
HAL Id: hal-00003761
https://hal.science/hal-00003761

Submitted on 4 Jan 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Classical isomorphisms of types
Olivier Laurent

To cite this version:
Olivier Laurent. Classical isomorphisms of types. Mathematical Structures in Computer Science,
2005, 15, pp.969-1004. �10.1017/S0960129505004895�. �hal-00003761�

https://hal.science/hal-00003761
https://hal.archives-ouvertes.fr

Classical isomorphisms of types

Olivier LAURENT

Preuves, Programmes et Systèmes

CNRS – Université Paris VII

UMR 7126 – Case 7014

175, rue du Chevaleret – 75013 Paris – FRANCE

Olivier.Laurent@pps.jussieu.fr

April 4, 2003

Abstract

The study of isomorphisms of types has been mainly carried out in an intuitionistic set-
ting. We extend some of these works to classical logic for both call-by-name and call-by-value
computations by means of polarized linear logic and game semantics. This leads to equational
characterizations of these isomorphisms for all the propositional connectives.

Introduction

The study of isomorphisms of types started from theoretical questions about the characterization
of isomorphisms in free cartesian closed categories [23] and in the λ-calculus [11, 8]. The possibility
of using these results as a basis for more practical tools (programming library search [21], gluing
of software components, ...) has considerably increased the interest of people on the subject.

The underlying problem is the following: given the definition of isomorphisms of types,

Definition 1 (Isomorphims of types)
Let S be a logical system, with an equational theory =S on proofs, two formulas A and B are
isomorphic, denoted by A 'S B, if there exist two proofs πA of B ` A and πB of A ` B such that
by cutting πA and πB on the conclusion B (resp. A) we obtain a proof equal, up to =S , to the
axiom A ` A (resp. B ` B).

is it possible to find an equational theory corresponding exactly to the isomorphisms of the system
S?

Many works have been done for characterizing these isomorphisms of types for fragments of the
propositional λ-calculus, second order λ-calculus, extensions with recursive types, with dependent
types, ... However all these works have been carried out in an intuitionistic setting. Our main goal
is to give a first attempt in the extension of these results to a classical setting.

While the question of the study of intuitionistic isomorphisms of types seems clear to formulate,
the classical case is not so simple. There are mainly three different possible questions:

• what are the isomorphisms in a non deterministic classical setting (such as LK)?

• what are the isomorphisms in a call-by-name classical setting?

1

• what are the isomorphisms in a call-by-value classical setting?

We are going to address these three questions in a propositional setting with all the classical
connectives. The first question is mainly degenerated and doesn’t give an interesting notion of
isomorphisms. In order to solve the two other questions, we will study the isomorphisms of the
polarized variant of linear logic LLP [15] because both call-by-name and call-by-value classical logics
are embedded in LLP through syntactical reduction-preserving translations. This entails that, from
the characterization of isomorphisms in LLP, we can deduce both call-by-name and call-by-value
isomorphisms.

For the study of the isomorphisms of LLP, we use a semantical approach. Such an approach
consists in finding a denotational model of the system (so that any syntactical isomorphism leads
to an isomorphism in the model) in which first the isomorphisms are possible to compute and
second there are no more isomorphisms in the model than in the syntax. For that purpose, we will
use game semantics which is known to give precise models of the syntax (full abstraction and full
completeness results) and makes computations easier than in the syntax. This gives an application
of game semantics to a purely syntactical question, showing that even if games seem very near to
the syntax they are however abstract enough to simplify computations. The main consequences are
two different characterizations of the polarized isomorphisms: an equational theory and a graphical
representation through polarized forests.

We have tried to organize the paper by putting in different sections the intermediate results
that use different techniques in such a way that the reader only interested in a particular topic
could understand it by only reading the statements of the final results of the previous sections.

Section 1 is a short section devoted to solve our first question about non-deterministic classical
isomorphisms of types. The other sections only look at the deterministic case.

Section 2 contains the syntactical definition of polarized linear logic (LLP) which is the main
logical system used in the following sections. Section 3 gives some elements of game semantics and
proves the key result of the paper which is the characterization of the isomorphisms in the game
model. Section 4 defines the interpretation of LLP in the game model showing that any isomorphism
in LLP leads to an isomorphism in games. Section 5 relates isomorphisms in the game model and
isomorphisms in LLP (without using games anymore) by computing the corresponding equational
theory and by showing that all the obtained isomorphisms are syntactically correct. This ends the
study of isomorphisms in LLP. Section 6 uses embeddings of the call-by-name λµ-calculus and of the
call-by-value λµ-calculus into LLP to derive the corresponding equational theories of isomorphisms.
As a consequence, we get back the intuitionistic case.

Section 7 explains the relation between our classical results on isomorphisms with disjunction
and the intuitionistic ones of Balat-Di Cosmo-Fiore [13] by showing that they are in fact not really
possible to compare due to different underlying theories of the disjunction. Section 8 presents a
relation between our classical theory of isomorphisms and the equations of the real exponential field
(R,+, 0, ·, 1, e) in the spirit of Tarski’s problems for natural numbers studied in the usual theory of
isomorphisms of types.

1 Non deterministic isomorphisms

In this very short section, we just want to close quickly the question of isomorphisms in the non
deterministic classical setting by proving that it is degenerated. We prove that this non determinism
entails that any two equiprovable formulas are isomorphic due to the too strong equational theory
on proofs generated by cut elimination (any two proofs of a given sequent are equal).

2

We consider proofs in Gentzen’s sequent calculus LK up to cut elimination and:

...
Γ ` A,∆

wkr
Γ ` A,A,∆

ctrr
Γ ` A,∆

=
...

Γ ` A,∆
and

...
Γ, A ` ∆

wkl
Γ, A,A ` ∆

ctrl
Γ, A ` ∆

=
...

Γ, A ` ∆

Proposition 1 (Isomorphisms in LK)
A a`LK B if and only if A 'LK B.

Proof: The second direction is immediate. For the first one, from A `LK B and B `LK A we can
deduce a proof πA of A `LK A and a proof πB of B `LK B, but using Lafont’s critical pair,
these two proofs are equal to the identity:

πA

A ` A wkr
A ` A,C

ax
A ` A wkl

C,A ` A
cut

A,A ` A,A
ctrl

A ` A,A
ctrr

A ` A

reduces to both πA and the identity axiom. 2

This explains why we have to go to some more constrained systems to get interesting theories
of isomorphisms.

2 Polarized Linear Logic

Polarized linear logic (LLP) is based on a restriction of the formulas of linear logic in order to get
a simpler system rich enough to interpret the λ-calculus and classical logic. Polarized formulas are
given by the following grammar:

P ::= X | 1 | 0 | P ⊗ P | P ⊕ P | !N
N ::= X⊥ | ⊥ | > | N

�
N | N & N | ?P

The orthogonal of a formula is defined by the De Morgan’s laws:

(X)⊥ = X⊥ (X⊥)⊥ = X
⊥⊥ = 1 1⊥ = ⊥
>⊥ = 0 0⊥ = >

(N
�

M)⊥ = N⊥ ⊗ M⊥ (P ⊗ Q)⊥ = P⊥ �
Q⊥

(N & M)⊥ = N⊥ ⊕ M⊥ (P ⊕ Q)⊥ = P⊥ & Q⊥

(?P)⊥ = !P⊥ (!N)⊥ = ?N⊥

and for any polarized formula A, (A⊥)⊥ = A.
The rules of LLP are not just the rules of LL restricted to polarized formulas otherwise classical

logic would not be so easy to embed. This is why we also generalize structural rules (?w, ?c and

3

context of !) to any negative formula and not only ?-formulas.

ax
` N,N⊥

` Γ, N ` N⊥,∆
cut

` Γ,∆

` Γ, N,M �

` Γ, N
�

M

` Γ, P ` ∆, Q
⊗

` Γ,∆, P ⊗ Q

` Γ, N ` Γ,M
&

` Γ, N & M

` Γ, P
⊕1

` Γ, P ⊕ Q

` Γ, Q
⊕2

` Γ, P ⊕ Q

` N , N
!

` N , !N

` Γ, P
?d

` Γ, ?P
` Γ

?w
` Γ, N

` Γ, N,N
?c

` Γ, N

>
` Γ,>

` Γ
⊥

` Γ,⊥
1

` 1

The context of the >-rule must contain at most one positive formula and N is a context of negative
formulas.

Lemma 1 (Positive formula)
If ` Γ is provable in LLP, Γ contains at most one positive formula.

The equational theory we consider on LLP proofs, denoted by π1 =βη π2, is given by cut-
elimination, η-expansion of axioms and the following equations:

...
` Γ,>

= >
` Γ,>

...
` Γ, N

?w
` Γ, N,N

?c
` Γ, N

=
...

` Γ, N

...
` N , N,N,M

?c
` N , N,M

!
` N , N, !M

=

...
` N , N,N,M

!
` N , N,N, !M

?c
` N , N, !M

...
` N ,M

?w
` N , N,M

!
` N , N, !M

=

...
` N ,M

!
` N , !M

?w
` N , N, !M

Definition 2 (Polarized isomorphim)
Let A and B be two polarized formulas, A and B are isomorphic, denoted by A 'LLP B, if there
exist two proofs πA of ` B⊥, A and πB of ` A⊥, B such that by cutting πA and πB on the conclusion
B (resp. A) we obtain a proof equal to the axiom ` A⊥, A (resp. ` B⊥, B), up to =βη.

