (object[]), which forces us to box
base type values which are not objects.

6

Closures Caml closures are represented as a pair of a function pointer and an
environment, they are special instances of heap-allocated blocks. They can rep-
resent mutually recursive functions (by means of sharing and cycling constructs).

Caml Objects Mapping an Objective Caml class hierarchy to a .NET class
hierarchy is very tempting. Besides the theoretical issues it raises (because of
the numerous differences between the two object models), this is also hard to
achieve because of the internal representation of objects in the Caml intermediate
code : objects do not show up anymore as objects but only as blocks of fields and
functions, the late binding mechanism being explicitely added to the program
code (this is because the standard Objective Caml runtime environment was
originally designed for Caml core language, and does not natively support the
object layer).

3.3 Execution Control

Application The OCamIL implementation compiles closures to classes inher-
iting the dedicated CamIL.Closure class. It has fields used to store the closure’s
environment and two main methods : an exec method implementing the function
itself (in case of total application) and an apply: object -> object method
used in case of partial application, which returns the new closure resulting of
the application of the next expected argument.

Exceptions The Caml exceptions are directly implemented by using the excep-
tion mechanism of the target platform, by means of a CamIL.Exception class
which inherits System.Exception (the root class of all exceptions in CTS).

3.4 Intermediate Language Typechecking

The OCamIL compiler gets a preprocessed representation of a Caml program :
namely Clambda intermediate code. This code dramatically lacks types infor-
mation, and what is even worse, it is already designed to take advantage of
the standard Caml runtime environment peculiarities. For instance, the stan-
dard Caml implementation processes integer values and pointers toward heap-
allocated blocks the same way, distinguishing them by means of a tag bit. Hence
allocating a Caml block which contains an integer does not require any indirec-
tion, since the integer can be inlined inside the block. This contrasts with MSIL
block representation (using objects arrays) which requires allocation of boxed
representation of the integer.
This kind of manipulation produces more complex code, and requires an analysis
of the Clambda code which aims at rebuilding a partial type information. The
following table shows a case of MSIL code generation, which is incorrect because
it does not know about the types involved (the variable t refers to an array) :

7

Source Caml MSIL Comments
t.(0) + 1 ldloc t Local variable t pushed on stack.

ldc.i4.0 Integer 0 pushed on stack.

Clambda code ldelem.ref Loading of array element (by reference)

(+ (get t 0) 1) (*)
ldc.i4.1 Integer 1 pushed on stack.

add Addition.

At the level of the (*)-marked line, the top of the stack stores a reference to
an object whereas the addition instruction add expects an integer value type. We
need a new intermediate language Tlambda, which carries types and introduces
type casting operations. The previous code generation by a type-aware compiler
would have inserted an unbox instruction at (*). Type safety is ensured by the
property of the original typing by Caml during the first steps of the compilation
chain.

3.5 Foreign Function Interface

Even though interoperability issues were not our initial matter, we did implement
a simple interoperability mechanism which allows to directly call MSIL code
from Caml programs. Caml handles external calls to library functions written in
C. We had to provide a similar mechanism for MSIL-compiled programs. This
has been widely used in order to adapt the Objective Caml standard library to
OCamIL. C calls have been replaced by calls to static methods written in C#
or in bytecode, that take advantage of the .NET library. Some calls do not even
need additional stub code on .NET-side, as in the following example taken from
the module Sys of standard library.

external il_getenv: string -> string =
"string" "System.Environment" "GetEnvironmentVariable" "string"

let getenv var =
let s = il_getenv var in
if s = "" then raise Not_found else s

The OCamIL version is made of a touch of Caml code wrapping a direct call to
the BCL GetEnvironmentVariable static method.

Note that the foreign function interface is still low-level and is not type safe.

3.6 OCamIL building and bootstrapping

We describe here the different steps that lead from the working sources of
OCamIL to its executable form as a .NET assembly.

Like the Objective Caml compiler itself, OCamIL is written in the Caml
language. In addition to our personal liking for Caml to write a compiler, it is
actually natural to use the same implementation language as the standard IN-
RIA compiler since we open a new compilation branch on it.

8

Compiling OCamIL from sources supposes one has got a working installation of
Objective Caml bytecode compiler and linker (which implies having the Objec-
tive Caml execution engine as well).

