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Abstra
tWe generalize Baeten and Boerboom's method of for
ing to show that there is a �xedsequen
e (uk)k2! of 
losed (untyped) �-terms satisfying the following properties:a) For any 
ountable sequen
e (gk)k2! of S
ott 
ontinuous fun
tions (of arbitraryarity) on the power set of an arbitrary 
ountable set, there is a graph model su
hthat (�x:xx)(�x:xx)uk represents gk in the model.b) For any 
ountable sequen
e (tk)k2! of 
losed �-terms there is a graph modelthat satis�es (�x:xx)(�x:xx)uk = tk for all k:We apply these two results, whi
h are 
orollaries of a unique theorem, to provethe existen
e of(1) a �nitely axiomatized �-theory L su
h that the interval latti
e 
onstituted bythe �-theories extending L is distributive;(2) a 
ontinuum of pairwise in
onsistent graph theories (= �-theories that 
an berealized as theories of graph models);(3) a 
ongruen
e distributive variety of 
ombinatory algebras (lambda abstra
tionalgebras, respe
tively).Key words: Untyped �-
al
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ontinuoussemanti
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1 Introdu
tionLambda theories are equational extensions of the untyped �-
al
ulus that are
losed under derivation. They arise by synta
ti
 and semanti
al 
onsidera-tions: a lambda theory may 
orrespond to an operational semanti
s of thelambda 
al
ulus, as well as it may be indu
ed by a model of lambda 
al
ulusthrough the kernel 
ongruen
e relation of the interpretation fun
tion (see e.g.[6,14℄). The set of lambda-theories ordered by in
lusion is naturally equippedwith a stru
ture of 
omplete latti
e (see Chapter 4 in [6℄), where the meetof a family of lambda theories is their interse
tion, and the join is the leastequivalen
e relation 
ontaining their union. The bottom element of this latti
eis the minimal �-theory ��, while the top element is the in
onsistent �-theory.The latti
e of lambda theories, hereafter denoted by �T , has a 
ontinuum ofelements (Barendregt's thesis, 1971, see [6, Ch. 6.2℄). Sin
e resear
hers havemainly fo
used their interest on a limited number of �-theories, very little isknown about the stru
ture and equational theory of �T (see [38,45℄).Sin
e synta
ti
 te
hniques are usually diÆ
ult to use in the study of �-theories,then semanti
al methods have been extensively investigated. Topology is atthe 
enter of the known approa
hes to giving models of the untyped lambda
al
ulus; in parti
ular, the �rst non synta
ti
 model was found by S
ott in1969 in the 
ategory of 
omplete latti
es and S
ott 
ontinuous fun
tions. AfterS
ott, a large number of mathemati
al models for lambda 
al
ulus, arisingfrom syntax-free 
onstru
tions, have been introdu
ed in various 
ategoriesof domains and were 
lassi�ed into semanti
s a

ording to the nature of theirrepresentable fun
tions, see e.g. [1,6,14,43℄. S
ott's 
ontinuous semanti
s [48℄ isgiven in the 
ategory whose obje
ts are 
omplete partial orders and morphismsare S
ott 
ontinuous fun
tions. The stable semanti
s introdu
ed by Berry[15℄ and the strongly stable semanti
s introdu
ed by Bu

iarelli-Ehrhard [16℄are a strengthening of the 
ontinuous semanti
s, introdu
ed to 
apture thesequential features of lambda 
al
ulus. All these semanti
s are stru
turally andequationally ri
h in the sense that ea
h of them is able to represent 2! distin
t�-theories [31,32,35℄, where a semanti
s (or a 
lass of models) represents a �-theory T if it 
ontains a model M whose equational theory is exa
tly T .Nevertheless, ea
h of the above denotational semanti
s is equationally in
om-plete, in the sense that it is possible to produ
e �-theories whi
h are not rep-resented in it. The problem of the equational in
ompleteness was positivelysolved by Honsell and Ron
hi della Ro

a [25℄ for the 
ontinuous semanti
s(who even produ
ed a �-theory indu
ed by an operational semanti
s as aEmail addresses: berline�pps.jussieu.fr (C. Berline),salibra�dsi.unive.it (A. Salibra).1 Partially supported by MIUR PRIN Co�n'04 FOLLIA Proje
t and by a visitingfellowship granted by the Equipe PPS of the University Paris 7-Denis Diderot.2




ounter-example), by Bastonero and Gouy [24,10,11℄ for the stable semanti
s,and by Salibra [46,47℄ for the strongly stable semanti
s. As for �T , resultson the stru
ture of the set of �-theories indu
ed by a semanti
s are still rare,and there exist several longstanding very basi
 open questions (see [14℄ for asurvey). In parti
ular it is still open to know whether ��; the least �-theory,
ould be the theory of a non-synta
ti
 model in S
ott's 
ontinuous semanti
s.In this paper we 
on
entrate on the semanti
s G of lambda 
al
ulus given interms of graph models, graph semanti
s for short. These models, isolated in theseventies by Plotkin, S
ott and Engeler [37℄ within the 
ontinuous semanti
s,have proved useful for giving proofs of 
onsisten
y of extensions of lambda
al
ulus and for studying operational features of lambda 
al
ulus (see [14℄). Forexample, the simplest graph model, namely the Engeler and Plokin's model,has been used by Berline [14℄ to give 
on
ise proofs of the head-normalizationtheorem and of the left-normalization theorem of lambda 
al
ulus. Bu

iarelliand Salibra [17,18℄ have re
ently proved that the set GT , 
onsisting of allthe graph theories (= �-theories that 
an be represented as theories of graphmodels), admits a least element, whi
h is stri
tly greater than ��; in parti
ular�� 
annot be the theory of a graph model. These authors have also provedin [18℄ results about the \smaller" 
lass GsT of all sensible graph theories(a theory is sensible if all the unsolvable (or non-headnormalizable) termsare 
ongruent). Smaller here only means that GsT is stri
tly in
luded in GT;sin
e from Kerth [33℄ [36℄ and David [21℄ it follows that GsT also 
ontains 2!�-theories (however, the result is mu
h harder to prove than for GT ).Graph models are \webbed models" in the sense of [14℄. Roughly speaking,a model of lambda 
al
ulus is a webbed model if it 
an be generated from asimpler stru
ture, 
alled its web. The web has a 
arrier set D and �-terms areinterpreted as (possibly spe
ial) subsets of D.The reasons to 
on
entrate on G are the following. First, G is, by far, thesimplest 
lass of models, in the sense that the webs of graph models are thesimplest existing webs. Se
ond, GT nevertheless 
ontains a 
ontinuum of ele-ments [31℄, so it is a ri
h 
lass, in the sense that its 
ardinality is the maximalpossible one, but it 
ontains no extensional theories. Third, it is quite 
learthat the te
hniques and results for G and GT 
an often be transferred to other
lasses of webbed models, whether more general ones or belonging to othersemanti
s.It is a well known result by Ja
opini [27℄ that 
 
an be 
onsistently equatedto any 
losed term t of the (untyped) �-
al
ulus, where 
 is the paradigmati
unsolvable term (�x:xx) �x:xx (this is 
alled the easiness of 
): Baeten andBoerboom gave in [5℄ the �rst semanti
al proof of this result by showing thatfor all 
losed terms t one 
an build a graph model satisfying the equation
 = t. This semanti
al result extends to other 
lasses of models and to some3



other terms whi
h share with 
 enough of its good will (
f. [14℄ for a surveyof su
h results).We re
all that a graph model is, by de�nition, a re
exive S
ott domain, whi
his generated by a web of the form (D; p); where D is an in�nite set andp : D� � D ! D is a total inje
tion, D� being the set of �nite subsets ofD (see Se
tion 2.2). For brevity, we shall 
onfuse graph models and theirwebs, but one should keep present in mind that the underlying domain of themodel (D; p) is the full powerset P(D) ordered by in
lusion, whi
h is thereforeindependent of p: Starting from the setD = N of natural numbers, Baeten andBoerboom build p by a method of \for
ing", whi
h, although mu
h simplerthan the for
ing te
hniques used in set theory, is somewhat in the same spirit.In the Baeten and Boerboom setting, a for
ing 
ondition is a partial inje
tionq : D� � D * D and \q for
es � 2 t", abbreviated by q 
 � 2 t; meansthat for all total inje
tions p � q we have that � is in the interpretation of tin the model (D; p): The game is to build p as an in
reasing union of for
ing
onditions whi
h su

essively put in the interpretation of 
 all the elementswhi
h are for
ed to be in the interpretation of t and ex
lude all the other ones.In this paper we address the question of the \easiness" of sequen
es of �-termsand of the �-representability of sequen
es of 
ontinuous fun
tions on P(D),where D is any 
ountable in�nite set. Given two sequen
es �t and �v of the samelength, we denote by �t = �v the set 
onsisting of all the equations tk = vk. Wesay that a (possibly in�nite) sequen
e �t of 
losed �-terms is(1) easy if, for every other sequen
e �v (of same length) of 
losed �-terms, theset �t = �v is 
onsistent.(2) graph easy if, for every other sequen
e �v (of same length) of 
losed �-terms, there is a graph model satisfying �t = �v. (Of 
ourse, \graph easy"implies \easy").(3) graph easy for fun
tionals if, for every sequen
e �f (of same length) ofS
ott 
ontinuous fun
tions on P(D), there exists a graph model (D; p)su
h that tk represents fk in the model for every k.We generalize Baeten and Boerboom's method of for
ing, and apply it to showthat there is a sequen
e (uk)k2! of 
losed �-terms satisfying the 
onditionsexpressed in the following two theorems.Theorem 1. The sequen
e (
uk : k < !) is graph easy.Theorem 2. The sequen
e (
uk : k < !) is graph easy for fun
tionals.The above theorems have 
lear in
iden
e on our knowledge of �T and on allthe subsets CT of �T , where C is any interesting 
lass of models of �-
al
ulusin the 
ontinuous semanti
s whi
h 
ontains the 
lass G of all graph-models,and CT is the set 
onsisting of the �-theories of the models in C. For example,4



