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Provence.

1



Abstract

In this paper, we prove a uniqueness theorem for the potential V (x) of the following
Schrödinger operator H = −∆+q(|x|)+V (x) in R

2, where q(|x|) is a known increasing
radial potential satisfying lim|x|→+∞ q(|x|) = +∞ and V (x) is a bounded potential.

1 Introduction

Recently, a lot of papers have dealt with inverse problems for Schrödinger Operators
in the whole space or in half space (see for example [ER], [GR], [I1], [W]). In all these
papers, the potential has to be decreasing towards infinity.
Our aim is to study an inverse problem for a potential which tends to infinity at infinity.
There are many papers on inverse spectral problems for increasing potentials on the
line or on the half-line (see [GS1], [GS2]) but to our knowledge, there are no results in
R

2.
Let Q be a potential such that:

Q ∈ L1
loc(R

2),

Q(x) ≥ α where α is a constant,

lim
|x|→+∞

Q(x) = +∞.

We recall the well-known result that the operator H = −∆ + Q, considered as an
operator in L2(R2), admits a compact inverse. Its spectrum is discrete and consists of
eigenvalues: λ1 ≤ λ2 ≤ ... ≤ λn →n→+∞ +∞. Furthermore, the first eigenvalue λ1 is
simple and associated with an eigenfunction φ1 > 0. (see [Ab], [Ag1], [Ag2], [EE]).
In the present paper, we shall consider the following problem

(−∆ + q(|x|) + V (x))u = λu in R
2 (1.1)

where λ ∈ R
∗+, q is a known increasing radial potential satisfying q(|x|) ∈ C2(R);

lim|x|→+∞ q(|x|) = +∞ and V is a bounded potential.
Denote |x| = r and

Cλ,p(V ) := lim
r→+∞

2q1/4r1/2e
∫

(q1/2−λ
2
q−1/2)

∫ 2π

0
u(r, θ)e−ipθdθ, (1.2)

where
∫
(q1/2 − λl

2 q
−1/2) denotes a primitive of (q1/2 − λl

2 q
−1/2) and u is a solution of

(1.1). Consider the following statements:

(h1) q(|x|) + V (x) ≥ α where α is a constant

(h2) ∀N ∈ N
∗,∃CN ∈ R

∗+, |V (r, θ)| ≤ CN (1 + r)−Ne−
∫

q1/2

(h3) limr→+∞
q′(r)

q3/2(r)
= 0

(h4) q′′(r)

q3/2(r)
= O( 1

r2q1/2(r)
, 1

q3/2(r)
, q′(r)

q2(r)
), and q′2(r)

q5/2(r)
= O( 1

r2q1/2(r)
, 1

q3/2(r)
, q′(r)

q2(r)
)

(h5) 1
r2q1/2(r)

, 1
q3/2(r)

and q′(r)
q2(r)

∈ L1[1,+∞[
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(h6) q−1/4e−
∫

(q1/2−λ
2
q−1/2) ∈ L2[1,+∞[

(h7)
∫ +∞
r o

(
e−2

∫
(q1/2−λ

2
q−1/2)

)
= o

(
e−2

∫
(q1/2−λ

2
q−1/2)

)

(h8) q−1/4e
∫

(q1/2−λ
2
q−1/2

) /∈ L2[1,+∞[

For example, q(|x|) = |x|2 satisfies each of the previous hypotheses.
Our aim is to prove the following theorem.
Theorem:

Let V (x) and W (x) be two bounded potentials with compact support, both satisfying
(h1) and (h2). Denote by (λl(V ))l (resp. (λl(W ))l) the eigenvalues of the operator
−∆ + q(|x|) + V (x) (resp. −∆ + q(|x|) +W (x)). Assume also the validity of (h3) to
(h8).

If ∀l ∈ N
∗, ∀p ∈ N,





λl(V ) = λl(W )
and
Cλl,p(V ) = Cλl,p(W )

then V = W.

