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Abstract

We generalize Baeten and Boerboom’s method of forcing, and apply it
to show that there is a fixed sequence (uk)k∈ω of closed (untyped) λ-terms
satisfying the following properties:

a) For any countable sequence (gk)k∈ω of continuous functions (of ar-
bitrary arity) on the power set P(D) of an arbitrary countable set D,
there is a graph model (D, p) such that (λx.xx)(λx.xx)uk represents gk

in the model.
b) For any countable sequence (tk)k∈ω of closed λ-terms there is a

graph model that satisfies (λx.xx)(λx.xx)uk = tk for all k.

These two results bring information on the landscape of graph theories
(= λ-theories that can be realized as theories of graph models), and more
generally on the lattice of λ-theories (ordered by inclusion).

Keywords. untyped λ-calculus, graph models, easy terms, Scott’s contin-
uous semantics, lattices of λ-theories, webbed models.

1 Introduction.

Lambda theories are equational extensions of the untyped λ-calculus that are
closed under derivation. They arise by syntactical and semantic considerations:
a lambda theory may correspond to an operational semantics of the lambda
calculus, as well as it may be induced by a model of lambda calculus through
the kernel congruence relation of the interpretation function (see e.g. [6] [14]).
The set of lambda-theories ordered by inclusion is naturally equipped with a
structure of complete lattice (see Chapter 4 in [6]), where the meet of a family of
lambda theories is their intersection, and the join is the least equivalence relation
containing their union. The bottom element of this lattice is the minimal λ-
theory λβ , while the top element is the inconsistent λ-theory. The lattice of
lambda theories, hereafter denoted by λT , has a continuum of elements and
a complex structure. Since researchers have mainly focused their interest on
a limited number of λ-theories, very little is known about the structure and
equational theory of λT (see [38, 45]).

Since syntactical techniques are usually difficult to use in the study of λ-
theories, then semantic methods have been extensively investigated. Topology
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is at the center of the known approaches to giving models of the untyped lambda
calculus. The first model, found by Scott in 1969 in the category of complete
lattices and Scott continuous functions, was successfully used to show that all
the unsolvable λ-terms can be consistently equated. After Scott, a large number
of mathematical models for lambda calculus, arising from syntax-free construc-
tions, have been introduced in various categories of domains and were classified
into semantics according to the nature of their representable functions, see e.g.
[1, 6, 14, 43]. Scott’s continuous semantics [48] is given in the category whose ob-
jects are complete partial orders and morphisms are Scott continuous functions.
The stable semantics introduced by Berry [15] and the strongly stable semantics
introduced by Bucciarelli-Ehrhard [16] are a strengthening of the continuous se-
mantics, introduced to capture the sequential features of lambda calculus. All
these semantics are structurally and equationally rich in the sense that, in each
of them, it is possible to build up 2ℵ0 models inducing distinct and pairwise
inconsistent λ-theories [31, 32, 35].

Although a rich host of different λ-theories have a syntax-free model (i.e.,
a model that induces precisely those identities which hold in the given theory),
the above denotational semantics are equationally incomplete: they do not even
match all the possible operational semantics of lambda calculus. The problem
of the equational incompleteness was positively solved by Honsell-Ronchi della
Rocca [25] for the continuous semantics, by Bastonero-Gouy [24, 10, 11] for
the stable semantics, and by Salibra [46, 47] for the strongly stable semantics.
As for λT , the results on the structure of the set of λ-theories induced by a
semantics are still rare, and there exist several longstanding very basic open
questions (see [14] for a survey). In particular it is still open to know whether
λβ , the least λ-theory, could be the theory of a non-syntactic model in Scott’s
continuous semantics.

In this paper we concentrate on the semantics G of lambda calculus given in
terms of graph models, graph semantics for short. These models, isolated in the
seventies by Plotkin, Scott and Engeler [37] within the continuous semantics,
have been proved useful for giving proofs of consistency of extensions of lambda
calculus and for studying operational features of lambda calculus (see [14]). For
example, the simplest graph model, namely Engeler-Plotkin’s model, has been
used by Berline [14] to give concise proofs of the head-normalization theorem and
of the left-normalization theorem of lambda calculus. Bucciarelli and Salibra
[17, 18] have very recently proved that the set GT , consisting of all the graph
theories (= λ-theories that can be realized as theories of graph models), admits
a least element, which is strictly greater than λβ ; in particular λβ cannot be
the theory of a graph model. These authors have also proved in [18] results
about the “smaller” class GsT of all sensible graph theories (a theory is sensible
if all the unsolvable terms are congruent). Smaller means here only that GsT
is strictly included in GT, since from Kerth [33] [36] plus David [21] it follows
that GsT also contains 2ω λ-theories (the result is however much harder to prove
than for GT ).

The reasons to concentrate on G are the following. First G is, from far,
the simplest class of models, in the sense that the webs of graph models are
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the simplest existing webs. Second GT contains nevertheless a continuum of
elements [31], so it is a rich class, in the sense that its cardinality is the maximal
possible one, but it is a proper subclass of λT, since no graph model can be
extensional. Third it is quite clear that the techniques and results for G and
GT can often be transferred to other classes of webbed models, whether more
general or belonging to other semantics.

It is a well known result of Jacopini [27] that Ω can be consistently equated to
any closed term t of the (untyped) λ-calculus, where Ω is the paradigmatic un-
solvable term (λx.xx) λx.xx (this is called the easiness of Ω). Baeten-Boerboom
gave in [5] the first semantic proof of this result by showing that for all closed
terms t one can build a graph model satisfying the equation Ω = t. This seman-
tic result extends to other classes of models and to some other terms which share
with Ω enough of its good will (cf. [14] for a survey of such results). We recall
that a graph model is, by definition, a reflexive Scott domain, which is generated
by a web of the form (D, p), where D is an infinite set and p : D∗ × D → D is
a total injection, D∗ being the set of finite subsets of D (see Section 2.2). For
short we will confuse graph models and their webs, but one should have present
in mind that the underlying domain of the model (D, p) is the full powerset
P(D) ordered by inclusion, which is therefore independent of p. Starting from
the set D = N of natural numbers, Baeten and Boerboom build p by a method
of “forcing”, which, although much simpler than the forcing techniques used in
set theory, is somewhat in the same spirit. In the Baeten-Boerboom setting a
forcing condition is a partial injection q : D∗ × D ⇀ D and “q forces α ∈ t”,
abbreviated by q  α ∈ t, means that for all total injection p ⊇ q we have
that (D, p) |= α ∈ t. The game is to build p as an increasing union of forcing
conditions which successively put in Ω all the elements which are forced to be
in t and exclude all the other ones.

In this paper we address the question of the “easiness” of sequences of λ-
terms and of the λ-representability of sequences of continuous functions on
P(D), where D is any countable infinite set. Given two sequences t̄ and v̄
of the same length, we denote by t̄ = v̄ the set consisting of all the equations
tk = vk. We say that a (possibly infinite) sequence t̄ of closed λ-terms is

1. easy if, for every other sequence v̄ (of same length) of closed λ-terms, the
set t̄ = v̄ is consistent.

2. graph easy if, for every other sequence v̄ (of same length) of closed λ-terms,
there is a graph model satisfying t̄ = v̄. (Of course, “graph easy” implies
“easy”).

3. graph easy for functionals if, for every sequence f̄ (of same length) of Scott
continuous functions on P(D), there exists a graph model (D, p) such that
tk represents fk in the model for every k.

We generalize Baeten and Boerboom’s method of forcing, and apply it to
show that there is a sequence (uk)k∈ω of closed λ-terms satisfying the conditions
expressed in the following two theorems.
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Theorem 1. The sequence (Ωuk : k < ω) is graph easy.
Theorem 2. The sequence (Ωuk : k < ω) is graph easy for functionals.
The above theorems have clear incidence on our knowledge of λT and on all

the subsets CT of λT , where C is any interesting class of models of λ-calculus
in the continuous semantics which contains the class G of all graph-models, and
CT is the set consisting of the λ-theories of the models in C.

