
HAL Id: hal-00003749
https://hal.science/hal-00003749

Submitted on 3 Jan 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Beta-eta-complete models for System F
Stefano Berardi, Chantal Berline

To cite this version:
Stefano Berardi, Chantal Berline. Beta-eta-complete models for System F. Mathematical Structures
in Computer Science, 2002, 12, pp.823-874. �hal-00003749�

https://hal.science/hal-00003749
https://hal.archives-ouvertes.fr


βη-complete models for System F .

Stefano Berardi & Chantal Berline.

Final version, January 27th, 2002

Abstract

We show that Friedman’s proof of the existence of non-trivial βη-
complete models of λ→ can be extended to system F . We isolate a set of
conditions which are sufficient to ensure βη-completeness for a model of F

(and α-completeness at the level of types), and we discuss which class of
models we get. In particular, the model introduced in [5], having as poly-
morphic maps exactly all possible Scott continuous maps, is βη-complete
and is hence the first known complete nonsyntactic model of F. In order to
have a suitable framework in which to express the conditions and develop
the proof, we also introduce the very natural notion of “polymax models”
of System F .

1 Introduction.

In this paper we contribute to the study of nontrivial models of the notion of
polymorphic maps of System F ([16],[29]). This study was started in Girard [16],
Scott [33] and McCracken [22] [23], Reynolds [30], Girard [18], and continued
by Amadio-Bruce-Longo [2], Coquand-Gunter-Winskel [12] and Berardi [6].

Our main concern is to prove that there exists a large class of nontrivial βη-
complete models of F . Essentially, this class consists of models having (implicit)
primitive types for basic data (integers, etc.), and “overloaded” functions, that
is, functions whose actual definition depends on the type of the argument, or
functions having a case definition over types. In particular, we will prove that
the model built in [5] is βη-complete. This model, called here the BB-model for
short, belongs to Scott’s semantics, and the polymorphic maps in it are exactly
the Scott continuous ones; furthermore, its definition is very concrete and its
construction makes no reference either to the syntax of F or to the primitive
types and overloaded functions mentioned above.

We will isolate a set of conditions about models of F , formally translating the
requirement: “there exist primitive data types plus a case map on types”, and
we will prove that they ensure completeness. As proved in [5], the BB-model
satisfies all these conditions; hence it is βη-complete. We will notice that the
conditions also force that one is dealing with (implicit) models of FωY (Girard’s

1



Fω plus recursion on types and terms) but that they do not imply completeness
for this wider setting.

Independently of the mathematical interest of the existence of a nonsyntac-
tical βη-complete model of F, we think that there is an interest for theoretical
computer scientists to consider models which, like the BB-model, satisfy the
above requirement. This is developed in [5]; to summarize: it enables us to
model computations really depending on the “type tag” of their inputs, a sit-
uation which often arises when one mixes functional and imperative features
(think of polymorphic printing, order tests, sorting maps, and so on) or mixes
classes from object-oriented languages with second-order calculus. Incidentally,
note that it is then an immediate consequence of the completeness of the BB-
model that all the extensions mentioned above are “conservative over F”, in the
sense that they do not force new equations between F -terms.

The BB-model is generalized in [7] to a whole class of feasible models of F
which we call “webbed models of System F”. Some of our formal conditions are
satisfied in all of these models, and it is very easy to check for most of the other
ones whether they are satisfied or not in a specific webbed model. This class
belongs to the continuous semantics (and, in contrast to previous modelizations
of F, it admits no analogue in the stable semantics). The class contains infinitely
many other βη-complete models, which are powerful enough to model various
extensions of F, in the sense above.

In contrast, none of the previously known extensional models of System F
satisfies all our conditions for completeness, and most are known to be incom-
plete: the only exception is that of universal retraction models for which the
question is left open; this is discussed in the next section and in section 5.

In order to have a reasonably general framework to express our conditions,
we introduce in this paper a very natural notion of models of System F, which we
call “polymax models of F”. The class of polymax models includes in particular
all the webbed models of [7] and the universal retraction models and it allows
for a very transparent interpretation of F -terms. We think that it should also
be of interest for other works on polymorphism since it covers a great variety
of concrete models which can easily be forced to satisfy domain equations and
inequations, as already shown by some examples in [7]. However, as suggested
by its name, this abstract class covers only models with “the maximum number
of polymorphic maps” and hence rules out all the models of F which have
constrained sets of polymorphic maps, and in particular parametric models.
This does not matter here since all such known (nonsyntactic) models are indeed
incomplete.

The construction of the BB-model and the nature of webbed models is of
no use for the completeness result and its proof. However, some familiarity
with them will help the reader to understand better the examples which give

2



substance to the notion of polymax model as well as our discussion about the
possible satisfaction of the completeness conditions. So we give a brief intro-
duction to these models in Appendix C.

We now describe the plan of the paper.
In Section 2 we sketch the problematics about polymorphic maps, about

their models, and then the problem of βη-completeness. Finally we list the
questions we leave open.

In Section 3 we recall the syntax of system F.
In Section 4 we define the notion of polymax models of System F and we

discuss it briefly with respect to a few more established definitions or notions
of models of system F. The interpretation of System F in polymax models is
presented explicitly in Appendix A 1. Appendix B makes explicit the fact that
polymax models fit the Bruce-Meyer-Mitchell description [11] of second-order
models and that the PER-models are not polymax, and finally compares the
notion of polymax model with the two categorical notions of models for system
F proposed in [3] and in [25]. Appendix C gives a flavor of the webbed models
and of the BB-model.

In Section 5 we present and discuss our set of conditions, divided into two
groups, and their possible satisfaction in concrete models.

In Section 6 we prove a general recursion lemma which is our basic tool for
constructing polymorphic maps, and which encapsulates nearly all the condi-
tions of the second group.

In Section 7 we give an overview of the completeness proof.
Sections 8 to 11 present the four major steps in the development of this

proof. Most of the local proofs are postponed to Appendix D and F. Appendix
E deals with the precise definition of syntactic interpretations.

Acknowledgments. We are grateful to the referees and to the editor for
their constructive comments, which in particular resulted in the addition of the
overview Section 7, of several appendices, and of many remarks. Thanks also
to G. Rosolini for fruitful discussions, and to Russ Harmer who kindly polished
our English in the first version.

2 Problematics about polymorphic maps and βη-
completeness.

In this section we suppose the reader already to be acquainted with simply typed
λ-calculus, syntactic and semantic models, and to know the bare definition of
system F, which is recalled anyhow later on.

Polymorphic maps and the problematics about them. Call “type constructor”
any function Φ : Types → Types, where Types is the class of types, and types

1The first version of this paper contained also the proof that the intended interpretation
in polymax models was correct. This proof has now been moved to [7].

3



are sets. Then polymorphic maps are maps associated to some type constructor
Φ, taking as input any type α, and returning as output some element of Φ(α). A
trivial example is the polymorphic identity id, associated to the type constructor
Id(α) = (α → α). The polymorphic map id takes as input α, and returns the
identity id(α) of type (α → α).

The type of the polymorphic maps associated to Φ is denoted ∀α.Φ(α).
System F is the smallest extension of simply typed lambda calculus closed
under such operations over types. The naive approach is to say that, in a
model of system F , ∀α.Φ(α) is a subset of the set-theoretical cartesian product
Πα ∈ Types.Φ(α), since this set consists exactly of all maps f sending any
α ∈ Types to some f(α) ∈ Φ(α) (provided Φ(α) is nonempty). However the
most natural attempt fails : it is indeed impossible to expand the standard
model of simply typed λ-calculus (which interprets α → β as the full set of
functions from α to β) into a model of F , as Reynolds [30] shows 2. Therefore,
for interpreting F (via functional models), one necessarily has to take smaller
interpretations of the arrow.

We will now describe what is already known concretely about this problem,
that is, the (more or less concrete) models of polymorphism we already have.
We will then explain how the BB-model takes care of polymorphism.

Models of polymorphic maps. In the simplest realizability or PER models
of F , which originate in Girard and Troelstra [16],[35], polymorphic types are
empty or realized by (essentially) constant maps. Thus, a PER model, while it is
a useful tool for studying the properties of F as a programming language, is too
restrictive for studying polymorphism in full generality. This last sentence also
applies to “parametric” models, which require that polymorphic maps behave
as uniformly as possible (see [24] for a survey). Hence it should be clear that
we will not be concerned here with these kinds of models.

The first models with nonconstant polymorphic maps, which we will call here
universal retraction models or u.r. models, were introduced, for the continuous
semantics, by D. Scott and McCracken in [32]3, [33], [23] and further studied by
Amadio-Bruce-Longo [2]. In these models, terms are interpreted as elements of a
model of the untyped λ-calculus, and types are ranges of (suitable) retractions of
the model, and are identified with such retractions. The word “universal” refers
to the fact that, in these models, there is a type of all types. In u.r. models
the polymorphic maps associated to Φ consist exactly of all the continuous
maps f which send any α ∈ Types to some f(α) ∈ Φ(α). Berardi [6] showed
that similar work could be done for the stable semantics, taking this time the
whole class of stable retractions (see [9] for a survey). The only limitation of
these constructions was the complexity in the definition of the set Types. This
complexity has forbidden, until now, any extensive study of their properties.

Then a categorical model was introduced by Girard in [18]. Girard interprets
Types as the category of coherent domains and embeddings, and type construc-

2Reynolds’s theorem is however no longer true in intuitionistic set-theory [25].
3This paper does not deal with models of System F but it is the very paper which introduces

retractions in connection with types.

4



tors as “continuous” and “stable” functors over Types. Here “continuous” and
“stable” are categorical notions, analogous to the classical ones. The model
is universal in the sense that second order quantification was over all coherent
domains, and not only over subdomains of a given domain. Moreover the model
is economical in some sense4, and it interprets polymorphic maps f associated
to a type constructor Φ as all the families of elements f(X) ∈ Φ(X), indexed
over X ∈ Types, which satisfy the following requirement: for each embedding
j : X → Y , f(X) is the “trace of f(Y ) over Φ(j)” (in a sense made precise in
[18]).

As a consequence, the set of all polymorphic maps associated to some Φ,
with the stable ordering, is a coherence space, chosen as the interpretation of
∀α.Φ(α) in Types. Again, the only limitation of this model construction, if we
are interested in studying the properties of polymorphic maps, is its complexity.

Then Coquand-Gunter-Winskel [12] (CGW for short) showed that Girard’s
construction could be carried out in the category of Scott domains and embed-
dings, dropping all the “stability” requirements. They interpreted type con-
structors as “continuous” functors (again, in a categorical sense).

By building on the two preceding works, Barbanera-Berardi [5] showed that,
if we restrict the embeddings of the category Types to the canonical inclusion
maps, we further simplify this construction. In this paper we will study some
relevant properties of this model, whose interest is that it combines strong prop-
erties with simplicity of construction.

In the Barbanera-Berardi model (BB-model), and more generally in all the
webbed models, Types, the category of Scott domains, is replaced by a single
Scott domain Types, whose elements are themselves Scott domains. Types is
ordered by the restriction order (between the information systems underlying
Scott domains). The “union” 5 Terms of all types is still a Scott domain,
interpreting the terms of F . Type constructors are now exactly the Scott-
continuous functions Φ over Types. The polymorphic maps associated to such
a Φ are now interpreted as all Scott-continuous maps f : Types→ Terms, such
that f(X) ∈ Φ(X) for all X ∈ Types. Here no category theory is needed (when
dealing with any specific model) and Types is completely understood.

The interpretation of types and terms in webbed models is simpler than in
all previous models, except maybe for the simplest realizability models (for a
comparison with universal retraction models see [7]).

The BB-model (and all webbed models) might be further generalized taking
κ-continuous maps, for κ any regular cardinal 6. It is not clear how far we might
go in adding polymorphic maps to the BB-model.

4For example ∀X.∀Y.X → Y gets a trivial interpretation (the one element coherent space)
and the interpretation of the data type of Booleans ∀X.(X, X → X) has 4 elements. For more
complex data types the situation is less simple.

5In the case of the BB-model, or more generally of all the models of [7], (the carrier of)
Terms is exactly the union of the (carriers of) the elements of Types.

6The κ-Scott topology is a weakening of Scott topology (case κ = ω), which admits more
and more monotone functions as κ increases. The ω1-case was introduced by Plotkin [28]
for modelling parallelism(see [13]) and greater cardinals are used for foundational purposes
([14],[10]).

5



A reason to think that the BB-model is already quite a general model of
polymorphism is that it is the first nontrivial model known to be βη-complete.

To prove this is our contribution to the topic.
We will now explain what we mean by βη-completeness, why we got inter-

ested in finding complete models, and why most known models are incomplete.

βη-Completeness. A model is βη-complete for a typed lambda calculus (or
“complete”, for short) if and only if it equates only (α)βη-convertible terms and
α-convertible types. The trivial examples of βη-complete models are the βη
term models. The term model of System F was the only complete model of F
known up to now.

For typed λ-calculus, the problem has been tackled by H. Friedman [15] (and
then A. Simpson [31]), who solved the simply typed case (see below). Concerning
untyped λ-calculus, the problem of finding a nonsyntactical complete model
has only been solved recently, by Di-Gianantonio, Honsell, Plotkin [13]; several
interesting related questions being however left open by their result and proof
(see below). For F it was completely open.

A further motivation: Axiom C and Genericity. Besides the natural math-
ematical and logical motivations above, we also got interested in this question
via the problem raised by Longo of finding a complete model for FC, the equa-
tional theory studied by Longo, Milsted and Soloviev in [20]. FC is defined as
the equational theory of F plus “Axiom C”. This axiom, which is proved in
[20] to be independent of F and Fη, is indeed a scheme which expresses a very
natural, but rather weak, notion of “uniformity of proofs”. Axiom C says that
t∀α.στ = t∀α.στ ′ for all types σ, τ , τ ′ such that α is not free in σ, and for all
terms t of type ∀α.σ.

It was natural then to look first at the existence of complete models for F 7.
For the discussion below we note that, since Axiom C is equational and

independent of F and Fη, a model of FC cannot be complete for F or Fη.
It is also interesting to note that “parametricity” (for example, Reynolds’

“relational parametricity”), which is a strong notion of “uniformity of proofs”,
implies FC, but that the converse is false (Girard’s model below, for example,
satisfies FC but is not relationally parametric (see [24]) ).

Negative examples of completeness. First there are obvious sources of in-
completeness linked to the lack of polymorphic maps in a model (this is related
to the possible partial parametricity of the model). The simplest of them is the
following: suppose that the interpretation of some type σ is a singleton, then
the model equates xσ and yσ ; this is the case for example in the models of
Girard and CGW. It is also clear that a model where all the polymorphic maps

7We had the intuition that a complete model of FC could be found as a stable analogue of
the BB-model (no model of the class developed in [7] for the continuous semantics can satisfy
Axiom C). However we know now that there is a conceptual obstacle to the development of
a stable analogue of our webbed models (cf.[7]).

6



associated to a constant constructor Φ are themselves constant, will satisfy ax-
iom C and hence will not be complete for F or Fη; this is the case for the PER
models and for Girard’s model, for example. Finally we note that Girard’s and
PER models are not complete for FC (and do not satisfy genericity either);
this also follows very easily from the fact that there are closed types which are
interpreted by singleton sets in them (see [19]).

We now give another source of incompleteness, which is also linked to a
lack of polymorphic maps. Let N be the F -type of integers (as defined in
[18]). Suppose that the interpretation of N in a PER model contains only the
interpretations of closed terms of type N (this is for example the case with
the PER models built over the term model of F or over Pω). Then the model
equates two closed F -terms f, g : N → N if and only if f(n) =β g(n) for all
closed n : N . Such a model equates for example left and right addition (and
similarly with left- and right- or), which are clearly non βη-convertible since
they are normal and distinct. These two terms are observationally equivalent 8

but are rather easily seen to be distinguished by all models whose types possess
bottom elements (e.g. Girard’s model and u.r. models).

Positive examples of completeness.
Friedman [15] showed that all full models of simply typed λ-calculus which

include integers in the base type are βη-complete (where “full” means that
σ → τ is interpreted as the set of all set-theoretic maps from σ to τ).

Apparently, a model may distinguish two non-βη-convertible terms by ap-
plying them to “very generic” maps. For instance, term models distinguish
between nonconvertible terms by applying them to variables, and getting differ-
ent results. And variables are in fact a (trivial) example of “very generic” maps.
In Friedman’s proof, full models distinguish between nonconvertible terms by
applying them to “very generic” maps, built by the Axiom of Choice (of Set
Theory).

Another possibility for having completeness was discovered by Simpson [31],
by building on a syntactic result of Statman [34]. Simpson proved that all mod-
els of simply typed λ-calculus, which include integers in the base type, and sum
and product over such integers, are complete. In this case, the completeness
uses as starting point a strong property of sum and product: using them, one
can encode the entire term model of simply typed λ-calculus inside the base
type of the model itself.

Contribution of the paper w.r.t. polymorphism. The previous discussion sug-
gests that if we find a complete model of F , then it should contain polymorphic
maps of arbitrary shape, or at least a few such maps enabling us to encode the
term model.