The first steps of OCamIL build are shown in figure 3. We explicitely distin-
guish Caml et OCamIL compilers and linkers, refered to as ocamlc-c, ocamlc,
ocamil-c and ocamil. On the figure, .cmo refers to standard Caml object files
and mlB stands for the original Caml bytecode.

mu
mlB

mu
mlB

mu
mlB

- -

6 6

PE

mlB

PEcmx cmx

ML

PE

ML cmocmo

mu
mlB

mlB

PEcmx cmx

ocamil compiler and linker
compilation

cmx ML cmx

mlB

ML

ML

cmx ML

ML cmocmo

cmx

mu
mlB

mlB

ML

cmocmo mlBmlB cmocmo mlBmlB

link phase
ocamil compiler and linker

ocamil standard library compilation

ML

mlB

cmxCamILLib.ml

CamlStdLib.cmo CamlStdLib.cmo

CamILLib.cmx

Fig. 3. Building OCamIL : first round.

Following figure 3, we get :

– the OCamIL compiler and linker, which produce MSIL portable executables
and shared libraries from Caml source files 20.

– Objective Caml libraries compiled for .NET using the latter compiler. They
had to be partially rewritten for OCamIL, replacing external C functions

20 The source language is actually slightly different from Objective Caml, since it does
not embed external C calls anymore, but MSIL calls : that is why we write ML
instead of ML.

9

calls to external MSIL methods calls. As to the major part of Caml, which
is written in the Caml language, the high compatibility of OCamIL with the
standard compiler allows us to the code unchanged.

This composes a working toolkit to compile Objective Caml programs to .NET
platform. However, it is an hybrid system, because it produces MSIL bytecode
while itself a regular Objective Caml bytecode executable, which requires the
Caml bytecode machine.

Having adapted the main part of the Objective Caml standard library, it
becomes possible to compile OCamIL sources using OCamIL itself, as depicted
in figure 4.

mu
mlB

mu
mlB

cmx*

cmx* cmx* cmx*cmx*

cmx* cmx* cmx* cmx*

- -

6 6

PE

mlB

PE

ML

PE

mu
mlB

mlB

PE

ocamil2 compiler and linker
compilation

ML

mlB

ML

ML

ML

mu
mlB

mlB

ML

link phase
ocamil2 compiler and linker

ocamil2 standard library compilation

ML

CamlStdLib.cmo CamlStdLib.cmo

CamILLib.ml CamILLib.cmx*

PE

mu
PE

cmxML ML cmxcmxcmx

cmxcmx PEPE cmxcmx PEPE

Fig. 4. Building OCamIL : second round.

We first compile the OCamIL source files using the Objective Caml bytecode
executable version of OCamIL and get an MSIL implementation of it, ocamil2.
However, ocamil and ocamil2 are not fully compatible, because we replaced data
marshalling C primitives as rough calls to the BCL serialization API (located in
System.Runtime.Serialization namespace), leading to an inconsistent data
representation. Thus, ocamil2 is not able to deserialize values marshalled by

10

ocamil, typically library object files, which is what we intend to point out by
distinguishing the .cmx and .cmx* file formats on figure 4.

In order to get a fully working compiler, we have to recompile the standard
library files using the new compiler. This finally leads to a OCamIL executable
running under the .NET environment, which can be redistributed as any .NET
application, and does not need the standard Objective Caml compiler and run-
time system anymore.

We can give it a serious test with an additional bootstrapping cycle, that is
recompile OCamIL using ocamil2.

3.7 Toplevel Building

From now on the OCamIL compiler runs in the same world as the executables it
produces. By using the .NET dynamic code generation and execution features,
provided by the reflection API, we can build a toplevel utility ocamiltop. A
toplevel repeatedly compiles Objective Caml declarations on the fly and exe-
cutes them, while maintaining a symbol table. Figure 5 displays the toplevel
components and the way they operate to compile a Caml expression.

Engine
ocamil2

phrase1

phrasenphrase1

ocamiltop
Application

Domain

phrasen
-

� -

?

�-

6

6 6
6?6?

� z
...

:
.............................

.............................
.............................

................

SymTable
Toplevel
Engine

Toplevel

Output

1
Input

2

Disk

2

3
4

4

...

BCLReflection

6

...
(5c)

5a

5b

Fig. 5. Toplevel engine

1. The toplevel engine consumes an Objective Caml expression phrasen.
2. It uses ocamil2 compiler engine (together with a Symbol Table resolving

free variables) to compile the expression to MSIL code.
3. The MSIL code is written as a shared library file on the hard drive.
4. The toplevel engine then calls System.Reflection.Assembly::LoadFrom to

dynamically load the corresponding assembly within its application domain
(in memory).