The question of the λ-representability of (sequences of) continuous functions
has not yet been addressed, as far as we know. Related works are only the very
recent papers by Alessi et al. [3] and Dezani-Lusin [22], where the authors
use intersection type systems (see [3, 7, 20]) for synthesizing filter models of
lambda calculus in which the interpretation of a simple easy term can be any
filter described by a continuous predicate. The notion of simple easiness was
introduced by Alessi-Lusin [4] as a semantical tool to prove easiness. In fact,
simple easiness implies easiness, while it is an open question whether easiness
implies simple easiness. We would like to point out here that the main result
in [3] (that the interpretation of a simple easy term can be any filter described
by a continuous predicate) can be also interpreted as a generalization of Baeten
and Boerboom’s method of forcing via the use of intersection type systems.
We believe that the framework we have developed in this paper is however
more direct than the one used in [3]. We illustrate this with two examples,
concerning the λ-representability of the minimal fixed point operator and of the
pair union/intersection.

One application of Theorem 2 that we develop here concerns the lattice λT
of all λ-theories ordered by inclusion. In particular, instantiating Theorem 2 we
get the existence of a λ-theory T such that the upwards closure of T in λT is
a distributive lattice. The existence of a distributive sub-lattice of λT was an
open question, which arises naturally since Salibra [45] proved that the lattice
λT does not satisfy the modularity law (which is a weak form of distributivity),
and since Lusin and Salibra [38] have shown, among other results on λT , the
existence of a sub-lattice satisfying a restricted form of distributivity (called
meet semi-distributivity) expressed in the form of a quasi-identity.

Another application that we develop here concerns the variety (i.e., equa-
tional class) of lambda abstraction algebras (LAA’s) introduced by Pigozzi and
Salibra in [40, 41] as a purely algebraic theory of the untyped lambda calcu-
lus which nevertheless, and in contrast to Combinatory Logic, keeps all the
functional intuitions. There is a close relationship between the lattice λT of
lambda theories and the variety LAA. In [44] Salibra has shown that, for every
variety of LAA’s, there exists exactly one lambda theory whose term algebra
generates the variety. Thus, the properties of an arbitrary lambda theory can
be studied by means of the variety of LAA’s generated by its term algebra.
Many longstanding open problems of lambda calculus can be restated in terms
of algebraic properties of varieties of LAA’s. For example, the open problem
of the order-incompleteness of lambda calculus [49, 47] asks for the existence
of a lambda theory not arising as the equational theory of a non-trivially par-
tially ordered model of lambda calculus. The order-incompleteness of lambda
calculus is equivalent to the existence of an n-permutable variety of LAA’s for
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some natural number n ≥ 2 (see the remark after Theorem 3.4 in [49]; the def-
inition of n-permutability can be found in [39]). As a consequence of Theorem
2, we show that there exists a congruence distributive variety of LAA’s. The
existence of varieties of LAA’s satisfying strong algebraic properties, such as
n-permutability or congruence distributivity, was an open problem since Salibra
[45] proved that the variety LAA is not congruence modular. The existence of
a congruence distributive variety of LAA’s shows, against the common belief,
that the lambda calculus satisfies strong algebraic properties. We express hope
to positively solve in the future the order-incompleteness problem by showing
the existence of an n-permutable variety of LAA’s.

The paper is organized as follows. Section 2 is a preliminary section
containing the definition of a graph model and recalling the two possible ways
of building graph models out of partial webs, namely “canonical completion”
and “completion by forcing”. This section also surveys the most recent results
about the lambda theories induced by graph models.

In Section 3 we introduce the generalized terms, which allow continuous
functions of arbitrary arity as first-order function symbols, and we extend the
classic notion of easiness of Ω to sequences of generalized terms.

In Section 4 we show that Baeten-Boerboom’s method works not only for
forcing but more generally for weakly continuous operators, and also for gen-
eralized terms. This allows for the (optional) use of the (continuous) notion
of partial interpretation as an alternative to forcing. We provide sequences of
lambda terms of arbitrary finite length that are functionally graph easy.

In Section 5 we introduce the technical notions of flattening and of an orthog-
onal system of representatives (osr); then we give examples of infinite sequences
of terms that admit an osr. These technicalities are applied to get infinite
sequences of terms that are functionally graph easy.

In Section 6 it is shown that there exist a distributive sub-lattice of the lattice
of lambda theories and a congruence distributive variety of lambda abstraction
algebras.

Section 7 is devoted to conclusions and future work.

2 Preliminaries.

2.1 Basic notations and conventions.

λ-calculus. In this paper λ-calculus will always mean untyped λ-calculus,
and we adopt the notations of [6]. In particular Λ and Λ◦ are, respectively, the
set of λ-terms and of closed λ-terms. A λ-theory is a congruence on Λ (with
respect to the operators of abstraction and application), which contains (α)-
and (β)-conversion. There is a smallest λ-theory, denoted here by λβ , which is
nothing else than (α)- and (β)-conversion itself. λ-theories can of course also
be seen as (specific) sets of equations between λ-terms. A λ-theory is sensible
if all the unsolvable terms are congruent, and semi-sensible if no solvable term
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can equate an unsolvable term. The smallest sensible λ-theory is traditionally
denoted by H.

The lattice of λ-theories. The set of lambda-theories ordered by inclu-
sion is naturally equipped with a structure of complete lattice (see Chapter 4 in
[6]), where the meet of a family of λ-theories is their intersection, and the join
is the least equivalence relation containing their union. The bottom element
of this lattice is the minimal λ-theory λβ , while the top element is the incon-
sistent λ-theory. The lattice of λ-theories will be denoted by λT . The sets of
semi-sensible λ-theories and of sensible λ-theories constitute sub-lattices of λT .

Lattice identities. In the context of lattices an identity in the binary
symbols {+, ·} is called a lattice identity. (“+” is intended for sup and “·”
for inf ). A lattice identity is trivial if it holds in every lattice and nontrivial
otherwise.

Given the lattice λT of λ-theories, we interpret the variables of a lattice
identity as λ-theories, and for arbitrary binary relations T and S between λ-
terms we interpret T + S as the lambda theory generated by the union of the
two relations, and T ·S as the intersection (as usual, we will write TS for T ·S).

A quasi-identity is an implication with an equational conclusion and a finite
number of equational premises. A quasi-identity in the language of lattices is
satisfied by the lattice of lambda-theories if, the conclusion of the quasi-identity
is satisfied by all the lambda theories that satisfy the premises.

Scott’s semantics. Cpos (complete partial orders) and (Scott-) continu-
ous functions between cpos are defined in [6, Chapter I.2]. Given a set S, and
an element ⊥ not in S, the flat cpo S⊥ is the order (S ∪ {⊥},≤) where x ≤ y if
and only if x = ⊥ or x = y. If C, C′ are cpos then [C → C′] denotes the cpo of
all the continuous functions from C into C′. A reflexive cpo is a triple (C, A, λ)
such that λ ∈ [[C → C] → C] and A ∈ [C → [C → C]] and A◦λ = id. Reflexive
cpos model λ-calculus in a way which is recalled in Section 2.2 (for more details
see [6, Chapter V.5]). We will mainly (but not always) be interested in cpos of
the form (P(D),⊆), for some infinite countable set D. In this case ⊆ will be
understood as set inclusion. By “a continuous function g of arity n on P(D)”
we mean: g ∈ [P(D)n → P(D)].

Sets. For every set S, S∗ is the set of all finite subsets of S, while P(S) is
the powerset of S and S<ω (resp. Sω, S≤ω) is the set of all finite (resp. infinite,
resp. finite or infinite) sequences of elements of S; l(s̄) denotes the length of
the sequence s̄. When writing g(x̄), where g is a function and x̄ a sequence of
elements of the domain of g, we will of course always understand that l(x̄) is
the arity of g.