As a matter of fact, when proving that the BB-model was complete we
also discovered that it contained some polymorphic maps able to produce such

8Since, by a result of Statman (public electronic communication, 1986), two F -terms t and
u are observationally equivalent iff t = u is consistent with βη-equivalence.

7



an encoding (see 7.2, Points 5 and 6). In particular, we use polymorphic case
functions testing the shapes of types (Cond.II.4-5); such maps do not exist in,
for instance, PER models. In fact, the work done in the present paper proves
that the existence of such a (polymorphic) discrimination over types is suffi-
cient to imply the maximal discrimination over terms, provided that Types is
rich enough, well structured, and that we have some standard computation tools
available.

Remarks and open questions related to the completeness problem.

• We treat βη-completeness here since our proof relies on some kinds of
“logical relations”, which, as for usual logical relations, do not allow us to
distinguish elements with the same applicative behavior. The question of
finding a β-complete model for F is hence still open, and we propose in
[7] a simple candidate.

• We conjecture that no model of F in the stable semantics can be βη-
complete. In any case, a proof of existence of such complete models should
be based on different arguments than the ones presented here, for example
because of the lack of the polymorphic case function in the stable case.

• Simpson [31] proved completeness for all models of simply typed λ-calculus
including integers, sum and product, by proving that they are complete
for terms of type T , where T is the type of binary trees. Then he used
a result of Statman [34] for deducing completeness at every type. We do
not know if this may happen for System F , that is, if there is a type σ
of F such that any model complete for terms of type σ is also complete
for the terms of all types (but we know that this is false when σ is the
polymorphic type of binary trees).

• Also, it is a long-standing open problem to know whether there are β
or βη complete models of untyped lambda calculus in the continuous or
stable semantics. A significant step in this direction is [13], where Di
Gianantonio-Honsell-Plotkin show that there is a βη-complete model in
a variant of the ω1-continuous semantics. However, the model in [13]
is built by an inverse limit construction starting from the term model
itself (viewed as a flat domain); the situation is different with the BB-
model, whose construction does not refer at all to the term model. The
completeness result in this paper might hence support the conjecture that
more natural βη-models might exist.

• We do not know whether the universal retraction models can be complete.

• As mentioned in the introduction, all the webbed models, and in particular
the BB-model are in fact (implicit) models of Fω(Y ), but the completeness
proof doesn’t extend to Fω , for a rather strong reason which makes us
conjecture that no polymax model can be complete for Fω . Since most of

8



the other known nonsyntactical model are not even complete for F, it is
quite possible that no such model exists at all.

• We do not pretend of course that the set of conditions for completeness
that we give in Section 5 is optimal, and we hope that a more elegant, and
maybe more general, set of conditions will be provided by future work.

3 System F.

In this section, we recall the syntax of System F (following [18]).

A type, or F -type, is either a type variable, an arrow type or a polymorphic
type. Types are constructed using the following schemes :

• (type) variables α, αi, ... are types (i ∈ N).

• σ → τ is a type if and only if σ and τ are types,

• ∀α.σ is a type iff α is a type variable and σ is a type; the variable α is
bound in ∀α.σ.

Except when we encode the syntax, types will be considered only up to α-
equivalence (renaming of bound variables) and σ[α : τ ] will then denote the
type obtained by correct substitution of the type τ for all the free occurrences
of the variable α within the type σ.

A term, or F -term, is either a variable, an abstraction, an application, a
type abstraction or a type application. Terms come equipped with a built-in
type. Terms and their types are constructed using the following schemes :

• (term) variables xσ, yσ, ..., where σ can be any type, are terms of type σ.

• λxσ.t is a term of type σ → τ iff t is a term of type τ ; the variable xσ is
bound in λxσ.t.

• tu is a term of type τ iff, for some σ, t is a term of type σ → τ and u is a
term of type σ.

• λα.t is a term of type ∀α.σ iff t is a term of type σ and α is not free in
the type of any free term-variable of t; the variable α is bound in λα.t.

• tσ is a term of type τ [α : σ] iff t is a term of type ∀α.τ .

We will write t : σ or tσ to mean that t is an F -term of type σ. The rules
are such that the type is uniquely determined from the F -term.

Except when we encode the syntax, terms will be considered only up to
α-equivalence, and t[xσ : u] will then denote the term obtained by correct
substitution of the term u of type σ for all free occurrences of xσ within t. We

9



also need t[α : σ]; this is defined only if α is not free in the type of any free term
variable of t, and then means the obvious thing.

Immediate β-reduction (or reduction of β-redexes) is defined by :
(λxσ.t)uσ →β t[x

σ : uσ] and
(λα.t)σ →β t[α : σ] (recall that α is not free in a free term variable of t).
Immediate η-reduction (or reduction of η-redexes) is defined by :
λxσ.txσ →η t if t : σ → τ for some τ and xσ is not free in t.
λα.tα →η t if t : ∀α′.σ for some α′, σ and α is not free in t.
Immediate βη-reduction is the union of both and is denoted by →βη .

We define β- (resp. βη-) reduction, still denoted by →βη , as the smallest
transitive relation containing the corresponding immediate reduction, and com-
patible with the formation of terms. Both reductions are Church-Rosser and
strongly normalizing [17]. Finally, we define β- (resp. βη-) equivalence (or
convertibility) as the reflexive, symmetric and transitive closure of the corre-
sponding reduction; these relations are denoted by =β and =βη .

Notation 1 If t is a term then nf(t) will denote its βη-normal form, namely
the unique normal term to which t βη-reduces. To be able to uniformly state
later a result concerning both terms and types, we set nf(σ) := σ if σ is a type.

4 Polymax models of F.

In this section we isolate a restricted but transparent notion of models of F,
which we call polymax models of F.

This framework is new, as far as we know. It is less general but much
easier to grasp and to work with than any other previous one; in particular
our definition requires no more category theory than knowing what a cartesian
closed category (c.c.c.) is (functors are not used here). Finally it is particularly
significant for giving a global description of the kinds of models and properties
we are interested in.

We also tried to fix notations which are as meaningful as possible.
The definition of polymax models is abstract enough to fit several different

settings (for example universal retraction models 9, the (disjoint) class in [7],
and all models of untyped λ-calculus when viewed as trivial models of F ), but
it does not accommodate the PER models, nor Girard’s and CGW’s models; as
we have already mentioned, this is not a drawback here since these models have
been shown to be incomplete. In contrast, our definition covers nonextensional
models, even if the bare completeness proof here only works for Fη.One reason is
that we hope that the result could be used to prove that some models of [7] have
a theory included in Fη, and would allow us to isolate good candidates for being

9In fact it only covers the universal retraction models which are based on closures or pro-
jections. A slight generalization is needed to include the models based on finitary retractions,
which is presented in [7].

10



complete for F. This choice is not at all costly: one just finds here retraction
pairs where one would find pairs of inverse isomorphisms in the extensional case.

Very general definitions/notions of models of F have already been proposed
in the literature10, namely: the definition of Bruce-Meyer-Mitchell [11], and
a few categorical definitions (cf. Asperti-Longo [3, Ch11], and in particular
p.276 for references to Moggi, Seely and al.). It is also worth mentioning Pitts’
categorical definition of topos models of F [25]. Since these definitions are “well-
established”, it seems we have to be more explicit about the reasons why we do
not start from one of them.

The reason why we do not start from a general categorical definition, whether
well known or possibly adapted for our paper, is that such definitions are her-
metic to the nonspecialist, and that their high level of abstraction is of no use
here. The reason why we do not start from the definition of [11] is different. This
definition describes in a rather natural way what a second-order structure is and
what the interpretations of types and terms in it should be, but then it only
defines a model to be a second-order structure such that these interpretations
are well-defined, without giving any information on the way one could succeed
in doing so. In contrast it is a straightforward theorem that the definition of
polymax models really depicts models 11 of System F [7], and, then, it is an
easy observation that they are also models in the sense of Bruce-Meyer-Mitchell
(cf. Appendix B). Due to the intrinsic complexity of the “well-established”
categorical definitions of models of F , it is far less evident to check whether
polymax models fit such a definition. In Appendix B we compare the definition
of polymax models to Moggi’s general definition of the “internal models” of F
(cf. [3]) and Pitts’ definition of topos models. Our conclusion is the following.
First, there is no general way to view polymax models as internal models, al-
though internal and polymax models interpret formulas in the same way. Note
that this does not contradict the fact that universal retraction models can be
described either as internal models or, much more easily, as polymax models [7].
Second, the definition of topos models of F is rather alien to the definition of
polymax. Finally none of these categorical definitions is adequate for describing
the webbed models of [7], and in particular the BB-model.

Finally, it is plausible that the definition of polymax models can be turned
into a categorical one, but this would largely increase its level of complexity (cf.
Appendix B) and we claim that it is not worth the effort 12.

10Due probably to the difficulty of writing out a significant general definition of models,
several famous papers which build models of F (e.g. [18]) do not put these models within a
general context.

11Is also true of the categorical definitions, of course, that they do produce models, and
that they embody the deep structural reasons why this is true.

12Furthermore, since our aims are rather practical, the possibility of working with genuine
sets, and genuine set inclusions iX : X ↪→ Terms is a blessing.

11



4.1 Preliminaries.

Each polymax model will be parameterized by a cartesian closed category with
enough points [4, p.108], called Univ, and by other parameters which will be
objects, morphisms, and families of morphisms of Univ. It should be clear
that the same category Univ can give rise to infinitely many models of F (see
[7]). The reader can think of Univ as being the category of Scott domains and
continuous functions (which is indeed a suitable context for the BB-model and
will be called here Scott’s c.c.c. for short), and more generally as being any
category whose objects are domains 13 and morphisms are continuous functions
(possibly submitted to further conditions).

We emphasize that our intention here is not to give a categorical framework,
but rather to give a convenient mathematical framework using the terminology
of cartesian closed categories.

In particular, we will always assume that the objects of Univ have a carrier
set and that Hom(A,B) is a subset of the set of all functions from the carrier
set of A to the carrier set of B 14. It will be convenient to speak of a subset
D of an object A or of an element x of A. By this we understand the naive
interpretation: we forget everything about A except that its carrier is a set.
Thus we will use freely “x ∈ A”.

The objects of Univ will be denoted A,B,X, Y, Z.
If Univ is some usual category of domains, then each A is (in particular) a

partially ordered set with a bottom element, denoted by ⊥A.
The crucial semantic notion for modelling β (resp. βη) equivalence, inde-

pendently of the choice of the formal framework, is that of a retraction pair of
morphisms (resp. of inverse isomorphisms). We recall the definition, and fix
notations in the meanwhile.

Notation 2 We write: (f, g) : A fl B to mean that (f, g) is a pair of mor-
phisms f ∈ Hom(A,B) and g ∈ Hom(B,A).

Definition 3 A retraction pair is a pair (f, g) : A fl B such that g ◦ f = idA.
We then say that A is a retract of B and that f is left invertible. If furthermore
f ◦ g = idB then f and g are inverse isomorphisms between A and B.

The definition of polymax models uses the following definition.

Definition 4 Let Univ be a category whose objects are sets (with additional
structure) and whose morphisms are (specific) functions. We say that the nonempty
object X is a substructure of the object A if X is a subset of A and, for all pairs
(Z, f) such that Z is an object and f is an ordinary function from Z to X, we
have that f is a morphism iff i ◦ f is a morphism, where i is the inclusion map
(this implies trivially that i is a (mono-)morphism).

13In the generic sense of: directed complete partial orders (cpo’s) and, possibly, additional
structure (ex: Scott domains).

14A c.c.c. with enough points is a concrete category, so this is not a real restriction.

12



For example, if Univ is a category of Scott domains and continuous functions,
the second condition in Definition 4 expresses the fact that the order of X is the
restriction of that of A, and that for all nonempty directed subsets D of X, the
sup of D in X remains the sup of D in A. In the stable semantics one should
add a similar condition for suitable infs, and so on.

4.2 A transparent way of modelling F .

By a polymax model of system F we mean here 15 a tuple

M = 〈Univ,< Types, T erms >,<⇒, lbd, apl >,< Q,Lambda,Appl >〉

such that Univ is a category, Types and Terms are two objects of Univ, Q,⇒,
Lambda and Appl are four morphisms of Univ, and finally lbd and apl are two
families of morphisms of Univ. This tuple is subject to the requirements listed
below.

1. We assume that Univ is a cartesian closed category with enough points.
We assume furthermore that the objects of Univ have nonempty carrier
sets, and that Hom(A,B) is a subset of the set of all functions from the
carrier set of A to the carrier set of B .

By the definition of cartesian closed, Univ is equipped with a cartesian
product × and a terminal object, and it contains, for each pair of objects
(A,B) : an object A→ B representing Hom(A,B). For the sake of read-
ability, we assume that Hom(A,B) is the carrier set of A → B, and that
eval is the usual application of a function to its argument.

It is clear that all these assumptions are satisfied by Scott’s c.c.c.

2. Types and Terms. The intention is that F -types are interpreted by ele-
ments of Types and (explicitly typed) F -terms by elements of Terms. By
analogy with the syntax, the elements of Types are called semantic types
and are denoted by X,Y, Z.

We require that the elements of Types (when Types is viewed as a mere
set) are objects of Univ, and furthermore are substructures of the object
Terms 16.

3. ⇒∈ Hom(Types× Types, Types) is (required to be) a morphism and it
will be taken as the interpretation of the arrow constructor on syntactic
types.

4. lbd and apl are indexed by Types×Types. The family (lbd, apl) will allow
us to interpret abstraction over a term variable, and application of a term
to a term.

15As noticed before, the definition is mildly generalized in [7], for reasons which are not
relevant here.

16If Univ is Scott’s c.c.c., then Types appears as a “domain of domains”: it is a domain
and the elements of the underlying set are domains. We will give a very concrete example in
Example 7 below.

13



We require that, for all X,Y ∈ Types, the pair (lbdX,Y , aplX,Y ) is a re-
traction pair making X → Y a retract of X ⇒ Y.

5. Q ∈ Hom((Types→ Types), T ypes).

Second order quantification will be interpreted by Q, and Q(F ) will also
be denoted ∀X.F (X) for F ∈ Types→ Types.

6. We require that (Lambda,Appl) is a retraction pair making Types →
Terms a retract of Terms.

Lambda and Appl will interpret abstraction of terms over type variables
and application of terms to types.

7. For all F ∈ Hom(Types, Types) we define HomF (Types, T erms) as the
subset of Hom(Types, T erms) containing those morphisms f such that
f(X) ∈ F (X) for all X ∈ Types.

Our last requirement is that Lambda and Appl induce functions LambdaF

and ApplF between HomF (Types, T erms) and Q(F ) (recall that Q(F ) is
a substructure of Terms). In other words:

if f ∈ HomF (Types, T erms), then Lambda(f) ∈ Q(F ) ⊆ Terms and,

if u ∈ Q(F ) and X ∈ Types, then Appl(u)(X) ∈ F (X).

Remark 5 We emphasize that X → Y, and more generally A→ B, is never a
semantic type in our setting, while X ⇒ Y is.

Remark 6 It is clear that Conditions 6 + 7, which express in particular that
the set HomF (Types, T erms) is “contained in” Q(F ), are the very conditions
that force all “possible” polymorphic functions to be in ∀X.F (X) and which
rule out all the models with constrained sets of polymorphic maps. Moreover
Conditions 6+7 express that the previous embedding is “uniform in F”. Finally
they imply that HomF (Types, T erms) = HomF ′(Types, T erms) if Q(F ) =
Q(F ′). However they do not seem to imply that Q is injective, although this is
true in all the known polymax models.

Out of any polymax model M, and for any assignment ρ of elements of
Types to type variables of F , and of elements of Terms to term variables of
F in a compatible way, we may define an interpretation [.]ρ of F -types and
F -terms (see Appendix A). The fact that this interpretation is well defined
for all polymax models follows from a lemma whose statement is quite simple
and whose proof is straightforward but uses crucially the fact that we do not
constrain polymorphic maps (see [7]).

All polymax models of F identify (α)β- convertible terms and α-convertible
types. A polymax model identifies η-convertible terms, and is then labelled
extensional, if all pairs (lbdX,Y , aplX,Y ) are pairs of inverse isomorphisms, and,
for all F ∈ Types → Types, the restriction of Lambda ◦ Appl to Q(F ) is the
identity.

14



Example 7 .

1. “Trivial models”. Let (M, lbd, apl) be a model of untyped λ-calculus in
a c.c.c. Univ (which means that (lbd, apl) is a retraction pair making
M → M a retract of M). We let Types := {M}, T erms := M. Thus
(M ⇒ M) = M and Q(F ) = M for the only possible F. Hence Q(F ) is
always isomorphic to HomF (Types, T erms) while M ⇒M is isomorphic
to M → M iff M is extensional as a model of untyped λ-calculus. This
example clearly shows the links between ⇒ and → . It is easily seen that
trivial models cannot be complete: they obviously satisfy Axiom C, because
Types is a singleton and all polymorphic maps are constant.