11

5. a) A call to System.Reflection.Assembly::GetType gives access to a pre-
defined class that defines a public startup method, which is immediately
runned using a call to System.Type::InvokeMember. b) The startup method
first registers the bindings defined by phrasen by accessing directly the table
of symbols used by the toplevel. c) The startup method then runs the inner
code of phrasen (that may refer to previous phrases using the associations
maintained in the table of symbols).

6. Execution flow returns to the toplevel loop, which handles output (typically
by displaying computed values).

Our prototype generates compiled assemblies to disk, then reloads them to
memory. A future version will compile directly to memory : it is more effficient
and allows to produce a unique assembly that grow up during the toplevel ses-
sion.
The toplevel utility is very handy for application development. It also has promis-
ing applications using its embedding capabilities, see sub-section 4.1.

4 Applications and Tests

4.1 Embedded Toplevel

Objective Caml programs compiled to .NET platform may export functions to
be run from other pieces of software. Our work allows to embed a Objective
Caml toplevel (ocamiltop) inside other applications. For instance, we easily
developped a graphical interface in C# for ocamiltop, see figure 6.

Fig. 6. Graphics example in embedded toplevel.

12

The figure shows a simple toplevel session : we first dynamically load the
graphics module (#load directive) then dynamically compile and run (#use
directive) a graphical Caml program (a color wheel).

4.2 A Chinese Sort

The screenshot of figure 7 illustrates builtin unicode capabilities of OCamIL
together with direct calls to BCL static methods.

Fig. 7. Culture-specific ordering using external interface.

We define the list of characters representing the twelve chinese zodiac signs
(rat, ox, tiger, rabbit, dragon, snake, horse, goat, monkey, rooster, dog and pig)
by means of unicode codepoints. According to chinese pinyin21 these are pro-
nounced : shu, niu, hu, tu, long, she, ma, yang, hou, ji, gou and zhu.

Sorting the list using the standard comparison function String.compare,
based on codepoints ordering, is quite meaningless, that is why we take advantage
of methods provided by the .NET System.Globalization namespace in order
to sort chinese characters according to pinyin.

21 Pinyin is the official transliteration for Mandarin Chinese.

13

4.3 Benchmarks

The latest Windows Operating systems do not provide fully satisfying tools to
measure execution times. We did not find any substitute for the Unix time com-
mand, which differenciates user and system times of a process. Using time under
cygwin22, a Unix layer for Windows only computes times for the main thread.

Morever JIT compilation introduces a difference between the first run of a
program and the following runs. Therefore, we only measure the real-time of a
.NET program execution.

Comparing OCamIL to Objective Caml bytecode compiler is informative.
We also use two other compilers targeting .NET : F# which compiles the func-
tional/imperative core of Objective Caml and SML.NET which compiles SML[3]
core.

We test substantial programs such as Boyer (term computations, function
calls), KB (a fully functional program using exceptions intensively to compute
over terms) and Nucleic (floating-point calculations involving trees). The latter
program is used in [4] to test a dozen of functional languages compilers.

The following benchmarks ran on a Windows XP Pentium IV 2,4GHz station.
They are designed to run within a second under the native (ocamlopt) compiler.

ocamlopt ocamlc OCamIL F# SML.NET

Boyer 0,42 1,92 31,9 28,0 24,7

KB 1,07 7,30 170 216 209

Nucleic 1,14 6,57 7,53 3,79 1,04

Fig. 8. Performance tests (real time in seconds).

Two trends appear :

– the three compilers that target .NET get poor results on fully functional
programs (KB and Boyer).

– but results for monomorphic floating-points calculations are fairly similar.

F# compiles toward an extension of MSIL, called ILX [5] which introduces
genericity. SML.NET, like MLj [6], analyses the whole program at link time and
specializes polymorphic functions.

OCamIL retyping of the Tlambda intermediate language is not accurate
enough, entailing costly data structure allocation (object arrays). Data access
is then slower and needs a dynamic typechecking. To increase performance,
OCamIL needs to retrieve more type information from the regular typing phase
of Objective Caml. Compiling to a typed virtual machine raises new issues that
were not relevant in dedicated functional virtual machines [7].

22 www.cygwin.org

14

4.4 The OCamIL Distribution

The first version of OCamIL is available 14 for Windows platform. We have
ported the main part of Objective Caml standard library, as well as the Caml
graphics library. Functional, imperative and object-oriented features23 are im-
plemented, as well as the module system (functors, modular compilation).