Further conventions. Greek letters α, β, .. will always understand ele-
ments of a set D specified by the context (from Section 3 on, D will be any
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fixed countable infinite set). Small Latin letters a, b, c will understand elements
of D∗, and ā, b̄, c̄... elements of (D∗)<ω. Also, (a, α) is the usual set-theoretical
pair, and (ā, α) is defined by induction as follows: (bc̄, α) =def (b, (c̄, α)).

Traces of continuous functions. A continuous function g on P(D), of
any arity, is completely determined by its trace, which is defined by:

tr(g) =def { (ā, α) : α ∈ g(ā) } (1)

The trace is, essentially, the relevant part of the graph graph(g) of g; “essen-
tially” refers to the fact that, if g is unary, say, then tr(g) ⊆ D∗×D ⊆ P(D)×D,
while graph(g) ⊆ P(D) × P(D)

2.2 Graph models.

The class of graph models belongs to Scott’s continuous semantics. Graph
models owe their name to the fact that continuous functions are encoded in
them via (a sufficient fragment of) their graphs, namely their traces.

A graph model is a model of untyped λ-calculus, which is generated from a
web in a way that will be recalled below. Historically, the first graph model was
Plotkin and Scott’s Pω (see e.g. [6]), which is also known in the literature as “the
graph model”. The simplest graph model, E , was introduced soon afterwards,
and independently, by Engeler [23] and Plotkin [42]. More examples can be
found in [14].

For short we will confuse the model and its web and so we define:

Definition 1 A graph model is a pair (D, p), where D is an infinite set and
p : D∗ × D → D is an injective total function.

Such a pair will also be called a total pair. A total pair (D, p) generates a
reflexive cpo (P(D), λp, Ap), and hence a model of λ-calculus. The continuous
function λp ∈ [[P(D) → P(D)] → P(D)] is defined by λp = p+ ◦ tr. This
definition extends to continuous functions of arbitrary arity on P(D); in other
words, for any such function g, we have:

λp(g) = { p(ā, α) : α ∈ g(ā) } (2)

The left inverse Ap ∈ [P(D) → [P(D) → P(D)]] of λp (which allows to interpret
application in the model) is defined by:

Ap(X)(Y ) = {α ∈ D : (∃a ⊆ Y ) p(a, α) ∈ X}.

where X, Y are arbitrary subsets of D. When no ambiguity will occur we
will write XY instead of Ap(X)(Y ). More generally, XȲ is defined, for Ȳ =
(Y1, ..., Yn), as (..((XY1)...)Yn).

Let EnvD be the set of D-environments ρ mapping the set of the variables
of λ-calculus into P(D). For ρ ∈ EnvD and X ∈ P(D) let ρ[x : X ] be the envi-
ronment which takes value X on x and coincides with ρ on all other variables.
The interpretation tp : EnvD → P(D) of a λ-term t which is relative to (D, p)
is defined by induction by:
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• xp
ρ = ρ(x)

• (tu)p
ρ = Ap(t

p
ρ)(u

p
ρ) = {α : (∃a ⊆ up

ρ) p(a, α) ∈ tpρ}

• (λx.t)p
ρ = λp(X ∈ P(D) 7→ tp

ρ[x:X]) = { p(a, α) : α ∈ tp
ρ[x:=a]}

Since tpρ only depends on the value of ρ on the free variables of t, we only
write tp if t is closed. The following trivial example will be used in the Appendix.

Example 2 (λx.x)p = { p(a, α) : α ∈ a }

We turn now to the interpretation of Ω = δδ in graph models, where δ =
λx.xx. It is easy to check that the interpretation of Ω in Pω and E is ∅; but,
fortunately, this is not always the case. The following lemma gives one necessary
condition and one sufficient condition for α ∈ D to be in the interpretation of
Ω in (D, p), but, first, two remarks on the interpretation of δ are in order.

Remark 3 (i) p(a, α) ∈ δp ⇐⇒ α ∈ a a.
(ii) (α ∈ XX and X ⊆ δp) =⇒ ∃a ⊆ X ( p(a, α) ∈ X and α ∈ aa )

Lemma 4 [5] Let (D, p) be a graph model and α ∈ D, then:
(i) If α ∈ Ωp, then there exists a such that p(a, α) ∈ a.
(ii) If there exists β ∈ D such that p({β}, α) = β, then α ∈ Ωp.

Proof. (ii) By definition of application, p({β}, α) = β implies α ∈ {β}{β},
hence p({β}, α) ∈ δp (Remark 3 (i)); hence β ∈ δp and α ∈ δpδp = Ωp, since
application is monotone wrt inclusion.

(i) If α ∈ Ωp = δpδp then:
∃a1 ⊆ δp ( p(a1, α) ∈ δ andα ∈ a1a1 ) (Remark 3 (ii) with X = δp)
∃a2 ⊆ a1 ( p(a2, α) ∈ a1 andα ∈ a2a2 ) (Remark 3 (ii) with X = a1)
........................................................................................................................
∃an+1 ⊆ an ( p(an+1, α) ∈ an andα ∈ an+1an+1 ) (Rem. 3 (ii) with X = an)
Now, since a1 is a finite set and the sequence an is decreasing, there is an n

such that an = an+1; hence p(an, α) ∈ an.

A graph model (D, p) satisfies t = u, written (D, p) � t = u, if tp = up, or,
equivalently, if tpρ = up

ρ for all environments ρ. The λ-theory Th(D, p) induced
by (D, p) is defined as

Th(D, p) = {t = u : t, u ∈ Λ and tp = up}.

A λ-theory induced by a graph model will be called a graph theory. A graph
model is called sensible (rep. semi-sensible) if its theory is.

Notation 5 G and Gs are the classes of graph models and sensible graph models
respectively, while λT, GT, GsT are respectively the classes of λ-theories, graph
theories, and sensible graph-theories.
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2.3 Building graph models from partial pairs.

There are other classes of models that can be generated from webs, but graph
models are the models with the simplest (=less structured) webs, and the most
feasible to deal with the interpretation of terms. Some of these classes belong to
the continuous semantics and include G, others belong to other semantics (for
example the Berry/Girard stable semantics). These classes of webbed models,
as well as the techniques for studying these models and their λ-theories are
surveyed in [14].

For proving the consistency of extensions of λ-calculus, or more generally
for studying the lattice λT of λ-theories one is interested in building models
submitted to specified equational or /and inequational constraints. The class of
graph models offers a great wealth of models that are furthermore feasible. For
this reason this is the first class of models to experiment with.

There are two known methods for building graph models, namely: by forc-
ing or by canonical completion. Both methods can be extended to the other
classes of webbed models (with more or less facility!), both methods consist in
completing a partial pair into a total one, i.e. into a graph model.

In the setting of graph models, the general definition of a partial pair (see
[14]), which allows to cover both methods, is the following: A partial pair is a
pair (A, q) where A is any set and q is a partial (possibly total) injection from
A∗×A to A, written q : A∗×A ⇀ A , examples of partial pairs are: all the graph
models, and the empty pair (∅, ∅). For dealing only with the forcing method a
more restricted definition is sufficient, which we will introduce later on.

The canonical completion method was, de facto, introduced by Plotkin
and Engeler, since their model E is nothing else than the canonical completion of
(∅, ∅). It was systematized by Longo for graph models [37], who proved in par-
ticular that the graph model Pω is the canonical completion of ( {0}, {(∅, 0), 0} ),
up to isomorphism. It was then used on a larger scale by Kerth, who used it, for
example, to prove the existence of 2ω pairwise inconsistent graph theories, and
also transferred it to other semantics [33, 32, 35], and by Bucciarelli-Salibra in
[17, 18]. Canonical refers here to the fact that the graph model (D, p) is built in
an inductive (and “canonical” ) way from the partial pair (A, q) we start with,
and is completely determined by it. Furthermore, if the partial web is positive
(in the sense of [14]) then (D, p) is sensible. Finally if one can apply the strong
approximation theorem in the spirit of Hyland [26] and Wadsworth [51], which
is the case for Pω and E , then Th(D, p) is completely known: (D, p) equates
two terms if and only if they have the same Böhm tree. For more details, and
for the extension of the method to the main other classes of webbed models see
[14].