We shall follow a method used by T.Suzuki in a bounded domain [Su]. This method
has been generalized by H.Isozaki [I2] for the anharmonic operator in R

2. In the first
step, we study the asymptotic behaviour of the solutions of a second order differential
equation which stems from equation (1.1). Then we prove that under hypotheses
(h1) to (h8), the constant Cλl,p(V ) exists. In the second step, we prove that the first
eigenfunctions associated with V and W are the same, and since the first one is strictly
positive, we are able to come to the above conclusion.
Remarks:
Note that Cλl,p is a theoretical constant whose physical interpretation is not easy.
The hypothesis Cλl,p(V ) = Cλl,p(W ) is rather weak, because we need not take care of
the multiplicity of the eigenvalues nor of any normalization of the eigenfunctions.

2 Asymptotic behaviour of a solution

Here we study the asymptotic behaviour of the solutions of the following equation :

(−∆ + q(|x|) + V (x))u = λu in R
2

where q is a known increasing radial potential satisfying q(|x|) ∈ C2(R);
lim|x|→+∞ q(|x|) = +∞ and V is a bounded potential.
Put |x| = r. We use polar coordinates to define up

up(r) = r1/2

∫ 2π

0
u(r, θ)e−ipθdθ. (2.1)

Using (1.1) and (2.1), we get :

− u′′p(r) + (
p2 − 1/4

r2
+ q(r) − λ)up(r) = fp(r), (2.2)
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where

fp(r) = −r1/2

∫ 2π

0
V (r, θ)u(r, θ)e−ipθdθ. (2.3)

We are now able to prove the following theorem.

Theorem 2.1 Let q and V be potentials defined as before, satisfying (h1) to (h8) , λ
and a two positive reals. Then the equation

− u′′(r) + (
a

r2
+ q(r) − λ)u(r) = 0 (2.4)

has a system of fundamental solutions with the asymptotic behaviour:

¯̄u1 ∼
1

2
q−1/4e−

∫
(q1/2−λ

2
q−1/2) for r → +∞, (2.5)

¯̄u2 ∼ q−1/4e
∫
(q1/2−λ

2
q−1/2) for r → +∞. (2.6)

Furthermore, the Wronskian ¯̄u1
¯̄u′2 −

¯̄u′1¯̄u2 = 1.

Proof :

First step

We set y =

(
u
u′

)
; using (2.4) we get :

y′ =

(
u′

u′′

)
=

(
0 1

q(r) − λ+ a
r2 0

)(
u
u′

)
=

(
0 1

q(r) − λ+ a
r2 0

)
y. (2.7)

We denote

k = k(r) =

√
q(r) − λ+

a

r2
, P =

(
1 −1
k k

)
, y = P ỹ. (2.8)

If we combine the two relations (2.7) and (2.8), we obtain :

ỹ′ = P1ỹ with P1 = P−1

[(
k k
k2 −k2

)
− P ′

]
, (2.9)

where P ′ is the derivative of the matrix P with respect to the variable r.
Next, we compute for each term of the matrix P1, an appropriate Taylor polynomial;
this allows us to write (2.9) in the form

ỹ′ =

(
q1/2 − λ

2q1/2 − q′

4q − q′

4q

− q′

4q −q1/2 + λ
2q1/2 − q′

4q

)
ỹ +R

(
1

r2q1/2(r)
,

1

q3/2(r)
,
q′(r)

q2(r)

)
ỹ.

(2.10)

Remark : R
(

1
r2q1/2(r)

, 1
q3/2(r)

, q′(r)
q2(r)

)
shall be a 2 × 2-matrix where all the coefficients

are in the form O
(

1
r2q1/2(r)

, 1
q3/2(r)

, q′(r)
q2(r)

)
= O( 1

r2q1/2(r)
) +O( 1

q3/2(r)
) +O( q′(r)

q2(r)
) .

4



Second step

Consider

ỹ =

(
I −

q′

4q3/2
P2

)
z. (2.11)

We look for P2 such that z′ = A(q)z + R

(
1

r2q1/2(r)
,

1

q3/2(r)
,
q′(r)

q2(r)

)
z, with A(q) a

diagonal matrix. Then (2.10) can be written :

ỹ′ =

[
(q1/2 −

λ

2q1/2
)A0 +

q′

4q
A2

]
ỹ +R

(
1

r2q1/2(r)
,

1

q3/2(r)
,
q′(r)

q2(r)
)

)
ỹ, (2.12)

with A0 =

(
1 0
0 −1

)
and A2 =

(
−1 −1
−1 −1

)
. Substituting the derivative of (2.11) in

the equation (2.12) yields

z′ =

[
(q1/2 −

λ

2q1/2
)A0 +

q′

4q
(P2A0 −A0P2 +A2)

]
z+R

(
1

r2q1/2(r)
,

1

q3/2(r)
,
q′(r)

q2(r)

)
z.