Theorem 1 implies the existen
e of 2! pairwise in
onsistent graph theories (seeCorollary 40), and hen
e it shows that GT; and all the CT are as \wide" aspossible.The question of the �-representability of (sequen
es of) 
ontinuous fun
tionshas not yet been addressed, as far as we know. Related works are only the veryre
ent papers by Alessi et al. [3℄ and Dezani-Lusin [22℄, where the authors useinterse
tion type systems (see [3,7,20℄) for synthesizing �lter models of lambda
al
ulus in whi
h the interpretation of a simple easy term 
an be any �lterdes
ribed by a 
ontinuous predi
ate. The notion of simple easiness was intro-du
ed by Alessi-Lusin [4℄ as a semanti
al tool to prove easiness. In fa
t, simpleeasiness implies easiness, while it is an open question whether easiness impliessimple easiness. We should like to point out here that the main result in [3℄(that the interpretation of a simple easy term 
an be any �lter des
ribed bya 
ontinuous predi
ate) 
an be also interpreted as a generalization of Baetenand Boerboom's method of for
ing via the use of interse
tion type systems.However, the framework we have developed in this paper is more dire
t andgeneral than the one used in [3℄. We illustrate this with two examples, 
on-
erning the �-representability of the minimal �xed point operator and of thepair union/interse
tion.One appli
ation of Theorem 2 that we develop here, 
on
erns the latti
e �Tof all �-theories ordered by in
lusion. In parti
ular, by instantiating Theorem2 we get the distributivity of the interval sub-latti
e [L) = fS 2 �T : L � Sgfor a suitable �nitely axiomatized �-theory L. The existen
e of a distributiveinterval sub-latti
e of �T was an open question, whi
h arises naturally sin
eSalibra [45℄ proved that the latti
e �T does not satisfy the modularity law(whi
h is a weak form of distributivity), and sin
e Lusin and Salibra [38℄ haveshown, among other results on �T , the existen
e of an interval sub-latti
esatisfying a restri
ted form of distributivity (
alled meet semi-distributivity)expressed in the form of a quasi-identity. The interest for interval sub-latti
esof �T rather than arbitrary sub-latti
es of �T is explained in Se
tion 6.Another appli
ation that we develop here 
on
erns the variety (i.e., equational
lass) of lambda abstra
tion algebras (LAA's) and the variety of 
ombinatoryalgebras (CA's). LAA's were introdu
ed by Pigozzi and Salibra in [40,41℄ asa purely algebrai
 theory of the untyped lambda 
al
ulus whi
h neverthe-less, and in 
ontrast to Combinatory Logi
, keeps all the fun
tional intuitions.There is a 
lose relationship between the latti
e �T of lambda theories andthe variety LAA. In [44℄ Salibra has shown that, for every variety of LAA's,there exists exa
tly one lambda theory whose term algebra generates the va-riety. Thus, the properties of an arbitrary lambda theory 
an be studied bymeans of the variety of LAA's generated by its term algebra. Many longstand-ing open problems of lambda 
al
ulus 
an be restated in terms of algebrai
properties of varieties of LAA's. For example, the open problem of the order-5



in
ompleteness of lambda 
al
ulus [49,47℄ asks for the existen
e of a lambdatheory not arising as the equational theory of a non-trivially partially orderedmodel of lambda 
al
ulus. The order-in
ompleteness of lambda 
al
ulus isequivalent to the existen
e of an n-permutable variety of LAA's for somenatural number n � 2 (see the remark after Theorem 3.4 in [49℄; the de�ni-tion of n -permutability 
an be found in [39℄). As a 
onsequen
e of Theorem2, we show that there exist a 
ongruen
e distributive variety of LAA's and a
ongruen
e distributive variety of CA's. The existen
e of varieties of LAA'sor CA's satisfying strong algebrai
 properties, su
h as n-permutability or 
on-gruen
e distributivity, was an open problem sin
e Salibra [45℄ proved that thevariety LAA is not 
ongruen
e modular. The existen
e of a 
ongruen
e dis-tributive variety of LAA's shows, against a 
ommon belief, that the lambda
al
ulus satis�es strong algebrai
 properties. We express hope to positivelysolve in the future the order-in
ompleteness problem by showing the existen
eof an n-permutable variety of LAA's.

The paper is organized as follows. Se
tion 2 is a preliminary se
tion 
on-taining the de�nition of a graph model and re
alling the two possible waysof building graph models out of partial webs, namely \
anoni
al 
ompletion"and \
ompletion by for
ing". This se
tion also surveys the most re
ent re-sults about the lambda theories represented by graph models. In Se
tion 3we introdu
e the generalized terms, whi
h allow 
ontinuous fun
tions of arbi-trary arity as �rst-order fun
tion symbols, and we extend the 
lassi
 notionof easiness of 
 to sequen
es of generalized terms. In Se
tion 4 we show thatBaeten and Boerboom's method works not only for for
ing but more generallyfor weakly 
ontinuous operators, and also for generalized terms. This allowsfor the (optional) use of the (
ontinuous) notion of partial interpretation asan alternative to for
ing. We provide sequen
es of lambda terms of arbitrary�nite length that are fun
tionally graph easy. In Se
tion 5 we introdu
e thete
hni
al notions of 
attening and of an orthogonal system of representatives(osr); then we give examples of in�nite sequen
es of terms that admit an osr.These te
hni
alities are applied to get in�nite sequen
es of terms that arefun
tionally graph easy. In Se
tion 6 it is shown that there exist a distributiveinterval sub-latti
e of the latti
e of lambda theories, a 
ongruen
e distributivevariety of lambda abstra
tion algebras, and a 
ongruen
e distributive varietyof 
ombinatory algebras. Se
tion 7 is devoted to 
on
lusions and future work.6



2 Preliminaries2.1 Basi
 notations and 
onventions2.1.1 �-
al
ulusIn this paper �-
al
ulus will always mean untyped �-
al
ulus, and we adoptthe notations of [6℄. In parti
ular � and �Æ are, respe
tively, the set of �-terms and of 
losed �-terms. A �-theory is a 
ongruen
e on � (with respe
tto the operators of abstra
tion and appli
ation), whi
h 
ontains (�)- and (�)-
onversion. There is a smallest �-theory, denoted here by ��; whi
h is nothingelse than (�)- and (�)-
onversion itself. �-theories 
an of 
ourse also be seenas (spe
i�
) sets of equations between �-terms. A �-theory is sensible if allthe unsolvable terms are 
ongruent, and semi-sensible if no solvable term isequated to an unsolvable term (it is well known and easy to prove that sensi-ble theories are semi-sensible). The smallest sensible �-theory is traditionallydenoted by H:2.1.2 The latti
e of �-theoriesThe set of lambda-theories ordered by in
lusion is naturally equipped witha stru
ture of 
omplete latti
e (see Chapter 4 in [6℄), where the meet of afamily of �-theories is their interse
tion, and the join is the least equivalen
erelation 
ontaining their union (and hen
e a 
ongruen
e too). The bottomelement of this latti
e is the minimal �-theory ��, while the top element is thein
onsistent �-theory. The latti
e of �-theories will be denoted by �T . The setsof semi-sensible �-theories and of sensible �-theories 
onstitute sub-latti
es of�T .2.1.3 Latti
e identitiesIn the 
ontext of latti
es an identity in the binary symbols f+; �g is 
alled alatti
e identity. (\+" is intended for sup and \�" for inf ). A latti
e identity istrivial if it holds in every latti
e and nontrivial otherwise.Given the latti
e �T of �-theories, we interpret the variables of a latti
e iden-tity as �-theories, and for arbitrary �-theories T and S we interpret T + S asthe lambda theory generated by the union of the two relations, and T � S asthe interse
tion (as usual, we shall write TS for T � S).A quasi-identity is an impli
ation with an equational 
on
lusion and a �nitenumber of equational premises. A quasi-identity in the language of latti
es is7