Definition 3 (E-isomorphism)
Let E be the equational theory generated by the following set of equations (for all negative formulas

4

N , M and L):

N
�

M = M
�

N

(N
�

M)
�

L = N
�

(M
�

L)

N
�

⊥ = N

N & M = M & N

(N & M) & L = N & (M & L)

N & > = N

N
�

(M & L) = (N
�

M) & (N
�

L)

N
�

> = >

!(N & M) = !N ⊗ !M

!> = 1

together with the dual ones.
Let A and B be two polarized formulas, A and B are E-isomorphic, denoted by A 'E B, if they

are equal in the theory E .

Lemma 2 (Correctness of E)
If A 'E B then A 'LLP B.

Proof: The proofs corresponding to the equations are:

ax
` N⊥, N

ax
` M⊥,M

⊗
` N⊥ ⊗ M⊥, N,M �

` N⊥ ⊗ M⊥,M
�

N

ax
` N⊥, N

ax
` M⊥,M

⊗
` N⊥ ⊗ M⊥, N,M

ax
` L⊥, L

⊗
` (N⊥ ⊗ M⊥) ⊗ L⊥, N,M,L �

` (N⊥ ⊗ M⊥) ⊗ L⊥, N,M
�

L �

` (N⊥ ⊗ M⊥) ⊗ L⊥, N
�

(M
�

L)

ax
` N⊥, N

1
` 1

⊗
` N⊥ ⊗ 1, N

ax
` N⊥, N

⊥
` N⊥, N,⊥ �

` N⊥, N
�

⊥

>
` N,>, 0 �

` N
�

>, 0

>
` N⊥ ⊗ 0,>

5

ax
` M⊥,M

⊕2
` N⊥ ⊕ M⊥,M

ax
` N⊥, N

⊕1
` N⊥ ⊕ M⊥, N

&
` N⊥ ⊕ M⊥,M & N

ax
` N⊥, N

⊕1
` N⊥ ⊕ M⊥, N

⊕1
` (N⊥ ⊕ M⊥) ⊕ L⊥, N

ax
` M⊥,M

⊕2
` N⊥ ⊕ M⊥,M

⊕1
` (N⊥ ⊕ M⊥) ⊕ L⊥,M

ax
` L⊥, L

⊕2
` (N⊥ ⊕ M⊥) ⊕ L⊥, L

&
` (N⊥ ⊕ M⊥) ⊕ L⊥,M & L

&
` (N⊥ ⊕ M⊥) ⊕ L⊥, N & (M & L)

ax
` N⊥, N

>
` N⊥,>

&
` N⊥, N & >

ax
` N⊥, N

⊕1
` N⊥ ⊕ 0, N

ax
` N⊥, N

ax
` M⊥,M

⊕1
` M⊥ ⊕ L⊥,M

⊗
` N⊥ ⊗ (M⊥ ⊕ L⊥), N,M �

` N⊥ ⊗ (M⊥ ⊕ L⊥), N
�

M

ax
` N⊥, N

ax
` L⊥, L

⊕2
` M⊥ ⊕ L⊥, L

⊗
` N⊥ ⊗ (M⊥ ⊕ L⊥), N, L �

` N⊥ ⊗ (M⊥ ⊕ L⊥), N
�

L
&

` N⊥ ⊗ (M⊥ ⊕ L⊥), (N
�

M) & (N
�

L)

ax
` N,N⊥

ax
` M,M⊥

⊗
` N,M,N⊥ ⊗ M⊥

⊕1
` N,M, (N⊥ ⊗ M⊥) ⊕ (N⊥ ⊗ L⊥)

ax
` N,N⊥

ax
` L,L⊥

⊗
` N,L,N⊥ ⊗ L⊥

⊕2
` N,L, (N⊥ ⊗ M⊥) ⊕ (N⊥ ⊗ L⊥)

&
` N,M & L, (N⊥ ⊗ M⊥) ⊕ (N⊥ ⊗ L⊥) �

` N
�

(M & L), (N⊥ ⊗ M⊥) ⊕ (N⊥ ⊗ L⊥)

ax
` N⊥, N

⊕1
` N⊥ ⊕ M⊥,M

?d
` ?(N⊥ ⊕ M⊥), N

!
` ?(N⊥ ⊕ M⊥), !N

ax
` M⊥,M

⊕2
` N⊥ ⊕ M⊥,M

?d
` ?(N⊥ ⊕ M⊥),M

!
` ?(N⊥ ⊕ M⊥), !M

⊗
` ?(N⊥ ⊕ M⊥), ?(N⊥ ⊕ M⊥), !N ⊗ !M

?c
` ?(N⊥ ⊕ M⊥), !N ⊗ !M

ax
` N,N⊥

?d
` N, ?N⊥

?w
` N, ?N⊥, ?M⊥

ax
` M,M⊥

?d
` M, ?M⊥

?w
` M, ?N⊥, ?M⊥

&
` N & M, ?N⊥, ?M⊥

!
` !(N & M), ?N⊥, ?M⊥

�

` !(N & M), ?N⊥ �
?M⊥

6

>
` >,⊥

!
` !>,⊥

1
` 1

?w
` ?0, 1

We then have to verify that, up to =βη, cutting the two corresponding proofs gives an axiom.
2

3 Game semantics

Game semantics gives denotational models for various systems. We will use it because it is far
enough from the syntax to simplify computations and not too much to betray the syntax. Types
are interpreted by arenas (forests) and proofs or programs by strategies on these arenas.

3.1 Arenas and strategies

We just recall the key definitions of usual game semantics. All these definitions with more details,
explanations and justifications appear in [14].

Definition 4 (Forest)
A forest is a partial order (E,≤) such that if x ≤ z and y ≤ z then either x ≤ y or y ≤ x.

The nodes of a forest (E,≤) are the elements of E and the forest is finite if E is finite. The
roots are the minimal elements. If x is the maximal element under y, we say that y is a son of x,
denoted by x <1 y. If (E,≤) is a forest, the relation ≤ is the transitive reflexive closure of <1 and
we will sometimes represent (E,≤) by (E,<1).

Definition 5 (Morphism)
A morphism between two forests (E,≤) and (E ′,≤′) is a function from E to E′ which respects the
order (if x ≤ y then f(x) ≤′ f(y)).

If there exists a forest isomorphism between E and E ′, we use the notation E 'f E′.

Definition 6 (Arena)
An arena A is a finite forest whose nodes are called moves.

The polarity λA(a) of a move a is O (resp. P) if the length of the path (i.e. its number of edges)
going from a root of A to a is even (resp. odd).

A move a of A is initial, denoted by `A a, if it is a root of A. If b is a son of a in A, we say
that a enables b, denoted by a `A b.

Definition 7 (Arrow)
Let (A,≤A) and (B,≤B) be two arenas, the arena (A → B,≤A→B) is defined by:

• the set A → B is the disjoint union of A and B;

• if a ∈ A and a′ ∈ A with a `A a′, then a `A→B a′;

• if b ∈ B and b′ ∈ B with b `B b′, then b `A→B b′;

• if b ∈ B is a root and a ∈ A is a root, then b `A→B a.

Definition 8 (Play)
Let A be an arena, a play s on A is a sequence of moves of alternated polarity of A with, for each
non initial move b of s, a pointer to an earlier occurrence of move a of s, called the justifier of b,
such that a `A b.

The set of plays of A is denoted by PA. We use the notation t ≤P s if t is a prefix of s ending
by a P -move.

7

Definition 9 (View)
Let A be an arena and s be a play on A, the view psq of A is the sub-play of s defined by:

• psaq = psqa if a is a P -move;

• psaq = a if a is an initial O-move;

• psatbq = psqab is b is an O-move justified by a.

Definition 10 (Strategy)
A strategy σ on A, denoted by σ : A, is a non empty P -prefix closed set of even length plays of A
such that:

• determinism: if sab ∈ σ and sac ∈ σ, then sab = sac.

• visibility : if sab ∈ σ, the justifier of b is in psaq.

• innocence: if sab ∈ σ, t ∈ σ, ta ∈ PA and psaq = ptaq then tab ∈ σ.

Remark: Due to the innocence condition, a strategy is completely characterized by its views.

Definition 11 (Composition)
Let A, B and C be three arenas, an interaction sequence u on A, B and C is a (possibly) non
alternated play of (A → B) → C such that u —A→B ∈ PA→B , u —B→C ∈ PB→C and u —A→C ∈
PA→C . A move of u in A pointing to a move in B is an initial move of A and its justifier is an
initial move of B, the play u —A→C is obtained by choosing as a pointer for these initial moves of
A the justifier of their justifier which is an initial move of C. The set of the interaction sequences
on A, B and C in denoted by int(A,B,C).

Let σ : A → B and τ : B → C be two strategies, the composition of σ and τ is the strategy
σ; τ = {u —A→C | u ∈ int(A,B,C) ∧ u —A→B ∈ σ ∧ u —B→C ∈ τ} : A → C.

Lemma 3 (Zipping)
Let σ : A → B and τ : B → C be two strategies, if s is a play in σ; τ , there exists at most one
interaction sequence u ending by a move in A or C such that u —A = s —A and u —C = s —C .