2. Let us illustrate Point 2 of the definition of polymax models with the sim-
plest models of [7]. In this case Terms = (P (Ω),⊆), where Ω is some
fixed set and P ( ) denotes the full power set operator, and Types =
( {XD / D ∈ P (Ω) } , ⊆ ), where XD = (P (D),⊆). The situation is sim-
ilar, even if more refined, for all webbed models of F (cf. Appendix C).

Note that each element of Terms will in general belong to infinitely many
elements of Types (this is true in fact for all the known non trivial polymax
models), This is true in particular for the definable elements of Terms.
Thus, even though we take into account the type information when we
interpret the explicitly typed term tσ in a polymax model, the interpreta-
tion of tσ is not only in the interpretation of σ, but also in many other
“semantic types” in the sense of Point 2.

3. In universal retraction models X ⇒ Y is the range of a retraction, and is
directly isomorphic to X → Y (with no intermediate encoding via traces),
and similarly with Q. In particular such a model is extensional even if it is
obtained from a universal retraction on a nonextensional model of untyped
λ-calculus. 17

4. In the BB-model, X ⇒ Y is the cpo of traces of elements of X → Y, for
all X,Y ∈ Types, and hence both cpos are isomorphic. More generally, in
all the webbed models of [7] X ⇒ Y “contains” a copy of the cpo of traces,
and X → Y can also be here a proper retract of X ⇒ Y. The situation is
similar for Q.

5. The PER-models satisfy the first 5 conditions of the definition of (exten-
sional) polymax models, except for the convenient but not essential con-
dition requiring that the carrier sets of objects of Univ are non empty,
but they do not satisfy 6 + 7 since it is easy to produce in these models
two F, F ′ such that Q(F ) = Q(F ′) and HomF (Types, T erms) is different
from HomF ′(Types, T erms), contradicting Remark 6. This is detailed in
Appendix B.2.

17Strictly speaking, this remark makes sense only for the universal retraction models which
fit the present definition of polymax (otherwise X ⇒ Y makes no sense). But a similar remark
could be made in the wider setting of [7], and hence for all universal retraction models when
described as polymax models as in Section 7.2 of [7].

15



In the rest of the paper we will use the following simplified notations.

Notation 8 (“semantic applications” )
From now on all conceivable notions of application will be denoted along the
pattern ψ(ξ). This means precisely that we adopt the following abbreviations:

f(x) is usual and ∈ Y if f ∈ Hom(X,Y ), x ∈ X
f(x) := applX,Y (f)(x) ∈ Y if f ∈ X ⇒ Y, x ∈ X
f(X) is usual and ∈ Terms if f ∈ Hom(Types, T erms), X ∈ Types
f(X) := Appl(f)(X) ∈ Terms if f ∈ Terms, X ∈ Types
F (X) is usual and ∈ Types if F ∈ Hom(Types, Types), X ∈ Types

All previous semantic applications have a syntactic counterpart in F. In the
completeness proof we will also need to be able to apply a type to a type (see
Section 6). This will be done by requiring later on the existence of a morphism
AP ∈ Hom(Types, Types→ Types) (in fact: of a left-inverse for Q).

Notation 9 (“semantic applications” continued) Assuming the existence of a
left-inverse AP for Q for the first and second row (the third one is just a re-
minder).
F (X) := AP (F )(X) ∈ Types if F ∈ Types and X ∈ Types
∀X.F (X) := Q(AP (F )) ∈ Types if F ∈ Types
∀X.F (X) := Q(F ) ∈ Types if F ∈ Hom(Types, Types)

Notation 10 (“semantic abstractions”):
λxX .f(xX) means lbdX,Y (f) if f ∈ Hom(X,Y )
λX.f(X) means Lambda(f) if f ∈ Hom(Types, T erms)

In particular λxXf(xX) makes sense even if X doesn’t interpret a type.

This notation is compatible with the preceding one in the sense that :
(λxX .f(xX))(u) = f(u) for all u ∈ X
(λX.f(X))(Z) = f(Z) for all Z ∈ Types

Definition 11 The elements of Terms of the form λX.f(X) will be called poly-
morphic maps. This is a very generic term which covers in particular the in-
terpretations of polymorphic terms.

Notation 12 (Arrows and Currifications).
As usual A,B → C abbreviates A→ (B → C) and A2 → C abbreviates A,A →
C. We adopt the similar abbreviation for “ ⇒ ”. Also, following a standard
notation for “→”, we will let ∀X.A⇒ B abbreviate ∀X.(A ⇒ B).
We will use Curryfication freely. Moreover, in order to increase readability, we
will use Curryfication-like abbreviations for ⇒ and for polymorphism, extend-
ing them even to lists of arguments mixing elements of Types and elements of
semantic types (i.e. elements of elements of Types). By this we mean, for ex-
ample, that for j ∈ ∀X.∀Y.(X ⇒ Y ) and x ∈ X, we will write j(X,Y, x) or

16



j(X,Y )(x) instead of j(X)(Y )(x). Similarly, for h ∈ ∀X.∀Y.(X,Y ⇒ F (X,Y ))
and x ∈ X, y ∈ Y we will write h(X,Y )(x, y) instead of h(X)(Y )(x)(y). In
Appendix D, where no ambiguity can occur, we will even use abbreviations like
hXY xy.

Finally, we will often use x : X for x ∈ X ∈ Types.

5 The completeness result.

We now isolate a set C of conditions on polymax models, which are true in the
BB-model and more generally in infinitely many webbed models (where they
can be easily checked), and which are sufficient to imply completeness. The
main result of this paper is indeed:

Theorem 13 Every extensional polymax model M satisfying C is βη-complete,
in the sense that for all F -types σ, τ and for all F -terms t, u having the same
type:
(i) we have σ =α τ if and only if, for all assignments ρ, M |= ρ(σ) = ρ(τ ).
(ii) we have t =αβη u if and only if, for all assignments ρ, M |= ρ(t) = ρ(u).

In this section we describe the conditions and discuss their possible satisfac-
tion in the various kinds of models.

5.1 Stating and discussing the conditions.

We divide the set of conditions C on M into two groups.

I. The first group of conditions requires that we have infinitely many infinite
types, and that we may develop partial recursion inside M, through a
conditional and fixed point operators. A last and more artificial condition
states that Types contains exactly one representative of the terminal ob-
ject of Univ and will allow us to deal with it. These conditions are easy to
satisfy, and, indeed, are true for most models. We express them as follows:

1. We have an object O ∈ Types having an infinite subset N whose
elements are representative of all natural numbers. The reader can
think here of O being the flat domain of integers and N as the set of
its non-bottom elements.18.

2. There are morphisms on O representing the successor and the prede-
cessor function on N.

3. There is a uniform fixed point operator Y ∈ ∀X.(X ⇒ X) ⇒ X ,
such that Y (X) is a fixed point operator over X : for all X ∈ Types
and f ∈ X ⇒ X we have f(Y (X)(f)) = Y (X)(f).

18This will be the case in the BB-model.

17



4. For all objects K of Univ there is a fixed point operator YK ∈ (K →
K) → K and there is a conditional operator IFK ∈ O,O,K,K → K,
such that for all k, k′ ∈ N,

IFK(k, k′, a, b) = a if k = k′ and b otherwise.

5. (“Triviality conditions”)

a) There is a unique element E of Types which is terminal for Univ;
we will call it “the trivial type”.

b) For all X ∈ Types we have (X ⇒ E) = E.

c) Q(T ) = E, where T ∈ Types → Types is the constant morphism
which takes value E on all types. We will refer to T as “the trivial
constructor”.

Remark 14 About recursive and pairing functions. It is a clear consequence
of Conditions I. 1,2,4 that all the partial recursive functions on N will be rep-
resentable in the model. In particular there will be a morphism < −,− >∈
Hom(O × O,O) with left inverse (p1, p2), and such that: if x, y ∈ N, then
< x, y >∈ N and < x, y > is strictly bigger than x, y (for the usual ordering
of integers). We will make extensive use of this pairing function in the sequel.
Requiring the existence of such a pairing morphism in Cond. I.2, instead of
a successor and a predecessor morphisms, would be sufficient for proving the
completeness theorem, but there would be a (slight) cost 19.

Remark 15 About the triviality conditions I.5. They are somewhat artificial
but very mild, and they are unavoidable in the following sense. First all the
concrete models which are polymax in the sense of the present paper 20 are such
that Types contains one and only one (representative of “the”) terminal object.
In these models we have furthermore E =⊥Types, so that introducing E allows
not only for technical simplifications later on, but also for a better visualization
of the models we are interested in. Furthermore all these models satisfy the
other triviality conditions, for the following reasons. Since Univ is a category
of domains, both E ∈ Types and X → E (which is not in Types) are singleton
domains. Thus the equation (X ⇒ E) = E is satisfied as soon as X ⇒ E is
isomorphic to X → E. In particular, this is true for all the extensional models
(and hence for all the universal retraction models). The equation X ⇒ E = E is
also true for all the models of [7], whether extensional or not, due to the specific
definition of ⇒ for them. The situation with Q is similar.

19The cost is that in order to prove Corollary 31 it would be necessary to admit terms λα.t

where α is not free in the type of a free variable of nf(t) (instead of t). This leads us to
work with an extension F ′ of F which is “inessential”, in some sense, and has in particular
the “same” term model than F with respect to (an extended notion of ) αβη-equivalence. In
particular a few trivial remarks about this extension are enough to conclude that the proof
which is given in the present paper works, with the only change that we have to consider
equivalence classes of F ′-terms instead of F -terms.

20The universal retraction models of McCracken and Berardi are such that Types (which
is not anymore a domain of domains but only a family of domains) contains infinitely many
representative of the terminal object, since all constant maps are admissible retractions in
these two cases.

18



These properties of E have the undesirable consequence (for us) that E is
simultaneously in the range of Q and ⇒, since E = Q(T ) = (E ⇒ E). Making
them part of the completeness conditions, and under this precise statement,
greatly simplifies life later on 21.

II. The second group of conditions is the crucial one for the completeness proof,
and is not satisfied by models which are “poor” in polymorphic functions.
It mainly says that the basic constructions over types (the arrow operator
⇒ and the quantification operator Q) are left invertible. A consequence
will be that we may reconstruct the syntactic form of a type σ out of
the interpretation [σ]ρ of σ in Types (for a well chosen ρ). Since the
assignment of a value to a type variable is not reversible in general, we
need to specify that there are “canonical” values for type variables, namely
an infinite family of semantic types C(i) such that C is a left invertible
morphism.

For technical reasons we need a further (minor) condition which says that
we may compute the “trace” of any type over any other one. Making all
this precise now, we require that :

1. There is a retraction pair (C, index) : O fl Types. If i is any integer,
then we will think of C(i) ∈ Types as “the canonical value for the
type variable αi”. All C(i)’s have to be infinite. We express this by
saying that O is, uniformly, a retract of all C(i)’s. That is, there are

two families f̆ ∈ ∀X.[O ⇒ C(index(X))], ğ ∈ ∀X.[C(index(X)) ⇒

O] such that f̆(C(i)), ğ(C(i)) is an embedding-retraction pair be-
tween O and C(index(C(i))) = C(i). We will also use Ci for C(i).

2. There are morphisms P1, P2 ∈ Hom(Types, Types) such that (P1, P2)
is a “quasi-inverse” for ⇒. This precisely means that:

for all X,Y ∈ Types, we have P2(X ⇒ Y ) = Y ,

if Y 6= E, we have furthermore P1(X ⇒ Y ) = X.

3. There is a morphism AP ∈ Hom(Types, Types→ Types) reversing
Q. In other words : for all “type constructors” F ∈ Types→ Types
we have AP (Q(F )) = F.

4. We have a case map case ∈ ∀G.∀X.(G(X)3 ⇒ G(X)) distinguish-
ing among arrow types, quantified types, and “canonical values for
variables”. By this we mean that for all G ∈ Types, and a, b, c ∈
∀X.G(X) we have :

case(G)(X)(a(X), b(X), c(X)) = a(X) if X = C(i).

case(G)(X)(a(X), b(X), c(X)) = b(X) if X = Y ⇒ Z and X 6= E.

case(G)(X)(a(X), b(X), c(X)) = c(X) if X = Q(F ) and X 6= E.
21In order to have a more natural statement, a referee suggested to work more generally

with the set Triv of all the possible representatives of the terminal object inTypes. However
the proof of (the analogue of) Lemma 21 below would then need two problematic closure
properties of Triv. On the contrary, the present Lemma 21 is here easily proved, since the
problematic properties become trivially true when Triv is a singleton.

19



5. There is a “trace operator” between any two types, that is, there is
some “map” j ∈ ∀X.(∀Y.X ⇒ Y ) computing the “trace of x ∈ X in a
type Y ”. The only requirement we make over j is that j(X,X, x) =
x for all X ∈ Types. We make no assumption over the value of
j(X,Y, x) in any other case (it will then often be ⊥Y ).

Remark 16 We could not ask for a total left-invertibility of ⇒ in condition
II.2, since X ⇒ E is trivial for all X (I.5). Similarly we were obliged to
exclude E from the conditions imposed on the polymorphic map “case”, since
E is simultaneously in the range of ⇒ and of Q. The conditions on the case
function imply however that E is the only such element.

Remark 17 We observe in [8] that any polymax model which is such that Q
is left-invertible is in fact an implicit model of Girard’s Fω. The strong reason
why our completeness proof cannot be extended to Fω is that no (even more
accurate) polymorphic map case could ever be able to discriminate between the
ranges of (the interpretation of) the various higher-order quantifiers, since, in
these models, all these ranges are included in the range of Q.

Remark 18 It is immediate from I.5 and II.2 that (X ⇒ Y ) = E iff Y = E.
Similarly it is immediate from I.6 and II.3 that Q(F ) = E iff F = T .

We will see now that the technical restrictions linked to E, even though
unavoidable, are inessential in the sense that the previous remark implies that
we can manage to avoid meeting E during the completeness proof, by using only
strict environments (Lemma 21).

Definition 19 A type-environment ρ : V artypes → Types is strict if it only
takes nontrivial values (on type variables).

Example 20 (The “canonical environment”). The key example of a strict en-
vironment is the environment ρC defined by ρC(αi) = Ci for all i.

Lemma 21 For all F -types σ and all strict environments ρ, we have ρ(σ) 6= E.

Proof. By induction on σ, using Remark 18. The only nonobvious case is
σ := ∀α.τ . Then |σ|ρ := Q(X 7→ |τ |ρ[α:X]). Let K : Types → Types be the

argument of Q. Then for any nontrivial type Y the environment ρ[α : Y ] is
strict and we have |τ |ρ[α:Y ] 6= E by the inductive hypothesis; hence K is far

from being trivial (i.e. equal to T 22) and hence Q(K) 6= E.

5.2 Satisfaction of the conditions in concrete models.

Theorem 22 The BB-model is extensional and satisfies the two groups of con-
ditions. More generally this is true of infinitely many webbed models.

22T was defined in Condition I.5.

20



For a proof of the first assertion we refer to [5]. The second one, which makes
the BB-model part of a more general context, follows from easy observations
which are made below and in [7] (see also Appendix C). For a reader familiar
with [7] it should be clear that the construction of the BB-model can further-
more be varied so as to obtain complete models which satisfy a great variety of
other constraints.

Remark 23 The conditions of group II are easy to satisfy. On the other hand,
it is also very easy not to satisfy them. For example.

• It is easy to see that models of FC cannot satisfy II.4.

• There is another kind of model which obviously cannot satisfy II.4: namely
those models for which range(⇒)∩range(Q) 6= {E}, including those mod-
els for which Q is onto. It is easy to build such webbed models.

• In contrast, it is easy for a polymax model which contains infinitely many
types called Ci to satisfy II.4. Roughly speaking, it is enough that Types
can be decomposed into three independent “factors” which contain respec-
tively: the range of ⇒, the range of Q, and all the Ci. Such domain
(in)equations can easily be forced in the framework of webbed models (see
Appendix C)

• Stable models (those living in categories where morphisms are stable func-
tions) cannot satisfy II.2, unless they are trivial. Indeed it is easy to check
that P1 cannot be stable if II.2 is true and Types is not a singleton.

Example 24

• 1. All the webbed models of [7] satisfy Conditions II.3 and II.5. It is
very easy to characterize those which satisfy II.2, and very easy to build
infinitely many webbed models which satisfy furthermore: the existence of
suitable Ci ’s and Condition II.4 (using the remark above).

• 2. Trivial models obviously satisfy II.2, 3, 5, and do not satisfy II.1, 4.

• 3. All universal retraction models satisfy II.5 but those that belong to the
stable semantics do not satisfy II.2. We do not know whether universal
retraction models can be complete.

• 4. PER models do not satisfy II.3.and II.4 and are not complete, since
they satisfy FC.

• 5. Girard’s model does not satisfy II.3 (Q is not even injective) 23. It
does not satisfy II.4 since it is a model of FC, and it does not satisfy II.5
since ∀X.(∀Y.X ⇒ Y ) is a trivial type there.