5 Related Works

Compiling program pieces written in different languages and targeting a single
runtime is an old idea of the functional programming community. With a view
towards interoperability via C, several compilers to C were designed at the be-
ginning of the 90’s (like [8], [9], [10]). Targeting a virtual machine runtime that
manages memory and handles exceptions, such as the JVM and its associated
runtime ensures a better level of safety during execution. This has greatly con-
tributed to the success of the Java platform. MLj [6] and Bigloo [10] already
compile statically or dynamically typed functional languages to Java bytecode.

The .NET platform enhancements are threefold : a specified type system,
more accurate operators to manage stacks (for tail recursive calls and stack-
allocated value types) and a more understandable JIT. In either case, it is rather
difficult to compile some programming features that do not fit naturally in Java
or C# object models, such as closures (ML, Scheme, Haskell), multiple inheri-
tance (Eiffel, Objective Caml) and continuations (Scheme).

As described in the introduction, a number of compilers have been adapted
to the .NET platform, but only a few have built a toplevel. For instance Bigloo
uses its interpreter. As far as we know, only P# has followed the hard way to
bootstrapping, by means of C# code generation.

The many interface definition languages (IDL) for CORBA24 or for COM25

have a similar goal. Some of them are designed for functional languages, such as
HDIRECT[11] for Haskell26 or OCAMLIDL27 for Objective Caml.

6 Conclusion

Our experimental OCamIL compiler and toplevel allow the development of Ob-
jective Caml applications for the .NET platform, with the guarantee of com-
patibility with Objective Caml (including advanced programming features [12])
and managed MSIL code production. In particular, this allows us to embed our
toplevel as a component inside a C# application.

Further work will enhance typing for generated MSIL code, introduce inter-
facing facilities with existing libraries and also take multi-threading management
23 Check out OCAMIL webpage 14 for details.
24 www.omg.org
25 www.microsoft.com/com
26 www.haskell.org
27 caml.inria.fr/camlidl

15

into account.
Inferring more accurate type informations in our new intermediate language
(Tlambda) will help to improve efficiency (less boxing/unboxing) and to ex-
plore values during debugging. We aim at communication between the Objective
Caml and C# object models. To achieve it, we will propose an IDL correspond-
ing to the intersection of both models. This way has been tested for Java and
Objective Caml28 but has encountered some difficulties because the two corre-
sponding runtimes do not catch up very well (because of GC and threads). We
plan to integrate the Objective Caml concurrency model inside .NET.

Acknowledgement

We would like to thank Clément Capel for his help to adapt Caml libraries.

References

1. Leroy, X.: The objective caml system release 3.06 : Documentation and user’s
manual. Technical report, Inria (2002) on-line version : http://caml.inria.fr.

2. Appel, A.: Runtime tags aren’t necessary. Lisp and Symbolic Computation (1989)
3. Milner, R., Tofte, M., Harper, R.: The Definition of Standard ML. MIT Press,

Cambridge, MA (1991)
4. Hartel, P.H., et al, M.F.: Benchmarking implementations of functional languages

with ”Pseudoknot”, a float-intensive benchmark. Journal of Functional Program-
ming 6 (1996) 621–655

5. Syme, D.: ILX: Extending the .NET common IL for functional language interop-
erability. Electronic Notes in Theoretical Computer Science 59 (2001)

6. Benton, N., Kennedy, A., Russel, G.: Compiling Standard ML to Java Bytecodes.
In: Proceedings of the 3rd ACM SIGPLAN Conference on Functional Program-
ming. (1998)

7. Leroy, X.: The effectiveness of type-based unboxing. In: Workshop on Types in
Compilation. (1997)

8. Chailloux, E.: An Efficient Way of Compiling ML to C. In: Workshop on ML and
its Applications, ACM SIGPLAN (1992)

9. Tarditi, D., Lee, P., Acharya, A.: No assembly required: Compiling standard ML
to C. ACM Letters on Programming Languages and Systems 1 (1992) 161–177

10. Serrano, M., Weis, P.: Bigloo: a portable and optimizing compiler for strict func-
tional languages. In: 2nd, Glasgow, Scotland (1995) 366–381

11. Finne, S., Leijen, D., Meijer, E., Jones, S.P.: H/direct: A binary foreign language
interface for haskell. In: International Conference on Functional Programming.
(1998)

12. Aponte, M.V., Chailloux, E., Cousineau, G., Manoury, P.: Advanced program-
ming features in objective caml. In: 6th Brazilian Symposium on Programming
Languages. (2002)

28 www.pps.jussieu.fr/~henry/ojacare