(2.13)
We set

A(q) = (q1/2 −
λ

2q1/2
)A0 +

q′

4q
(P2A0 −A0P2 +A2). (2.14)

Then, putting P2 =

(
0 −1/2

1/2 0

)
, we get :

z′ = A(q)z +R

(
1

r2q1/2(r)
,

1

q3/2(r)
,
q′(r)

q2(r)

)
z, (2.15)

with

A(q) =

(
q1/2 − λ

2q1/2 − q′

4q 0

0 −q1/2 + λ
2q1/2 − q′

4q

)
. (2.16)

Third step

We will look at the asymptotic behaviour of z. We will search a diagonal matrix E(q)
such that E′(q) = A(q)E(q). Introduce the new variable v defined by z = E(q)v, with

E(q) =

(
q−1/4e

∫
(q1/2− λ

2q1/2
)

0

0 1
2(q−1/4e

−
∫

(q1/2− λ

2q1/2
)
)

)
=

(
E1 0
0 E2

)
.

Then we have

v′ = E−1(q)R(q)E(q)v =

(
K1

K2

)
v. (2.17)

We define the mapping T and the subset F as follows :

v →

{
−
∫∞
r K1v(t)dt

ξ2 +
∫ r
r0
K2v(t)dt,
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F = {v = (v1, v2);∀i vi : [r0,∞) → R, v1 = o(e
−2
∫

(q1/2− λ

2q1/2
)
), sup

r≥r0

|v2(x)| < +∞}.

Then for a suitable choice of r0 and ξ2 6= 0, the mapping T : F → F is a contraction
(cf Appendix A), and thus we can find an unique v, solution of (2.17). So we get z,
and thus ỹ, and finally y. From the asymptotic behaviour of z, which is given via the
components of the matrix E(q), we obtain the asymptotic behaviour of u in the form
u ∼ E1v1−E2v2. Since v ∈ F , E1

E2
v1 = o(1) and v tends to ξ2 6= 0 as r tends to infinity,

we deduce that E2 describes an asymptotic behaviour of a solution of (2.4). So we can
prove that E1 is another asymptotic behaviour of a solution of (2.4), using a standard
transformation. Finally, we deduce (2.5) and (2.6), and find that the Wronskian is
equal to 1. This concludes the proof.

First we have to prove that the constant defined by (1.2) actually exists. This is the
following lemma :

Lemma 2.1 Let u be in L2(R2) such that (H − λ)u = 0 for λ a positive real with

H = −∆ + q(|x|) + V (x),

where q is an increasing radial potential which tends to infinity at infinity and q and
V satisfy the hypotheses (h1) to (h8). Then the following limit exists

lim
r→+∞

2q1/4r1/2e
∫

(q1/2−λ
2
q−1/2)

∫ 2π

0
u(r, θ)e−ipθdθ = Cλ,p(V ). (2.18)

Proof :

Let u be the solution of (−∆+q(|x|)+V (x))u = λu. Setting up(r) = r1/2
∫ 2π
0 u(r, θ)e−ipθdθ,

then up is the solution of the equation

− u′′p(r) + (
p2 − 1/4

r2
+ q(r) − λ)up(r) = fp(r), (2.19)

with fp(r) = −r1/2
∫ 2π
0 V (r, θ)u(r, θ)e−ipθdθ. Then, by using the theorem 2.1 and the

hypotheses (h3) to (h8), we obtain the existence of the limit (2.8) (see Appendix B).

3 Unicity Theorem

We can now state the unicity theorem. We consider the operators −△+q(|x|) + V (x)
and − △ +q(|x|) + W (x), where q(|x|) is an increasing radial potential verifying the
hypotheses (h3) to (h8), V (x) and W (x) having compact support.
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Theorem 3.1 Let V and W be two bounded potentials with compact support.
If ∀l ∈ N

∗, ∀p ∈ N,




λl(V ) = λl(W )
and
Cλl,p(V ) = Cλl,p(W )

then V = W.