• 6. The situation with the continuous CGW model is similar for II.3 and
II.5, but the argument given for II.4 doesn’t apply since the continuous
CGW is not a model of FC.

23The analogue of our Q is not injective in Girard’s model since, for example, both ∀α.α

and ∀α.∀β.α → β take value {∅} in it (see [18] for the first type).

21



6 Definition by case and by recursion.

In this section we show how the conditions allow us to define new polymorphic
maps (by case and) by recursion. As a matter of fact the (short) proof of Lemma
26 below uses all the conditions of group II, plus Condition I.3 (existence of fixed
point operators YX over allX ∈ Types).Moreover the lemma even encapsulates,
in some sense, the conditions of group II since, except for II.1 which we use
only partially below, the other conditions II will not be used elsewhere. Lemma
26 will allow us to build the crucial polymorphic map type in Section 9 and the
family (f, g) in Section 10.

Lemma 25 (Definition by cases). let F : Types→ Types and a, b, c : ∀X.F (X).
Then there is some f : ∀X.F (X) such that. :

1. f(X) = a(X) : F (X) if X = Ci.
2. f(X) = b(X) : F (X) if X 6= E and X = Y ⇒ Z for some Y, Z.
3. f(X) = c(X) : F (X) if X 6= E and X = Q(K) for some K.

Proof. Easy, using the function Case given by Condition II.4: just take
f := λX. case(Q(F ))(X)(a(X), b(X), c(X) ).

Before stating the next lemma we recall that the retraction pair (C, index) :
O fl Types was introduced in Condition II.1 of Section 5.

Lemma 26 (Definition by recursion). Let F : Types→ Types and let :
a : ∀Z.F (C(index(Z)),
b : ∀Y.∀Z.(F (Y ), F (Z) ⇒ F (Y ⇒ Z)),
c : ∀G.[∀Z.F (G(Z))] ⇒ F (∀Z.G(Z))).

Then there is some f : ∀X.F (X) such that, for all i ∈ N, for all Y, Z ∈ Types
and K ∈ Types→ Types such that Z 6= E and K 6= T we have:

f(Ci) = a(Ci) : F (Ci)
f(Y ⇒ Z) = b(Y )(Z)(f(Y ), f(Z)) : F (Y ⇒ Z)
f(Q(K)) = c(Q(K))(λZ.f(K(Z))) : F (Q(K))

Recall that T is the trivial constructor (which takes constant value E).
Note that the typing of c in the hypothesis implicitly uses the morphism

AP , to define G(Z).
Proof. We may translate the claim by an equation f = H(f) : ∀X.F (X),

equation that we will solve afterwards by f := Y ′(H), where Y ′ := Y (∀X.F (X))
is the fixed point on the type ∀X.F (X).
We define H(f) : ∀X.F (X) as follows.
First we set:

a′(X) := a(X) : F (C(index(X)))
b′(X) := b(P1(X), P2(X))(f(P1(X), f(P2(X))) : F (P1(X) ⇒ P2(X))
c′(X) := c(X)(λZ.f(X(Z))) : F (∀Z.X(Z)).

Then we use the case definition lemma (Lemma 25) in order to define the body
H ′ := H(f) of H . In this definition we need to use the embedding j for forcing
a′, b′, c′ to get the type required by the definition by cases.

22



H ′(X) = j(F (C(index(X))), F (X), a′(X)) : F (X) if X = Ci

H ′(X) = j(F (P1(X) ⇒ P2(X)), F (X), b′(X)) : F (X) if X = Y ⇒ Z and Z 6= E
H ′(X) = j(F (Q(AP (X))), F (X), c′(X)) : F (X) if X = Q(K) and K 6= T

Now,
C(index(X)) = X if X = Ci for some i
P1(X) ⇒ P2(X) = X if X = Y ⇒ Z for some Y, Z and X 6= E
Q(AP (X)) = X if X = Q(K) for some K.

Using three times the equation j(Z,Z, z) = z, we conclude:
H ′(Ci) = a(Ci) : F (Ci)
H ′(Y ⇒ Z) = b(Y, Z)(f(Y ), f(Z)) : F (Y ⇒ Z)
H ′(Q(K)) = c(Q(K))(λZ.f(K(Z))) : F (Q(K))

It is then clear that any fixed point of H := λf.H ′ has the required properties.

7 An overview of the completeness proof.

The aim of this section is to give a survey of the completeness proof, which will
then be developed in the rest of the paper. We start from Friedman’s proof [15]
for simply typed extensional λ-calculus 24, and then we introduce progressively
the variants we had to adopt and the specific tools that we need.

7.1 Friedman’s proof.

In this section (only) T denotes the term model of simply typed calculus, Ttp

denotes the set of its types, and Tσ the set of βη-equivalence classes of terms of
type σ.Models stem from applicative structuresM = (Mσ, aplσ,τ )σ,τ∈Ttp

, where
Mσ is a set where to interpret the variables (and the terms) of type σ, and aplσ,τ

is a map from Mσ→τ ×Mσ to Mτ , submitted to an extensionality condition.
The full type structure over the set B is the structure defined by: Mα = B for
all type variable (or constant) α and Mσ→τ is the set of all functions from Mσ

to Mτ , while applσ,τ is the usual application of a function to its argument. The
aim of Friedman is to show that this model is complete if B is infinite.

The core idea of Friedman’s proof is the following:

1. In order to prove that a model M of the simply typed extensional λ-
calculus is complete it is enough (see point 3. below) that there exists a
partial homomorphism (gσ)σ∈Ttp

from M to T . In this context “homo-
morphism” refers to the applicative structure, and to be a partial sur-
jective homomorphism means that each gσ is a partial surjective map
from Mσ to Tσ, and that for all σ, τ we have gσ→τ (x) defined as the
unique element of Tτ , if any, such that for all y ∈ Dom(gσ) we have
gσ→τ (x).gσ(y) = gτ (aplσ,τ (x)(y)).

24We have failed, up to now, to adapt to F the much simpler and stronger Statman-Simpson
argument.

23



2. Supposing there is a family of partial surjective maps gα from Mα to Tα,
for any variable α, and supposing that for all σ, τ any partial surjective
function from Mσ to Mτ is represented in Mσ→τ , there is a partial homo-
morphism from M to T, which can be built by induction on the structure
of σ. In the case of the full type structure over B the second condition is
fulfilled (since all functions are allowed) and the first one is equivalent to
“B is infinite”.

3. The completeness of M is an immediate consequence of a lemma which
states that: given any partial homorphism (gσ)σ∈Ttp

there is a semantical
environment ρ such that, for all types σ and all terms t : σ, we have
gσ(ρ(t)) = t. The lemma follows from a generalized version which also
quantifies over syntactic interpretations π preserving types, and replaces
ρ by an environment ρπ built from π using the axiom of choice, in order
to force the lemma at the level of type variables.

7.2 Overview of our proof.

When trying to extend this proof to adequate models of F the difficulties we
met and the solutions we brought, are the following.

1. From Reynolds [30] we know that for no model of System F we will have
that, for all σ, τ , the full function space is represented in Mσ→τ . In par-
ticular there is no reason why a function known only from its applicative
behavior should be represented in Mσ→τ . The way to get off is to notice
that in Friedman’s case the existence of a partial applicative homomor-
phism is equivalent to the following statement (using the axiom of choice
for finding fσ).

“There exists a family of pairs of functions (fσ, gσ)σ∈T between Tσ and
Mσ such that such that gσ ◦ fσ = idTσ

and, for all types σ, τ , for all
x ∈Mσ→τ and z ∈ Tτ , we have gσ→τ (x).z = gτ (aplσ,τ (x)(fσ(z)))”.

(There is no harm in the context of the full model to assume that g is
total since we can choose arbitrary values outside the range of fσ).

The natural generalization to a context allowing less freedom is to ask for
a family of retraction pairs (fσ, gσ), between T and M, which should be
furthermore applicative homomorphisms in the sense above. Since we are
dealing with System F , we should also add a similar condition for dealing
with polymorphic types. We are now faced with the following questions.

a) in which category will our retraction pairs live? If all the Mσ are
objects of a category Univ one may try to encode the term model within
an object O of Univ. Then it makes sense to require that (fσ, gσ) is a
pair of morphisms of Univ. Asking for a retraction pair between O and
Mσ would be too strong (O is a priori bigger than the term model, and
not yet stratified via the σ ’s); this will lead us to define later on a notion
of pseudo retraction pair with adequate properties.

24



b) the applicative condition suggests how to build gσ inductively, but
not fσ (which should be built simultaneously); so it should be rephrased
and refined; we should also state a second-order version, for dealing with
(f∀α.σ, g∀α.σ).

c) anyway, we will not be able to define directly the pairs (fσ, gσ) by
direct induction on syntactic types, because of the impredicativity of F .
The classical way to get through, which dates back to Girard [17], is to
use auxiliary objects, called “candidates” which range over a set whose
definition is not inductive. If we work with a polymax model M, the
obvious choice is (the carrier set of) Types, and we will look for pairs
(fX , gX)X∈Types. For proving their key properties we will need later on
much more complex candidates, inspired by Plotkin’s logical relations and
which will be here relations “wrapping” pseudo retraction pairs.

2. The fact that there are no analogues TX of the Tσ ’s in the term model
is a second good reason to look for a richer structure and to encode the
term model in it. Condition I.1 allows us to encode types and terms in O
via morphisms (the code of t will be denoted by #t). To encode the term
model we need furthermore to introduce two (external) partial equivalence
relations ∼tp and ∼tr (tp for “types” and tr for “terms”) such that two
elements of O are equivalent if and only if they encode α-equivalent types
(resp. αβη-equivalent terms). We let Ŏσ be the set of all the codes of
terms of type σ in O and Ŏtp be the set of all the codes of types.

3. We are now able to define an adequate notion of pseudo retraction pair.
Let D be a subset of O closed under ∼, which is either ∼tp or ∼tr, and
A an object of Univ. A pair of morphisms (ϕ, ψ) : O fl A is a pseudo
retraction pair between D and A if, for all x ∈ D we have ψ(ϕ(x)) ∼ x.

4. We are now looking for pairs (fX , gX) : O fl X of morphisms, such
that: 1. gX⇒Y and g∀X.F (X) satisfy applicative conditions analogue to
Friedman’s one, but relative to adequate semantic notions of application
(in O and in M) and, 2. There is an interpretation ρ of type and term
variables in M, such that: a) for all type σ (fρ(σ), gρ(σ)) is a pseudo

retraction pair between Ŏσ and ρ(σ), b) for all F -terms t : σ we have
gρ(σ)(ρ(t)) ∼tr #t.

If we succeed, then βη-completeness of M follows immediately.

We have to make precise here that ρ will act on types as the “canonical
assignment” ρC defined from ρC(αi) = C(i), where C is the morphism
defined in Condition II.1.

5. First we need to be able to relate, as closely as possible and within M,
the set Ŏtp, which represents the set of syntactic types in O, to Types.

We prove the existence of a pseudo retraction pair (type, [−]) between Ŏtp

and Types, which is furthermore such that [#σ] = ρC(σ). In particular
type(ρC(σ)) ∼tp #σ for all type σ, and hence any two non-α-equivalent

25



types will have different interpretations in M. It is equivalent to build
type : ∀X.O with the same properties, and this can be done using the
recursion lemma proved in Section 6. The construction of [−] uses a more
traditional recursion principle. The existence and properties of type and
[−], which are derived in Section 9, would fail in most models and strongly
use the two groups of conditions that we assumed.

6. The morphisms (fX , gX) are built by recursion in Section 10; to be more
accurate we build two polymorphic maps f ′ : ∀X.O ⇒ X and g′ : ∀X.X ⇒
O, with the right applicative behavior at induction steps, and we let fX :=
aplO,X(f ′X) and gX := aplX,O(g′X). The base case of the recursion is

obtained by setting f ′(Ci) = f̆(Ci) and g′(Ci) = ğ(Ci)), where the f̆ , ğ
are the polymorphic maps given by Condition II.1. It is worth noting here
that, to be able to define the family (f, g), we will need more than the
applicative behavior of fX⇒Y , gX⇒Y , f∀X.F (X), g∀X.F (X): we will have to
abstract over this behavior, at each step.

In particular we are really forced to work with models of second order
λ-calculus and not only with second-order applicative structures.

7. There remains to prove that the family also satisfies the conditions 2.a and
2.b of Point 4, which is done in Section 11. For σ = αi this follows from the
properties of f̆ , ğ (Condition II.1). The other cases are proved by induction
on σ, using candidates which are less rigid than pseudo retraction pairs,
but which have pseudo retraction pairs as backbones. First we associate to
each pseudo retraction pair (ϕ, ψ) a set of relations which we call (ϕ, ψ)-
relations. Finally, the candidates, which we call sharp candidates, are
defined as the pairs (X,R) such that X is a nontrivial element of Types,
type(X) is the code of some type, say σ, and R is an (fX , gX)-relation
between Ŏσ and X (Section 11.3). As mentioned in 1. this part of the
proof is also in the spirit of Plotkin’s logical relations [26] [27].

Some other technicalities have to be solved in the meanwhile: 1. From the
natural quantification and abstraction first-order morphisms on O which come
naturally when encoding the term model we must build higher-order 25 mor-
phisms, which are better behaved in the sense that they form pseudo retraction
pairs with the diverse applications (end of Section 8.3). 2. We need to work with
syntactic interpretations which do not preserve types. 3. We have to be careful
at some points when dealing with α-equivalence, since α-equivalent types and
terms are not confused in O.

8 Type and terms encodings.

In this section we show how to encode the term model of System F into O, in
such a way that it makes sense with respect to the whole model M, and will

25in the sense that the arguments are no longer only in O but also in O → O.

26



allow us later on to build the meaningful correspondence between O and M
that we will need for proving the completeness of M.

For sake of simplicity, we keep the same notation for an integer and its
representation in O. The encodings will be done using a fixed but arbitrary
left-invertible morphism < −,− >∈ Hom(O×O,O), such that for all x, y ∈ N
we have < x, y >∈ N and < x, y > strictly bigger than x, y for the usual order
of integers. The existence of such a pairing morphism follows from the first
Conditions I (Remark 14).

8.1 Types and terms encodings.

First we fix explicit (and arbitrary) enumerations of type and term variables:
αi for type variables, and xσ

i for term variables of each type σ. Then we fix the
following (rather arbitrary) encoding of F -types and F -terms in O.

For types we let:
#αi := var(i) := 〈0, i〉
#(σ → τ ) := arrow(#σ,#τ) := 〈1, 〈#σ,#τ〉〉
#∀αi.τ := forall(#αi,#τ ) := 〈2, 〈#αi,#τ 〉〉

For terms we let:
#xσ

i := V ar(i,#σ) := 〈3, 〈i,#σ〉〉
#(tu) := Ap1(#t,#u) := 〈4, 〈#t,#u〉〉
#tτ := Ap2(#t,#τ ) := 〈5, 〈#t,#τ 〉〉
#λxσ

i .t := Lb1(#xσ
i ,#t) := 〈6, 〈#xσ

i ,#t〉〉
#λαi.t := Lb2(#αi,#t) := 〈7, 〈#αi,#t〉〉

This encoding is an injective map from the set of types and terms into N ⊆ O.
The general definition of the morphisms var, arrow, etc., from 〈−,−〉, can be
inferred easily from their action on codes above.

Notation 27 The conventions linked to Currification allow us to write Ap1(v)
for the morphism w 7→ Ap1(v, w), and similarly for Ap2.

Notation 28 We denote by Ŏtp the set of all codes of F -types. We denote by

Ŏ the subset of N which is the set of all codes of F -terms, by Ŏσ the set of codes
of F -terms of type σ, and by Ŏ∀ the union of all those Ŏσ such that σ begins
with ∀. Because of the typing rules of F, two α-equivalent σ, σ′ give the same
Ŏσ.

8.2 Interpreting the term model in O.

We first introduce two (external) equivalence relations over O which will allow
us to view the term model when looking at O.

Notation 29 x ∼tp y if x = y or x and y encode two α-equivalent types.
x ∼tr y if x = y or x and y encode two αβη-equivalent F -terms.
We use a generic name “∼ ” when more convenient.

27



Let us make precise a technical point, which is always omitted when working
only up to α-equivalence but which plays a role at the level of encodings. By
definition, two variables xσ

i and xσ′

i′ are α-equivalent iff i = i′ and σ and σ′ are

α-equivalent; by t[xσ : xσ
i ] we understand that all the free occurrences of all xσ′

,
σ′ α-equivalent to σ, are replaced by xσ

i .

By definition of ∼, all the encoding morphisms are compatible with ∼tp and ∼tr

in the sense that they induce operations between the Tσ’s and between Tσ and
Ttp, where Tσ := Ŏσ/ str and Ttp := Ŏtp/ ∼tp . In particular we really have an
(encoding of) the term model of λ-calculus.