Proof: Let u and v be two interaction sequences on A, B and C such that u —A = v —A = s —A
and u —C = v —C = s —C . We prove the result by induction on the length of s. If s = ε, we
have u = v = ε. If s = tmn, let u′ (resp. v′) be the prefix of u (resp. v) ending by the last
move of t, by induction hypothesis, we have u′ = v′. We decompose u into u = u′mu′′n and
v into v = v′mv′′n so that u′′ and v′′ contain only moves in B. We must have u′′ = v′′ since
each Opponent move (resp. Player move) in these sub-sequences is uniquely determined by τ
(resp. σ) which is a deterministic strategy. 2

Definition 12 (Identity)
Let A be an arena, the identity strategy idA is idA = {s ∈ PA1→A2

| ∀t ≤P s, t —A1
= t —A2

} : A → A
(the indexes are only used to distinguish occurrences).

Lemma 4
If s is a sequence of moves of A with pointers (possibly without alternation), there exists a unique
play s′ ∈ PA1→A2

of idA such that s′ —A1
= s′ —A2

= s.

8

Proof: By induction on the length of s. If s = ε, we have s′ = ε. If s = ta, by induction
hypothesis, there exists a play t′ of idA such that t′ —A1

= t′ —A2
= t. If a is an Opponent

move, we have s′ = t′a2a1 and if a is a Player move, we have s′ = t′a1a2 where ai is the copy
of a in Ai. 2

Definition 13 (Total strategy)
Let σ : A be a strategy, σ is total if whenever s ∈ σ and sa ∈ PA, there exists some b such that
sab ∈ σ.

3.2 Isomorphisms

We are going to characterize isomorphisms in the game model which is the key result of the paper.

Proposition 2
Let f be a forest isomorphism from A to B, {s ∈ PA→B | ∀t ≤P s, f(t —A) = t —B} is a strategy,
called the strategy generated by f .

Proof: We denote this set of plays by σ, by definition σ is a P -prefix closed set of even length
plays of A → B. We have to prove the three properties of strategies:

• If sab ∈ σ and sac ∈ σ, we assume that a is in A, this entails that b and c are in B, so
that sab —B = f(sab —A) = f(sa —A) = f(sac —A) = sac —B and thus sab = sac.

• If sab ∈ σ, we assume that a is in A, this entails that b is in B and, since sab —B =
f(sab —A), the justifier of b is the move just before the justifier of a in sab so that it is
in the view psaq.

• If sab ∈ σ, t ∈ σ, ta ∈ PA→B and psaq = ptaq, we assume that a is in A, this
entails that b is in B and, we have sab —B = f(sab —A) thus b = f(a) and we conclude
tab —B = f(tab —A) that is tab ∈ σ. 2

Definition 14 (Game isomorphism)
Let A and B be two negative arenas, a game isomorphism between A and B is a pair of strategies
σ : A → B and τ : B → A such that σ; τ = idA and τ ;σ = idB .

If there exists a game isomorphism between A and B, we use the notation A 'g B.

Definition 15 (Zig-zag play)
A play s in A → B is zig-zag if:

• each P -move following an O-move in A (resp. B) is in B (resp. A);

• each P -move in A following an initial O-move in B is justified by it;

• s —A and s —B have the same pointers.

If only the first two conditions are verified, s is a pre-zig-zag play.
If s is a pre-zig-zag play of even length in A → B, we denote by s the unique pre-zig-zag play

in B → A such that s —A = s —A and s —B = s —B.

Lemma 5 (Composition of zig-zag plays)
If s ∈ PA→B is a pre-zig-zag play of even length, there exists an interaction sequence s̃ ∈ int(B,A,B)
such that s̃ —B→A = s and s̃ —A→B = s.

9

Proof: We prove the result by induction on the length of s. If s = ε, we have s = ε and s̃ = ε. If
s = tab, by induction hypothesis, there exists an interaction sequence t̃ such that t̃ —B→A = t
and t̃ —A→B = t. If a is in A thus b is in B (the case a in B is the same), we consider s̃ = t̃b1ab2

where b1 is the copy of b in the leftmost B and b2 is the copy of b in the rightmost B. 2

Theorem 1 (Strict isomorphisms)
If there exists a game isomorphism (σ, τ) between A and B, then there exists a forest isomorphism
f from A to B. Moreover σ (resp. τ) is the strategy generated by f (resp. f−1).

Proof: We first show by induction on the even number k that if s ∈ σ with length k then s is a
zig-zag play and {s | s ∈ τ ∧ |s| = k} = {s | s ∈ σ ∧ |s| = k}:

• If k = 0 then s = ε and the result is immediate.

• If k = k′+2 and s is a play in σ of length k, we have s = tmn with t ∈ σ and by induction
hypothesis t is zig-zag and t̄ ∈ τ . We assume m ∈ B (the case m ∈ A is similar), if
n ∈ B then, using lemma 5, t̃mn ∈ int(B,A,B) is such that t̃mn —B→A = t̃ —B→A = s̄ ∈ τ
and t̃mn —A→B = t̃ —A→Bmn = tmn ∈ σ, so that t̃mn —B→B ∈ τ ;σ = idB but this is
impossible because a play in idB cannot contain two successive moves in the same B.
This entails n ∈ A.

According to lemma 4, we consider the play s′ ∈ PB1→B2
of idB such that s′ —B1

=
s′ —B2

= s —B = t —Bm. By definition of the composition τ ;σ, there exists u ∈ int(B,A,B)
such that u —B→B = s′, u —B→A ∈ τ and u —A→B ∈ σ. By lemma 3, u = t̃mnm
which entails that n is justified by m in s if m is initial (otherwise u —B→B /∈ idB)
so that s is a pre-zig-zag play. Moreover t̃mnm —B→A = s̃ —B→A = s ∈ τ so that
{s | s ∈ σ ∧ |s| = k} ⊂ {s | s ∈ τ ∧ |s| = k}. We obtain the converse in the same way.

We still have to show that s is a zig-zag play. The justifier of n in s —A must be a move
before the justifier of m in s —B by visibility of σ, and it must be the move just before
it, otherwise the justifier of m in tnm ∈ τ is not in ptnq, contradicting the visibility
condition for τ .

We have shown that τ = {s | s ∈ σ}. We have almost shown that σ is total: if s ∈ σ
and sm ∈ PA→B , we assume m ∈ B (the case m ∈ A is similar), we consider the play
s′ ∈ PB1→B2

of idB such that s′ —B1
= s′ —B2

= sm —B. By definition of the composition τ ;σ,
there exists u ∈ int(B,A,B) such that u —B→B = s′, u —B→A ∈ τ and u —A→B ∈ σ. We can
write u = u′mnm for some n since σ and τ contain only zig-zag plays, and by lemma 3, we
have u′ = s̃ so that s̃mnm —A→B = smn ∈ σ. This immediately gives τ also total.

Let a be a move of A and a1 . . . ap be the sequence of moves of A such that a1 is initial, ai

enables ai+1 for each 1 ≤ i ≤ p − 1 and ap = a, we are going to define a function f from the
moves of A to the moves of B by induction on p. In fact we enrich the induction hypothesis
by requiring that f(a0)a0a1f(a1)f(a2)a2 . . . ∈ σ. If p = 1, we look at the unique play of the
shape ab in τ (which exists by totality) and we define f(a) = b. If p = p′ + 1 with p odd, we
have by induction hypothesis a1f(a1)f(a2)a2a3f(a3) . . . f(ap′)ap′ ∈ τ , let f(ap) be the unique
move such that a1f(a1)f(a2)a2a3f(a3) . . . f(ap′)ap′apf(ap) ∈ τ which exists by totality of τ . If
p = p′ +1 with p even, we have by induction hypothesis f(a1)a1a2f(a2)f(a3)a3 . . . f(ap′)ap′ ∈
σ, let f(ap) be the unique move such that f(a1)a1a2f(a2)f(a3)a3 . . . f(ap′)ap′apf(ap) ∈ σ
which exists by totality of σ.

In the same way, we can associate a function g with τ and we easily verify that f ◦ g is
the identity on the moves of B and g ◦ f is the identity on the moves of A so that f is a

10

bijection. Moreover, by construction, if a ≤ a′ in A we have f(a) ≤ f(a′) in B, so that f is
an isomorphism between the forests A and B.

Finally, we want to show that if σ is innocent, σ is the strategy generated by f . Let σf be
this strategy, we just have to show that if s is a P -view then s ∈ σ ⇐⇒ s ∈ σf . Let s be a
zig-zag P -view in A → B, we prove by induction on the length of s that s —A is a sequence
a1 . . . ap such that ai justifies ai+1 for 1 ≤ i ≤ p − 1 and s —B is a sequence b1 . . . bq such that
bj justifies bj+1 for 1 ≤ j ≤ q − 1. If s = ε the result is straightforward. If s = mn, m ∈ B
and n ∈ A are initial. If s = tn′m′mn, m is justified by m′ since s is a P -view and n is
justified by n′ since s is zig-zag. We can then show, by an easy induction on the length of s,
that s ∈ σ ⇐⇒ s ∈ σf . 2

Remark: In the setting of sequential algorithms [7], Berry and Curien have given a similar char-
acterization of isomorphisms based on a decomposition of algorithms into a purely functional part
(giving the underlying order-theoretic isomorphism) and an index choice part.

4 The game model of LLP

In order to characterize the isomorphisms of types in LLP, we give the game interpretation of
LLP and we show that it gives a denotational model. In fact the relation between LLP and its
game model is very much stronger (completeness, ...) but we just need soundness here. A precise
comparison between LLP and the same game model is given in [16].

Definition 16 (Polarized arena)
A polarized arena A is an arena with a polarity πA which is P or O (also denoted by + or −).