Proof:

Let λ1 < λ2 < . . . be the eigenvalues of the operators − △ +q(|x|) + V (x) and
−△ +q(|x|) +W (x).
Let ϕ1, ϕ2, ϕ3, . . . be the normalized eigenfunctions associated with the potential V .
Let ψ1, ψ2, ψ3, . . . be the normalized eigenfunctions associated with the potential W .
We assume that suppV ⊂ {x; |x| < R} and suppW ⊂ {x; |x| < R}, R being a fixed
real. We are going to prove that ϕ1(x) = ψ1(x), for all x.
First step

We prove that
∀l, ϕl(x) = ψl(x), if |x| > R. (3.1)

Recall that if |x| > R then




(−△ +q(|x|))ϕl = λlϕl

and
(−△ +q(|x|))ψl = λlψl

We decompose ϕl and ψl relative to the trigonometric functions basis {e−ikθ}k, and
we prove that all the coefficients are equal. For this purpose, we put

al,k(r) =

∫ 2π

0
ϕl(r, θ) e

−ikθ dθ and bl,k(r) = r
1
2 al,k(r).

If r > R then the function bl,k(r) is the solution of

−b”l,k(r) + (
k2 − 1

4

r2
+ q(r) − λl)bl,k(r) = 0

This equation has the following fundamental system of solutions (cf theorem 2.1)

bl,k(r) = C1u1(r) + C2u2(r) with





¯̄u1 ∼ 1
2q

−1
4 e

∫
(
−q

1
2 + λ

2q
1
2

)

for r → +∞

¯̄u2 ∼ q
−1
4 e

∫
(

q
1
2 − λ

2q
1
2

)

for r → +∞.

But, bl,k(r) ∈ L2 ⇒ C2 = 0, so we get that bl,k(r) = C1u1(r).
In the same way, we prove that if b̃l,k are the functions associated with ψl(r), then
b̃l,k(r) = C̃1u1(r). Using the hypotheses





λl(V ) = λl(W )
and
Cλl,p(V ) = Cλl,p(W ),
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we have
bl,k(r) = b̃l,k(r), ∀l and ∀k.

This yields the first step.
Second step

It is necessary to prove that ϕ1 and ψ1 are equal everywhere. For this, we use an idea
of [Su] who uses this method to solve an interior problem. Note that this method has
been generalized by [I2] in the whole space for the anharmonic operator.
We consider

K(x, y) =
∑

l

ϕl(y){ψl(x) − ϕl(x)} (3.2)

and we have
K(x, y) =

∑

l

ψl(x){ϕl(y) − ψl(y)} (3.3)

Remark : It is necessary to prove that K(x, y) has a sense in the distributions space.
For the first series the convergence comes from [Sch], and the second series represents
δ(x−y) in D′

x (see Appendix C). Indeed, we note that K is an ultrahyperbolic operator.
For, if {

Vx = −△x +q(|x|) + V (x), x ∈ R
2,

Wy = −△y +q(|y|) +W (y), y ∈ R
2,

then
Vx K(x, y) = Wy K(x, y) if x 6= y. (3.4)

Furthermore,

K(x, y) = 0





if |x| > R and x 6= y,
or ,
if |y| > R and x 6= y.

(3.5)

Indeed, if x 6= y and since ψl(x) = ϕl(x) if |x| > R,
K(x, y) =

∑
l ψl(x)ϕl(y) =

∑
l ϕl(x)ϕl(y) = δ(x − y) = 0 in D′

x.
In the same way we have, since ψl(y) = ϕl(y) if |y| > R,
K(x, y) =

∑
l ψl(x)ϕl(y) =

∑
l ψl(x)ψl(y) = δ(x− y) = 0 in D′

x.
We can add that

V m
x K(x, y) = 0 if |x| > R and |y| < R. (3.6)

We put for all t > 0

Ft(x, y) =
∑

l≥1

e−tλl ψl(x){ϕl(y) − ψl(y)}. (3.7)

This series converges, because we can write

Ft(x, y) =
∑

l≥1

e−tλl ψl(x)ϕl(y) −
∑

l≥1

e−tλl ψl(x)ψl(y) (see [Sch]).