The forcing method that we will present below, originates in Baeten-
Boerboom [5]. In the simpler presentation proposed by Zylberajch [52], it starts
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from a partial pair (D, p0),
1 where D is an infinite countable set, and builds by

induction a total p : D∗ × D → D, hence a graph model (D, p). The inductive
construction depends here not only on p0 but also on the consistency problem
we are interested in, and it exploits heavily the fact that the interpretation of Ω
can be quite freely constrained. The method was generalized to other classes of
webbed models in Jiang [29, 30], Kerth [33, 34], and such a generalization was
used by Bastonero to build an extensional model of the continuous semantic,
whose theory could be realized neither by a model in the stable semantics nor by
an hypercoherence model (such models belong to the strongly stable semantics)
[8, 9]. It was also generalized to families of terms having a similar behavior as
Ω by Zylberajch [52]. Note that, although (D, ∅) is a positive web, no model
built by completing (D, ∅) by forcing will be sensible, and most of them will
furthermore be clearly non semi-sensible.

A last difference between both methods is that if we start with a recursive
partial web, the canonical completion will build a recursive total web (hence a
graph model that can be viewed as a reasonable intersection type system), while
forcing always create a non recursive web.

The partial interpretation method. In this paper we highlight the fact
that the key reason why constructions by forcing are possible is that forcing
induces a family of “weakly continuous functions” (see Definition 10). We also
introduce the notion of a partial interpretation of a term and note that it induces
a family of continuous functions. Hence partial interpretations can be used as an
alternative to forcing to build models by using a similar method; in particular
all the results proved in this paper can be obtained in both ways. The two
notions are distinct (forcing is not continuous, as proved in the Appendix), but
their use is essentially equivalent: in most cases it is a question of taste, even if
sometimes one or the other can appear as more direct.

Convention. From now on we will only deal with the forcing-like methods,
and hence we will work with some fixed countable infinite set D.

3 Generalized terms and easy sequences: basic

definitions.

Generalized terms. In the next section we will extend the classic notion
of easiness of Ω to a more general class of terms, which allows continuous func-
tions of arbitrary arity as first-order function symbols. All the results proved
in the remaining sections, could be proved working only with pure λ-terms (we
first did it that way), but with more sophisticated tools. The interest of adding
continuous functions in the language is that it allows for cleaner statements,

1As a matter of fact p0 = ∅ in [5] and in all the other authors quoted, but we will need
here this more general setting.
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simpler and more straightforward proofs, and that finally all the applications
are evident corollaries. One may also wonder why adding genuine functions and
not only elements of P(D) is necessary, since after all every function f is coded
in each (D, p) by λp(f) ∈ P(D); once more the answer is that it is much simpler
to do it that way.

Definition 6 The set ΛD of the generalized λ-terms (relatively to D), or gen–
terms is defined as the smallest set such that:

(i) V ⊆ ΛD, where V is the set of variables of Λ
(ii) P(D) ⊆ ΛD

(iii) if t, u ∈ ΛD, then tu is in ΛD

(iv) if t ∈ ΛD and x ∈ V then λx.t ∈ ΛD

(v) if f ∈ [P(D)n → P(D)], 1 ≤ n, and t̄ ∈ Λn
D, then f(t̄) ∈ ΛD.

Λ◦
D is defined as the set of closed gen-terms.

Recall that Λ was the set of terms obtained when removing (ii) and (v) from
the above definition. Hereafter the element of Λ will be called pure terms.

Thus, f is not a gen-term, while λx̄.f(x̄) is. To be more formal we should have
introduced one new symbol for each element of P(D) ∪ ∪n∈ω [P(D)n → P(D)].
A redex is a gen-term of the form (λx.t)u, where t, u are gen-terms, and its reduct
is defined as usual. We extend β-equivalence to gen-terms in a straightforward
way: we just add to the usual rules the fact that it should be a congruence also
with respect to the first-order functions, in other words t1 =β t′1, ., tn =β t′n
should imply f(t1, ..., tn) =β f(t′1, ..., t

′
n); in particular no rule taking account of

the evaluation of functions is given at the syntactic level. The interpretation tp

of the gen-term t in the graph model (D, p) is once more defined by induction
on t. Cases (i), (iii) and (iv) are as in Section 2.2, while the interpretations of
of X ⊆ D and f(t1, ..., tn) are the obvious ones:

Xp
ρ = X ; f(t1, ..., tn)p

ρ =def f((t1)
p
ρ, ..., (tn)p

ρ).

It is clear that this interpretation coincides with that of Section 2.2 for pure
λ-terms. Satisfaction in (D, p) of an equation t = t′, for t, t′ ∈ ΛD is defined
as usual by tpρ = t′pρ for all ρ. It is then clear that any graph model equates β-
equivalent gen-terms and respects the behavior of the added functions: if f is an
n-ary continuous function which takes value Y ∈ P(D) on X1, ..., Xn ∈ P(D)
then all graph models on D will satisfy f(X1, ..., Xn) = Y. Furthermore it is
easy to check that

(D, p) � λx̄.f(x̄) = λp(f),

where λp(f) is the code of f in (D, p).

Partial interpretations. We extend the notion of interpretation of a gen-
term from total pairs to partial pairs. In the sequel we will always have the choice
between using total interpretations plus forcing, or partial interpretations (and
no forcing).
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Definition 7 Let (D, q) be a partial pair. Given t ∈ ΛD we define tq by induc-
tion on t :

(i) xq
ρ = ρ(x)

(ii) Xq
ρ = X

(iii) (tu)q
ρ =def {α ∈ D : (∃a ⊆ uq

ρ) [(a, α) ∈ dom(q) ∧ q(a, α) ∈ tqρ]}
(iv) (λx.t)q

ρ = { q(c, γ) ∈ D : (c, γ) ∈ dom(q) ∧ γ ∈ tq
ρ[x:c] }

(v) (f(t1, ..., tn))q
ρ = f((t1)

q
ρ, ..., (tn)q

ρ)

We write tq for tqρ if t ∈ Λ◦
D is a closed gen-term.

Easy sequences of terms. We now define easy sequences of terms.
Given two sequences t̄ and t̄′ of the same length, we denote by t̄ = t̄′ the set

consisting of all the equations tk = uk.

Definition 8 Let s̄ be a (possibly infinite) sequence of closed pure λ-terms,
then:

(i) s̄ is easy if for all sequences t̄ ∈ (Λ◦)l(s̄) the set t̄ = s̄ is consistent.
(ii) s̄ is graph easy if for all sequences t̄ ∈ (Λ◦)l(s̄) there is a graph model

satisfying t̄ = s̄.
(iii) s̄ is functionally graph easy if for all countable sets D and all sequences

t̄ ∈ (Λ◦
D)l(s̄) there is a graph model of web D satisfying t̄ = s̄.

Of course (iii) =⇒ (ii) =⇒ (i).

4 Baeten-Boerboom’s proof revisited.

4.1 Weakly continuous operators are the point.

We observe here that Baeten-Boerboom’s proof, in Zylberajch’s style, works
for any weakly continuous operator (instead of forcing) and that easyness with
respect to all closed gen-terms hold.

Notation 9 Q is the cpo of partial (including total) injections q : D∗×D ⇀ D,
partially ordered by inclusion of their graphs.

By “a total p” we will always mean “an element of Q which is total” (equiv-
alently: which is a maximal element of Q). The domain and range of q ∈ Q
are denoted by dom(q) and range(q), we will also confuse the partial injections
and their graphs.

Given any function H : Q → P(S), S any set, we will use Hq for H(q) when
more convenient.