The polarity λA(a) of a move a is πA (resp. πA) if the length of the path going from a root of
A to a is even (resp. odd).

Definition 17 (Constructions of arenas)
We consider the following constructions on polarized arenas:

Dual. If A is an arena, its dual A⊥ is obtained by changing its polarity.

Empty. There are two empty polarized arenas: the positive one and the negative one.

Unit. The unit arenas are the forests reduced to one node ◦ and with polarity O or P .

Sum. If A and B are two arenas of the same polarity, A+B is the disjoint union of the two forests.

Product. If A and B are two arenas of the same polarity, the trees of A × B are obtained by
taking a tree in A and a tree in B and by identifying their roots. More formally, if Ar (resp.
Br) are the roots of A (resp. B):

• the underlying set of A × B is (Ar × Br) + (A \ Ar) + (B \ Br);

• if a ∈ Ar, a′ ∈ A \ Ar, b ∈ Br and a `A a′ then (a, b) `A×B a′;

• if a ∈ Ar, b ∈ Br, b′ ∈ B \ Br and b `B b′ then (a, b) `A×B b′;

• if a ∈ A \ Ar, a′ ∈ A \ Ar and a `A a′ then a `A×B a′;

• if b ∈ B \ Br, b′ ∈ B \ Br and b `B b′ then b `A×B b′;

• πA×B = πA = πB.

11

Lift. If A is an arena of polarity πA, lA is obtained by adding a unique new root ◦ under all the
trees of A. It is an arena of polarity πA.

Remark: If N and M are two negative arenas, N → M 'f lN⊥ ×M , and this corresponds to an
encoding of implication in Linear Logic: A → B = ?A⊥ �

B.

A polarized formula A is interpreted by a polarized arena A? of the same polarity. Given such
an interpretation for the variables, we then have:

0? = (∅, P) >? = (∅, O)
1? = (◦, P) ⊥? = (◦, O)

(P ⊕ Q)? = P ? + Q? (N & M)? = N? + M?

(P ⊗ Q)? = P ? × Q? (N
�

M)? = N? × M?

(!N)? = lN? (?P)? = lP ?

with the property A?⊥ = A⊥?
.

Example 1
The polarized arena associated with ?(1 ⊕ !(?!> & ⊥)) & (?(!⊥⊕ 1)

�
?!(⊥ & ⊥)) is:

with polarity O.

Definition 18 (Central strategy)
Let σ : A → B be a strategy,

• σ is linear if in each play of σ, each initial move in B has exactly one move in A justified by
it.

• σ is strict if, for each initial move b in B, it contains a play ba with a in A.

• σ is central, denoted by σ : A •→ B, if it is strict and linear.

Definition 19 (Product)
If σ : A •→ C and τ : B •→ D are two central strategies, σ×τ is the central strategy on A×B •→ C×D
defined by:

σ × τ = {s ∈ PA×B→C×D | s —A→C ∈ σ ∧ s —B→D ∈ τ}

Definition 20 (Weakening)
The views of the weakening strategy wN are ε and {n◦ | n initial in N} which give a central strategy
on ⊥ •→ N .

Definition 21 (Contraction)
If s is a play on N1 × N2 → N0 we define si (i = 1, 2) to be the sub-sequence of s containing the
initial moves in N0, the moves in Ni and the moves in N0 such that the last move before in N1×N2

is in Ni.
The contraction strategy is cN = {s ∈ PN1×N2→N0

| ∀t ≤P s, t1 ∈ idN ∧ t2 ∈ idN} : N ×N •→ N .

12

By lemma 1, a provable sequent of LLP is ` N ,Π where Π is empty or is a positive formula.
The interpretation of a proof π of ` N ,Π is a strategy π? on Π⊥ •→ N (this is a notation for N ? if
Π is empty and P ?⊥ •→ N ? if Π = P) central if Π is not empty.

The strategy π? is defined by induction on π:

(ax) ax? = idN .

(cut) if Γ = Γ′,Π, π?
1 : Π⊥ •→ Γ′ �

N and π?
2 : N •→ ∆, the strategy π? is π?

1 ; (idΓ′ × π?
2) : Π⊥ •→

Γ′ �
∆.

(
�

) this rule doesn’t modify the interpretation.

(⊗) if π?
1 : P⊥ •→ Γ and π?

2 : Q⊥ •→ ∆, the strategy π? is π?
1 × π?

2 : (P ⊗ Q)⊥ •→ Γ
�

∆.

(&) if Γ = Γ′,Π, π?
1 : Π⊥ •→ Γ′ �

N and π?
2 : Π⊥ •→ Γ′ �

M , the views of π? are the views of π?
1

and the views of π?
2 which give a strategy on Π⊥ •→ Γ′ �

(M & N).

(⊕i) if π?
1 : P⊥

i
•→ Γ, π? is π?

1 seen as a strategy on (P1 ⊕ P2)
⊥ •→ Γ.

(!) if π?
1 : N

�
N , a view of π? : (!N)⊥ •→ N is ε, or m◦ with m initial in N , or m◦ns where

(m,n)s is a view of π?
1 .

(?d) if π?
1 : P⊥ •→ Γ, we have π? = {ε} ∪ {s[(a,◦)/a] | s ∈ π?

1} : Γ
�

?P where s[(a,◦)/a] is obtained
from s by replacing any initial move a by (a, ◦).

(?w) if Γ = Γ′,Π and π?
1 : Π⊥ •→ Γ′, we can define a strategy σ on Π⊥ •→ Γ′ �

⊥ as in the case of
a ⊥-rule, we have π? = σ; (idΓ′ × wN) : Π⊥ •→ Γ′ �

N .

(?c) if Γ = Γ′,Π and π?
1 : Π⊥ •→ Γ′ �

N
�

N , we have π? = π?
1 ; (idΓ′ × cN) : Π⊥ •→ Γ′ �

N .

(>) if Γ = Γ′,Π, we have >? = {ε} : Π⊥ •→ Γ′ �
>.

(⊥) if Γ = Γ′,Π and π?
1 : Π⊥ •→ Γ′, we have π? = {ε} ∪ {s[(a,◦)/a] | s ∈ π?

1} : Π⊥ •→ Γ′ �
⊥.

(1) The views of 1? are ε and ◦⊥◦1 which give a strategy on 1⊥ •→ ⊥.

Proposition 3 (Soundness)
If π and π′ are two proofs of ` Γ in LLP, π =βη π′ entails π? = π′?.

Proof: The proof of this result is given in [16]. 2

5 Polarized type isomorphisms

Using the two previous sections, we can move from the study of isomorphisms in LLP to the study
of isomorphic forests: A 'LLP B ⇒ A? 'g B? ⇒ A? 'f B?.

5.1 Polarized isomorphisms without variables

The game interpretation of variables is not precise enough to directly obtain a characterization of
types isomorphisms with variables. This is why we first study the variable free case.

Lemma 6 (Additive translation)
Let A be a polarized formula without variable, there exists a formula Aa containing only the con-
nectives >, 0, &, ⊕, ! and ?, such that A 'E Aa.

13

Proof: We consider the following rewriting system (up to commutativity of the binary connec-
tives) which is derived from the theory E :

N
�

⊥ N P ⊗ 1 P
N & > N P ⊕ 0 P
N

�
> > P ⊗ 0 0

N
�

(M & L) (N
�

M) & (N
�

L) P ⊗ (Q ⊕ R) (P ⊗ Q) ⊕ (P ⊗ R)
?P

�
?Q ?(P ⊕ Q) !N ⊗ !M !(N & M)
⊥ ?0 1 !>

To show the termination of this system, we define a function ϕ which associates with each
polarized formula A without variable an integer ϕ(A) ≥ 2 by:

ϕ(A
�

B) = ϕ(A ⊗ B) = ϕ(A)ϕ(B)
ϕ(A & B) = ϕ(A ⊕ B) = ϕ(A) + ϕ(B) + 1

ϕ(!A) = ϕ(?A) = ϕ(A) + 1
ϕ(⊥) = ϕ(1) = 4
ϕ(>) = ϕ(0) = 2

For any rewriting rule A B, we have ϕ(A) > ϕ(B).

We have to show that a normal form doesn’t contain any
�

, ⊗, ⊥ and 1. By ⊥ ?0 and
1 !>, the case of ⊥ and 1 is immediate. We consider the case of ⊗ (

�
is the same), if

A ⊗ B appears in the formula with A and B without
�

, ⊗, ⊥ and 1, the main connective of
A and B must be ⊕, 0 or !. If one of these two main connectives is ⊕ or 0, we can apply a
rule P ⊗ (Q⊕R) (P ⊗Q)⊕ (P ⊗R) or P ⊗ 0 0 and if both of them are !, we can apply
!N ⊗ !M !(N & M). 2

Lemma 7 (Additive arenas)
Let A and B be two polarized formulas without variable containing only the connectives >, 0, &,
⊕, ! and ?, and such that A? 'f B?, we have A 'E B.

Proof: By induction on the size of A?, with A and B positive:

• If A? is empty, B? is also empty and A = B = 0.

• If A? is a tree, B? is also a tree and A 'E !A′ and B 'E !B′ (we need 'E in the case
A = !A′ ⊕ 0 for example). The forest A′? (resp. B′?) is obtained by removing the root
of A? (resp. B?) so that A′? 'f B′? and by induction hypothesis, A′ 'E B′ and finally
A 'E B.