In the rest of the paper we will use directly the morphisms vαr, arrow,Ap1,
and V ar,Ap2, which correspond to the second order applicative structure un-
derlying the term model; in contrast forall, Lb1 and Lb2 will only be used
through the higher-order morphisms called quant, La1 and La2, which we build
in the next subsection. These morphisms will be used in the definition of the
polymorphic maps type and (f, g).

8.3 Reconstructing a type or term from its extensional
behavior.

We show here that we can reconstruct via higher-order morphisms (the code of)
a type or term, up to equivalence, from its extensional behavior (in the sense
of its action on all possible variables). That these functions are morphisms
will follow from the fact that they are obtained from < −,− >, p1, p2 (see
Remark 14) and from the basic morphisms of the underlying c.c.c. (composition,
evaluation, projections, etc.).

To begin with, the following lemma expresses in particular that, once an enu-
meration of type or term variables has been fixed, there is a uniform way to
recover a type (resp. a term), up to α- (resp. αβη- ) equivalence from all its
substitution instances (where a fixed variable is successively replaced by all the
variables of the same kind in the enumeration). This uniformity will then allow
us to find morphisms able to reconstruct uniformly the types and terms which
begin by ∀ or λ from their applicative behavior (in the good cases).

Lemma 30 Let e be a type (resp. a term). Let ξ be a term or a type variable,
let ξi be the fixed enumeration of the term or type variable of the same kind as
ξ 26 and finally suppose that e[ξ : ξi] makes sense 27. Then, for all f : O → O
if we set r :=< f(0), 0 > we have:

∀i ∈ N ( f(i) ∼ #(e[ξ : ξi]) ) ⇒ (ξ ≡ ξr or ξr is not free in nf(e)

Proof. Let ' denotes α- (resp. αβη-) equivalence. We recall that nf(e) is
the normal form of e if e is a term, and is e itself if e is a type.

26Thus, if ξ is a type variable, then ξi:= αi. If ξ is a term variable of type σ, then ξi:= xσ

i
.

27The only case where it would not make sense is when e is a type and ξ a term variable.

28



By hypothesis f(0) is ∼-equivalent to the code of a type (resp. of a term),
namely #(e[ξ : ξ0]). Hence f(0) is itself the code of a type (resp. of a term), by
definition of ∼ . Let e′f be such that #e′f = f(0) ; still by definition of ∼ we have
then: e′f ' e[ξ : ξ0]. Because of the hypothesis on the pairing function we have
〈a, b〉 > a, b for all a, b; therefore we have #ξr ≥ r =< f(0), 0 > > #e′f . By
applying the same hypothesis several times, we deduce that ξr cannot appear
in e′f , otherwise it would follow #ξr < #e′f . Thus ξr is not free in nf(e[ξ : ξ0])
since ξr is not free in nf(e′f) and both are α-equivalent. This is equivalent to
saying that either ξ = ξr or ξr is not free in nf(e).

Corollary 31 1. (Reconstruction of terms). There is a morphism La1 : O, (O →
O) → O such that, for all types σ, all morphisms g : O → O, and all F -terms t,

if g(#xσ′

i ) ∼tr #t[xσ : xσ
i ] for all i ∈ N and all σ′ 'α σ

then La1(#σ, g) ∼tr #(λxσ.t)

2. (Reconstruction of polymorphic terms). There is a morphism La2 : (O →
O) → O such that, for all morphisms h : O → O, all F -terms t, and all α which
are not free in the type of a free variable of t,

if h(#αi) ∼tr #t[α : αi] for all i ∈ N,

then La2(h) ∼tr #(λα.t)

3. (Reconstruction of types). There is a morphism quant : (O → O) → O such
that, for all morphisms k : O → O, and all types τ ,

if k(i) ∼tp #(τ [α : αi]) for all i ∈ N,

then quant(k) ∼tp #(∀α.τ ).

Proof. As in the previous proof, ' denotes α- (resp. αβη-) equivalence.
We only treat the second case; the other two ones are similar, and in fact

they are simpler (see remark below). Applying Lemma 30 to f := h ◦ var,
ξ := α, and ξi := αi, we get that αr ≡ α or αr is not free in nf(t). In both cases
λα.t ' λα.nf(t) ' λαr.nf(t)[α : αr] ' λαr.nf(t[α : αr]) ' λαr.nf(tf ), where
tf is such that #tf = f(r), since tf ' t[α : αr] and hence nf(tf) is α-equivalent
to nf(t[α : αr]). Note that in both cases all these terms are well-formed terms
(either because α is not free in the type of a free variable of t or because αr is
not free in nf(t)). Thus #λα.t ∼tr #λαr.nf(tf ).

Now, since the model is able to represent all the recursive functions on
N, there is a morphism k : O → O which computes the code of the normal
form of any term from the code of this term. Now we have: #(λα.t) ∼tr

#(λαr.nf(tf )) = Lb2(var(r), k(#tf )) = Lb2(var(r), k(f(r))). Hence: #(λα.t) ∼tr

La2(h) with La2(h) := Lb2( var(< f(0), 0 >) , k(f(< f(0), 0 >)) ).
Then La2 is a morphism, since f := h ◦ var and since Lb2 is a morphism.
The following remarks will only be used in the proof of Lemma 54.

Remark 32 (Compatibility of La1 with respect to ∼).
If #σ ∼tp #σ′, then La1(#σ, g) ∼tr La1(#σ′, g).

29



Remark 33 (Extensionality of La1, La2, and quant).
If the values of g, g′ and h, h′ are ∼tr-equivalent on all codes of variables,

and the values of k, k′ are ∼tp-equivalent on all i ∈ N, then La1(#σ, g) ∼tr

La1(#σ, g′), La2(h) ∼tr La2(h′) and quant(k) ∼tp quant(k
′).

Remark 34 1. La1(#σ,Ap1(v)) ∼tr v for all types σ and all v ∈ Ŏσ→τ .
This follows from the definition of La1, applied to g := Ap1(v).
Let indeed v := #t, then g(#xσ

i ) = #(txσ
i ) (by definition of Ap1)

= #((tyσ)[yσ : xσ
i ])), where yσ is a fresh term-variable. Hence:

La1(#σ,Ap1(v)) ∼tr #(λyσ.tyσ) ∼tr #t = v.
2. La2(Ap2(v)) ∼tr v for all v ∈ Ŏ∀.
The proof is similar and follows from the definition of La2 applied to
h := Ap2(v).

8.4 Pseudo retraction pairs.

The following notion of pseudo retraction pair is very natural in our context.

Definition 35 Given ∅ 6= D ⊆ Ŏ closed under ∼ (which is either ∼tp or ∼tr),
and given an object A of Univ, a pseudo retraction pair (ϕ, ψ) between D and
A is a pair of morphisms (ϕ, ψ) : O fl A such that, for all x ∈ D, we have
ψ(ϕ(x)) ∼ x. Finally we say that (ϕ, ψ) is a pseudo retraction pair if it is a
pseudo retraction pair between some D,A.

We have already met such pseudo retraction pairs, since the remarks at the end
of the previous subsection can be rephrased as follows:
1. (Ap2, La2) is a pseudo retraction pair between Ŏ∀ and O → O, and
2. for all type σ, (Ap1, La1(#σ)) is a pseudo retraction pair between ∪τ Ŏσ→τ

and O → O.
But the key examples are yet to come. The first one is built in the next section.

9 Linking Ŏtp and Types: the pseudo retraction

pair ([−], type).

In this section we will prove the existence of a pseudo retraction pair ([−], type)
between Ŏtp and Types, which is moreover such that type computes the (integer
code of) a type out of its canonical interpretation in M. This pair will be crucial
for proving that M is βη-complete; in particular, it will be used in the definition
of the family (f, g).

The morphism type will in fact be built below as an element ∀X.O 28, using
the general recursion principle developed in Section 6, while the definition of
[−] will use a more traditional recursion principle based on Condition I.4.

28More accurately, the pseudo retraction pair will be (Appl(type), [−]). Since we will be
interested only in the applicative behaviour of type there is no problem in confusing both.

30



Lemma 36 There is an element type of ∀X.O such that:
1. type(Ci) = var(i) = #αi

2. type(Y ⇒ Z) = arrow(type(Y ), type(Z)) for Z 6= E.
3. type(Q(K)) = quant(i ∈ O 7→ type(K(Ci))) for K 6= T .

Proof. The existence of type follows immediately from Lemma 26 applied
to: a := λZ.var(index(Z)), b := λY.λZ.arrow, c := λG.λg∀Z.Oquant(i ∈ O 7→
g(C(i)).

Definition 37 Let ρ be any semantic environment on types, and let π be a
syntactical environment on types (that is : π substitutes types to type variables,
following rules recalled in the Section E). We will say that π is compatible with
ρ if:

1. ρ is strict
2. #(π(αi)) ∼tp type(ρ(αi)).

If π is compatible with ρ then π(αi) is determined by ρ(αi), up to α-equivalence.
In the sequel we keep the same notation for the environments and their exten-
sions to all types. The following example is the key one.

Example 38 Let ρC be the strict interpretation of types such that ρC(αi) := Ci.
Then it is immediate from the definition of type that id (the identity on types)
is compatible with ρC .

Remark 39 If π is compatible with ρ then, for all i, π[α : αi] is compatible with
ρ[α : Ci] ; this is immediate since the environments are unchanged on αj 6= α,
and since ρ[α : αi](α) = Ci and π[α : αi](α) = αi (and type(Ci) = #αi).

Lemma 40 If π is compatible with ρ then, for all σ, ρ(σ) is nontrivial and
#(π(σ)) ∼tp type(ρ(σ)).

Proof. The first assertion is given by Lemma 21, since ρ is strict. For the
second one see Appendix F.

Lemma 41 There is a morphism [−] : O → Types such that, for all x ∈ Ŏtp

we have type([x]) ∼tp x.

This statement is a corollary of the more general lemma:

Lemma 42 There is a morphism [−]− : O, (O → Types) → Types such that,
for all r : O → Types and for all types σ, we have: [#σ]r = ρr(σ), where ρr is
the environment defined by ρr(αi) := r(i)

Proof. (of Lemma 41 from Lemma 42).
We set [−] := [−]C , where C is the morphism introduced by Condition II.1. By
Lemma 42, if we restrict x to Ŏtp, we have [x] = ρC(#−1(x)). Now, we have
type(ρC(#−1(x))) ∼tp x, by Lemma 40 applied to π = id and ρ = ρC ; hence
type([x]) ∼tp x.

31



Proof. (of Lemma 42).
The definition of [−]− is by recursion and by cases (Cond. I.4), using the
left invertibility of 〈−,−〉 (Remark 14); more precisely, from I.4, one uses the
existence of IFTypes and YO,(O→Types)→Types; see Appendix F for the details.

In the sequel the pair (type, [−]) is taken as any fixed pair of morphisms satis-
fying the conditions stated in Lemma 36 and Lemma 41.

10 Building a uniform (fX , gX)- family.

We will build the family (fX , gX) : O fl X in three steps.
In a first step we present the most natural way, in our setting, to obtain:

1. pairs (fX⇒Y , gX⇒Y ) out of two pairs (fX , gX) and (fY , gY )
2. pairs (fQ(K), gQ(K)) out of all the (fK(X), gK(X))
just requiring that they have the right domains and ranges.
The aim is to use this information as the starting point of a definition by recur-
sion of the family (f, g). However such a definition is only possible for polymor-
phic f, g ’s and ∀X.(O → X) makes no sense. Thus, we will rather use recursion
to build a pair (f ′, g′), such that f ′ ∈ ∀X.(O ⇒ X), and g′ ∈ ∀X.(X ⇒ O)
and such that the pairs (fX ,gX) defined by fX := aplO,X(f ′(X)) and gX :=
aplX,O(g′(X)) satisfy the constraints above. The behavior of f ′, g′ on Ci will
be fixed according to Cond. II.1.

In a second step we will translate these constraints on (f, g) into recursion
conditions on (f ′, g′).

In the third step. We will check that Lemma 26 really applies, in other
words: that the expressions prescribing the behavior of f ′, g′ on the range of ⇒
and of Q have the shape of adequate polymorphic maps b, c.

Of course, for general X, we will have little information on (fX , gX), and in
models based on domains they will often return the value ⊥. We will however
be able to show later on that this pair is a pseudo retraction pair whenever X
is the interpretation of some F -type in a suitable environment (Lemma 54).

10.1 Intuitive definition of (f, g) at induction steps.

In this preliminary step we present the most natural way to get:
1. pairs (fX⇒Y , gX⇒Y ) : O fl (X ⇒ Y ) out of two pairs (fX , gX) : O fl X
and (fY , gY ) : O fl Y
2. pairs (fQ(K), gQ(K)) : O fl Q(K) out of all the (fK(X), gK(X)) : O fl K(X),
for K ∈ Types→ Types

For ⇒ we first note that, from (fX , gX) : O fl X and (fY , gY ) : O fl Y we can
define a pair (φX,Y , ψX,Y ) : (O → O) fl (X → Y ), by φX,Y (h) := fY ◦ h ◦ gX

and ψX,Y (h′) := gY ◦ h′ ◦ fX .

32



This makes it possible to lift any (fX , gX) : O fl X and (fY , gY ) : O fl Y to a
pair (fX⇒Y , gX⇒Y ) : O fl (X ⇒ Y ) as follows : we compose (componentwise)
the pair (Ap1, La1(type(X)) : O fl (O → O) with the pair (φX,Y , ψX,Y ) : (O →
O) fl (X → Y ), and then with the retraction pair (lbdX,Y , aplX,Y ) :

(fX⇒Y , gX⇒Y ) := (lbdX,Y , aplX,Y ) ◦ (φX,Y , ψX,Y ) ◦ (Ap1, La1(type(X)))

Hence, (fX⇒Y , gX⇒Y ) is defined from (fX , gX) and (fY , gY ) by:

fX⇒Y (x) = lbdX,Y (fY ◦Ap1(x) ◦ gX) for all x ∈ O (1)

gX⇒Y (y) = La1(type(X), gY ◦ aplX,Y (y) ◦ fX) for all y ∈ X ⇒ Y (2)

For Q (or ∀) we need the morphisms type and [−] (defined in Section 9).

fQ(K)(x) = Lambda(X ∈ Types 7→ fK(X)(Ap2(x, type(X))) for x ∈ O (3)

gQ(K)(y) = La2( r ∈ O 7→ gK([r])(Appl(y)([r])) ) for y ∈ Q(K) (4)

We can note that the equations (1) and (2) are mutually recursive, while (3)
and (4) do not mix up f and g.

10.2 The recursive constraints on (f ′, g′).

For f ′ : ∀X.(O ⇒ X) and g′ : ∀X.(X ⇒ O) to be such that fX := aplO,X(f ′X)
and gX := aplX,O(g′X) fulfill the equations above it is enough (see below) that
f ′ and g′ should satisfy the following conditions, which are written using the
abbreviations introduced at the end of Section 4 (otherwise Lambda,Appl, and
various instances of lbd, apl would appear).

f ′
X⇒Y := λxO.λzX . f ′

Y (Ap1(x) (g′X(z)) ) (5)

g′X⇒Y := λyX⇒Y . La1( type(X), r ∈ O 7→ g′Y (y(f ′
X(r))) ) (6)

f ′
Q(K) := λxO.λX. f ′

K(X)(Ap2(x, type(X))) (7)

g′Q(K) := λyQ(K). La2( r ∈ O 7→ g′K([r])(y([r])) ) (8)

The values of f ′, g′ on the C(i)’s are given by Cond. II.1: f ′(Ci) = f̆(Ci) and
g′(Ci) := ğ(Ci).

Remark 43 For all x ∈ O we have: f ′X(x) = fX(x) since both are equal, by
definition, to (aplO,X(f ′X))(x). Similarly: g′X(u) = gX(u) for all u ∈ X.

It is straightforward to check that, conversely, the constraints on f ′, g′ above
are enough to imply the correct behavior of the morphisms fX , gX . Indeed it is
only a matter of replacing the “application and abstraction abbreviations” used
in the expressions of f ′, g′ above by their real values.

For example, let us check that (5) implies (1) (the other cases are similar).
For all x ∈ O we have:
fX⇒Y (x) = f ′X⇒Y (x) (Remark above)
= λzX . f ′

Y (Ap1(x) (g′X(z)) ) (by (5))
= λzX . f ′

Y (Ap1(x) (gX(z)) ) (Remark above)
= lbdX,Y (z ∈ X 7→ f ′

Y (Ap1(x) (gX(z)) ) (by definition of λzX .t for t ∈ Y )
= lbdX,Y (fY ◦Ap1(x) ◦ gX), as required.

33



10.3 The recursive definition of (f ′, g′).

The existence of f ′ : ∀X.(O ⇒ X) and g′ : ∀X.(X ⇒ O) satisfying the condi-
tions above will follow from the recursion Lemma 26 applied to F (X) := (O ⇒
X) × (X ⇒ O). Here U × V := ∀Z.(U, V ⇒ Z) ⇒ Z is the interpretation in
the model of the product defined in System F. The reason why we are forced to
work with pairs (at the formal level) is of course that some of the conditions on
f ′, g′ are mutually recursive.