Definition 10 A function H : Q → P(S), where S is any countable infinite
set, is weakly continuous if it is monotone with respect to inclusion and if
furthermore, for all total p ∈ Q and α ∈ H(p), there is a finite q ⊆ p such that
α ∈ H(q).

12



Since we are working with a countable D, the difference with continuity
comes of course from the fact that there exist infinite elements of Q which are
not total.

Theorem 11 Given any weakly continuous function H : Q → P(D), there is a
total p such that (D, p) |= Ω = Hp.

Proof. We are going to build an increasing sequence of partial injective
maps pn, starting from p0, and a sequence of elements αn ∈ D ∪ {v}, where
v is some new element, such that: p =def ∪pn is a total injection (in fact a
bijection), and (D, p) |= Ω = A = Hp, where A =def {αn / n ∈ ω } ∩ D.

We fix an enumeration of D, and an enumeration of D∗ × D.
We start from p0 = ∅.
Assume that pn and α0, ..., αn−1 have been built.
Let αn be the first element of Hpn

− {α0, ..., αn−1} if this set is non-empty,
and v otherwise.

Let (bn, δn) be the first element in D∗ × D − dom(pn) and γn be the first
element in D − (range(pn) ∪ bn).

Case 1. αn = v we let

pn+1 = pn ∪ { ((bn, δn), γn) }

Case 2. αn ∈ D we let :

pn+1 = pn ∪ { ((bn, δn), γn), (({βn}, αn) , βn) }

where βn is the first element of D such that :

({βn}, αn) ∈ D∗ × D − (dom(pn) ∪ {(bn, δn)}) and

βn ∈ D − (range(pn) ∪ {γn})

It is clear that pn is a strictly increasing sequence of well-defined partial in-
jective maps and that p = ∪pn is total. It is also surjective since there are
infinitely many elements of D∗ × D of the form (∅, δ), δ ∈ D: these elements
are successively introduced at steps, say, nk (where the nk form a strictly in-
creasing sequence of integers), and are then given as image the first element
in D − range(pnk

), hence the k-t h element of D will necessarily belong to
range(pnk+1).

There remains to see that (D, p) |= Ω = A = Hp.
A ⊆ Hp follows from the definition of αn and from the fact that Hpn

⊆ Hp.
Hp ⊆ A : suppose γ ∈ Hp; then, since H is weakly continuous, γ ∈ Hpm

for
some m (and for all the larger ones). If γ /∈ A then, for all n ≥ m, αn ∈ D has
smaller rank than γ in the enumeration of D, contradicting the fact that there
is only a finite number of such elements.

A ⊆ Ωp : αn ∈ Ωp follows immediately from the fact that (({βn}, αn) , βn) ∈
pn+1 ⊆ p and from Lemma 4 (ii).
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Ωp ⊆ A : if ε ∈ Ωp then there is an a ∈ D∗ such that p(a, ε) ∈ a (by Lemma
4 (i)). Since p = ∪pn and because of the choices of the γn this can only occur
if ε is one of the αn.

For showing the existence of infinite graph easy sequences we will need to
have available the following slight extension of Theorem 11.

Definition 12 p0 ∈ Q is free for Ω if:
(i) D∗ × D − dom(p0) and D − range(p0) are infinite, and
(ii) (a, α) ∈ dom(p0) implies p0(a, α) /∈ a.

Theorem 13 If H : Q → P(D) is weakly continuous and p0 ∈ Q is free for Ω,
then there is a total p ⊇ p0 such that (D, p) |= Ω = Hp.

Proof. Indeed, the proof of Theorem 11 only used that ∅ was free for Ω.

We now show that Theorem 11 and Theorem 13 can be applied to two
different classes of functions H : Q → P(D) arising respectively from forcing
(as defined below) and partial interpretation (as defined in Definition 7).

Definition 14 (Forcing) For t ∈ Λ◦
D, q ∈ Q and α ∈ D, the abbreviation

q  α ∈ t means that for all total injections p ⊇ q we have that (D, p) |= α ∈ tp.
Furthermore q  X ⊆ t means that q  α ∈ t for all α ∈ X.

Thus, for p is total, p  α ∈ t if and only if α ∈ tp. Moreover if qi  αi ∈ t
for all i ∈ I then ∪qi  {αi : i ∈ I} ⊆ t.

Lemma 15 For all t ∈ Λ◦
D the function Ft : Q → P(D) defined by Ft(q) =

{α ∈ D / q  α ∈ t} is weakly continuous, and we have Ft(p) = tp for each total
p.

Proof. The proof of the weak continuity of Ft is a straightforward induction
on the complexity of the closed gen-term t; we detail it anyway.

If t is an element X of P(D) then Ft is the constant function with value X.
Let now p ∈ Q be total.
If t = uv and α ∈ tp, then there exists a ⊆ vp such that p(a, α) ∈ up. Choose

such an a and let γ = p(a, α). By induction hypothesis there is a finite q ⊆ p
such that q  a ⊆ v and a finite r ⊆ p such that r  γ ∈ u; then it is clear that
q ∪ r ∪ {((a, α), γ)}  α ∈ t.

If t = λx.u and α ∈ tp then there is a unique pair (b, β) such that α = p(b, β)
and β ∈ u[x : b]p. By induction hypothesis there is a finite q ⊆ p such that
q  β ∈ u[x : b]; then it is clear that q ∪ {((b, β), α)}  α ∈ t.

If t = f(t1, ..., tn) and α ∈ f(t1, ..., tn)p = f(tp1, ..., t
p
n), then from the con-

tinuity of f it follows the existence of finite b1 ⊆ tp1 ... bn ⊆ tpn such that
α ∈ f(b1, ..., bn). Since the bi’s are finite and the ti’s are of lower complexity
than t, there are finite q1, ..., qn ⊆ p such that qi  bi ⊆ ti for all i; then we
clearly have q  bi ⊆ ti for all i, where q =def ∪{ qi : i ≤ n }. The conclusion
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q  α ∈ f(t1, ..., tn) follows from α ∈ f(b1, ..., bn), q  bi ⊆ ti for all i, and the
monotonicity of f .

We note that the function Ft defined in the above lemma is not continuous
as shown in Appendix 7.

Lemma 16 For all t ∈ Λ◦
D, the function It : Q → P(D) defined by It(q) = tq

is continuous (where tq is the interpretation of the gen-term t in the partial pair
(D, q) as defined in Definition 7).

Proof. The proof of the continuity of It is a straightforward induction on
the complexity of the closed gen-term t.

4.2 Easy terms.

In this section we show that the λ-term Ω is functionally easy. Then every
continuous function on P(D) is λ-represented by Ω.

Theorem 17 Ω is functionally easy, that is, for all closed gen-terms t ∈ Λ◦
D

there is a p such that (D, p) � Ω = t.

Proof. It is enough to apply Theorem 11 either to the weakly continuous
function Ft defined in Lemma 15 or to the continuous function It defined in
Lemma 16.

Let us give now a few applications of this result.
The following is the classic result by Baeten and Boerboom.

Corollary 18 [5] Ω is easy, that is, for all closed pure terms t ∈ Λ◦ there is a
p such that (D, p) � Ω = t.

Definition 19 (i) A continuous function f on P(D) is λ-represented by a
pure term t ∈ Λ◦ in a graph model (D, p) if (D, p) � t = λx̄.f(x̄).

(ii) A (possibly infinite) sequence f̄ of continuous function is λ-represented by
t̄ ∈ (Λ◦)l(f̄) in (D, p) if (D, p) satisfies tk = λx̄.fk(x̄) for all k.

The preceding definition would of course trivialize if the term t in (i) and
the sequence t̄ of terms in (ii) were asked to be gen-terms.

Corollary 20 Each continuous function f on P(D) is λ-represented by Ω in
some graph model.

Proof. From Theorem 17 there is a graph model satisfying Ω = λx̄.f(x̄),
which implies clearly that Ω represents f in this graph model.