• If A? contains k ≥ 2 trees, B? also contains k trees and A is obtained from k formulas
A1, ..., Ak by adding the correct ⊕ connectives, this entails by associativity: A 'E

((A1 ⊕ A2) · · · ⊕ Ak−1) ⊕ Ak where each A?
i is one of the trees of A?. In the same way,

we get B 'E ((B1 ⊕ B2) · · · ⊕ Bk−1) ⊕ Bk and each B?
i is one of the trees of B?. From

A? 'f B?, we can find a permutation θ of the trees of A? such that for each 1 ≤ i ≤ k,
A?

θ(i) 'f B?
i . By induction hypothesis, Aθ(i) 'E Bi so that using commutativity of ⊕ in

E we have A 'E B. 2

Proposition 4 (Variable free polarized isomorphisms)
Let A and B be two polarized formulas without variable,

A 'LLP B ⇐⇒ A? 'g B? ⇐⇒ A? 'f B? ⇐⇒ A 'E B

14

Proof: We prove the following implications:

• A 'E B ⇒ A 'LLP B, by lemma 2.

• A 'LLP B ⇒ A? 'g B?, by soundness of the game model (proposition 3).

• A? 'g B? ⇒ A? 'f B?, by theorem 1.

• A? 'f B? ⇒ A 'E B, we have A 'E Aa and B 'E Ba by lemma 6, and this entails
with the previous implications: Aa? 'f A? 'f B? 'f Ba?. By lemma 7 we can deduce
Aa 'E Ba and finally A 'E B. 2

5.2 Recovering variables

The last result allows to forget everything about games. We show that the correspondence between
(isomorphic) polarized formulas and forests can be extended with variables.

Lemma 8 (Quasi-multiplicative translation)
Let A be a polarized formula (possibly with variables), there exists a formula Am containing none
of the connectives >, 0, &, ⊕ except in head position, and such that A 'E Am.

Proof: We use the same proof as for lemma 6 but we reverse the following rewriting rules:

?(P ⊕ Q) ?P
�

?Q !(N & M) !N ⊗ !M
?0 ⊥ !> 1

and we use:
ϕ(A

�
B) = ϕ(A ⊗ B) = ϕ(A)ϕ(B)

ϕ(A & B) = ϕ(A ⊕ B) = ϕ(A) + ϕ(B) + 1
ϕ(!A) = ϕ(?A) = ϕ(A)!
ϕ(⊥) = ϕ(1) = 2
ϕ(>) = ϕ(0) = 3

ϕ(X⊥) = ϕ(X) = 2

We have to show that a normal form doesn’t contain any >, 0, &, ⊕ except in head position.
If there is such a connective in a normal form which is not in head position, we consider one
such connective with a different connective just above it. We first consider the case of 0 (>
is the same), if the connective above it is a ⊗ we can apply A ⊗ 0 0, if it is a ⊕ we can
apply A ⊕ 0 A and if it is a ? we can apply ?0 ⊥. For a ⊕ connective (& is the same),
if the connective above it is a ⊗ we can apply A ⊗ (B ⊕ C) (A ⊗ B)⊕ (A ⊗ C) and if it is
a ? we can apply ?(A ⊕ B) ?A

�
?B. 2

Definition 22 (Atomized forests)
An atomized forest is a forest with nodes labeled by finite multi-sets (possibly empty) of positive
variables.

We can generalize the interpretation of LLP formulas by forests to an interpretation of LLP

formulas by atomized forests, by associating to the variable X (resp. X⊥) the one point positive
(resp. negative) forest labeled by [X]. The product of atomized forests is obtained with a union of
the labeling multi-sets for the identified roots.

Example 2
The interpretation of ?(X⊥ ⊗ Y ⊥ ⊗ !1) & ?(Z⊥ ⊗ (!X ⊕ 1)) is the negative atomized forest:

15

[]

[X,Y]

[]

[]

[Z]

[X]

[Z]

Definition 23 (Atomized forest morphism)
Let A and B be two atomized forests, an atomized forest morphism from A to B is a forest
morphism f from A to B such that, if n is a node of A, the multi-set of variables of n is included
in the multi-set of f(n).

Definition 24 (Atomized forest substitution)
A forest substitution θ is a partial function from positive variables to atomized forests.

If θ is a forest substitution and A is a forest, the forest Aθ is obtained by replacing, for each X
such that θ(X) is defined, every node n of A which contains k occurrences of X in its associated
multi-set by the forest θ(X) × · · · × θ(X), k times (this preserves the existing sons of n except if
θ(X) is empty).

Example 3

The application of the substitution Y 7→ ∅ and Z 7→ []

[W]
to the forest of example 2 leads to:

[] []

[]

[X] [W]

[]

[W]

Lemma 9
If A is a polarized formula and θ is a substitution, we can associate with θ a forest substitution θ?

by θ?(X) = (θ(X))? for any X. We have (Aθ)? = A?θ?.

Lemma 10 (Quasi-multiplicative arenas)
Let A and B be two polarized formulas containing none of the connectives >, 0, & and ⊕ except in
head position, and such that A? 'f B?, we have A 'E B.

Proof: By induction on the size of A?, with A and B positive.

• If A? and B? are empty, A = B = 0.

• If A? and B? are two trees, let k be the number of sons of its root (which is the same for
A? and B?) and A?

1, ..., A?
k (resp. B?

1 , ..., B?
k) be the immediate sub-trees of A? (resp.

B?). From A? 'f B? we can deduce a permutation θ of the A?
i ’s such that A?

θ(i) 'f B?
i .

By induction hypothesis, we can find k formulas A1, ..., Ak and k formulas B1, ..., Bk

such that, up to associativity A 'E A1 ⊗ · · · ⊗ Ak and B 'E B1 ⊗ · · · ⊗ Bk, that is, up
to commutativity, A 'E B.

• If A? and B? are two forests containing k ≥ 2 trees, let A?
1, ..., A?

k (resp. B?
1 , ..., B?

k) be
these trees, we have by induction hypothesis Ai 'E Bi and thus A 'E A1 ⊕ · · · ⊕Ak 'E

B1 ⊕ · · · ⊕ Bk 'E B. 2

Remark: It would also be possible to use an adaptation of the additive translation in the previous
lemma but the quasi-multiplicative one makes things simpler.

16

The main result of the paper follows, it gives two characterizations of polarized isomorphisms:
a “geometrical” one (two types are isomorphic if the associated forests are isomorphic) and an
equational one.

Theorem 2 (Polarized isomorphisms)
Let A and B be two polarized formulas,

A 'LLP B ⇐⇒ A? 'f B? ⇐⇒ A 'E B

Proof: We prove the following implications:

• A 'E B ⇒ A 'LLP B, by lemma 2.

• A 'LLP B ⇒ A? 'f B?, for any substitution θ we have Aθ 'LLP Bθ. In particular if
we consider the set of variables indexed by natural numbers: X1, X2, ... and if h is the
height of A?, we can define the substitution θh given by Xi 7→ !?!· · · ?1 or !?!· · · !⊥ with
exactly i(h + 1) − 1 exponential connectives. We have Aθh 'LLP Bθh and Aθh and Bθh

are closed formulas, so that by proposition 4 we have (Aθh)? 'f (Bθh)? and by lemma 9
A?θ?

h 'f B?θ?
h. We still have to deduce A? 'f B?.

The forest A?θ?
h is A?[ci/Xi

] where ci is the branch of length i(h + 1). We prove the
result by induction on the number of elements of all the multi-sets associated with the
nodes of A?. If all these multi-sets are empty, we have A?θ?

h = A? and we can conclude.
If there are k + 1 occurrences of variables, let n be a node of A?θ?

h of maximal height,
its height is of the shape k + i0(h + 1) with 0 ≤ k ≤ h. Let m be the node which is
i0(h + 1) levels under n, this node has an occurrence X of Xi0 associated with it in A?

and it is also the case for f(m) in B?. By induction hypothesis applied to A?[/X] and
B?[/X], we have A?[/X] 'f B?[/X] and we can conclude A? 'f B?.

• A? 'f B? ⇒ A 'E B, we have A 'E Am and B 'E Bm by lemma 8, and this entails
with the previous implications: Am? 'f A? 'f B? 'f Bm?. By lemma 10 we can
deduce Am 'E Bm and finally A 'E B. 2

Remark: If, instead of definition 2, we consider polarized isomorphisms given by the composition
of proofs of ` ?N⊥,M and ` ?M⊥, N , we obtain the same result since our result about game
isomorphisms (theorem 1) applies to any strategy on A → B and not only central ones.

6 Deterministic classical isomorphisms

As shown by many works [9, 10, 15, 17] deterministic classical systems can be classified into two
categories: call-by-name and call-by-value systems. Moreover in each category the different systems
are mainly equivalent. To represent these two evaluation paradigms, we will use call-by-name and
call-by-value λµ-calculi.