First, we prove that Ft(x, y) = 0 if |x| > R and |y| < R. We have
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Ft(x, y) =

+∞∑

n=0

tn

n!
(−Vx)n K(x, y). (3.8)

Indeed, e−tλl =
∑+∞

n=0
tn

n! (−λl)
n , and by using (3.7), we obtain

Ft(x, y) =
∑

l≥1

+∞∑

n=0

tn

n!
(−λl)

n ψl(x){ϕl(y) − ψl(y)},

and then

Ft(x, y) =

+∞∑

n=0

tn

n!

∑

l≥1

(−λl)
n ψl(x){ϕl(y) − ψl(y)} =

+∞∑

n=0

tn

n!
(−Vx)n K(x, y).

¿From (3.6) and (3.8) we can conclude.
Now, multiplying Ft(x, y) by etλ1 , we obtain,

etλ1 Ft(x, y) = 0 = ψ1(x){ϕ1(y) − ψ1(y)} +
∑

l≥2

e−t(λl−λ1) ψl(x){ϕl(y) − ψl(y)}. (3.9)

We prove (see Appendix D) that the limit, when t tends to infinity, of the second term
of the previous sum is equal to zero. Then we have ψ1(x){ϕ1(y) − ψ1(y)} = 0 for
|x| > R and |y| < R. So, since ψ1(x) has no zero, (see [R.S]),

ϕ1(y) − ψ1(y) = 0 for |y| < R. (3.10)

Thus, (3.1) and (3.10) give

ϕ1(x) = ψ1(x) for x ∈ R
2. (3.11)

Now, we can write,

[−△ +q(|x|) + V (x)](ϕ1(x)) = [−△ +q(|x|) +W (x)](ϕ1(x)),

hence
V (x)(ϕ1(x)) = W (x)(ϕ1(x)),

and, since (ϕ1(x)) has no zero, we can conclude that

V (x) = W (x) for all x ∈ R
2.

This uniqueness theorem for a compactly supported potential V (x) concerns the
Schrödinger operator H = −∆+q(|x|)+V (x) associated with an increasing unbounded
potential q(|x|). Recall that when the potentials are bounded, authors use the scat-
tering operator, the scattering amplitude or the Dirichlet to Neumann map to prove
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uniqueness results. Here, because of the unboundness potential q, the method is dif-
ferent and follows the method used by Isozaki [I2] for the anharmonic operator in R

2.
The uniqueness theorem is proved by using spectral data (the spectrum of H being a
pure point one).
We should note that potentials like q(|x|) = |x|n, (n ≥ 2) work fine if we replace the
hypothesis (h2) by

(h2′) : ∀N ∈ N
∗,∃CN ∈ R

∗+, |V (x)| ≤ CN (1 + r)−Ne−
2

n+2
2

n+2
4 r

n+2
2
.

Moreover, since the exponential function is increasing too rapidly ((h4) does not hold
) and since the logarithmic function is not increasing sufficiently ((h5) does not hold
), these two potentials do not satisfy our hypotheses.
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A Appendix

We prove that the map T is a contraction.
By (h5), we have:

∃C ∈]0, 1[, ∃r0, ∀r ≥ r0, |

∫ +∞

r
O(1/q1/2r2, 1/q3/2, q′/q2)| < C.

Let

F = {v = (v1, v2), ∀i, vi : [r0,+∞[→ R, v1 = o(e
−2
∫
(q1/2− λ

2q1/2) ), sup
r≥r0

|v2(r)| < +∞}.

Note that (F , ‖ · ‖∞) is a Banach space where

‖v‖∞ = max(‖v1‖∞, ‖v2‖∞).

For v ∈ F we define T (v) = w = (w1, w2) where

w1(r) = −

∫ +∞

r
K1v(t)dt and w2(r) = ξ2 +

∫ r

r0

K2v(t)dt.

By (h5) to (h7) we obtain that w ∈ F .
We note now that T is a contraction.
Indeed, if we define also for v∗ ∈ F , T (v∗) = w∗ = (w∗

1, w
∗
2), we obtain :

‖w1 −w∗
1‖∞ ≤ sup

r≥r0

∫ +∞

r
|O(1/q1/2r2, 1/q3/2, q′/q2)(v1(t) − v∗1(t))|dt

+ sup
r≥r0

∫ +∞

r
e
−2
∫

q1/2− λ

2q1/2 |O(1/q1/2r2, 1/q3/2, q′/q2)(v2(t) − v∗2(t))|dt

≤ C‖v − v∗‖∞.