The least fixed point operator on a cpo C is the continuous function L ∈
[[C → C] → C] defined by L(f) = ∪n∈ωfn(⊥), where ⊥ is the least element of
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the C. Using the formalism of intersection type systems and filter models, Alessi
et al. [3] proved that there exists a reflexive cpo where L is represented by Ω,
in the sense that the least fixed point operator of the underlying cpo is the
interpretation of Ω in the model. It is hence interesting to note that we can get
this result in a more economical way, and with a simpler model.

Corollary 21 There is a graph-model where Ω represents L.

Proof. The smallest element of the cpo P(D) is ⊥ = ∅. By Corollary
20 there is a graph model (D, p) where Ω represents the unary continuous
function defined on P(D) by: h(X) = ∪n∈ωXn∅ (where e.g. X2∅ means
X(X∅)). But, then, for all unary continuous function f, we automatically have:
[Ω(λx.f(x))]p = ∪n∈ωfn(∅). Thus Ω represents L in (D, p).

We now define easy sequences of terms.

4.3 Finite easy sequences of terms.

The existence of finite easy sequences of pure terms could be proved without
using generalized terms (using variations of the tools built in Section 5), and it
will also show up as a particular case of a result proved in Section 5.3. But in
the present setting, which allows for the use of the standard tricks in λ-calculus,
it appears as a direct corollary of Theorem 17.

Theorem 22 For each n ∈ ω there is a sequence ū ∈ (Λ◦)n of pure terms such
that (Ωuk)k≤n is a functionally graph easy sequence.

Proof. We only treat the case n = 2, and claim that the two projections
T = λx.λy.x and F = λx.λy.y work. Using Theorem 17, for all gen-terms t1
and t2, we get a graph model satisfying Ω = λz.zt1t2. Then it is clear that in
the same graph model we have that ΩT = t1 and ΩF = t2.

Proposition 23 For each n ∈ ω there is a sequence ū ∈ (Λ◦)n of pure terms
such that each sequence f̄ of continuous functions on P(D) is λ -represented by
(Ωuk)k≤n in some graph model over D.

Proof. By the above theorem.

Corollary 24 The pair (∪,∩) consisting of union and intersection on P(D),
is λ-represented by ΩT and ΩF .

Proof. Immediate consequence of the preceding corollary since ∪,∩ are
continuous functions (continuity of ∩ follows from the fact that P(D) is a dis-
tributive lattice).

Interesting applications of this result to the structure of the lattice of lambda
theories are shown in Section 6.1.
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In [22] Dezani-Lusin have shown the existence of a filter model of lambda
calculus representing union, and the existence of a filter model representing
intersection could be derived along the same way; but the existence of a unique
model for both, as we have shown in Corollary 24, was left open.

5 Infinite easy sequences of terms.

In Section 4.3 we have proved the existence of functionally graph easy sequences
of each finite length (Theorem 22). In this section we introduce the two technical
notions of flattening and osr which give us another way to obtain easy sequences,
and, in particular, to prove the existence of infinite easy sequences.

5.1 Flattenings.

Notation 25 Let E =def ∪
n≥0

En where the En are defined by: E0 =def D and

En+1 =def (E∗
n × En) ∪ En.

It is easy to check that En+1 =def (E∗
n×En)∪D, and also that tr(g) ⊆ En+1

for any continuous function g of arity n.
It is also easy to check that each q ∈ Q extends to a partial function fq :

E → D, satisfying the following properties:

(i) fq(x) =def x if x ∈ D;

(ii) fq(e, ε) =def q(f+
q (e), fq(ε)) if e ∪ {ε} ⊆ dom(fq) and (f+

q (e), fq(ε)) ∈
dom(q), undefined otherwise, where: f+

q (e) =def {fq(x) / x ∈ e }.

Thus fq(x) 6= ⊥ if and only if q is hereditarily defined on all the internal
components of x. We define now a total function f•

q : P(E) → P(D).

Notation 26 f•
q (G) =def { fq(x) / x ∈ G ∩ dom(fq) }, for any G ⊆ E.

Definition 27 For x ∈ E and G ⊆ E we will call respectively fq(x) and f•
q (G)

the q-flattening of x and G.

Example 28 For all q ∈ Q and G ⊆ D we have f•
q (G) = G.

In particular, for all t ∈ Λ◦
D we have f•

q (tq) = tq.

We will see more sophisticated examples below (but these ones are relevant
for our purpose).

Lemma 29 The function f : E × Q → D⊥, defined by f(x, q) = fq(x) if
x ∈ dom(fq) and ⊥ otherwise, is continuous with respect to q.

Proof. Since D⊥ is flat, continuity is here equivalent to saying that:
(i) If q ⊆ q′ and fq(x) is defined then fq′(x) is defined and fq′(x) = fq(x).
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(ii) If q is the increasing union of a sequence (qn)n∈ω then there exists n
such that fq(x) = fqn

(x).
The first point is trivial, and the second follows easily from the fact that the

computation of fq(x) requires only a finite part of the graph of q.

Lemma 30 The function f• : P(E)×Q → P(D), defined by f•(G, q) = f•
q (G),

is continuous. It is even additive wrt the first component G (i.e. commutes with
all unions).

Proof. A binary function is continuous iff it is continuous componentwise.
Continuity with respect to q follows easily from the preceding lemma, and ad-
ditivity with respect to G is trivial.

Lemma 31 Let G : Q → P(E) and let H : Q → P(D) be defined by Hq =
f•

q (Gq) for all q ∈ Q, then:
(i) If G is continuous then H is also continuous,
(ii) If G is weakly continuous then H is weakly continuous.

Proof. Since H =def f• ◦ (id × G) the monotonicity of H follows from
the monotonicity of G, and similarly for continuity, using the continuity of f•

(previous Lemma). Suppose now that G is only weakly continuous and suppose
α ∈ Hp, where p is a total injection. By definition of H there is an x ∈ G(p) ⊆ E
such that α = fp(x). By Lemma 29 there is a finite s ⊆ p such that α = fs(x);
furthermore, since G is weakly continuous there is a finite r ⊆ p such that
x ∈ G(r). Then, if q = r ∪ s we have α ∈ Hq = f•

q (Gq), by monotonicity of f•

and G.

5.2 Orthogonal system of representatives.

Definition 32 Let ū ∈ (Λ◦)≤ω be a sequence of closed pure terms and p0 ∈ Q
be free for Ω. The sequence ε̄ ∈ E≤ω is an orthogonal system of representatives
( an osr, for short) for ū modulo p0 if: l(ε̄) = l(ū) and, for all j, k ≤ l(ū) and
all total p ⊇ p0, we have fp(εk) ∈ up

j iff k = j.

Definition 33 The sequence ū admits an osr if there exist ε̄, p0 such that ε̄ is
an osr for ū modulo p0.

Of course not all sequences of pure terms admit an osr. Examples of finite and
infinite sequences of (simple) terms admitting an osr will be given in Lemma 36
below. It is clear that any subsequence or permutation of a sequence admitting
an osr also admits an osr. The interest of the notion of osr comes from the fact
that, for all ū ∈ Λ≤ω admitting an osr, the sequence (Ωuk)k≤l(ū) is functionally
graph easy (Theorem 37 in the next section).

Notation 34 πn,k =def λx1...λxn.xk ∈ Λ, for 1 ≤ k ≤ n.
π′

k =def πk+1,k+1, for k ∈ ω.
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Notation 35 Let α be some fixed element of D.
εn,k =def (∅k−1{α}∅n−k, α) ∈ E, for 1 ≤ k ≤ n.
ε′k =def εk+1,k+1 = (∅k{α}, α) ∈ E, for k ∈ ω.

(where (ā1ā2...ān, α) is defined as (ā, α) where ā is the concatenation of
ā1, ā2, ..., ān).

Lemma 36 (i) (εn,k)k≤n is an osr for (πn,k)k≤n modulo ∅.
(ii) (ε′k)k∈ω is an osr for (π′

k)k∈ω modulo p0 = {((∅, α), α)}.