satis�ed by the latti
e of lambda-theories if the 
on
lusion of the quasi-identityis satis�ed by all the lambda theories that satisfy the premises.2.1.4 SetsFor every set S; S� is the set of all �nite subsets of S, while P(S) is thepowerset of S and S<! (resp. S!; S�!) is the set of all �nite (resp. in�nite,resp. �nite or in�nite) sequen
es of elements of S; l(�s) denotes the length ofthe sequen
e �s: When writing g(�x); where g is a fun
tion and �x a sequen
eof elements of the domain of g; we shall of 
ourse always understand thatl(�x) is the arity of g: Finally, for any fun
tion f : S ! S 0 we shall de�nef+ : P(S)! P(S0) by f+(X) = f f(x) : x 2 X g:2.1.5 S
ott's semanti
sCpos (
omplete partial orders) and (S
ott-) 
ontinuous fun
tions between 
posare de�ned in [6, Chapter I.2℄. Given a set S; and an element ? not in S; the
at 
po S? is the order (S [ f?g;�) where x � y if and only if x = ? orx = y: If C;C 0 are 
pos then [C ! C 0℄ denotes the 
po of all the 
ontinuousfun
tions from C into C 0: A re
exive 
po is a triple (C;A; �) su
h that � 2[[C ! C℄ ! C℄ and A 2 [C ! [C ! C℄℄ and A Æ � = id: Re
exive 
pos aremodels of �-
al
ulus in a way whi
h is re
alled in Se
tion 2.2 (for more detailssee [6, Chapter V.5℄). We are mainly (but not always) interested in 
pos ofthe form (P(D);�); for some in�nite 
ountable set D. In this 
ase � will beunderstood as set in
lusion. By \a 
ontinuous fun
tion g of arity n on P(D)"we mean: g 2 [P(D)n ! P(D)℄:2.1.6 Further 
onventionsGreek letters �; �; :: will always denote elements of a set D spe
i�ed by the
ontext (from Se
tion 3 on, D will be any �xed 
ountable in�nite set). SmallLatin letters a; b; 
 will denote elements of D�; and �a;�b; �
::: elements of (D�)<!.Also, (a; �) is the usual set-theoreti
al pair, and (�a; �) is de�ned by indu
tionas follows: (b�
; �) =def (b; (�
; �)):2.1.7 Tra
es of 
ontinuous fun
tionsA 
ontinuous fun
tion g on P(D), of any arity, is 
ompletely determined byits tra
e, whi
h is de�ned by:tr(g) =def f (�a; �) : � 2 g(�a) g (1)8



The tra
e is, essentially, the relevant part of graph(g); the graph of g; \es-sentially" refers to the fa
t that, if g is unary, say, then tr(g) � D� � D �P(D)�D; while graph(g) � P(D)� P(D) .2.2 Graph modelsThe 
lass of graph models belongs to S
ott's 
ontinuous semanti
s. Graphmodels owe their name to the fa
t that 
ontinuous fun
tions are en
oded inthem via (a suÆ
ient fragment of) their graphs, namely their tra
es.As mentioned in the introdu
tion, a graph model is a model of the untyped�-
al
ulus that is generated from a web (D; p) in a way that will be re
alledbelow. Histori
ally, the �rst graph model was Plotkin and S
ott's P! (seee.g. [6℄), whi
h is also known in the literature as \the graph model". Thesimplest graph model, E ; was introdu
ed soon afterwards, and independently,by Engeler [23℄ and Plotkin [42℄. More examples 
an be found in [14℄.For brevity we shall 
onfuse the model and its web and so we de�ne:De�nition 1 A graph model is a pair (D; p), where D is an in�nite set andp : D� �D ! D is an inje
tive total fun
tion.Su
h a pair will also be 
alled a total pair. A total pair (D; p) generates are
exive 
po (P(D); �p; Ap), and hen
e a model of �-
al
ulus. The 
ontinuousfun
tion �p 2 [[P(D) ! P(D)℄ ! P(D)℄ is de�ned by �p = p+ Æ tr, wheretr is de�ned in (1) above, and p+ is the straightforward extension of p toP(D� �D): This de�nition extends to 
ontinuous fun
tions of arbitrary arityon P(D); in other words, for any su
h fun
tion g; we have:�p(g) = f p(�a; �) : � 2 g(�a) g (2)The left inverse Ap 2 [P(D) ! [P(D) ! P(D)℄℄ of �p (that allows one tointerpret appli
ation in the model) is de�ned by:Ap(X)(Y ) = f� 2 D : (9a � Y ) p(a; �) 2 Xg:where X; Y are arbitrary subsets of D:When no ambiguity will o

ur we writeXY instead of Ap(X)(Y ): More generally, for �Y = (Y1; :::; Yn); X �Y is de�nedas (::((XY1):::)Yn):Let EnvD be the set of D-environments � mapping the set of the variablesof �-
al
ulus into P(D). For � 2 EnvD and X 2 P(D) let �[x : X℄ be theenvironment whi
h takes value X on x and 
oin
ides with � on all othervariables. The interpretation tp : EnvD ! P(D) of a �-term t that is relativeto (D; p) is de�ned by indu
tion as follows:9



� xp� = �(x)� (tu)p� = Ap(tp�)(up�) = f� : (9a � up�) p(a; �) 2 tp�g� (�x:t)p� = �p(X 2 P(D) 7! tp�[x:X℄) = f p(a; �) : � 2 tp�[x:a℄gSin
e tp� only depends on the value of � on the free variables of t; we just writetp if t is 
losed. The following trivial example will be used in the Appendix.Example 2 (�x:x)p = f p(a; �) : � 2 a gWe turn now to the interpretation of 
 = ÆÆ in graph models, where Æ =�x:xx. It is easy to 
he
k that the interpretation of 
 in P! and E is ;; but,fortunately, this is not always the 
ase. The following lemma gives a ne
essary
ondition and a suÆ
ient 
ondition for � 2 D to be in the interpretation of 
in (D; p); but, �rst, two remarks on the interpretation of Æ are in order.Remark 3 (i) p(a; �) 2 Æp () � 2 a a:(ii) (� 2 XX and X � Æp) =) 9a � X ( p(a; �) 2 X and � 2 aa )Lemma 4 [5℄ Let (D; p) be a graph model and � 2 D; then:(i) If � 2 
p; then there exists a su
h that p(a; �) 2 a:(ii) If there exists � 2 D su
h that p(f�g; �) = �; then � 2 
p:Proof. (i) If � 2 
p = ÆpÆp then:9a1 � Æp ( p(a1; �) 2 Æ and� 2 a1a1 ) (Remark 3 (ii) with X = Æp)9a2 � a1 ( p(a2; �) 2 a1 and� 2 a2a2 ) (Remark 3 (ii) with X = a1)...9an+1 � an ( p(an+1; �) 2 an and� 2 an+1an+1 ) (Rem. 3 (ii) with X = an)Now, sin
e a1 is a �nite set and the sequen
e an is de
reasing, there is an nsu
h that an = an+1; hen
e p(an; �) 2 an:(ii) By de�nition of appli
ation, p(f�g; �) = � implies � 2 f�gf�g; hen
ep(f�g; �) 2 Æp (Remark 3 (i)); hen
e � 2 Æp and � 2 ÆpÆp = 
p; sin
eappli
ation is monotone with respe
t to in
lusion.A graph model (D; p) satis�es t = u, written (D; p) � t = u; if tp = up, or,equivalently, if tp� = up� for all environments �. The �-theory Th(D; p) indu
edby (D; p) is de�ned asTh(D; p) = ft = u : t; u 2 � and tp = upg:10



A �-theory indu
ed by a graph model will be 
alled a graph theory. A graphmodel is 
alled sensible (rep. semi-sensible) if its theory is.Notation 5 G and Gs are the 
lasses of graph models and sensible graph mod-els respe
tively, while GT; GsT are respe
tively the 
lasses of graph theories,and of sensible graph theories.2.3 Building graph models from partial pairsThere are other 
lasses of models that 
an be generated from webs, but graphmodels are the models with the simplest (=less stru
tured) webs, and the mosteasily feasible to deal with the interpretation of terms. Some of these 
lassesbelong to the 
ontinuous semanti
s and in
lude G; others belong to othersemanti
s (for example the Berry/Girard stable semanti
s). These 
lasses ofwebbed models, as well as the te
hniques for studying these models and their�-theories are surveyed in [14℄.For proving the 
onsisten
y of extensions of �-
al
ulus, or more generallyfor studying the latti
e �T of �-theories one is interested in building modelssubje
t to spe
i�ed equational or /and inequational 
onstraints. The 
lass ofgraph models o�ers a great wealth of models that are furthermore feasible.For this reason this is the �rst 
lass of models to experiment with.There are two known methods for building graph models, namely: by for
ing orby 
anoni
al 
ompletion. Both methods 
an be extended to the other 
lasses ofwebbed models (with more or less ease!), both methods 
onsist in 
ompletinga partial pair into a total one, i.e. into a graph model.In the setting of graph models, the general de�nition of a partial pair (see[14℄), whi
h allows one to 
over both methods, is the following: A partial pairis a pair (A; q) where A is any set and q is a partial (possibly total) inje
tionfrom A� � A to A, written q : A� � A * A. Examples of partial pairs are: allthe graph models, and the empty pair (;; ;): For dealing only with the for
ingmethod, a more restri
ted de�nition is suÆ
ient, whi
h we shall introdu
elater on.The 
anoni
al 
ompletion method was, de fa
to, introdu
ed by Plotkin andEngeler, sin
e their model E is nothing else than the 
anoni
al 
ompletion of(;; ;): It was systematized by Longo for graph models [37℄, who proved in par-ti
ular that the graph model P! is the 
anoni
al 
ompletion of ( f0g; f(;; 0); 0g ),up to isomorphism. It was then used on a larger s
ale by Kerth, who used it, forexample, to prove the existen
e of 2! distin
t graph theories, and also trans-ferred it to other semanti
s [33,32,35℄, and by Bu