We have to show that there exist three polymorphic maps a, b, c satisfying
the hypothesis of the recursion lemma (Lemma 26). We fix map a by Cond II.1,
and have to extract map b from (5),(6) and c from (7),(8).

To convince oneself of the existence of b it is enough to notice that the equations
which compute f ′(X ⇒ Y ) and g′(X ⇒ Y ) in terms of X,Y, f ′(X), f ′(Y ),
g′(X), g′(Y ) are correct at the level of (semantic) types, and to check that they
combine these data using only types and morphisms available in the model.29

In particular, O (at the type level), and type, Ap1, La1 (at the term level), if we
only mention those parameters whose existence follows from the completeness
conditions. This is similar for c, except that we use the parameters O,AP,
type, [−], Ap2, La2.

Extracting b, c is, theoretically, just a straightforward rewriting exercise. In
practice it is rather awful for the following reasons: first, because we are obliged
to deal only with pairs, without even being able to rely on some symmetry
between f and g (since there is none, if we except their domains and codomains);
and, second, because of the presence of explicit typing. Since, we will only use
the recursive equations in the sequel, we can postpone the explicit extraction of
b, c to Appendix D, where it is easy to check that they have the required form.

From now on, (fX , gX) always refers to the family defined in this section. For
the sake of readability, we will not mention the pairs (lbd, apl) and (Lambda,Appl)
anymore, and will use “ ◦” to denote all possible compositions in the model. In
particular, there will be no visual distinction between the pairs (f, g) and (f′, g′)
and we will simply write :

fX⇒Y (x) = fY ◦Ap1(x) ◦ gX (for x ∈ O),
gX⇒Y (y) = La1(type(X), gY ◦ y ◦ fX) (for y ∈ X ⇒ Y ),
fQ(K)(x) = λX. fK(X)(Ap2(x, type(X))) (for x ∈ O),
gQ(K)(y) = La2(r ∈ O 7→ gK([r])(y([r]))) (for y ∈ Q(K)).

11 The heart of the completeness proof.

11.1 The main result.

The βη completeness of M is an immediate consequence of the following:
29Note that this is true only because M is polymax.

34



Proposition 44 There is an environment ρ on type and term variables, such
that, for all type σ, and for all F -terms t : σ we have gρ(σ)(ρ(t)) ∼tr #t.

Indeed, let t, u be any closed terms of type σ; If t, u are equated in the model,
then, in particular, ρ(t) = ρ(u) for the environment ρ mentioned above, and
#t ∼tr #u. Thus t =βη u, which was our claim.

Since we cannot prove the Proposition directly by induction over σ, and since
furthermore reasoning directly with the (fX , gX) does not seem possible, we will
rather reason about kinds of logical relations which admit skeletons which are
pseudo retraction pairs.

The rest of the section is devoted to the proof of the Proposition.

11.2 (ϕ, ψ)-relations.

We are interested in relations which have, in some sense, a skeleton which is a
pair of adequate morphisms.

Definition 45 Given any pair (ϕ, ψ) : O fl X of morphisms, and given D ⊆ Ŏ
which is closed under ∼tr and nonempty, we call (ϕ, ψ)-relation between D and
X, any R ⊆ D ×X such that :

1. x ∈ D implies R(x, ϕ(x)).
2. R(x, y) implies x ∼tr ψ(y).
3. x ∼tr x

′ and R(x, y) implies R(x′, y).
D will be called the domain of the relation, and X its codomain.

Remark 46 (i) If R is a (ϕ, ψ)-relation between D and X, then (ϕ, ψ) is a
pseudo-retraction pair between D and X 30.

(ii) Conversely, given a pseudo retraction pair (ϕ, ψ) between D and X there
is a minimum (ϕ, ψ)-relation R between D and X, which is defined by : R(x, y)
iff x ∈ D and ∃x′(x′ ∼tr x and y = ϕ(x′)).

(iii) D is not uniquely determined from R and (ϕ, ψ) : if D′ ⊆ D is closed
under ∼tr, then (ϕ, ψ) is still a pseudo retraction pair between D′ and X and
R is a (ϕ, ψ)-relation between D′ and X.

Remark 47 Let us here motivate the use of general (ϕ, ψ)-relations instead
of the minimum ones (which would amount to work directly with the pseudo-
retraction pairs (ϕ, ψ)). We observe that, given an (ϕ, ψ)-relation R, the set
R(x) := {y /R(x, y)}, which only depends of the ∼tr-equivalence class of x, lies
between ϕ({x′ / x′ ∼tr x}) and ψ−1(x′ / x′ ∼tr x). This gives us crucial flexi-
bility when handling the (ϕ, ψ)-relations, while working only with the minimum
ones would tie us to the lower bound and would prevent desired closure properties
of the set of relations.

30pseudo retraction pairs were defined in Section 8.4.

35



11.3 Candidates.

In this section all interpretations are relative to types, in particular π and ρ
always denote a syntactic and a semantic environment, in the sense we already
met.

Definition 48 A sharp candidate is a pair (X,T ) such that X ∈ Types, X is
non trivial, type(X) ∈ Ŏtp, and T is an (fX , gX)-relation between Ŏ#−1(type(X))

and X.

Definition 49 A sharp relational environment Υ on types is a map from type
variables to candidates.

Let us call pre-relational environment on types a map R from type variables
to binary relations. Then a sharp relational environment can be defined as a pair
(ρ,R), where ρ is an environment on types and R is a pre-relational environment
such that, for all i, R(αi) is an (fρ(αi), gρ(αi))-relation on Ŏπ(αi) × ρ(αi), where
π is the unique environment on types compatible with ρ.
Note that uniqueness of π is here only up to α-equivalence, as in Definition 37,
and recall that Ŏσ is, for all σ, independent of the α-equivalence class of σ.

In particular each sharp relational environment Υ induces a pair (ρ, π).

Definition 50 The environments Υ, ρ and π are compatible if ρ and π are
induced by Υ in the sense above, and are furthermore compatible in the sense of
Definition 37.

Example 51 Let ΥC be the sharp relational environment defined by Υ(αi) :=
(Ci, Ri) where Ri is the minimum (fCi

, gCi
)-relation between Ŏαi

and Ci. Then
ΥC , ρC and id are clearly compatible, because of Condition II.1.

We now present the formulas which will allow us to interpret all types by sharp
candidates. Recall that we already know how to extend the ρ-components to
all types: ρ(σ → τ ) := ρ(σ) ⇒ ρ(τ ) and ρ(∀α.σ) := Q(X 7→ ρ[α : X ](σ))
(Appendix A). We will use the following remark.

Remark 52 If Υ is compatible with (ρ, π), then for any candidate (X,T ), we
have that Υ[α : (X,T )] is a sharp relational environment, and that Υ[α : (X,T )]
is compatible with ρ[α : X ] and π[α : #−1(type(X)].

Definition 53 We define Υ(τ ) := (ρ(τ ),Rτ
Υ), where ρ is the environment in-

duced by Υ and Rτ
Υ is a binary relation on O× ρ(τ ), which only depends on the

value of Υ on the free variables of τ . The definition is by induction on τ , and
at each step for all environments Υ. We let:

R1. Rαi

Υ is the second component of Υ(αi).
R2. Rσ→τ

Υ (x, y) iff y ∈ ρ(σ → τ ) and ∀v, w (Rσ
Υ(v, w) ⇒ Rτ

Υ(Ap1(x, v), y(w)) ).
R3. R∀ατ

Υ (x, y) iff y ∈ ρ(∀α.τ ) and for all candidates (X,T ), we have :
Rτ

Υ[α:(X,T )](Ap2(x, type(X)), y(X)).

36



Note that the relations do not discriminate between objects which have the same
applicative behavior, and hence between the interpretations of η-convertible
terms. This is the point which prevents us from dealing with β-completeness as
well.

Lemma 54 For all τ , and for all Υ, ρ, π which are compatible, Rτ
Υ is an (fρ(τ), gρ(τ))-

relation between Ŏπ(τ) and ρ(τ ), hence (ρ(τ ),Rτ
Υ) is a sharp candidate.

In particular (fρ(τ), gρ(τ)) is a pseudo retraction pair between Ŏtp and ρ(τ ).

Proof. The proof, which is detailed in Appendix F, goes by induction on τ .
The induction steps use that Ap1, Ap2, La1 and La2 are compatible with ∼,
and more generally uses all the machinery developed in Section 8.3.

11.4 Linking π(t) and ρ(t).

¿From now on:
ρ denotes any interpretation of F -terms and F -types in M, the environment

from which it is issued, and its restriction to the world of types. It should be
clear from the context which one we are really using. By the definition of such
interpretations we necessarily have ρ(t) ∈ ρ(σ) if t : σ (it is convenient here to
use ρ instead of |−|ρ).

π denotes a syntactical interpretation of F -terms (and types), as defined in
Appendix E, and its restriction to types. We necessarily have π(t) : π(σ) if t : σ.

Υ is a relational interpretation on types, as defined in Section 11.3.

Definition 55 We will say that Υ links π to ρ, or that π, ρ and Υ are strongly
compatible, if :

1. Υ, π and ρ are compatible (in the sense of Definition 37)
2. Rσ

Υ( #π(xσ
i ), ρ(xσ

i ) ) for all i, σ.

We have already noticed that the first hypothesis determines the values of
ρ and π on types, from that of Υ. If, moreover, Υ links π to ρ, then π(xσ

i ) is
determined, up to αβη-equivalence, by ρ(xσ

i ) and the restrictions of Υ to the
type variables which are free in σ. The following result is a key one.

Lemma 56 There exist Υ, ρ such that Υ links id to ρ, where id is the identity
on types and terms.

Proof. Let Υ := ΥC and let ρ be the extension of the canonical type envi-
ronment ρC by ρ(xσ

i ) = fρ(σ)(#x
σ
i ). It is immediate that Υ links id and ρ (we

already know that Υ,ρ and id are compatible at the level of types (Example
51) ).
We have already seen that the compatibility conditions between Υ,ρ and π
propagate to all types (Lemma 40 and 54). The next proposition states that
they propagate to all terms.

Proposition 57 If Υ links π to ρ, then for all τ , we have :
Rτ

Υ( #π(t), ρ(t) ) for all F -terms t : τ .

37



Proof. By induction on the length of t, and at each step for all strongly
compatible Υ, ρ, π. The proof is detailed in Appendix F.

Corollary 58 For all types τ , and all terms t : τ we have gρC(τ)(ρC(t)) ∼tr #t.

Proof. From Proposition 57 and the fact that ΥC links ρC to id, we have
Rτ

ΥC
( #t, ρC(t) ) for all types τ and all terms t : τ . From Lemma 54 we know

that Rτ
ΥC

is an (fρC(τ), gρC(τ))-relation between Ŏτ and ρC(τ ). Thus we have
gρC(τ)(ρC(t)) ∼tr #t, as required.

Proposition 44 follows immediately, which ends the completeness proof.

A Interpretations of types and terms in poly-

max models.

Once our models have been presented, the interpretation of types and terms be-
low is very simple. Furthermore the fact that the interpretation is correct follows
from a lemma whose statement is simple and whose proof is both straightfor-
ward and simple (see [7, Section 2]). However, the truth of this last sentence
relies strongly on the fact that we admit as many polymorphic functions as
possible. Otherwise the justification lemma would not only be more difficult
to state, but its proof would also raise genuine problems (which, for example,
forbid us to develop a stable analogue of the class of models built in [7]).31

In the following, V artypes and V arterms denote respectively the set of type
and term variables, and M is a model in the sense of Section 4.

Interpretation of types.

Definition 59 A type-environment is a function ρ from V artypes to Types.

Given a type environment ρ and X ∈ Types, we denote by ρ[α : X ] the envi-
ronment ρ′ defined by : ρ′(α) := X, and ρ′ coincides with ρ everywhere else.
A type-environment can be extended to an interpretation of all F -types by
elements of Types by induction on the complexity of types, and defining at each
step σ, all semantic types |σ|ρ for all type environments ρ.

• |α|ρ := ρ(α)

• |σ → τ |ρ := |σ|ρ ⇒ |τ |ρ

• |∀α.σ|ρ := Q(X 7→ |σ|ρ[α:X]).

For the well-definedness of |−|ρ we refer to [7].
31A similar problem already arises in Girard’s (stable) interpretation of F in [18]. In this

case the interpretation finally works because of very strong properties of Girard’s model, but
a conceptual and nontrivial argument has to be developed for dealing with the case of an
application of a term to a term (contrary to the assertion in [18, Section 3.10]); this seems to
be well known now.

38



Interpretation of terms.

Definition 60 An environment (for types and terms) is a function ρ from
V artypes∪V arterms to Types∪Terms such that the restriction of ρ for types
is a type environment, and, for all variables xσ we have ρ(xσ) ∈ |σ|ρ (hence
ρ(xσ) ∈ Terms).

Given an environment ρ, a term variable xσ and a semantic term v ∈ |σ|ρ , we
denote by ρ[xσ : v] the environment ρ′ which coincides with ρ everywhere but
in xσ, where ρ′(xσ) := v. When σ is not considered up to α-equivalence, we
have to require that the value of ρ(xσ) is independent of the class of σ, and to
change the definition of ρ[xσ : v] accordingly.

It is not possible to define an environment ρ[α : X ], essentially because there
is no canonical choice then for ρ[α : X ](xσ) if α is free in σ. We are however
able to give a local meaning to the expression |t|ρ[α:X].

The interpretation of F -terms under all possible environments is by induction
on the complexity of the term t :

• |xσ |ρ := ρ(xσ)

• |tσ→τuσ|ρ := apl|σ|ρ,|τ |ρ
(|tσ→τ |ρ) (|uσ|ρ )

• |λxσ.tτ |ρ := lbd|σ|ρ,|τ |ρ
( v ∈ |σ|ρ 7→ |tτ |ρ[xσ:v] ).

•
∣

∣t∀α.στ
∣

∣

ρ
:= Appl(

∣

∣t∀α.σ
∣

∣

ρ
) (|τ |ρ)

• |λα.tσ|ρ := Lambda (X ∈ Types 7→ |tσ|ρ[α:X] ).

Using the abbreviations introduced at the end of Section 4, this can be written
simply as:

• |xσ |ρ := ρ(xσ)

• |tσ→τuσ|ρ := |tσ→τ |ρ (|uσ|ρ )

• |λxσ.tτ |ρ := λv|σ|ρ . |tτ |ρ[xσ:v]

•
∣

∣t∀α.στ
∣

∣

ρ
:=

∣

∣t∀α.σ
∣

∣

ρ
(|τ |ρ)

• |λα.tσ|ρ := λX. |tσ|ρ[α:X] .

For the correctness of this definition we refer to [7].

39



B Connections with other settings.

B.1 Polymax models induce Bruce-Meyer-Mitchell mod-
els.

There is a rough, uniform, and straightforward way to view polymax models as
particular models in the sense of Bruce-Meyer-Mitchell [11], which we will make
explicit below. But it is worth noting beforehand that for some subclasses of
polymax models we can provide much sharper translations for the kinds and for
their related “maps” Φκ1,κ2

(in the notation of [11]). First example: as soon as
Q is left-invertible (which is true for all our webbed models) we can get models
of Fω just by giving a more accurate interpretations of the Φκ1,κ2

’s. Second
example: for the simplest “square webbed models of F”, and in particular for
E2, we can provide a still sharper interpretation in which kinds are interpreted
by elements of Types, and which gives a model of λ∗ [8]. In the following, BMM
stands for the Bruce-Meyer-Mitchell framework.

The following table shows how the polymax models can be viewed as second
order frames, in the sense of [11]. The fact that they are furthermore environ-
ment models follow from the (rather straightforward) proof that the interpreta-
tion of F in polymax models is correct (now in [7]).

The left-hand side of the table concerns the BMM syntax and notion of
models, and we keep the BMM notation, while the right-hand side concerns
polymax models, and uses our notations. In particular, on the right-hand side,
the arrow → denotes the exponent operator of the ccc Univ.

In the table the expression “is interpreted by” relates a syntactic construct
and its semantic interpretation in a polymax model, while “is translated by”
only means a change of notation. The other expressions are, we hope, non
ambiguous.

Note that the object Terms has no analogue in the BMM framework, where
it is not required that all terms be interpreted in the same “domain”.

40



BMM Polymax

Cterm =def ∅
Ccst =def {⇒, ∀}

T is interpreted by Types
⇒ (arrow over kinds) is interpreted by → (the exponent of Univ)
→ (arrow over types) is interpreted by ⇒ (the morphism on Types2)
Kindκ1 is chosen as the interpretation |κ1| of κ1

KindT is hence equal to Types
Kindκ1⇒κ2 is hence equal to |κ1| → |κ2|
[Kindκ1 → Kindκ2 ] is chosen as Hom(|κ1| , |κ2|)
Φκ1,κ2

will associate Hom(|κ1| , |κ2|) to |κ1| → |κ2|
(and hence will take its carrier set)

a ∈ KindT is translated by X ∈ Types
Doma is translated by carrier set of (X)
Doma→b is hence translated by carrier set of (X ⇒ Y )
Φa,b is chosen as aplX,Y

f ∈ Kind[T⇒T ] is translated by F ∈ Hom(Types, Types)
∀f is chosen as Q(F )
∏

a∈KindT Domf(a) has its role played by HomF (Types, T erms)
Φf is then chosen as ApplF

B.2 The PER-model is not polymax.