Proof. (i) is clear, by definition of πp
n,k.

(ii) Suppose that p is total and p(∅, α) = α. Then it is easy to check succes-
sively that (D, p) satisfies:

1. α /∈ (λx.x)p.

2. {α}∅n = {α} for all n > 0.

3. {α} = { p({α}, α) }{α}.

4. ∀n > 0 (α /∈ π′
n)

(this follows from 1,2, and the monotonicity of application).

5. ∀n > 1 ( p({α}, α) /∈ π′
n )

(this follows from 1,3, and the monotonicity of application).

6. fp(∅m, {α}, α) ∈ π′
n iff m = n.

(the case n > m is excluded by 5 and the monotonicity of application, and
m > n contradicts 4).

5.3 Infinite easy sequences of terms.

Theorem 37 For all ū ∈ (Λ◦)≤ω admitting an osr, the sequence (Ωuk)k≤l(ū)

is functionally graph easy (and then easy).

Proof. Let ε̄, p0 be such that ε̄ is an osr for ū modulo p0, and let t̄ ∈ Λ
l(ū)
D .

For all q ∈ Q, let Gq = { ({εk}, α) / 1 ≤ k ≤ l(t̄), α ∈ tqk} ⊆ E. Since Gq is
essentially the disjoint union of the subsets tqk of D, which are continuous wrt
q, the function G : Q → P(E) is continuous. From Lemma 31 the function F
defined by F (q) = f•

q (Gq) is also continuous. From Theorem 13 there is a total
p ⊇ p0 such that Ωp = f•

p (Gp). Now, since ε̄ is an osr for ū relatively to p0 we
have that f•

p (Gp).uk = f•
p (Gp).{εk} = f•

p (tpk) = tpk (by definition of application
in (D, p)), thus (Ωuk)p = tpk, and (D, p) |= Ωuk = tk for all k.

The alternative proof using forcing works in a similar way, using case (ii) of
Lemma 31.

Recall that the pure λ-terms π′
k are defined in Notation 34.
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Corollary 38 The infinite sequence (Ωπ′
k)k≥0 is functionally graph easy.

Corollary 39 For all infinite sequences ḡ of continuous functions on P(D),
there is a graph model (D, p) such that for all k we have: (D, p) � Ωπ′

k =
λx̄.gk(x̄), where l(x̄) is the arity of gk.

As an application we recover the following Kerth’s result for free, which
asserts that GT is as “wide” as possible. Note that the proof in [31] was via
canonical completion of partial pairs, and, even if not difficult, required some
non trivial observations, and some computations.

Corollary 40 [31] There exist 2ω pairwise inconsistent graph theories.

Proof. Let s̄ be an infinite graph easy sequence and let t̄ be the sequence of
Church integers. For any permutation σ on usual integers let pσ be such that
(D, pσ) � sk = tσ(k) for all k. It is clear that the graph models (D, pσ) are non
equationally equivalent, and that their theories are pairwise inconsistent.

But Kerth-David’s result which asserts the existence of 2ω sensible graph
theories, mentioned in the introduction, is out of the scope of our techniques.

6 Applications.

In this section we show that there exist

1. a distributive sublattice of the lattice of λ-theories, and

2. a congruence distributive variety of lambda abstraction algebras.

6.1 The Lattice of λ-Theories.

The set of the λ-theories ordered by inclusion is naturally equipped with a
structure of complete lattice (see Section 2). The lattice λT of λ-theories has
a very rich and complex structure. For example, Visser [50] has shown in first
eighties that every countable partially ordered set embeds into λT by an order-
preserving map, and that every interval of λT , whose bounds are recursively
enumerable lambda theories, has a continuum of elements.

Lusin-Salibra [38] and Salibra [45] have employed results and techniques from
universal algebra, in particular commutator theory and the theory of Mal’cev
conditions, to obtain some results characterizing the structure and the equa-
tional theory of the lattice of lambda theories. Very little had previously been
known about the equational theory of this lattice.

We briefly outline the approach developed in [38]. Consider the absolutely
free algebra of pure terms:

Λ := (Λ, ·Λ, λxΛ, xΛ)x∈V a, (3)
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where Λ is the set of pure terms over an infinite set V a of variables and, for all
M, N ∈ Λ,

M ·Λ N = (MN); λxΛ(M) = (λx.M); xΛ = x.

An equivalence relation T over the set Λ of pure terms is a lambda theory if, and
only if, it is a congruence over Λ including (α) and (β)-conversion. For every
lambda theory T , the congruence lattice of the term algebra ΛT , the quotient of
Λ by T , is isomorphic to the interval sub-lattice [T ) = {S : T ⊆ S} of the lattice
of the lambda theories. In particular, the isomorphism between the lattice λT
and the congruence lattice of Λλβ is the starting point for studying the structure
of λT by universal algebraic methods.

It was shown by Salibra [45] that the lattice λT is not modular, i.e., it does
not satisfy the following modular law (that is a weakened form of distributivity):

T (S + TR) = TS + TR,

while Lusin and Salibra [38] have shown that λT satisfies interesting quasi-
identities in the language of bounded lattices. For example, the following quasi-
identity holds in the lattice λT :

S + T = 1, SG = TG → G = GS = GT,

where 1 is the inconsistent lambda theory.
The same authors have shown in [38] that there exists a sub-lattice of the

lattice λT which satisfies the following restricted form of distributivity (called
meet semidistributivity)

TR = TS → TR = T (R + S),

and a nontrivial identity in the language of lattices enriched by the composition
of binary relations.

In [38] it was conjectured that the lattice λT does not satisfy any nontrivial
lattice identity. To support this conjecture the authors have shown in [38] that,
for every nontrivial lattice identity e, there exists a natural number n such that e
fails in the lattice of lambda theories in a language of λ-terms with n constants.
We can relax the above conjecture by asking whether there exists an infinite
sub-lattice of λT satisfying interesting lattice identities. In this section we show
that there exists an infinite distributive sub-lattice of λT .

First we introduce a lambda theory L, whose consistency is obtained by
using the methods introduced in the previous sections. Then the equations
defining L are used to define lattice term operations on the term algebra Λλβ ,
the quotient of Λ by the congruence L. It follows from this result that the
lattice of all lambda theories including L is distributive.

Recall that T =def λxy.x and F =def λxy.y.

Lemma 41 The lambda theory L, axiomatized by
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1. ΩTxx = x; ΩFxx = x.

2. ΩTxy = ΩTyx; ΩFxy = ΩFyx.

3. ΩTx(ΩTyz) = ΩT (ΩTxy)z; ΩFx(ΩFyz) = ΩF (ΩFxy)z.

4. ΩTx(ΩFxy) = x; ΩFx(ΩTxy) = x.

5. ΩTx(ΩFyz) = ΩF (ΩTxy)(ΩTxz); ΩFx(ΩTyz) = ΩT (ΩFxy)(ΩFxz).

is consistent.

Proof. From Corollary 24 it follows that there exists a graph model (D, p),
where the set-theoretical union and intersection are λ-represented by ΩT and
ΩF . Since (P(D),∪,∩) is a distributive lattice, then the λ-theory L is contained
in the theory Th(D, p) of (D, p).

Lemma 42 The congruence lattice of the term algebra ΛL is isomorphic to the
interval sub-lattice [L) = {T : L ⊆ T } of the lattice of lambda theories.

Proof. A λ-theory T satisfying the condition L ⊆ T can be interpreted as a
congruence ≡T on the term algebra ΛL (see [38]): for every τ, σ ∈ ΛL, τ ≡T σ
if, and only if, there exist pure terms t ∈ τ and u ∈ σ such that T ⊢ t = u
(recall that τ, σ are equivalence classes of pure terms).

Lemma 43 Let A be any algebra. If A admits two binary term operations
satisfying the axioms of a distributive lattice, then the congruence lattice of A

is distributive.