iarelli-Salibra in [17,18℄.Canoni
al here refers to the fa
t that the graph model (D; p) is built in an11



indu
tive (and \
anoni
al" ) way from the partial pair (A; q) we start with,and is 
ompletely determined by it. Furthermore, if the partial web is positive(in the sense of [14℄) then (D; p) is sensible. Finally if one 
an apply the strongapproximation theorem in the spirit of Hyland [26℄ and Wadsworth [51℄, whi
his the 
ase for P! and E ; then Th(D; p) is 
ompletely known: (D; p) equatestwo terms if and only if they have the same B�ohm tree. For more details, andfor the extension of the method to other 
lasses of webbed models see [14℄.The for
ing method that we shall present below, originates in Baeten andBoerboom [5℄. In the simpler presentation proposed by Zylberaj
h [52℄, itstarts from a partial pair (D; p0) 2 , where D is an in�nite 
ountable set, andbuilds by indu
tion a total p : D� � D ! D; hen
e a graph model (D; p):The indu
tive 
onstru
tion depends here not only on p0 but also on the 
on-sisten
y problem we are interested in, and it heavily exploits the fa
t that theinterpretation of 
 
an be quite freely 
onstrained. The method was gener-alized to other 
lasses of webbed models in Jiang [29,30℄, Kerth [33,34℄, andsu
h a generalization was used by Bastonero to build an extensional model ofthe 
ontinuous semanti
s, whose theory 
ould be realized neither by a modelin the stable semanti
s nor by a hyper
oheren
e model (su
h models belongto the strongly stable semanti
s) [8,9℄. It was also generalized to families ofterms having a similar behavior as 
 by Zylberaj
h [52℄. Note that, although(D; ;) is a positive web, no model built by 
ompleting (D; ;) by for
ing willbe sensible, and furthermore most of them will be 
learly non-semi-sensible.A last di�eren
e between both methods is that if we start with a re
ursivepartial web, the 
anoni
al 
ompletion will build a re
ursive total web (hen
ea graph model that 
an be viewed as a reasonable interse
tion type system),whilst nontrivial for
ing always 
reates a nonre
ursive web.2.3.1 The partial interpretation methodIn this paper we highlight the fa
t that the key reason why 
onstru
tions byfor
ing are possible is that for
ing indu
es a family of \weakly 
ontinuousfun
tions" (see De�nition 10). We also introdu
e the notion of a partial in-terpretation of a term and note that it indu
es a family of S
ott-
ontinuousfun
tions. Hen
e partial interpretations 
an be used as an alternative to for
-ing to build models by using a similar method; in parti
ular, all the resultsproved in this paper 
an be obtained in both ways. The two notions are dis-tin
t (for
ing is not 
ontinuous, as proved in the Appendix), but their use isessentially equivalent; in most 
ases it is a matter of taste, even if sometimesone or the other may appear to be more dire
t.2 As a matter of fa
t p0 = ; in [5℄ and in all the other authors quoted, but here weshall need this more general setting. 12



2.3.2 ConventionFrom now on we shall only deal with the for
ing-like methods, and hen
e weshall work with some �xed 
ountable in�nite set D:3 Generalized terms and easy sequen
es: basi
 de�nitions3.1 Generalized termsIn the next se
tion we shall extend the 
lassi
 notion of easiness of 
 to amore general 
lass of terms, whi
h allows 
ontinuous fun
tions of arbitraryarity as �rst-order fun
tion symbols. All the results proved in the remainingse
tions, 
ould be proved by working with pure �-terms only (we �rst did itthat way), but with more sophisti
ated tools. The interest of putting 
ontinu-ous fun
tions in the language is that it allows for 
leaner statements, simplerand more straightforward proofs, and, �nally, that all the appli
ations are ev-ident 
orollaries. One may also wonder why adding genuine fun
tions and notonly elements of P(D) is ne
essary, sin
e after all every fun
tion f is 
oded inea
h (D; p) by �p(f) 2 P(D); on
e more, the answer is that it is mu
h simplerto do it that way.De�nition 6 The set �D of the generalized �-terms (relatively to D); orgen{terms is de�ned as the smallest set su
h that:(i) V � �D; where V is the set of variables of �(ii) P(D) � �D(iii) if t; u 2 �D; then tu is in �D(iv) if t 2 �D and x 2 V then �x:t 2 �D(v) if f 2 [P(D)n ! P(D)℄; 1 � n; and �t 2 �nD; then f(�t) 2 �D:�ÆD is de�ned as the set of 
losed gen-terms.Re
all that � is the set of terms obtained by removing (ii) and (v) from theabove de�nition. Hereafter the elements of � will be 
alled pure terms.Thus, f is not a gen-term, while ��x:f(�x) is (��x should be understood as�x1:::�xn if �x = (x1; :::; xn) ): To be more formal we should have introdu
ed onenew symbol for ea
h element of P(D) [ [n2! [P(D)n ! P(D)℄: A redex is agen-term of the form (�x:t)u; where t; u are gen-terms, and its redu
t is de�ned13



as usual. We extend �-equivalen
e to gen-terms in a straightforward way: wejust add to the usual rules the fa
t that it should be a 
ongruen
e also withrespe
t to the �rst-order fun
tions, in other words t1 =� t01; :; tn =� t0n shouldimply f(t1; :::; tn) =� f(t01; :::; t0n); in parti
ular, no rule taking the evaluationof fun
tions into a

ount is given at the synta
ti
 level. The interpretation tpof the gen-term t in the graph model (D; p) is on
e more de�ned by indu
tionon t. Cases (i), (iii) and (iv) are as in Se
tion 2.2, while the interpretations ofX � D and f(t1; :::; tn) are the obvious ones:Xp� = X; f(t1; :::; tn)p� =def f((t1)p�; :::; (tn)p�):It is 
lear that this interpretation 
oin
ides with that of Se
tion 2.2 for pure�-terms. Satisfa
tion in (D; p) of an equation t = t0; for t; t0 2 �D is de�nedas usual by tp� = t0p� for all �: It is then 
lear that any graph model equates�-equivalent gen-terms and respe
ts the behavior of the added fun
tions, thatis, if f is an n-ary 
ontinuous fun
tion whi
h takes value Y 2 P(D) onX1; :::; Xn 2 P(D), then all graph models on D will satisfy f(X1; :::; Xn) = Y:Furthermore, it is easy to 
he
k that(D; p) � ��x:f(�x) = �p(f);where �p(f) is the 
ode of f in (D; p).3.2 Partial interpretationsWe extend the notion of interpretation of a gen-term from total pairs to par-tial pairs. In the sequel we shall always have the 
hoi
e of using either totalinterpretations plus for
ing, or partial interpretations (and no for
ing).De�nition 7 Let (D; q) be a partial pair. Given t 2 �D we de�ne tq by in-du
tion on t :(i) xq� = �(x)(ii) Xq� = X(iii) (tu)q� = f� 2 D : (9a � uq�) [(a; �) 2 dom(q) ^ q(a; �) 2 tq�℄g(iv) (�x:t)q� = f q(
; 
) 2 D : (
; 
) 2 dom(q) ^ 
 2 tq�[x:
℄ g(v) (f(t1; :::; tn))q� = f((t1)q�; :::; (tn)q�)We write tq for tq� if t 2 �ÆD is a 
losed gen-term.14



3.3 Easy sequen
es of termsWe now de�ne easy sequen
es of terms.Given two sequen
es �t and �t0 of the same length, we denote by �t = �t0 the set
onsisting of all the equations tk = t0k:De�nition 8 Let �s be a (possibly in�nite) sequen
e of 
losed pure �-terms,then:(i) �s is easy if for all sequen
es �t 2 (�Æ)l(�s) the set �t = �s is 
onsistent.(ii) �s is graph easy if for all sequen
es �t 2 (�Æ)l(�s) there is a graph modelsatisfying �t = �s:(iii) �s is fun
tionally graph easy if for all 
ountable sets D and all sequen
es�t 2 (�ÆD)l(�s) there is a graph model of web D satisfying �t = �s:Of 
ourse (iii) =) (ii) =) (i):4 Baeten and Boerboom's proof revisited4.1 Weakly 
ontinuous operators are the pointWe observe here that Baeten and Boerboom's proof, in Zylberaj
h's style,works for any weakly 
ontinuous operator (instead of for
ing) and that easinesswith respe
t to all 
losed gen-terms holds.Notation 9 Q is the 
po of partial (in
luding total) inje
tions q : D��D *D, partially ordered by in
lusion of their graphs.By \a total p" we shall always mean \an element of Q whi
h is total" (equiv-alently: whi
h is maximal): The domain and range of q 2 Q are denoted bydom(q) and range(q); we shall also 
onfuse the partial inje
tions and theirgraphs.Given any set S and any fun
tion H : Q ! P(S), we shall use Hq for H(q)when more 
onvenient.De�nition 10 A fun
tion H : Q ! P(S), where S is any 
ountable in�niteset, is weakly 
ontinuous if it is monotone with respe
t to in
lusion and iffurthermore, for all total p 2 Q and � 2 H(p), there is a �nite q � p su
hthat � 2 H(q): 15