We consider Selinger’s extension of the λµ-calculus with disjunction [22]. The λµ-terms are
built from two disjoint sets of variables, the λ-variables x, y, ... and the µ-variables α, β, ...:

t ::= x | λx.t | (t)t | <t, t> | π1t | π2t | ? | µα.t | [α]t | µ(α, β).t | [α, β]t

The associated simple types are:

A ::= X | A → A | A ∧ A | > | A ∨ A | ⊥

17

and a typing judgment has the shape Γ ` t : A | ∆ where Γ contains typing declarations for the
λ-variables and ∆ contains typing declarations for the µ-variables. The typing rules are:

x : A ` x : A | Γ ` ? : > | ∆

Γ ` t : B | ∆

Γ \ {x : A} ` t : A → B | ∆

Γ ` t : A → B | ∆ Γ′ ` u : A | ∆′

Γ ∪ Γ′ ` (t)u : B | ∆ ∪ ∆′

Γ ` t : A | ∆ Γ ` u : B | ∆

Γ ` <t, u> : A ∧ B | ∆

Γ ` t : A ∧ B | ∆

Γ ` π1t : A | ∆

Γ ` t : A ∧ B | ∆

Γ ` π2t : B | ∆

Γ ` t : ⊥ | ∆

Γ ` µα.t : A | ∆ \ {α : A}

Γ ` t : A | ∆

Γ ` [α]t : ⊥ | ∆ ∪ {α : A}

Γ ` t : ⊥ | ∆

Γ ` µ(α, β).t : A ∨ B | ∆ \ {α : A, β : B}

Γ ` t : A ∨ B | ∆

Γ ` [α, β]t : ⊥ | ∆ ∪ {α : A, β : B}

If we consider the call-by-name =cbn
βηµρθ and the call-by-value =cbv

βηµρθ equational theories (defined
in the next sections), we obtain the following notions of isomorphisms:

Definition 25 (Isomorphims of types)
Two types A and B are isomorphic in the call-by-name (resp. call-by-value) λµ-calculus, denoted
by A 'cbn

λµ B (resp. A 'cbv
λµ B), if there exist two λµ-terms t such that x : B ` t : A | and u such

that y : A ` u : B | with (λx.t)u =cbn
βηµρθ y (resp. (λx.t)u =cbv

βηµρθ y) and (λy.u)t =cbn
βηµρθ x (resp.

(λy.u)t =cbv
βηµρθ x).

6.1 Call-by-name isomorphisms

The call-by-name typed equational theory =cbn
βηµρθ of the λµ-calculus [22] is generated by:

(λx.t)u =β t[u/x] : A
λx.(t)x =η t : A → B x /∈ t

π1<t, u> =β t : A
π2<t, u> =β u : A

<π1t, π2t> =η t : A ∧ B
? =η t : >

(µα.t)u =µ µα.t[[α](v)u/[α]v] : A

π1µα.t =µ µα.t[[α]π1v/[α]v] : A

π2µα.t =µ µα.t[[α]π2v/[α]v] : A

[β]µα.t =ρ t[β/α] : ⊥
µα[α]t =θ t : A α /∈ t

[α, β]µγ.t =ρ t[[α,β]v/[γ]v] : ⊥

[α′, β′]µ(α, β).t =ρ t[α
′

/α, β′

/β] : ⊥
µ(α, β)[α, β]t =θ t : A ∨ B α, β /∈ t

[α]t =ρ t : ⊥

where t[C{v}/[α]v] is obtained by substituting any subterm of t of the shape [α]v by C{v} and any
subterm of t of the shape [α, β]v by C{µα[α, β]v}.

18

In order to apply our result about polarized isomorphisms of types to the λµ-calculus, we use
a translation in LLP.

The translation of the call-by-name λµ-calculus into LLP is obtained by translating types as
negative formulas:

X− = X⊥

(A → B)− = !A−(B− = ?A−⊥ �
B−

(A ∧ B)− = A− & B−

>− = >

(A ∨ B)− = A− �
B−

⊥− = ⊥

the judgment Γ ` t : A | ∆ is translated as ` ?(Γ−)⊥, A−,∆−. The translation of terms is then
easy to derive and is given in [15].

Proposition 5 (Simulation)
If t and u are two λµ-terms such that t =cbn

βηµρθ u then t− =βη u−.

Definition 26 (En-isomorphism)
Let En be the equational theory generated by the following equations:

A ∧ B = B ∧ A

A ∧ (B ∧ C) = (A ∧ B) ∧ C

A ∧ > = A

A ∨ B = B ∨ A

A ∨ (B ∨ C) = (A ∨ B) ∨ C

A ∨ ⊥ = A

A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C)

A ∨ > = >

(A ∧ B) → C = A → (B → C)

> → A = A

A → (B ∨ C) = (A → B) ∨ C

Two types A and B are En-isomorphic, denoted by A 'En
B, if they are equal in the theory En.

19

The theory En(→,∧,>) is given by:

A ∧ B = B ∧ A

A ∧ (B ∧ C) = (A ∧ B) ∧ C

A ∧ > = A

(A ∧ B) → C = A → (B → C)

> → A = A

A → (B ∧ C) = (A → B) ∧ (A → C)

A → > = >

Lemma 11
The theory En(→,∧,>) is included in En.

Proof: We have two equations to prove:

A → (B ∧ C) = A → (⊥ ∨ (B ∧ C))

= (A → ⊥) ∨ (B ∧ C)

= ((A → ⊥) ∨ B) ∧ ((A → ⊥) ∨ C)

= (A → (⊥ ∨ B)) ∧ ((A → ⊥) ∨ C)

= (A → B) ∧ ((A → ⊥) ∨ C)

= (A → B) ∧ (A → (⊥ ∨ C))

= (A → B) ∧ (A → C)

and

A → > = A → (⊥ ∨>)

= (A → ⊥) ∨ >

= >

2

Proposition 6
If A and B are two types, A 'cbn

λµ B ⇐⇒ A− 'LLP B− ⇐⇒ A 'En
B.

Proof: The first implication A 'cbn
λµ B ⇒ A− 'LLP B− is a consequence of proposition 5: if

x : B ` t : A | and y : A ` u : B | with compositions equal to identity, we obtain two proofs

t− of ` ?A−⊥
, B− and u− of ` ?B−⊥

, A− which are isomorphisms in LLP (see remark after
theorem 2).

The second implication A− 'LLP B− ⇒ A 'En
B is proved with theorem 2 which implies

A− 'E B−. The only interesting equations are ?(N⊥ ⊕ M⊥) = ?N⊥ �
?M⊥ and ?0 = ⊥. If

an exponential connective appears in a formula A−, it must be a translation of some C → D

which gives ?C⊥ �
D. In this particular case we have the equation ?(C−

1
⊥
⊕ C−

2
⊥
)

�
D− =

?C−
1
⊥ �

?C−
2
⊥ �

D− which corresponds exactly to (C1 ∧ C2) → D = C1 → (C2 → D). For
the other equation, it must be applied in the shape ?0

�
D− = ⊥

�
D− which corresponds

to > → D = D.

The third implication A 'En
B ⇒ A 'cbn

λµ B is just a syntactical verification. 2

20

Corollary 6.1
If A and B are two types using only the connectives →, ∧ and >, A 'cbn

λµ B ⇐⇒ A 'En(→,∧,>) B.

Proof: By proposition 6, we have A 'En
B. Up to the equations of En(→,∧,>), any formula

with only →, ∧ and > is equal to a formula which is either > or a conjunction of formulas
with only → (this corresponds to lemma 8). We can then verify that two such formulas A
and B equal in En (or equivalently such that A− 'E B−) are equal in En(→,∧,>).

The second direction is immediate with proposition 6 and lemma 11. 2

If isomorphisms in the λ-calculus are considered up to usual βη-equivalence, we have:

Corollary 6.2
If A and B are two types using only the connectives →, ∧ and > then A 'λ B ⇐⇒ A 'cbn

λµ B.

Proof: Since the λ-calculus is a subsystem of the λµ-calculus any type isomorphism of the λ-
calculus is an isomorphism of the λµ-calculus. In the other direction we just verify, with
corollary 6.1, that the theory En(→,∧,>) is validated by the λ-calculus. 2

This gives a new proof of the equational theory of the isomorphisms of types for the λ-
calculus [23, 12].

6.2 Call-by-value isomorphisms

Values are particular λµ-terms defined by the following grammar:

V ::= x | λx.t | <V, V > | π1V | π2V | ? | µ(α, β)[α]V | µ(α, β)[β]V

with α, β /∈ V .
The call-by-value typed equational theory =cbv

βηµρθ of the λµ-calculus [22] is generated by:

(λx.t)V =β t[V /x] : A
λx.(V)x =η V : A → B x /∈ V

π1<V,W> =β V : A
π2<V,W> =β W : A

<π1V, π2V > =η V : A ∧ B
? =η V : >

(λx.x)t =β t : A
(λy.u)(λx.t)v =β (λx.(λy.u)t)v : A x /∈ u

(λx.(λy.(x)y)t)u =β (u)t : A x /∈ t
(λx.(λy.<x, y>)t)u =β <u, t> : A ∧ B x /∈ t

(λx.π1x)t =β π1t : A
(λx.π2x)t =β π2t : A

(λx.t)µα.u =µ µα.u[(λx.[α]t)v/[α]v] : A α /∈ t

[β]µα.t =ρ t[β/α] : ⊥
µα[α]t =θ t : A α /∈ t

[α′, β′]µ(α, β).t =ρ t[α
′

/α, β′

/β] : ⊥
µ(α, β)[α, β]t =θ t : A ∨ B α, β /∈ t

[α]t =ρ t : ⊥
(λx.[α]x)t =β [α]t : ⊥

(λx.[α, β]x)t =β [α, β]t : ⊥

21

where V and W are values.
The translation of the call-by-value λµ-calculus into LLP is obtained by translating types as

positive formulas:

X+ = X

(A → B)+ = !(A+ (?B+) = !(A+⊥ �
?B+)

(A ∧ B)+ = A+ ⊗ B+

>+ = 1

(A ∨ B)+ = A+ ⊕ B+

⊥+ = 0

the judgment Γ ` t : A | ∆ is translated as ` (Γ+)⊥, ?A+, ?∆+. The translation of terms is then
easy to derive and is given in [15].