We prove also easily that ‖w2 − w∗
2‖∞ ≤ C‖v − v∗‖∞.

B Appendix

We prove that the constant Cλ,p(V ) exists.
Let u1 and u2 be a fundamental system of solutions for (2.19). Then there exists c1
and c2, constants such that :

up(r) = c1u1(r) + c2u2(r) − u2(r)

∫ r

1
u1(t)fp(t)dt + u1(r)

∫ r

1
u2(t)fp(t)dt.

By (h2) we obtain that

∀N ∈ N
∗, ∃C ′

N ∈ R
∗+, |fp(r)| ≤ C ′

N (1 + r)−Ne−
∫

q1/2
.
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Therefore uifp ∈ L2([1,+∞[) for i = 1, 2.
Note that :

up(r) =

(
c1 +

∫ +∞

1
u2(t)fp(t)dt

)
u1(r) −

(∫ +∞

r
u2(t)fp(t)dt

)
u1(r)

+

(
c2 −

∫ +∞

1
u1(t)fp(t)dt

)
u2(r) +

(∫ +∞

r
u1(t)fp(t)dt

)
u2(r).

Since
∫ +∞
r u2(t)fp(t)dt = o(1) we deduce that

(∫ +∞
r u2(t)fp(t)dt

)
u1(r) ∈ L2([1,+∞[).

By (h7) we obtain also that
(∫ +∞

r u1(t)fp(t)dt
)
u2(r) ∈ L2([1,+∞[).

Since u2 /∈ L2([1,+∞[), we have that c2 =
∫ +∞
1 u1(t)fp(t)dt.

Therefore we can prove that : Cλ,p(V ) = c1 +
∫ +∞
1 u2(t)fp(t)dt.

C Appendix

Proof of
∑

p ϕp(y)ϕp(x) = δ(x− y) in D′
x.

We consider the function ΦN (x, y) =
∑N

p=1 ϕp(y)ϕp(x) and f an element of C∞
c , then

< ΦN (·, y), f(·) > =
∫

R
ΦN (x, y) f(x) dx

=
∑N

p=1 ϕp(y)
∫

R
ϕp(x) f(x) dx

=
∑N

p=1 f̃p ϕp(y),

where f̃p represents the coefficient of f in the basis {ϕp}p. Then,

limN−→+∞ < ΦN (·, y), f(·) > = limN−→+∞
∑N

p=1 f̃p ϕp(y)

=
∑+∞

p=1 f̃p ϕp(y)

= f(y)

=< δ(· − y), f(·) >

D Appendix

We prove that the limit of the second term of (3.9) is equal to zero when t tends to
infinity.
We multiply the second term of (3.9) by a test function for fixed N and fixed x, with
|x| > R, then

<
N∑

n=2

e−t(λn−λ1) ψn(x){ϕn(y) − ψn(y)}, f(y)) >=
N∑

n=2

e−t(λn−λ1) ψn(x)[f̃n − fn],
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where f̃n and fn represent the coefficients of f relative to the basis {ϕn}n and {ψn}n.
We are going to study the following expression

∑N
n=2 e

−t(λn−λ1) ψn(x)fn. Recall that
we are dealing with |x| > R, |y| < R, for all N ∈ N, for all f ∈ C∞

c and for all real
t ∈ R

∗+. So, we can write

||
∑N

n=2 e
−t(λn−λ1) ψn(x)fn|| =<

∑N
n=2 e

−t(λn−λ1) ψn(x)fn,
∑N

n=2 e
−t(λn−λ1) ψn(x)fn >

1
2

= (
∑N

n=2 e
−2t(λn−λ1) |fn|

2)
1
2

≤ e−t(λ2−λ1) ||f ||L2 .

So, for all f ∈ C∞
c ,

lim
t→+∞

<

+∞∑

n=2

e−t(λn−λ1) ψn(x){ϕn(y) − ψn(y)}, f(y) >= 0,

and this concludes the proof.
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