Sin
e we are working with a 
ountable in�niteD; the di�eren
e with 
ontinuity
omes of 
ourse from the fa
t that there exist in�nite elements of Q whi
h arenot total.Theorem 11 Given any weakly 
ontinuous fun
tion H : Q! P(D); there isa total p su
h that (D; p) j= 
 = Hp:Proof. We are going to build an in
reasing sequen
e of partial inje
tive mapspn; starting from p0; and a sequen
e of elements �n 2 D[fvg; where v is somenew element, su
h that: p =def [pn is a total inje
tion (in fa
t a bije
tion),and (D; p) j= 
 = A = Hp; where A =def f�n : n 2 ! g \D:We �x an enumeration of D; and an enumeration of D� �D:We start from p0 = ;:Assume that pn and �0; :::; �n�1 have been built.Let �n be the �rst element of Hpn�f�0; :::; �n�1g if this set is non-empty, andv otherwise.Let (bn; Æn) be the �rst element in D� � D � dom(pn) and 
n be the �rstelement in D � (range(pn) [ bn):Case 1. �n = v we let pn+1 = pn [ f ((bn; Æn); 
n) gCase 2. �n 2 D we let :pn+1 = pn [ f ((bn; Æn); 
n); ((f�ng; �n) ; �n) gwhere �n is the �rst element of D su
h that :(f�ng; �n)2D� �D � (dom(pn) [ f(bn; Æn)g) and�n 2D � (range(pn) [ f
ng)It is 
lear that pn is a stri
tly in
reasing sequen
e of well-de�ned partial in-je
tive maps and that p = [pn is total. It is also surje
tive sin
e there arein�nitely many elements of D� �D of the form (;; Æ); Æ 2 D: these elementsare su

essively introdu
ed at steps, say, nk (where the nk form a stri
tly in-
reasing sequen
e of integers), and are then given as image the �rst elementin D � range(pnk); hen
e the k-t h element of D will ne
essarily belong torange(pnk+1):There remains to see that (D; p) j= 
 = A = Hp.16



A � Hp follows from the de�nition of �n and from the fa
t that Hpn � Hp:Hp � A : suppose 
 2 Hp; then, sin
e H is weakly 
ontinuous, 
 2 Hpm forsome m (and for all the larger ones). If 
 =2 A then, for all n � m; �n 2 Dhas smaller rank than 
 in the enumeration of D; 
ontradi
ting the fa
t thatthere is only a �nite number of su
h elements.A � 
p : �n 2 
p follows immediately from the fa
t that ((f�ng; �n) ; �n) 2pn+1 � p and from Lemma 4 (ii):
p � A : if " 2 
p then there is an a 2 D� su
h that p(a; ") 2 a (by Lemma 4(i)). Sin
e p = [pn and be
ause of the 
hoi
es of the 
n; this may only o

urif " is one of the �n:For showing the existen
e of in�nite graph easy sequen
es we shall need tohave available the following slight extension of Theorem 11.De�nition 12 p0 2 Q is free for 
 if:(i) D� �D � dom(p0) and D � range(p0) are in�nite, and(ii) (a; �) 2 dom(p0) implies p0(a; �) =2 a:Theorem 13 If H : Q ! P(D) is weakly 
ontinuous and p0 2 Q is free for
; then there is a total p � p0 su
h that (D; p) j= 
 = Hp:Proof. Indeed, the proof of Theorem 11 only used that ; was free for 
:We now show that Theorem 11 and Theorem 13 
an be applied to two di�erent
lasses of fun
tions H : Q ! P(D); respe
tively arising from for
ing (asde�ned below) and partial interpretation (
f. De�nition 7).De�nition 14 (For
ing) For t 2 �ÆD; q 2 Q and � 2 D; the abbreviation q 
� 2 t means that for all total inje
tions p � q we have that (D; p) j= � 2 tp:Furthermore q 
 X � t means that q 
 � 2 t for all � 2 X:Thus, for p total, p 
 � 2 t if and only if � 2 tp: Moreover if qi 
 �i 2 t forall i 2 I then [qi 
 f�i : i 2 Ig � t.Lemma 15 For all t 2 �ÆD the fun
tion Ft : Q ! P(D) de�ned by Ft(q) =f� 2 D : q 
 � 2 tg is weakly 
ontinuous, and we have Ft(p) = tp for ea
htotal p:Proof. The proof of the weak 
ontinuity of Ft is a straightforward indu
tionon the 
omplexity of the 
losed gen-term t; we detail it anyway.17



If t is an element X of P(D) then Ft is the 
onstant fun
tion with value X:Let now p 2 Q be total.If t = uv and � 2 tp, then there exists a � vp su
h that p(a; �) 2 up: Choosesu
h an a and let 
 = p(a; �): By indu
tion hypothesis there is a �nite q � psu
h that q 
 a � v and a �nite r � p su
h that r 
 
 2 u; then it is 
learthat q [ r [ f((a; �); 
)g 
 � 2 t:If t = �x:u and � 2 tp then there is a unique pair (b; �) su
h that � = p(b; �)and � 2 u[x : b℄p: By indu
tion hypothesis there is a �nite q � p su
h thatq 
 � 2 u[x : b℄; then it is 
lear that q [ f((b; �); �)g 
 � 2 t:If t = f(t1; :::; tn) and � 2 f(t1; :::; tn)p = f(tp1; :::; tpn), then from the 
on-tinuity of f it follows the existen
e of �nite b1 � tp1 ... bn � tpn su
h that� 2 f(b1; :::; bn). Sin
e the bi's are �nite and the ti's are of lower 
omplexitythan t; there are �nite q1; :::; qn � p su
h that qi 
 bi � ti for all i; then we
learly have q 
 bi � ti for all i, where q =def [f qi : i � n g. The 
on
lusionq 
 � 2 f(t1; :::; tn) follows from � 2 f(b1; :::; bn), q 
 bi � ti for all i , andthe monotoni
ity of f .We note that the fun
tion Ft de�ned in the above lemma is not 
ontinuous asshown in Appendix.Lemma 16 For all t 2 �ÆD, the fun
tion It : Q! P(D) de�ned by It(q) = tqis 
ontinuous (where tq is the interpretation of the gen-term t in the partialpair (D; q)).Proof. The proof of the 
ontinuity of It is a straightforward indu
tion on the
omplexity of the 
losed gen-term t.
4.2 Easy termsIn this se
tion we show that the �-term 
 is fun
tionally easy. Then every
ontinuous fun
tion on P(D) is �-represented by 
.Theorem 17 
 is fun
tionally graph easy, that is, for all 
losed gen-termst 2 �ÆD there is a p su
h that (D; p) � 
 = t:Proof. It is enough to apply Theorem 11 either to the weakly 
ontinuousfun
tion Ft de�ned in Lemma 15 or to the 
ontinuous fun
tion It de�ned in18



Lemma 16.Let us give now a few appli
ations of this result.The following is the 
lassi
 result by Baeten and Boerboom.Corollary 18 [5℄ 
 is graph easy, that is, for all 
losed pure terms t 2 �Æthere is a graph model (D; p) su
h that (D; p) � 
 = t:De�nition 19(i) A 
ontinuous fun
tion f on P(D) is �-represented by a pureterm t 2 �Æ in a graph model (D; p) if (D; p) � t = ��x:f(�x):(ii) A (possibly in�nite) sequen
e �f of 
ontinuous fun
tions is �-represented by�t 2 (�Æ)l( �f) in (D; p) if (D; p) satis�es tk = ��x:fk(�x) for all k:The pre
eding de�nition would of 
ourse trivialize if the term t in (i) and thesequen
e �t of terms in (ii) were asked to be gen-terms.Corollary 20 Ea
h 
ontinuous fun
tion f on P(D) is �-represented by 
 insome graph model.Proof. From Theorem 17 there is a graph model satisfying 
 = ��x:f(�x);whi
h implies 
learly that 
 represents f in this graph model.The least �xed point operator on a 
po C is the 
ontinuous fun
tion L 2[[C ! C℄! C℄ de�ned by L(f) = [n2!fn(?); where ? is the least element ofC: Using the formalism of interse
tion type systems and �lter models, Alessiand al. [3℄ proved that there exists a re
exive 
po where L is represented by
; in the sense that the least �xed point operator of the underlying 
po is theinterpretation of 
 in the model. It is hen
e interesting to note that we 
anget this result in a more e
onomi
al way, and with a simpler model.Corollary 21 There is a graph model where 
 represents L:Proof. The smallest element of the 
po P(D) is ? = ;: By Corollary 20 thereis a graph model (D; p) where 
 represents the unary 
ontinuous fun
tionde�ned on P(D) by: h(X) = [n2!Xn; (where e.g. X2; means X(X;)): But,then, for all unary 
ontinuous fun
tions f; we automati
ally have: [
(�x:f(x))℄p =[n2!fn(;). Thus 
 represents L in (D; p):We now look for easy sequen
es of terms.19