As mentioned in Example 7, the PER-models, when presented in the right
setting, satisfy the first 5 conditions of the definition of polymax model, but do
not satisfy Conditions 6+7. We hope that this counter-example will contribute
to a clearer understanding of what polymax models really are. We develop
in detail the case of the standard PER-model over ω, basing our presentation
on [21], but the argument works obviously for all realizability models. The
standard PER-model over ω uses Kleene’s notion of application on ω, which
will be denoted below by a dot.

Univ is here the category of ω-sets: the objects of Univ are the pairs A ≡ (S,
‚S) where S is a set and ‚S⊆ ω × S is a surjective relation (called the
realizability relation).

It is easy to check that, in this setting, A ≡ (S, ‚S) is a substructure of
A′ ≡ (S′, ‚S′) if and only if S ⊆ S ′ and ‚S= (ω × S)∩ ‚S′ . Hence any
subset S of S′ determines a unique substructure of (S ′, ‚S′).

For A ≡ (S, ‚S) and A′ ≡ (S′, ‚S′) one defines: Hom(A,A′) as the set of
all realizable functions from S to S ′, where n ∈ ω realizes f if for all
x ∈ S and m ∈ ω we have m ‚S x implies n · m ‚S′ f(x). We denote
the latter realizability relation by ‚A→A′ and define: A → A′ as being
(Hom(A,A′),‚A→A′).

41



We let types 32 be the (mere) set whose elements are the partial equivalence
relations, or pers , on ω, and we denote these pers by R,R ′. We let Eq(R)
be the set of all the (nonempty) subsets of ω which are equivalence classes
for R, and, if nRn, we let nR ∈ Eq(R) be the R-equivalence class of n ∈ ω.

Terms is defined as follows: the carrier set of Terms is the set:

{ (x, R) / R ∈ types and x ∈ Eq(R) },

and we take n ‚Terms (x, R) iff n ∈ x.

For R ∈ types we let XR be the ω-set which is the substructure of Terms
whose carrier set is { (x, R) / x ∈ Eq(R) }. In particular X∅ = ∅ and
R 6= R′ implies XR ∩XR′ = ∅.

T ypes is defined as follows: the elements of Types are the XR, R ∈ types, and
we have n ‚Types X for all n ∈ ω and X ∈ Types.

We let T denote the bijection R 7→ XR between types and Types.

Since the realizability relation is trivial on Types, we have that, for any object
A of Univ, the set Hom(A, Types) is the full function set between the
carrier sets of A and Types. (*)

In particular Hom(Types, Types) is the set of all endo-functions of Types.

We will denote F 7→ FT the bijection induced by T between the endofunctions
of Types and those of types; more precisely: F T =def T

−1 ◦ F ◦ T.

Definition of ⇒ and Q. We first define two operations ⇒ and q relative to the
set types: for all endo-function G on types we define q(G) =def ∩G(R),
while ⇒ is the usual canonical way to associate to the pers R,R ′ a per R′′

having the property that XR” is canonically isomorphic to XR → XR′ .

We then define XR ⇒ XR′ as XR⇒R′ .Thus, for all R,R′ we have an
isomorphism pair between XR → XR′ and XR ⇒ XR′ .

Then, for all F ∈ Hom(Types, Types), we define Q(F ) as Xq(F T ).

We notice that ⇒ and Q are morphisms, because of the remark (*) above.

With these definitions we clearly have that the PER-model satisfies the first
5 conditions of the definition of a polymax model (except for the non emptyness
of the objects of Univ).

Note that in the PER-model Q is not injective, and that Q(F ) and Q(F ′)
are here equal or disjoint substructures of Terms. This contrasts the situation of
the universal retraction models and the webbed models, for which Q is injective
and Q(F ) and Q(F ′) need not be disjoint if F 6= F ′.

Furthermore it is easy to check that HomF (Types, T erms) (or HomF for
short) consists only of “constant” functions. More precisely f ∈ HomF iff it
has the right domain and range and there exists n ∈ ω such that for all m ∈ ω

32The notation “types” fits the general notations of [7].

42



and XR ∈ Types we have f(XR) = ((n ·m)F T (R), FT (R)); thus f is “constant”
in the sense that n ·m is independent of R.

Let us recall that Conditions 6+7 implies that Q(F ) ∩ Q(F ′) = ∅ implies
HomF∩HomF ′ = ∅, and that Q(F ) = Q(F ′) impliesHomF = HomF ′ (Remark
6).

To refute this last property in the PER-model we fix a proper non empty
subset W of types and we let R1, R2 ∈ types be two distinct pers such that R1∩
R2 6= ∅. We then let F be defined by F T (R) = R1 if R ∈ W and FT (R) = R2

otherwise, and we let F ′ be the function on Types obtained when exchanging
the roles of R1 and R2. Then HomF and HomF ′ are two nonempty disjoint
sets, since R1 6= R2, although Q(F ) = Q(F ′) = R1 ∩ R2.

Remark 61 The PER-model could be presented more simply, taking XR =def

Eq(R), and Terms =def ∪
R∈types

XR, but the presentation above is also pertinent

for the discussion in Section B.3.2 below, while the simpler one is not.

B.3 Polymax models vs categorical frameworks.

B.3.1 Internal models of F [3].

Internal models of F are parametrized by a cartesian closed category, say Univ,
which is supposed to have all finite limits. Then the model consists essentially
of a tuple c ≡ (c0, c1,DOM,COD,COMP, ID), which is supposed to be an “in-
ternal Cartesian closed category”, plus the existence of a relevant right adjoint,
for ensuring a sound interpretation of syntactic types and terms. In particular
c0 and c1 are objects of Univ and the other constructs are morphisms. The role
played by c0 is exactly that of Types, while the object c1 is intended to consist
of all the internal morphisms between the elements of c0. Intuitively the role
played by the other constants is the following: DOM and CODOM associate
a domain and codomain in c0 to each element of c1, while COMP allows the
composition of elements of c1, and finally ID associates to each element X of
c0 an element of c1 which will play the role of the identity morphism on X.

Since in polymax models each X ⇒ Y is a substructure of Terms, one could
be tempted to make Terms play the role of c1. However, there is no way to
define DOM and CODOM on Terms, since an element of Terms can be in no
substructure of the form X ⇒ Y or in infinitely many.

Basing the notion of model on c1 rather than Terms can also be viewed as
natural, and is more economical, in some sense. However using it for studying
particular models or classes of models is costly, and not only from a conceptual
point of view: in practice the, a priori, very natural requirement on the existence
of DOM and CODOM may lead to unnecessary complicate encodings. For
example the description of universal retraction models as polymax models in [7,
Section 6.2] is much simpler and much more immediate than their description
as internal models in [3, p. 278].

43



B.3.2 Pitts’ topos models [25].

It was insistently suggested by one referee that the class of polymax models
“was only a recast of Pitts’ topos models of F”. In fact polymax models and
topos models are rather alien one to each other.

First, and using our notations, Pitts’ definition, asks for the existence of a
morphism τ ∈ Hom(Terms, Types) associating an element of Types to each
element of Terms (in a way which would be relevant for the (later) intended
interpretation of System F ). The definition of polymax doesn’t. Moreover, in all
the known nontrivial polymax models there is no such morphism. Actually, in all
these polymax models nearly all the elements of Terms, including the definable
ones, enjoy infinitely many semantic types, in contrast to Pitts’ models, and,
furthermore, even when a concrete polymax model happens to own a canonical
morphism from Terms to Types (which is, incidentally, the case for all the
webbed models of [7]), then this correspondence is completely irrelevant to the
interpretation of System F .

Conversely, the realizability models fit Pitts’ framework, using the ω-set
Terms that we introduced in the previous section of this appendix, but are not
polymax, as shown there.

B.3.3 Why not categorical polymax models?

As already mentioned, turning the definition of polymax models into a categori-
cal one could only be done at the expense of a significant increase of complexity.
From our point of view this could only prove useful when somebody will really
need to include some concrete and “intuitively polymax” model not fitting the
slightly more general definition that we gave in [7]. When trying to replace,
in this latter definition, the notion of substructure by a more categorical one,
the remark that, in all concrete polymax models, each iX : X ⊆ Terms is the
half of an embedding-projection pair might be relevant. One should also replace
HomF (Types, T erms) by an object of Univ, but further work would be needed
in order to have a coherent definition providing a class of sound models. It is
unclear to us whether the resulting definition would really be significantly less
complicated than the one in [3].

C Webbed models of System F.

The main purpose of this appendix is to help the reader to figure out what the
webbed models look like, and why the BB-model fulfills conditions I and II .
The reader is referred to [7] and [5] for more details and for real justifications.
We follow the notations of [7].

All the models of [7] are generated from “F -webs”, in a way similar to the way
models of untyped λ-calculus can be generated from webs (e.g. Scott informa-
tion systems). We define an F -web as a tuple

(Ω,mhom,mcoh,�hom,�coh, jhom, jhcoh)

44



where Ω is a nonempty set, mhom and mcoh are two binary, reflexive and symmet-
ric relations (called respectively homogeneity and coherence), �hom and �coh

are two preorders; finally jhom and jhcoh are injections from Ωhom
f × Ω (resp.

Ωhcoh
f × Ω) to Ω, where Ehom

f (resp. Ehcoh
f ) is, for any subset E of Ω, the set

of finite homogeneous (resp. finite homogeneous and coherent) subsets of Ω.
The relations and functions are subject to compatibility conditions, which are
described in [7].

Similarly as for untyped λ-calculus, the preorders are needed only mainly to
force extensionality. For the simplicity of the exposition we will suppose below
that they are trivial, and we will not mention them anymore.33

The compatibility conditions imply in particular that (Ω,mhom, jhom) generates
a reflexive Scott domain, called types which, is in 1-1 correspondence with a
“domain of domains” called Types. As a domain types is the set consisting of
the homogeneous subsets D of Ω, ordered by inclusion. The elements of Types
are the domains XD generated by the webs (D,mD

coh), where D ∈ types and
m

D
coh is the restriction of mcoh to D ×D. The order on Types is, by definition,

the order induced by that of types, hence both domains are isomorphic via the
correspondence D 7→ XD. There is also a domain Terms, which is generated by
the web (Ω, mhom ∩ mcoh). The role of the two injections jhom and jhcoh is to
generate all the retraction pairs which are needed in the definition of a polymax
model. All these retraction pairs encode and decode morphisms via their traces
(in contrast to universal retraction models). The definitions of ⇒, Q, Lambda
and lbdX,Y run as follows (they are defined relatively to types, and then can be
trivially transferred to Types).

For F ∈ types→ types, f ∈ types→ Terms, D,D ′ ∈ types, g : XD → XD′

we set:

Q(F ) :=
{

jhom(a, x) / (a, x) ∈ Ωhom
f × Ω and x ∈ F (a)

}

Lambda(f) :=
{

jhom(a, x) / (a, x) ∈ Ωhom
f × Ω and x ∈ f(a)

}

D ⇒ D′ :=
{

jhcoh(a, x) / (a, x) ∈ Dhcoh
f ×D′

}

lbdD,D′(g) :=
{

jhcoh(a, x) / (a, x) ∈ Dhcoh
f ×D′ and x ∈ g(a)

}

As already mentioned when discussing the completeness conditions, all the
webbed models satisfy conditions I.3 (existence of a uniform fixed point oper-
ator), I.5 (triviality conditions), II.3 (left-invertibility of Q) and II.5 (existence
of the “trace” operator). Furthermore many of them satisfy II.2, which is the
(quasi) left-invertibility of ⇒ . It is very easy to build webs which force the
existence of an O ∈ Types satisfying I.1,2,4, and in fact of infinitely many
“independent” copies Ci of O satisfying II.1 (see below).

33The coherence and homogeneity relations can also be taken as trivial; such webs generate
very simple and non trivial models of F.

45



It was also mentioned that to force the existence of the case function it was
enough, knowing that all webbed models are polymax, to look for a webbed
model where Types could be seen as the coalesced sum B ⊕ C ⊕ D of three
independent factors B,C,D 34 containing respectively : the range of ⇒, the
range of Q, and finally all the Ci ’s. In the next paragraph we show how this is
achieved for the BB-model.

The F -web of (a non extensional version of) the BB-model is built by induc-
tion, starting from a “partial F -web” (A,mA

hom,m
A
coh, ∅, ∅), where: A = N ×N,

where N is the set of nonnegative integers; the elements of A are pairwise in-
coherent, and they are homogeneous if and only if they have the same second
component.

Then a definition by induction of (Ω,mhom,mcoh, jhom, jhcoh) is carried on
in such a way that, at the end, the ranges of jhom and jhcoh are disjoints, are
disjoints from A, and the compatibility conditions are satisfied. Thus we get an
F -web which generates a domain Types which can be decomposed as specified
above. In this (version of) the model O and the Ci are isomorphic to the domain
of flat integers, and are defined by Ci := XN×{i} and O = C0; in particular it
is very easy to check Conditions I.1 and II.1.

When describing universal retraction models it is also convenient to use
an auxiliary domain types. The elements of types are no longer webs but are
retractions, and the elements of Types are the ranges of these retractions (and
are domains). The view of universal retraction models as polymax models is
detailed in [7].

D The extraction of b, c.

For proving that the definition of (f ′, g′) by recursion is correct we have to
rewrite the recursive equations which define f ′, g′ implicitely, so as to exhibit
two polymorphic maps b, c satisfying the hypothesis of Lemma 26.

Step 1. Notations and abbreviations.
Recall U × V = ∀T.((U, V ⇒ T ) ⇒ T )
The interpretations of the pair construct and of the projections are:

p := λU.λV. λuUλvV . λT. λzU,V ⇒T . zuv : ∀U.∀V. (U, V ⇒ (U × V ))
π1 := λ.U.λV. λzU×V . zU λuU .λvV .u : ∀U.∀V.((U × V ) ⇒ U)
π2 := λU.λV. λzU×V . zV λuU .λvV .v : ∀U.∀V.((U × V ) ⇒ V )

To increase the readability we introduce the following (local) abbreviations
which will allow us to provisionally forget some type indications.
For all u ∈ U, v ∈ V, w ∈ U × V :

< u, v >:= pUV uv : U × V
π1(w) := π1UV w : U

34This means that Types is the disjoint union of three domains B, C,D, except for their
bottom element which are amalgamated.

46



π2(w) := π2UV w : V
Finally we recall that F := ∀X.((O ⇒ X) × (X ⇒ O)) and we set:

Φ := λX. < f ′
X , g

′
X >:= λX. p(O ⇒ X)(X ⇒ O) f ′(X) g′(X) : ∀X.F (X).

Thus, f ′
X = π1(Φ(X)) and g′X = π2(Φ(X))

Step 2. Extraction of b.
Now, it is clear that the pair of equations which defines f ′

X⇒Y and g′X⇒Y in
terms of f ′

X , f
′
Y , g

′
X and g′Y , in Section 10.2, is equivalent to:

Φ(X ⇒ Y ) =< λxO.λzX . π1(Φ(Y ))(Ap1(x) ((π2(Φ(X))(z))) ),
λyX⇒Y . La1( type(X), r ∈ O 7→ π2(Φ(Y ))(y(π1(Φ(X))(r))) ) >

That is to say:
Φ(X ⇒ Y ) = “b”(X)(Y )Φ(X)Φ(Y ) for:

“b” := λX.λY. λξF (X). λςF (Y ).
< λxO.λzX . π1(ς)(Ap1(x) (π2(ξ)(z)) ),

λyX⇒Y . La1( type(X), r ∈ O 7→ π2(ξ)(y(π1(ς)(r))) ) >
and “b” : ∀X.∀Y.(F (X), F (Y ) ⇒ F (X ⇒ Y )).
To obtain the real value of b there remains to replace:

πi(ξ) by: πi(O ⇒ X)(X ⇒ O)(ξ) ,
πi(ς) by: πi(O ⇒ Y )(Y ⇒ O)(ς) , and finally:
< u, v > by p (O ⇒ (X ⇒ Y )) ((X ⇒ Y ) ⇒ O) (u)(v).

Step 3. Extraction of c.
The equations defining f ′

Q(K) and g′
Q(K) in terms of X 7→ (fK(X), gK(X)) in

Section 10.2 can be rewritten as:
Φ(Q(K)) =< λxO.λX. π1(Φ(K(X)))(Ap2(x, type(X))) ,

λyQ(K). La2( r ∈ O 7→ π2(Φ(K([r])))(y([r])) ) >
That is to say: Φ(Q(K)) = “c”(Q(K))(λZ.Φ(K(Z))) for:

“c” := λG.λu∀Z.F (G(Z)).
< λxO.λX. π1(u(X))(Ap2(x, type(X))) ,

λyG. La2( r ∈ O 7→ π2(u([r]))(y([r])) ) >
and “c” : ∀G.[∀Z.F (G(Z))] ⇒ F (∀Z.G(Z))).
To obtain the real value of c there remains to replace:

π1(u(X)) by: π1(O ⇒ G(X)) ((G(X)) ⇒ O) (u(X)).
π2(u([r])) by: π1(O ⇒ G([r])) ((G([r])) ⇒ O) (u([r])) and finally:
< v,w > by p (O ⇒ ∀Z.G(Z)) ((∀Z.G(Z)) ⇒ O) (v)(w).