Proposition 7 (Simulation)
If t and u are two λµ-terms such that t =cbv

βηµρθ u then t+ =βη u+.

Definition 27 (Ev-isomorphism)
Let Ev be the equational theory generated by the following equations:

A ∧ B = B ∧ A

A ∧ (B ∧ C) = (A ∧ B) ∧ C

A ∧ > = A

A ∨ B = B ∨ A

A ∨ (B ∨ C) = (A ∨ B) ∨ C

A ∨ ⊥ = A

A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C)

A ∧ ⊥ = ⊥

(A ∨ B) → C = (A → C) ∧ (B → C)

⊥ → A = >

Two types A and B are Ev-isomorphic, denoted by A 'Ev
B, if they are equal in the theory Ev.

The theory Ev(→,∧,>) is given by:

A ∧ B = B ∧ A

A ∧ (B ∧ C) = (A ∧ B) ∧ C

A ∧ > = A

Remark: In particular, A → (B → C) 6' B → (A → C) because λx.λy.(f)xy 6= f in call-by-value.

Proposition 8
If A and B are two types, A 'cbv

λµ B ⇐⇒ A+ 'LLP B+ ⇐⇒ A 'Ev
B.

22

Proof: The first implication A 'cbv
λµ B ⇒ A+ 'LLP B+ is a consequence of proposition 5: if

x : B ` t : A | and y : A ` u : B | with compositions equal to identity, we obtain two proofs

t+ of ` A+⊥
, ?B+ and u+ of ` B+⊥

, ?A+ which are isomorphisms in LLP (see remark after
theorem 2).

The second implication A+ 'LLP B+ ⇒ A 'Ev
B is proved with theorem 2 which implies

A+? 'f B+?
. In the spirit of lemmas 8 and 10, we can show that any type is equal in Ev

to a type with the connectives ∨ and ⊥ appearing only in head position, and two such types
corresponding to isomorphic forests are equal in Ev.

The third implication A 'Ev
B ⇒ A 'cbv

λµ B is just a syntactical verification. 2

Corollary 8.1
If A and B are two types using only the connectives →, ∧ and >, A 'cbv

λµ B ⇐⇒ A 'Ev(→,∧,>) B.

Proof: By theorem 2, we have A+? 'f B+?
and we can show that two types based only on →,

∧ and > with the same associated forest are equal in Ev(→,∧,>) as for lemma 10.

The other direction is immediate with proposition 8. 2

The equational theory for the call-by-value λ-calculus [20] (or λv-calculus) is given by:

(λx.t)V =β t[V /x] : A
λx.(V)x =η V : A → B x /∈ V

π1<V,W> =β V : A
π2<V,W> =β W : A

<π1V, π2V > =η V : A ∧ B
? =η V : >

Corollary 8.2
If A and B are two types using only the connectives →, ∧ and >, A 'λv

B ⇐⇒ A 'cbv
λµ B.

Proof: The call-by-value λ-calculus is a subsystem of the call-by-value λµ-calculus and that
gives the first implication. In the other direction we just verify that the theory Ev(→,∧,>)
is validated by the λv-calculus. 2

7 Classical and intuitionistic disjunctions

In the previous sections, we have been able to give a finite axiomatization of the theory of isomor-
phisms of types for the call-by-name λµ-calculus with disjunction (∨) and contradiction (⊥) types.
However, Balat, Di Cosmo and Fiore [13] have shown that, in the λ-calculus case, this theory is
not finitely axiomatizable. We are going to discuss this seeming contradiction.

The equational theory of the call-by-name λµ-calculus for the language corresponding to types
→, ∧ and > is a conservative extension of the equational theory of the λ-calculus for the same
types. When we go to the disjunction case, this is not true anymore. The equational theory of the
λ-calculus with disjunction corresponding to the axioms of bicartesian closed categories contains:

case t with x 7→ u[inl x/z]

y 7→ u[inr y/z]
= u[t/z] (1)

23

which is used to prove the isomorphism (A ∨ B) → C ' (A → C) ∧ (B → C) (wrong in the
call-by-name λµ-calculus). If we consider the two main particular cases of (1): u = z and t = z,
we obtain for u = z:

case t with x 7→ inl x

y 7→ inr y
= t (2)

This equation is validated in the λµ-calculus and corresponds to:

µγ[γ](λy.µ(α, β)[β]y)µβ[γ](λx.µ(α, β)[α]x)µα[α, β]t = t

with α, β /∈ t. But with t = z in (1):

case z with x 7→ u[inl x/z]

y 7→ u[inr y/z]
= u (3)

and this equation is not realized in the λµ-calculus.
From a categorical point of view, the notion of control category [22] which gives the models

of the call-by-name λµ-calculus is based on a disjunction which is a binoidal functor and not a
bifunctor. Selinger proved that a control category with a bifunctorial disjunction is a boolean
algebra and we are back to section 1. This shows that, in some sense, the theories of the λ-calculus
with disjunction and of the λµ-calculus with disjunction are incompatible.

This explains how our result is not comparable with Balat-Di Cosmo-Fiore’s one, in particu-
lar the disjunction distributes over the conjunction here and this is the converse in their setting.
The only result we can deduce about the λ-calculus from ours are the equations for the isomor-
phisms of types of the λ-calculus with a constrained disjunction which verifies equation (2) but not
equation (1).

8 Tarski’s problem

The question of isomorphisms of types consists in finding some equational characterization of the
isomorphisms of a given logical system, whereas Tarski’s problem consists in proving that some
equational theory characterizes the equality in some number structure (natural numbers with se-
lected operations: +, ×, ..., real numbers, ...).

Composing these two questions, we can try to find number structures and logical systems such
that equality in the first one corresponds to isomorphisms of types in the second one. The key
result of this kind is given by theorem 3 and an interesting use of such a correspondence is given
in [13].

We are going to describe the relations between polarized isomorphisms and the associated
number models. As a consequence, these results give also relations with call-by-name and call-by-
value classical isomorphisms.

Definition 28 (Tarski model of isomorphisms)
Let S be a logical system, a Tarski model of the isomorphisms of S is a model of the equational
theory corresponding to the isomorphisms of types of S which doesn’t validate any other universally
closed equation.

Theorem 3 (Soloviev [23])
(N, ·, 1, (−)−) is a Tarski model of the isomorphisms of the simply typed λ-calculus with the con-
nectives (→,∧,>).

24

Corollary 3.1
(N, ·, 1, (−)−) is a Tarski model of the isomorphisms of the simply typed call-by-name λµ-calculus
with the connectives (→,∧,>).

Proof: We have shown in corollary 6.2 that the equational theory for the isomorphisms of types
of the call-by-name λµ-calculus and of the λ-calculus are the same for the language (→,∧,>).
2

We are going to use Macintyre’s result on Schanuel’s conjecture and exponential rings [18] to
give a sufficient condition to be a Tarski model of the positive isomorphisms of LLP. By duality,
this gives also models of the negative isomorphisms and, as a consequence, models of call-by-name
and call-by-value classical isomorphisms.

We recall some definitions about exponential rings [24] with the slightly more general case of
exponential semi-rings.

Definition 29 (Semi-ring)
A semi-ring is a tuple (R,+, 0, ·, 1) such that (R,+, 0) is a commutative monoid and (R, ·, 1) is a
monoid (if it is commutative, the semi-ring is commutative), and moreover:

x · (y + z) = (x · y) + (x · z)

(y + z) · x = (y · x) + (z · x)

x · 0 = 0

0 · x = 0

Definition 30 (Exponential semi-ring)
An exponential semi-ring (R,+, 0, ·, 1, E) is a commutative semi-ring (R,+, 0, ·, 1) with a map E
from R to R such that:

E(x + y) = E(x) · E(y)

E(0) = 1

so that E is a morphism of monoid from (R,+, 0) to (R, ·, 1).

The theory of exponential semi-rings is equational and coincides with the theory of polarized
isomorphisms written in a purely positive language:

A ⊗ B = B ⊗ A
(A ⊗ B) ⊗ C = A ⊗ (B ⊗ C)

A ⊗ 1 = A
A ⊕ B = B ⊕ A

(A ⊕ B) ⊕ C = A ⊕ (B ⊕ C)
A ⊕ 0 = A

A ⊗ (B ⊕ C) = (A ⊗ B) ⊕ (A ⊗ C)
A ⊗ 0 = 0

¬(A ⊕ B) = ¬A ⊗ ¬B
¬0 = 1

where ¬P stands for !P⊥. We just interpret ⊕ by +, 0 by 0, ⊗ by ·, 1 by 1 and ¬ by E.

Definition 31 (Exponential ring)
An exponential semi-ring R is an exponential ring if the underlying semi-ring is a ring.

25

Definition 32 (Schanuel’s condition)
Let R be an exponential ring which is a domain and has characteristic 0, R satisfies Schanuel’s condi-
tion if for any α1, ..., αn in R linearly independent over Q, the ring Z[α1, . . . , αn, E(α1), . . . , E(αn)]
has transcendence degree at least n over Z.

Theorem 4 (Macintyre [18])
If R is an exponential ring which satisfies Schanuel’s condition, if e1 = e2 is a closed equation in
the language (+, 0, ·, 1, E) true in R, it is also true in the free exponential ring on 0 generators.