4.3 Finite easy sequen
es of termsThe existen
e of �nite easy sequen
es of pure terms 
ould be proved withoutusing generalized terms (using variations of the tools built in Se
tion 5), and itwill also show up as a parti
ular 
ase of a result proved in Se
tion 5.3. But inthe present setting, whi
h allows one to use the standard tri
ks in �-
al
ulus,it appears as a dire
t 
orollary of Theorem 17.Theorem 22 For ea
h n 2 ! there is a sequen
e �u 2 (�Æ)n of pure termssu
h that (
uk)k�n is a fun
tionally graph easy sequen
e.Proof. We only treat the 
ase n = 2; and 
laim that the two proje
tionsT = �x:�y:x and F = �x:�y:y work. Using Theorem 17, for all 
losed gen-terms t1 and t2, we get a graph model satisfying 
 = �z:zt1t2: Then it is 
learthat in the same graph model we have that 
T = t1 and 
F = t2.Proposition 23 For ea
h n 2 ! there is a sequen
e �u 2 (�Æ)n of pure termssu
h that ea
h sequen
e �f of 
ontinuous fun
tions on P(D) is � -representedby (
uk)k�n in some graph model over D.Proof. By the above theorem.Corollary 24 The pair ([;\) 
onsisting of union and interse
tion on P(D);is �-represented by 
T and 
F .Proof. Immediate 
onsequen
e of the pre
eding 
orollary sin
e [;\ are 
on-tinuous fun
tions (
ontinuity of \ follows from the fa
t that P(D) is a dis-tributive latti
e).Interesting appli
ations of this result to the stru
ture of the latti
e of lambdatheories are shown in Se
tion 6.1.In [22℄ Dezani and Lusin have shown the existen
e of a �lter model of lambda
al
ulus representing union, and the existen
e of a �lter model representinginterse
tion 
ould be derived along the same way; but the existen
e of a uniquemodel for both, as we have shown in Corollary 24, was left open.5 In�nite easy sequen
es of termsIn Se
tion 4.3 we have proved the existen
e of fun
tionally graph easy se-quen
es of every �nite length (Theorem 22). In this se
tion we introdu
e thetwo te
hni
al notions of 
attening and osr, whi
h give us another way to ob-20



tain easy sequen
es and, in parti
ular, to prove the existen
e of in�nite easysequen
es.5.1 FlatteningsNotation 25 Let E =def [n�0En where the En are de�ned by: E0 =def D andEn+1 =def (E�n � En) [ En:It is easy to 
he
k that En+1 = (E�n�En)[D, and also that tr(g) � En+1 forevery 
ontinuous fun
tion g : Dn ! D:It is also easy to 
he
k that ea
h partial inje
tion q 2 Q extends to a partialfun
tion fq : E ! D, satisfying the following properties:(i) fq(x) =def x if x 2 D;(ii) fq(e; ") =def q(f+q (e); fq(")) if e [ f"g � dom(fq) and (f+q (e); fq(")) 2dom(q); unde�ned otherwise, where: f+q (e) =def ffq(x) : x 2 e g.Thus fq(x) 6= ? if and only if q is hereditarily de�ned on all the internal
omponents of x: We now de�ne a total fun
tion f �q : P(E)! P(D):Notation 26 f �q (G) =def f fq(x) : = x 2 G \ dom(fq) g; for any G � E:De�nition 27 For x 2 E and G � E we shall respe
tively 
all fq(x) andf �q (G) the q-
attening of x and G.Example 28 For all q 2 Q and G � D we have f �q (G) = G:In parti
ular, for all t 2 �ÆD we have f �q (tq) = tq:We see more sophisti
ated examples below (but these ones are relevant for ourpurpose).Lemma 29 The fun
tion f : E � Q ! D?, de�ned by f(x; q) = fq(x) ifx 2 dom(fq) and ? otherwise, is 
ontinuous with respe
t to q:Proof. Sin
e D? is 
at, 
ontinuity is here equivalent to saying that:(i) If q � q0 and fq(x) is de�ned then fq0(x) is de�ned and fq0(x) = fq(x).(ii) If q is the union of an in
reasing sequen
e (qn)n2! then there exists n su
hthat fq(x) = fqn(x). 21



The �rst point is trivial, and the se
ond easily follows from the fa
t that the
omputation of fq(x) only requires a �nite part of the graph of q:Lemma 30 The fun
tion f � : P(E) � Q ! P(D), de�ned by f �(G; q) =f �q (G), is 
ontinuous. It is even additive with respe
t to the �rst 
omponent G(i.e. 
ommutes with all unions).Proof. A binary fun
tion is 
ontinuous i� it is 
ontinuous 
omponentwise.Continuity with respe
t to q easily follows from the pre
eding lemma, andadditivity with respe
t to G is trivial.Lemma 31 Let G : Q ! P(E) and let H : Q ! P(D) be de�ned by Hq =f �q (Gq) for all q 2 Q, then:(i) If G is 
ontinuous then H is also 
ontinuous,(ii) If G is weakly 
ontinuous then H is weakly 
ontinuous.Proof. Sin
e H =def f � Æ (G � id) the monotoni
ity of H follows from themonotoni
ity of G; and similarly for 
ontinuity, using the 
ontinuity of f �(previous Lemma). Suppose now thatG is only weakly 
ontinuous and suppose� 2 Hp; where p is a total inje
tion. By de�nition of H there is an x 2G(p) � E su
h that � = fp(x): By Lemma 29 there is a �nite s � p su
hthat � = fs(x); furthermore, sin
e G is weakly 
ontinuous there is a �niter � p su
h that x 2 G(r): Then, if q = r [ s we have � 2 Hq = f �q (Gq), bymonotoni
ity of f � and G.5.2 Orthogonal system of representativesDe�nition 32 Let �u 2 (�Æ)�! be a sequen
e of 
losed pure terms and p0 2 Qbe free for 
: The sequen
e �" 2 E�! is an orthogonal system of representatives( an osr, for short) for �u modulo p0 if: l(�") = l(�u) and, for all j; k � l(�u) andall total p � p0, we have fp("k) 2 upj i� k = j:De�nition 33 The sequen
e �u admits an osr if there exist �"; p0 su
h that �"is an osr for �u modulo p0:Of 
ourse not all sequen
es of pure terms admit an osr: Simple examplesof �nite and in�nite sequen
es of terms admitting an osr will be given inLemma 36 below. It is 
lear that any subsequen
e or permutation of a sequen
eadmitting an osr also admits an osr. The interest of the notion of osr 
omesfrom the fa
t that, for all �u 2 ��! admitting an osr, the sequen
e (
uk)k�l(�u)is fun
tionally graph easy (Theorem 37 in the next se
tion).22



Notation 34 �n;k =def �x1:::�xn:xk 2 �; for 1 � k � n:�0k =def �k+1;k+1; for k 2 !:Notation 35 Let � be some �xed element of D:"n;k =def (;k�1f�g;n�k; �) 2 E, for 1 � k � n:"0k =def "k+1;k+1 = (;kf�g; �) 2 E; for k 2 !:(where (�a1�a2:::�an; �) is de�ned as (�a; �) where �a is the 
on
atenation of �a1; �a2; :::; �an):Lemma 36 (i) ("n;k)k�n is an osr for (�n;k)k�n modulo ;:(ii) ("0k)k2! is an osr for (�0k)k2! modulo p0 = f((;; �); �)g:Proof. (i) is 
lear, by de�nition of �pn;k.(ii) Suppose that p is total and p(;; �) = �: Then it is easy to 
he
k su

essivelythat (D; p) satis�es:(1) � =2 (�x:x)p:(2) f�g;n = f�g for all n > 0.(3) f�g = f p(f�g; �) gf�g.(4) 8n > 0 (� =2 �0n)(this follows from 1,2, and the monotoni
ity of appli
ation).(5) 8n > 1 ( p(f�g; �) =2 �0n )(this follows from 1,3, and the monotoni
ity of appli
ation).(6) fp(;m; f�g; �) 2 �0n i� m = n.(the 
ase n > m is ex
luded by 5 and the monotoni
ity of appli
ation,and m > n 
ontradi
ts 4).
5.3 In�nite easy sequen
es of termsTheorem 37 For all �u 2 (�Æ)�! admitting an osr, the sequen
e (
uk)k�l(�u)is fun
tionally graph easy (and then easy).Proof. Let �", p0 be su
h that �" is an osr for �u modulo p0; and let �t 2 �l(�u)D .For all q 2 Q; let Gq = f (f"kg; �) = 1 � k � l(�t); � 2 tqkg � E: Sin
e Gq isessentially the disjoint union of the subsets tqk of D; whi
h are 
ontinuous wrtq; the fun
tion G : Q ! P(E) is 
ontinuous. From Lemma 31 the fun
tionF de�ned by F (q) = f �q (Gq) is also 
ontinuous. From Theorem 13 there is a23