Proof. Let A be the universe of the algebra A, and +, · be the binary
term operations of A satisfying the axioms of a distributive lattice. It is well
known that the congruence lattice of every distributive lattice is distributive
(see [39]), so that the congruence lattice of the algebra (A, +, ·) is distributive.
We get the conclusion if we show that the congruence lattice of A is a sub-
lattice of the distributive congruence lattice of the algebra (A, +, ·). First every
congruence over A is a congruence over (A, +, ·), because “+” and “·” are term
operations. This implies that the set of congruences over A is a subset of the
set of congruences over (A, +, ·). The conclusion is now immediate because the
meet and the join in both congruence lattices are the same: they are defined
set-theoretically as intersection and least equivalence relation.

As a matter of notation, for every lambda theory T , we denote by [t]T the
equivalence class of the pure terms u such that T ⊢ t = u.

Theorem 44 The interval sub-lattice [L) = {T : L ⊆ T } of the lattice of
lambda theories is distributive.
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Proof. By Lemma 42 it is sufficient to prove that the congruence lattice of
the term algebra ΛL is distributive. Define the following term operations over
ΛL, for every τ, σ ∈ ΛL:

τ + σ = [ΩT ts]L; τ · σ = [ΩFts]L, for some t ∈ τ and s ∈ σ. (4)

Then it is easy to verify by using the axioms defining L that the term operations
“+” and “·” satisfy the axioms of a distributive lattice. For example, the identity
ΩTx(ΩFxy) = x, specified in Lemma 41(4), corresponds to the absorption law
x+(x ·y) = x, while the identity ΩTx(ΩFyz) = ΩF (ΩTxy)(ΩTxz), specified in
Lemma 41(5), corresponds to the distributive law x + (y · z) = (x + y) · (x + z).
Then the term algebra ΛL satisfies the hypothesis of Lemma 43, so that it
admits a distributive congruence lattice.

6.2 Lambda abstraction algebras.

Another application of the main results of the paper that we develop here con-
cerns the variety (i.e., equational class) of lambda abstraction algebras (LAA’s)
introduced by Pigozzi and Salibra in [40, 41] as a purely algebraic theory of the
untyped lambda calculus. The equational theory of LAA’s is intended as an
alternative to combinatory logic in this regard since it is a first-order algebraic
description of lambda calculus, which keeps the lambda notation and hence all
the functional intuitions. Lambda abstraction algebras are axiomatized by the
equations that hold between contexts of the lambda calculus (i.e., λ-terms with
‘holes’ [6, Def. 14.4.1]), as opposed to lambda terms with free variables. The
essential feature of a context is that a free variable in a λ-term may become
bound when we substitute it for a ‘hole’ within the context. Thus, ‘holes’ play
the role of algebraic variables, and the contexts are the algebraic terms in the
similarity type of lambda abstraction algebras. There is a rather peculiar re-
lation between the lattice λT of lambda theories and the variety LAA. In
[44] Salibra has shown that the lattice λT is isomorphic to the lattice of the
equational theories of LAA’s. In fact, the correspondence, which maps an ar-
bitrary λ-theory T into the equational theory of the variety generated by the
term algebra of T , is an isomorphism of complete lattices. Thus, the properties
of an arbitrary lambda theory can be studied by means of the variety of LAA’s
generated by its term algebra. As we have specified in the introduction, many
longstanding open problems of lambda calculus can be restated in terms of alge-
braic properties of varieties of LAA’s. In this section we show that there exists
a congruence distributive variety of LAA’s, that is, a variety V of LAA’s such
that every algebra in V has a distributive congruence lattice. The existence of
varieties of LAA’s satisfying strong algebraic properties, such congruence dis-
tributivity, was an open problem since Salibra [45] proved that the variety LAA

is not congruence modular and Lusin-Salibra [38] proved that every variety V
of LAA’s generated by the term algebra of a semi-sensible λ-theory does not
satisfy any lattice identity.
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Theorem 45 There exists a congruence distributive variety of lambda abstrac-
tion algebras.

Proof. Let V be the variety of LAA’s generated by the term algebra ΛL

of the lambda theory L defined in Lemma 41. We claim that V is congruence
distributive, that is, every algebra A ∈ V has a distributive congruence lattice.
We have shown in the proof of Theorem 44 that the term algebra ΛL has two
term operations + and · (defined in (4)), which satisfy the axioms of a distribu-
tive lattice. Since ΛL generates the variety V and +, · are term operations, then
every algebra A ∈ V has also two term operations satisfying the axioms of a
distributive lattice. The conclusion is obtained from Lemma 43.

7 Conclusion and future work.

We have generalized Baeten-Boerboom’s method of forcing first to generalized
terms involving all the continuous functions on a given power set P(D), and,
second, to all weakly continuous operators. This approach allows us to prove
very directly results about the lambda-representability of continuous functions
on power sets, and also to generalize these results to countable sequences of
continuous functions.

Related works are only the very recent papers by Alessi et al. [3] and Dezani-
Lusin [22], where the authors use intersection type systems (see [3, 7, 20]) for
synthesizing filter models of lambda calculus in which the interpretation of a
simple easy term can be any filter described by a continuous predicate. This re-
sult can be interpreted as a generalization of Baeten and Boerboom’s method of
forcing via the use of intersection type systems. We believe that the framework
we have developed in this paper is however more direct than the one used in [3].
We illustrate this with two examples, concerning the λ-representability of the
minimal fixed point operator (Corollary 21) and of the pair union/intersection
(Corollary 24).

As an application of the existence of (finite/infinite) sequences of terms that
are functionally graph easy, we get strong results concerning the structure of the
lattice of lambda theories and the existence of varieties of lambda abstraction
algebras with very strong algebraic properties. More precisely, we show the
existence of a distributive sub-lattice of the lattice of lambda theories and of a
congruence distributive variety of lambda abstraction algebras.

In the present paper we only consider domains P(D), and, correlatively,
graph models of lambda-calculus, and we concentrate on a limited number of
applications. A further application, which is not treated here, is the question of
the lambda-representability of first-order, say, structures in graph models. This
will be the subject of another paper.

We would like to extend the results of the present paper to more sophisti-
cated Scott-domains and webs. Various interesting classes of webbed models of
lambda-calculus, concerning the main semantics of lambda-calculus, were sur-
veyed in [14]. For the continuous semantics they range from graph models to
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filter models, with a clear preference for the models whose underlying domain
is prime-algebraic (which excludes some filter models), since they can be rep-
resented via feasible webs. All are accessible to Baeten-Boerboom’s technique
(see Section 2.3), but with less facility than for graph models. Compatibility
conditions have to be met, depending on the class we consider, which do not
occur when dealing with graph models. However no systematic study has been
made so far if one excepts filter models [3, 22]. Our intention is hence to extend
the methods and results presented in this paper to more general Scott-domains
and webs.

Appendix.

Proposition 46 Forcing is not continuous.

Proof. Let α be a fixed element of D and q be a bijection between D∗ ×
D − {({α}, α)} and D − {α}. It is clear that q  α ∈ λx.x, since the only total
injection p which extends q satisfies p({α}, α) = α. Let r ⊆ q be the partial
sub-injection of q such that dom(r) = { (b, β) / β ∈ b } ∩ dom(q). Since q − r
is infinite and countable there is a countable strictly increasing sequence qn

starting from r and whose union is q.
We claim now that no q′ such that r ⊆ q′ ( q can force α ∈ λx.x. Let indeed

(c, γ) ∈ dom(q) − dom(q′) and let p be a total injection which extends q′ and
satisfies α = p(c, γ). From the hypothesis on q, q′, p we have that α /∈ (λx.x)p.
Hence q′ 1 α ∈ λx.x.
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[9] O. Bastonero, Equational incompleteness and incomparability results for
λ-calculus semantics, manuscript, 1998.

[10] O. Bastonero and X. Gouy, Stabilité forte et incomplétude de la classe
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