Corollary 4.1
If R is an exponential ring which satisfies Schanuel’s condition, R is a Tarski model of the positive
isomorphisms of LLP.

In the particular case of the exponential ring (R,+, 0, ·, 1, e), the fact that R satisfies Schanuel’s
condition is called Schanuel’s conjecture.

Corollary 4.2
If Schanuel’s conjecture is true, (R,+, 0, ·, 1, e) is a Tarski model of the positive isomorphisms of
LLP.

The terminology for the linear connectives given by Girard is the following: ⊗,
�

, 1 and ⊥
are the multiplicative connectives, ⊕, &, 0 and > are the additive connectives and ! and ? are the
exponential connectives. This originally came from linear algebra and from the key isomorphism
of LL: !(A & B) = !A⊗ !B. We somehow give here a concrete interpretation of these ideas by really
interpreting the linear connectives by the corresponding operations on real numbers: additives by
+, multiplicatives by · and exponentials by e.

Macintyre’s result gives a sufficient condition for having a Tarski model. Concerning a necessary
condition we can just make a few remarks. A Tarski model of the positive isomorphisms of LLP

must be an exponential semi-ring S and its characteristic must be 0. Otherwise there exists some
p such that 1 + · · · + 1

︸ ︷︷ ︸

p

= 0, this gives an equation which is not valid in LLP. We can always move

to the case of rings by introducing the free exponential ring R generated by S. If this ring doesn’t
satisfies Schanuel’s condition, it must at least verify that E(1), E(E(1)), E(E(E(1))), ... are
transcendental otherwise from a polynomial P such that P (En(1)) = 0 we can derive an equation
on the language (+, 0, ·, 1, E) by decomposing P = P1 − P2 with P1 and P2 in this language:
P1(E

n(1)) = P2(E
n(1)) which is not valid in LLP. In particular if (R,+, 0, ·, 1, e) is a Tarski model

of LLP, ee must be transcendental and this is an open problem in number theory.

Remark: If we look at the translation of the call-by-value implication A → B in LLP we obtain
!(A(?B) = !(A⊥ �

?B). It seems natural to interpret it by BA = eA lnB but ? transforms ⊕ into
�

while ln transforms · into + and we can’t see any use for this.

Assuming Schanuel’s conjecture, R is a Tarski model of the isomorphisms of LLP, this entails
that we can associate with any equation on real numbers in the language (+, 0, ·, 1, e), an algo-
rithmic interpretation by computing the proofs in LLP corresponding to this isomorphism (or the
corresponding λµ-terms).

26

Further work

We have shown how a game semantics approach allows to characterize classical isomorphisms of
types (and as a consequence to give a new proof for the intuitionistic ones) in a propositional
setting. Previous syntactical works [12] allowed to give results on polymorphic systems. We can
wonder if it is possible to extend our game approach to the second order setting.

An advantage of game semantics is the possibility of modeling not only the λ-calculus and other
logical systems but also programming primitives of various kinds: non determinism [14], ground
type references [3], general references [1], ... The key result of our approach is theorem 1 and if
we look at the proof we can see that we only use determinism and visibility of strategies and from
a computational viewpoint this corresponds to the game model of Idealized Algol (IA) [3]. As a
consequence this theorem gives a characterization of the isomorphisms of types for IA. However we
use the visibility condition so that our result cannot be directly applied to general references and
we can wonder if it is possible to remove this constraint in our proof to extend the result.

A more general question than isomorphisms of types is the characterization of retractions in a
given logical system. This is known to be a difficult problem for the λ-calculus [19]. We can try
to apply game semantics ideas to address this problem.

Another related question is the study of isomorphisms of types in usual Linear Logic. Balat
and Di Cosmo have given a syntactical characterization of the isomorphisms of types in MLL [6]
(the multiplicative fragment of Linear Logic). The question of the extension of this result to richer
fragments of LL remains open. We must precise that our complete characterization of polarized
isomorphisms cannot be directly of help for the LL problem which is a strongly more general
one. However we could hope to apply game semantics, as we have done here, in a non polarized
setting. For example MLL game semantics [2] might be use to give an alternative proof of Balat
and Di Cosmo’s result. The extension to richer fragments is once again problematic since we still
don’t know if game models are precise enough for these fragments. Two possible fragments to look
at are the MALL case for which Abramsky and Melliès’ model [4] might be used and the MELL case
with Baillot-Danos-Ehrhard-Regnier’s model [5].

Thanks to V. Danos for his suggestions on a previous game model that led to this work, and
thanks to V. Balat and R. Di Cosmo for having introduced me to the question of isomorphisms of
types.

References

[1] Samson Abramsky, Kohei Honda, and Guy McCusker. A fully abstract game semantics for
general references. In Proceedings of the thirteenth annual symposium on Logic In Computer
Science, pages 334–344, Indianapolis, June 1998. IEEE, IEEE Computer Society Press.

[2] Samson Abramsky and Radha Jagadeesan. Games and full completeness for multiplicative
linear logic. Journal of Symbolic Logic, 59(2):543–574, June 1994.

[3] Samson Abramsky and Guy McCusker. Full abstraction for idealized algol with passive ex-
pressions. Theoretical Computer Science, 227:3–42, September 1999.

[4] Samson Abramsky and Paul-André Melliès. Concurrent games and full completeness. In
Proceedings of the fourteenth annual symposium on Logic In Computer Science, pages 431–
442, Trento, July 1999. IEEE, IEEE Computer Society Press.

27

[5] Patrick Baillot, Vincent Danos, Thomas Ehrhard, and Laurent Regnier. Believe it or not,
AJM’s games model is a model of classical linear logic. In Proceedings of the twelfth annual
symposium on Logic In Computer Science, pages 68–75, Warsaw, June 1997. IEEE, IEEE
Computer Society Press.

[6] Vincent Balat and Roberto Di Cosmo. A linear logical view of linear type isomorphisms. In
Jörg Flum and Mario Rodŕıguez-Artalejo, editors, Computer Science Logic, volume 1683 of
Lecture Notes in Computer Science, pages 250–265. Springer, 1999.

[7] Gérard Berry and Pierre-Louis Curien. Sequential algorithms on concrete data structures.
Theoretical Computer Science, 20:265–321, 1982.

[8] Kim Bruce, Roberto Di Cosmo, and Guiseppe Longo. Provable isomorphisms of types. Math-
ematical Structures in Computer Science, 2(2):231–247, 1992. Proceedings of Symposium on
Symbolic Computation, ETH, Zurich, March 1990.

[9] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. LKQ and LKT: Sequent calculi
for second order logic based upon dual linear decompositions of classical implication. In Jean-
Yves Girard, Yves Lafont, and Laurent Regnier, editors, Advances in Linear Logic, volume
222 of London Mathematical Society Lecture Note Series, pages 211–224. Cambridge University
Press, 1995.

[10] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. A new deconstructive logic: linear
logic. Journal of Symbolic Logic, 62(3):755–807, September 1997.

[11] Mariangiola Dezani-Ciancaglini. Characterization of normal forms possessing an inverse in the
λβη-calculus. Theoretical Computer Science, 2:323–337, 1976.

[12] Roberto Di Cosmo. Isomorphisms of Types. Progress in Theoretical Computer Science.
Birkhäuser, 1995.

[13] Marcelo Fiore, Roberto Di Cosmo, and Vincent Balat. Remarks on isomorphisms in typed
lambda calculi with empty and sum types. In Proceedings of the seventeenth annual symposium
on Logic In Computer Science, pages 147–156, Copenhagen, July 2002. IEEE, IEEE Computer
Society Press.

[14] Russel Harmer. Games and Full Abstraction for Nondeterministic Languages. Ph.D. thesis,
Imperial College and University of London, 1999.

[15] Olivier Laurent. Etude de la polarisation en logique. Thèse de
doctorat, Université Aix-Marseille II, March 2002. Available at
http://www.pps.jussieu.fr/∼laurent/these.ps.gz .

[16] Olivier Laurent. Syntax vs. semantics: a polarized approach. Prépublication électronique
PPS//03/04//n◦17 (pp), Laboratoire Preuves, Programmes et Systèmes, March 2003. Sub-
mitted for publication.

[17] Paul Blain Levy. Call-by-push-value: A subsuming paradigm. In Jean-Yves Girard, editor,
Typed Lambda Calculi and Applications ’99, volume 1581 of Lecture Notes in Computer Science,
pages 228–242. Springer, April 1999.

28

[18] Angus Macintyre. Schanuel’s conjecture and free exponential rings. Annals of Pure and Applied
Logic, 51:241–246, 1991.

[19] Vincent Padovani. Retracts in simple types. In Samson Abramsky, editor, Typed Lambda
Calculi and Applications ’01, volume 2044 of Lecture Notes in Computer Science, pages 376–
384. Springer, May 2001.

[20] Gordon Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Computer Science,
1:125–159, 1975.

[21] Mikael Rittri. Using types as search keys in function libraries. Journal of Functional Program-
ming, 1(1):71–89, 1991.

[22] Peter Selinger. Control categories and duality: on the categorical semantics of the lambda-mu
calculus. Mathematical Structures in Computer Science, 11(2):207–260, April 2001.

[23] Sergei Soloviev. The category of finite sets and cartesian closed categories. Journal of Soviet
Mathematics, 22(3):1387–1400, 1983.

[24] Lou van den Dries. Exponential rings, exponential polynomials and exponential functions.
Pacific Journal of Mathematics, 113(1):51–66, 1984.

29