total p � p0 su
h that 
p = f �p (Gp): Now, sin
e �" is an osr for �u relatively top0 we have that f �p (Gp):upk = f �p (Gp):ffp("k)g = f �p (tpk) = tpk (by de�nition ofappli
ation in (D; p)), thus (
uk)p = tpk, and (D; p) j= 
uk = tk for all k:The alternative proof using for
ing works in a similar way, using 
ase (ii) ofLemma 31.Re
all that the pure �-terms �0k are de�ned in Notation 34.Corollary 38 The in�nite sequen
e (
�0k)k�0 is fun
tionally graph easy.Corollary 39 For all in�nite sequen
es �g of 
ontinuous fun
tions on P(D);there is a graph model (D; p) su
h that for all k we have: (D; p) � 
�0k =��x:gk(�x); where l(�x) is the arity of gk:In the next 
orollary we show that there exist 2!-pairwise in
onsistent graphtheories, so that GT is as \wide" as possible. This improves Kerth's result [31℄stating the existen
e of 2!-graph theories.Before stating the 
orollary, it is worth noting that from Kerth's proof one
an already derive the existen
e of 2!-pairwise in
omparable graph-theories(re
all that two �-theories T and S are in
omparable if neither T � S norS � T ). Indeed Kerth produ
es families of graph models (GW )W2P(S) andof sets of equations (RW )W2P(S), where S is an in�nite 
ountable set, su
hthat RW � RW 0 if and only if W � W 0 and GW satis�es all the equationsof RW and no equation of RW 0 � RW : From the fa
t that (P(S);�) 
ontains2! pairwise in
omparable sets (this is easy to prove), we dedu
e immediatelythat there are 2! pairwise in
omparable graph theories. Note that the GW arebuilt as 
anoni
al 
ompletions of partial pairs, and that Kerth's proofs (see[31℄ and [33℄), even if not diÆ
ult, required some nontrivial observations, andsome 
omputations, whi
h is not the 
ase here (on
e generalized for
ing isestablished).Corollary 40 There exist 2! pairwise in
onsistent graph theories.Proof. Let �s be an in�nite graph easy sequen
e and let �t be the sequen
e ofChur
h integers. For any permutation � on usual integers let p� be su
h that(D; p�) � sk = t�(k) for all k: It is 
lear that the graph models (D; p�) are nonequationally equivalent, and that their theories are pairwise in
onsistent.Kerth and David's result whi
h asserts the existen
e of 2! sensible graphtheories, mentioned in the introdu
tion, is out of the s
ope of our te
hniques.24



6 Appli
ationsIn this se
tion we show that there exist(1) a �nitely axiomatized �-theory L whose interval sub-latti
e [L) = fS 2�T : L � Sg has a 
ontinuum of elements and is a distributive sub-latti
eof the latti
e of �-theories;(2) a 
ongruen
e distributive variety of lambda abstra
tion algebras;(3) a 
ongruen
e distributive variety of 
ombinatory algebras.6.1 The Latti
e of �-TheoriesThe set of the �-theories ordered by in
lusion is naturally equipped with astru
ture of 
omplete latti
e (see Se
tion 2). The latti
e �T of �-theories hasa very ri
h and 
omplex stru
ture. For example, Visser [50℄ has shown in �rsteighties that every 
ountable partially ordered set embeds into �T by an order-preserving map, and that every interval of �T , whose bounds are re
ursivelyenumerable lambda theories, has a 
ontinuum of elements.Lusin-Salibra [38℄ and Salibra [45℄ have employed results and te
hniques fromuniversal algebra, in parti
ular 
ommutator theory and the theory of Mal'
ev
onditions, to obtain some results 
hara
terizing the stru
ture and the equa-tional theory of the latti
e of lambda theories. Very little had previously beenknown about the equational theory of this latti
e.We brie
y outline the approa
h developed in [38℄. Consider the absolutely freealgebra of pure terms: � := (�; ��; �x�; x�)x2V a; (3)where � is the set of pure terms over an in�nite set V a of variables and, forall M;N 2 �,M �� N = (MN); �x�(M) = (�x:M); x� = x:An equivalen
e relation T over the set � of pure terms is a lambda theory if,and only if, it is a 
ongruen
e over � in
luding (�) and (�)-
onversion. Forevery lambda theory T , the 
ongruen
e latti
e of the term algebra �T , thequotient of � by T , is isomorphi
 to the interval sub-latti
e [T ) = fS : T � Sgof the latti
e of the lambda theories. In parti
ular, the isomorphism betweenthe latti
e �T and the 
ongruen
e latti
e of ��� is the starting point forstudying the stru
ture of �T by universal algebrai
 methods.It was shown by Salibra [45℄ that the latti
e �T is not modular, i.e., it does not25



satisfy the following modular law (that is a weakened form of distributivity):T (S + TR) = TS + TR;while Lusin and Salibra [38℄ have shown that �T satis�es interesting quasi-identities in the language of bounded latti
es. For example, the following quasi-identity holds in the latti
e �T :S + T = 1; SG = TG ! G = GS = GT;where 1 is the in
onsistent lambda theory.The same authors have shown in [38℄ that there exists a �-theory J , whoseinterval sub-latti
e [J ) = fS 2 �T : J � Sg satis�es the following restri
tedform of distributivity (
alled meet semidistributivity)TR = TS ! TR = T (R + S);and a nontrivial identity in the language of latti
es enri
hed by the 
ompositionof binary relations.In [38℄ it was 
onje
tured that the latti
e �T does not satisfy any nontriviallatti
e identity. To support this 
onje
ture the authors have shown in [38℄that, for every nontrivial latti
e identity e, there exists a natural number nsu
h that e fails in the latti
e of lambda theories in a language of �-terms withn 
onstants. We 
an relax the above 
onje
ture by asking whether there existsan in�nite interval sub-latti
e of �T satisfying interesting latti
e identities.In this se
tion we show that there exists an in�nite distributive interval sub-latti
e of �T .There are strong motivations to be interested in interval sub-latti
es of �Trather than arbitrary sub-latti
es of �T . The study of interval sub-latti
esallows us to apply algebrai
 methods to lambda 
al
ulus. In the remaining partof this se
tion we provide an interesting example of this 
onne
tion. First weintrodu
e a �nitely axiomatized �-theory L, whose 
onsisten
y is obtained byusing the methods introdu
ed in the previous se
tions. The equations de�ningL, whi
h make the lambda 
al
ulus 
onsistent with the latti
e operations ofjoin and meet, are used to de�ne latti
e term operations on the term algebra�L, the quotient of � by the 
ongruen
e L. Sin
e every algebra admittinglatti
e term operations is 
ongruen
e distributive, then we immediately getthat the term algebra �L is 
ongruen
e distributive. The 
on
lusion, that theinterval sub-latti
e [L) is distributive, follows be
ause [L) is isomorphi
 to the
ongruen
e latti
e of the term algebra �L. As it will be pointed out in the nextse
tion, algebrai
 properties of interval sub-latti
es of �T are related in many
ases to the existen
e of varieties of lambda abstra
tion algebras (
ombinatoryalgebras, respe
tively) satisfying strong algebrai
 properties.26



Re
all that T =def �xy:x and F =def �xy:y.Lemma 41 The lambda theory L, axiomatized by(1) 
Txx = x; 
Fxx = x.(2) 
Txy = 
Tyx; 
Fxy = 
Fyx.(3) 
Tx(
Tyz) = 
T (
Txy)z; 
Fx(
Fyz) = 
F (
Fxy)z.(4) 
Tx(
Fxy) = x; 
Fx(
Txy) = x.(5) 
Tx(
Fyz) = 
F (
Txy)(
Txz); 
Fx(
Tyz) = 
T (
Fxy)(
Fxz).is 
onsistent.Proof. From Corollary 24 it follows that there exists a graph model (D; p),where the set-theoreti
al union and interse
tion are �-represented by 
T and
F . Sin
e (P(D);[;\) is a distributive latti
e, then the �-theory L is 
on-tained in the theory Th(D; p) of (D; p).Lemma 42 The 
ongruen
e latti
e of the term algebra �L is isomorphi
 tothe interval sub-latti
e [L) = fT : L � Tg of the latti
e of lambda theories.Proof. A �-theory T satisfying the 
ondition L � T 
an be interpreted as a
ongruen
e �T on the term algebra �L (see [38℄): for every �; � 2 �L, � �T �if, and only if, there exist pure terms t 2 � and u 2 � su
h that T ` t = u(re
all that �; � are equivalen
e 
lasses of pure terms).Lemma 43 Let A be any algebra. If A admits two binary term operationssatisfying the axioms of a distributive latti
e, then the 
ongruen
e latti
e of Ais distributive.Proof. Let A be the universe of the algebra A, and +; � be the binary termoperations of A satisfying the axioms of a distributive latti
e. It is well knownthat the 
ongruen
e latti
e of every distributive latti
e is distributive (see[39℄), so that the 
ongruen
e latti
e of the algebra (A;+; �) is distributive.We get the 
on
lusion if we show that the 
ongruen
e latti
e of A is a sub-latti
e of the distributive 
ongruen
e latti
e of the algebra (A;+; �). First every
ongruen
e overA is a 
ongruen
e over (A;+; �), be
ause \+" and \�" are termoperations. This implies that the set of 
ongruen
es over A is a subset of theset of 
ongruen
es over (A;+; �). The 
on
lusion is now immediate be
ause themeet and the join in both 
ongruen
e latti
es are the same: they are de�nedset-theoreti
ally as interse
tion and least equivalen
e relation.As a matter of notation, for every lambda theory T , we denote by [t℄T theequivalen
e 
lass of the pure terms u su
h that T ` t = u.Theorem 44 The interval sub-latti
e [L) = fS 2 �T : L � Sg has a 
ontin-27



uum of elements and is a distributive sub-latti
e of the latti
e of �-theories.Proof. The interval [L) has a 
ontinuum of elements by Prop. 17.1.9 andThm. 17.1.10 in Barendregt's book [6℄. We now show that the interval [L) isdistributive. By Lemma 42 it is suÆ
ient to prove that the 
ongruen
e latti
eof the term algebra �L is distributive. De�ne the following term operationsover �L, for every �; � 2 �L:� + � = [
T ts℄L; � � � = [
Fts℄L; for some t 2 � and s 2 �: (4)Then it is easy to verify by using the axioms de�ning L that the term op-erations \+" and \�" satisfy the axioms of a distributive latti
e. For exam-ple, the identity 
Tx(
Fxy) = x, spe
i�ed in Lemma 41(4), 
orrespondsto the absorption law x + (x � y) = x, while the identity 
Tx(
Fyz) =
F (
Txy)(
Txz), spe
i�ed in Lemma 41(5), 
orresponds to the distribu-tive law x+ (y � z) = (x+ y) � (x+ z). Then the term algebra �L satis�es thehypothesis of Lemma 43, so that it admits a distributive 
ongruen
e latti
e.
6.2 Lambda abstra
tion algebras and 
ombinatory algebrasAnother appli
ation of the main results of the paper that we develop here 
on-
erns lambda abstra
tion algebras and 
ombinatory algebras. Lambda abstra
-tion algebras (LAA's) were introdu
ed by Pigozzi and Salibra in [40,41℄ as apurely algebrai
 theory of the untyped lambda 
al
ulus alternative to Curry'shighly 
ombinatorial models. Combinatory algebras (CA's) and lambda ab-stra
tion algebras are both de�ned by universally quanti�ed equations andthus form varieties in the universal algebrai
 sense. There are important dif-feren
es however that result in theories of very di�erent 
hara
ter. Fun
tionalappli
ation is taken as a fundamental operation in both CA's and LAA's.Lambda (i.e., fun
tional) abstra
tion is also fundamental in LAA's but inCA's is de�ned in terms of the 
ombinators k and s. A more important dif-feren
e is 
onne
ted with the role variables play in the lambda 
al
ulus aspla
e holders. In a LAA this is also abstra
ted. It takes the form of a systemof fundamental elements (nullary operations) of the algebra. This is a 
ru
ialfeature of LAA's that has no dire
t analogue in CA's.The equational theory of LAA's is axiomatized by the equations that hold be-tween 
ontexts of the lambda 
al
ulus (i.e., �-terms with `holes' [6, Def. 14.4.1℄),as opposed to lambda terms with free variables. The essential feature of a
ontext is that a free variable in a �-term may be
ome bound when we substi-tute it for a `hole' within the 
ontext. Thus, `holes' play the role of algebrai
variables, and the 
ontexts are the algebrai
 terms in the similarity type of28



lambda abstra
tion algebras. There is a rather pe
uliar relation between thelatti
e �T of lambda theories and the variety LAA. In [44℄ Salibra has shownthat the latti
e �T is isomorphi
 to the latti
e of the equational theories ofLAA's. In fa
t, the 
orresponden
e, whi
h maps an arbitrary �-theory T intothe equational theory of the variety generated by the term algebra of T , is anisomorphism of 
omplete latti
es. Thus, the properties of an arbitrary lambdatheory 
an be studied by means of the variety of LAA's generated by its termalgebra. As we have spe
i�ed in the introdu
tion, many longstanding openproblems of lambda 
al
ulus 
an be restated in terms of algebrai
 propertiesof varieties of LAA's.In this se
tion we show that there exist a 
ongruen
e distributive variety ofLAA's (i.e., a variety V of LAA's su
h that every algebra in V has a distribu-tive 
ongruen
e latti
e) and a 
ongruen
e distributive variety of CA's. Theexisten
e of varieties of LAA's or CA's satisfying strong algebrai
 proper-ties, su
h as 
ongruen
e distributivity, was an open problem sin
e Salibra [45℄proved that the variety LAA is not 
ongruen
e modular and Lusin-Salibra[38℄ proved that every variety V of LAA's generated by the term algebra of asemi-sensible �-theory does not satisfy any latti
e identity.Theorem 45 There exists a 
ongruen
e distributive variety of lambda ab-stra
tion algebras.Proof. Let V be the variety of LAA's generated by the term algebra �L ofthe lambda theory L de�ned in Lemma 41. We 
laim that V is 
ongruen
edistributive, that is, every algebraA 2 V has a distributive 
ongruen
e latti
e.We have shown in the proof of Theorem 44 that the term algebra �L hastwo term operations + and � (de�ned in (4)), whi
h satisfy the axioms ofa distributive latti
e. Sin
e �L generates the variety V and +; � are termoperations, then every algebra A 2 V has also two term operations satisfyingthe axioms of a distributive latti
e. The 
on
lusion is obtained from Lemma43.Theorem 46 There exists a 
ongruen
e distributive variety of 
ombinatoryalgebras.Proof.We re
all from [6℄ that the models of lambda 
al
ulus, and in parti
ularthe graph models, are 
ombinatory algebras. By Corollary 24 there exists agraph model (D; p), where the set-theoreti
al union and interse
tion are �-represented by the 
losed pure �-terms 
T and 
F . We 
laim that the varietyV ofCA's generated by the graph model (D; p) is 
ongruen
e distributive. The
on
lusion is obtained from Lemma 43 by the following fa
ts.(i) There exist two 
ombinatory terms t and u su
h that the interpretations in(D; p) of 
T and 
F are equal to those of t and u respe
tively (see Se
tion29



7.3 in Barendregt's book [6℄).(ii) The term operations txy and uxy satisfy the axioms of a distributive latti
ein the 
ombinatory algebra (D; p).(iii) The term operations txy and uxy satisfy the axioms of a distributive latti
ein every algebra belonging to the variety generated by (D; p).
7 Con
lusions and future workWe have generalized Baeten and Boerboom's method of for
ing �rst to gen-eralized terms involving all the 
ontinuous fun
tions on a given power setP(D), and, se
ond, to all weakly 
ontinuous operators. This approa
h allowsus to prove very dire
tly results about the lambda-representability of 
ontin-uous fun
tions on power sets, and also to generalize these results to 
ountablesequen
es of 
ontinuous fun
tions.Related works are only the very re
ent papers by Alessi et al. [3℄ and Dezani-Lusin [22℄, where the authors use interse
tion type systems (see [3,7,20℄) forsynthesizing �lter models of lambda 
al
ulus in whi
h the interpretation ofa simple easy term 
an be any �lter des
ribed by a 
ontinuous predi
ate.This result 
an be interpreted as a generalization of Baeten and Boerboom'smethod of for
ing via the use of interse
tion type systems. We believe thatthe framework we have developed in this paper is however more dire
t thanthe one used in [3℄. We illustrate this with two examples, 
on
erning the �-representability of the minimal �xed point operator (Corollary 21) and of thepair union/interse
tion (Corollary 24).As an appli
ation of the existen
e of (�nite/in�nite) sequen
es of terms thatare fun
tionally graph easy, we get strong results 
on
erning the stru
ture ofthe latti
e of lambda theories and the existen
e of varieties of lambda abstra
-tion algebras with very strong algebrai
 properties. More pre
isely, we showthe existen
e of a distributive sub-latti
e of the latti
e of lambda theories andof a 
ongruen
e distributive variety of lambda abstra
tion algebras.In the present paper we only 
onsider domains P(D), and, 
orrelatively, graphmodels of lambda-
al
ulus, and we 
on
entrate on a limited number of appli-
ations. A further appli
ation, whi
h is not treated here, is the question of thelambda-representability of �rst-order, say, stru
tures in graph models. Thiswill be the subje
t of another paper.We would like to extend the results of the present paper to more sophisti-
ated S
ott-domains and webs. Various interesting 
lasses of webbed models30



of lambda-
al
ulus, 
on
erning the main semanti
s of lambda-
al
ulus, weresurveyed in [14℄. For the 
ontinuous semanti
s they range from graph mod-els to �lter models, with a 
lear preferen
e for the models whose underlyingdomain is prime-algebrai
 (whi
h ex
ludes some �lter models), sin
e they 
anbe represented via feasible webs. All are a

essible to Baeten and Boerboom'ste
hnique (see Se
tion 2.3), but with less fa
ility than for graph models. Com-patibility 
onditions have to be met, depending on the 
lass we 
onsider, whi
hdo not o

ur when dealing with graph models. However no systemati
 studyhas been made so far if one ex
epts �lter models [3,22℄. Our intention is hen
eto extend the methods and results presented in this paper to more generalS
ott-domains and webs.AppendixProposition 47 For
ing is not S
ott-
ontinuous.By this we mean that for all in�nite sets D and all terms t; the appli
ationH : Q! P(D) de�ned by H(q) = f� : q 
 � 2 t g is not S
ott-
ontinuous.Proof. Let � be a �xed element of D and q be a bije
tion between D��D�f(f�g; �)g and D � f�g: It is 
lear that q 
 � 2 �x:x, sin
e the only totalinje
tion p whi
h extends q satis�es p(f�g; �) = �: Let r � q be the partialsub-inje
tion of q su
h that dom(r) = f (b; �) = � 2 b g \ dom(q): Sin
e q � ris in�nite and 
ountable there is a 
ountable stri
tly in
reasing sequen
e qnstarting from r and whose union is q.We 
laim now that no q0 su
h that r � q0 ( q 
an for
e � 2 �x:x: Let indeed(
; 
) 2 dom(q)� dom(q0) and let p be a total inje
tion whi
h extends q0 andsatis�es � = p(
; 
): From the hypothesis on q; q0; p we have that � =2 (�x:x)p.Hen
e q0 1 � 2 �x:x.Referen
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