Remark 62 It is then easy to check that b is the interpretation in the model of
a closed polymorphic F -term with parameters in the model (including O, La1,
Ap1 and type), and that this is not true for c because of the presence of AP
(which is hidden behind all the applications of G to Z,X and [r]). And this is
already true at the level of types: the (semantic) type of c is not the interpretation
of an F -type, while this is true for b (with parameter O).

47



E Syntactic interpretations (or substitutions).

Syntactic interpretations associate types to types and F -terms to F -terms in
such a way that t : σ implies π(t) : π(σ). They are defined from their restrictions
to type and term variables (or environments) by the inductive rules given below;
the definition is only up to α-equivalence. These interpretations preserve (α-
and) αβη-equivalence.

We denote by π the global interpretation, its restriction to types, and the
environment from which both are issued. As usual π[α : σ] denotes the substi-
tution on types which behaves like π on all variables different from α, and gives
value σ to α. Similarly π[xσ

i : t] denotes, for t : σ, the substitution which behave
like π on type variables and on all term variables different from xσ

i , and gives
value t to xσ

i . If α is not free in the type of a free variable of t then π[α : σ](t)
can be given a meaning analogous to the one we made precise in the case of
semantic environments.

First we give the classical definition which considers types and terms only up
to α-equivalence. Then we will be more refined in order to make our life easier
in the proofs of Lemma 40, 54, and 57 in Appendix F.
The induction rules work on the length of types or terms and define π(σ) or
π(t) for all π at each step.

π(αi) is any fixed type, for all i ∈ N,
π(σ → τ ) := π(σ) → π(τ )
π(∀α.τ ) := ∀α′.π[α : α′](τ ) for any α′ which is fresh w.r.t. τ and π(τ ).
π(xσ

i ) is any fixed term of type π(σ)
π(tu) := π(t)π(u) and π(uσ) := π(u)π(σ)

π(λxσ
i .t) := λx

π(σ)
k .π[xσ

i : x
π(σ)
k ](t), for any variable x

π(σ)
k of type π(σ),

which is fresh w.r.t. t and π(t).
π(λα.t) := λα′.π[α : α′](t) for any variable α′ which is fresh w.r.t. t and

π(t). Recall that α is not free in the type of a free variable of t, hence π[α : α′](t)
makes sense.

We define now the notion of “being good w.r.t. a substitution π”, which concerns
the syntax of the bare abstraction F-types and F-terms (i.e. not up to α-
equivalence). The interesting point is that, for each π, the expression of π(t)
can be simplified if t is good for π. Furthermore each abstraction type or term
is α-equivalent to a type or term which is good for π.

Definition 63 1. ∀α.τ is good for π if α does not occur free in π(β) for all
β 6= α which are free in τ .

2. λxσ
i .t is good for π if x

π(σ)
i does not occur free in π(xτ

j ) for all xτ
j 6= xσ

i

which are free in t.
3. λα.t is good for π if α does not occur free in any π(β) for all β 6= α

which are free in t, nor in any π(xτ
j ) such that xτ

j is free in t.

48



Lemma 64 Suppose that ∀α.τ (resp. λxσ
i .t, resp. λα.t) is good for π. Then:

1. π(∀α.τ ) 'α ∀α.π[α : α](τ ).
Furthermore π[α : αi](τ ) 'α π[α : α](τ )[α : αi] for all i.

2. π(λxσ
i .t) 'α λx

π(σ)
i .π[xσ

i : x
π(σ)
i ](t)

Furthermore π[xσ
i : x

π(σ)
k ](t) 'α (π[xσ

i : x
π(σ)
i ](t))[x

π(σ)
i : x

π(σ)
k ] for all k.

3. π(λα.t) 'α λα.π[α : α](t)
Furthermore π[α : αi](t) 'α π[α : α](t)[α : αi] for all i.

Lemma 65 For all π, every bare type or term of the form ∀α.τ or λxσ
i .t or

λα.t is α-equivalent to a type or term which is good for π.

Proof. For instance, ∀α.τ 'α ∀α′.τ [α := α′] for every α′ not free in ∀α.τ .
If we choose furthermore an α′ which is not free in any π(β) such that β is free
in τ and distinct from α, we obtain that ∀α′.τ [α := α′] is good for π.

F Further proofs.

Proof of Lemma 40. We prove the second assertion by induction on σ (and
for all compatible π, ρ at each step). The case where σ is a variable follows
directly from the hypothesis.

• Case 1. Suppose σ := θ → τ . Then:

type(ρ(σ)) = type(ρ(θ → τ)) = type(ρ(θ) ⇒ ρ(τ ))

= arrow(type(ρ(θ)), type(ρ(τ ))) (definition of type and nontriviality of
ρ(τ )).

∼tp arrow(#(π(θ)),#(π(τ ))) (induction hypothesis plus commutativity
of arrow with ∼)

= #(π(θ) → π(τ )) (definition of arrow)

= #(π(θ → τ )) = #π(σ) (inductive definition of π).

• Case 2. Suppose σ := ∀α.τ .

By Lemma 65 in Appendix E we can assume that σ is good for π. Then:

type(ρ(σ)) = type(ρ(∀α.τ)) = type(Q(Z 7→ ρ[α : Z](τ )))

= quant( i ∈ O 7→ type(ρ[α : Ci](τ )) ) (definition of type and nontriviality
of ρ(σ) and of the argument of Q).

= quant(k) where k is the morphism defined by :

k(i) = type(ρ[α : Ci](τ )). Now,

k(i) ∼tp #(π[α : αi](τ )) (induction hypothesis plus Remark 39).

Since ∀α.τ is good for π, we have: #(π[α : αi](τ )) ∼tp #π[α : α](τ )[α : αi]
(Lemma 64). Using now the definition of quant and that of π(∀α.τ ) when
∀α.τ is good for π (Appendix E) we have :

quant(k) ∼tp #(∀α.π[α : α](τ )) = #(π(∀α.τ )) (definition of quant).

Thus type(ρ(∀α.τ)) ∼tp #(π(∀α.τ )) Q.E.D.

49



¨

Proof of Lemma 42. The definition of [−]− is by recursion and by cases
(Cond. I.4), using the left invertibility of 〈−,−〉 (Remark 14), and is quite
straightforward. In the following we let IF := IFTypes and we let φ(r;x) be
another notation for [x]r . We are looking for φ. To force the intended behavior
of φ when x is the code of an F -type, it is enough that φ satisfies the following
recursive equation:

φ(r;x) = IF (p1(x), 0, r(p2(x)),
IF (p1(x), 1, φ(r; p1(p2(x))) ⇒ φ(r; p2(p2(x))),
IF (p1(x), 2, Q(X 7→ φ(j 7→ IF (j, p2(p1(p2(x))), X, r(j)) ; p2(p2(x))),

φ(r;x)
))).

The existence of such a morphism φ follows now from the existence of
YO,(O→Types)→Types.
¨

Proof of Lemma 54. The proof goes by induction on τ and shows at each
step (as usual) that Rτ

Υ only depends of the value of Υ (and ρ, π) on the free

variables of τ and has domain Ŏπ(τ). The variable case follows immediately
from the compatibility of Υ, π, ρ. Also, the third condition of (f, g)-relations is
obviously preserved at each step of induction (because of the compatibility of
Ap1 and Ap2 with ∼), so we only have to prove the first two ones.

• Case 1. Suppose τ := σ → θ.

1. Suppose x ∈ Ŏπ(σ→θ); we want to show Rσ→θ
Υ (x, fρ(σ→θ)(x)).

Suppose we have Rσ
Υ(v, w) for some (v, w). Then, by the induction

hypothesis, v ∈ Ŏπ(σ) and v ∼tr v
′ := gρ(σ)(w). Also by the induc-

tion hypothesis, we have Rθ
Υ(Ap1(x, v′), fρ(θ)(Ap1(x, v′))). Since Ap1

commutes with ∼tr and because the third condition is true for Rθ
Υ,

still by the induction hypothesis, we haveRθ
Υ(Ap1(x, v), fρ(θ)(Ap1(x, v′))).

By the definition of v′ this can be rewritten as:

Rθ
Υ(Ap1(x, v), [fρ(θ) ◦Ap1(x) ◦ gρ(σ)](w) ), hence as:

Rθ
Υ(Ap1(x, v), fρ(σ)⇒ρ(θ)(x)(w)). The conclusion now follows from

ρ(σ → θ) = ρ(σ) ⇒ ρ(θ).

2. Suppose Rσ→θ
Υ (x, y); we want to prove :

x ∈ Ŏπ(σ→θ) and x ∼tr gρ(σ→θ)(y).

For all v ∈ Ŏπ(σ) we have :

Rσ
Υ(v, fρ(σ)(v)) (by induction hypothesis on σ), hence :

Rθ
Υ(Ap1(x, v), y(fρ(σ)(v))) (by definition of Rσ→θ

Υ ).

This forces Ap1(x, v) ∈ Ŏπ(θ). A first consequence is that x ∈

Ŏπ(σ→θ). It is indeed enough to take for v the code of a well-formed

50



term of type π(σ) (for example the code of a variable of type π(σ) )
and to note that, since Ap1(x, v) codes a well-typed term of type
π(θ), necessarily, by invertibility of the pairing function, x codes a
well-typed term of type π(σ → θ) = π(σ) → π(θ).

The second consequence is that:

gρ(θ)(y(fρ(σ)(v))) ∼tr Ap1(x, v) (by induction hypothesis on θ) =
Ap1(x)(v). Since this happens for all v, it follows (using Remark 33):

La1(#(π(σ)), gρ(θ) ◦ y ◦ fρ(σ)) ∼tr La1(#(π(σ)), Ap1(x)). Now,

gρ(σ→θ)(y) = gρ(σ)⇒ρ(θ)(y) := La1(type(ρ(σ)), gρ(θ) ◦ y ◦ fρ(σ)) ∼tr

La1(#(π(σ)), gρ(θ) ◦y ◦fρ(σ)) (by compatibility of ρ with π and com-
mutativity of La1 with ∼ (Remark 32)). On the other hand :

La1(#(π(σ)), Ap1(x)) ∼tr x (Remark 34). Thus gρ(σ→θ)(y) ∼tr x.
Q.E.D.

• Case 2. Suppose τ := ∀α.σ.

By Lemma 65 in Appendix E, we can assume that ∀α.σ is good for π.

1. Let x ∈ Ŏπ(∀α.σ). We want to show Rτ
Υ(x, fρ(∀α.σ)(x)),

i.e. Rτ
Υ(x, f∀Z.ρ[α:Z](σ)(x)).

So, we have to show Rσ
Υ[α:(X,T )](Ap2(x, type(X)) , f∀Z.ρ[α:Z](σ)(x)(X) )

for all candidates (X,T ). By definition of fY when Y = Q(F ) for
some F, this amounts to show that:

Rσ
Υ[α:(X,T )](Ap2(x, type(X)) , fρ[α:X](σ)(Ap2(x, type(X)))),

which follows from the induction hypothesis applied to σ, and to
Υ[α : (X,T )], ρ[α : X ], π[α : #−1(type(X))]

2. Suppose R∀α.σ
Υ (x, y).

We want to show that x ∈ Ŏπ(∀α.σ) and x ∼tr gρ(∀α.σ)(y), starting
from :

Rσ
Υ[α:T ](Ap2(x, type(X)), y(X)) for all candidates (X,T ). (*)

To prove the two parts of this assertion we will use two different
instances of (*) which both change a tiny part of Υ using ΥC .

For the first part we set (X,T ) := ΥC(α), hence X := ρC(α). Then
type(X) ∼tp #α and, since Ap2(x,#α) has to be the code of a well-
typed term of type π[α : α](σ) (by induction hypothesis and Remark
52), x can only be the code of a well-typed term of type ∀α.σ ′, with
σ′ = π[α : α](σ) (up to α-equivalence). Now, ∀α.σ′ = ∀α.π[α :
α](σ) = π(∀α.σ) = π(τ ) (Lemma 64) hence x is the code of a well-
typed term of type π(τ ), i.e. x ∈ Ŏπ(τ), as required.

We turn now to the second half of the assertion.

Now gρ(∀α.σ)(y) := g∀Z.ρ[α:Z](τ)(y) := La2(h) where

h := λr : O gρ[α:[r]](σ)(y([r]).

We have h(#αi) = gρ[α:Ci](σ)(y(Ci)).

51



Applying (*) to Υ[α : ΥC(αi)], hence to ρ[α : ρC(αi)] and π[α :
αi], and applying the induction hypothesis on σ, we get h(#αi) ∼tr

Ap2(x,#αi). Thus La2(h) ∼tr La2(Ap2(x)) ∼tr x (by Remark 34).
Q.E.D.

¨

Lemma 66 For all compatible Υ, ρ, π, for all α, σ, τ we have :

R
τ [α:σ]
Υ = Rτ

Υ[α:(X,T )] with (X,T ) := Υ(σ).

Proof. Straightforward induction on τ .

Proof of Proposition 57. By induction on the length of t, and at each step
for all strongly compatible Υ, ρ, π. Note that, because of the third clause in the
definition of (f, g)-relations (Definition 45), and since this does not change the
length of t, we may as well replace t by any α-equivalent term in the course of
the proof. Note also that we will use this third clause freely in the following
proofs.

• The cases where t is a term variable or is of the form uv are immediate,
so we deal only with the other 3 cases.

• term-abstraction. Suppose t := λxσ
i .u : σ → τ , with u : τ . By Lemma 65

in Appendix E we can assume that λxσ
i .u is good for π (since we are only

interested in the α-equivalence class of π(t) ).

The aim is to prove : Rσ→τ
Υ (#(π(λxσ

i .u)), ρ(λx
σ
i .u)), and we know that

Rτ
Υ′(#(π′(u)), ρ′(u)), for all strongly compatible Υ′, π′, ρ′ by the induction

hypothesis.

Suppose Rσ
Υ(v, w). Since v ∈ Ŏπ(σ), we have v = #t′ for some t′ : π(σ)

and our secondary aim is to prove that :

Rτ
Υ(Ap1(#(π(λxσ

i .u)),#t
′), (ρ(λxσ

i .u))(w)). Now,

Ap1(#(π(λxσ
i .u)),#t

′) = #((π(λxσ
i .u))t

′) (definition of Ap1) = #(π′(u)),

where π′ := π[xσ
i : t′] and π′ acts like π on types (using Lemma 64).

Similarly:

(ρ(λxσ
i .u))(w)) = ρ(u[xσ

i : w]) = ρ′(u), where ρ′ := ρ[xσ
i : w] and ρ′ acts

like ρ on types.

Since π, π′ and ρ, ρ′ coincide on types the compatibility conditions are
preserved and the secondary aim follows from the induction hypothesis.

• type-abstraction. Suppose t := λα.u : ∀α.τ, with u : τ and α not free in
the type of a term-variable of τ .

Once more we assume that λα.u is good for π.

The aim is to prove R∀α.τ
Υ ( #(π(λα.u)), ρ(λα.u)), that is to say: to prove:

52



Rτ
Υ[α:(X,T )] (Ap2(#(π(λα.u)), type(X)), (ρ(λα.u))(X) ) for all candidates

(X,T ).

Let σ be such that type(X) = #σ.

Set Υ′ := Υ[α : (X,T )], ρ′ := ρ[α : X ], π′ := π[α : σ] at the level of types;
these are compatible (at the level of types) by Remark 52. For defining
ρ′, π′ at the level of term variables we just change π and ρ on those xθ

i

such that α is free in θ. We set π′(xθ
i ) = x

π′(θ)
i and ρ′(xθ

i ) = fρ′(θ)(x
π′(θ)
i ),

which obviously preserve the strong compatibility condition. Now,

Ap2(#(π(λα.u)), type(X)) = #((π(λα.u))σ) (by definition of Ap2)

∼tr #(π[α : σ]((λα.u)α)) = #(π′((λα.u)α)) ∼tr #π′(u). Similarly :

(ρ(λα.u))(X) = ρ[α : X ]((λα.u)α) = ρ′((λα.u)α) = ρ′(u).

Thus, our secondary aim amounts to showing that Rτ
Υ′( #(π′(u)), ρ′(u)) ,

which follows from the induction hypothesis.

• application of terms to types. Suppose t := uσ : τ [α := σ], with u : ∀α.τ ,
and α not free in t and π(t). We have to prove :

R
τ [α:σ]
Υ ( #(π(uσ)), ρ(uσ)). Now,

#(π(uσ)) = #((π(u)(π(σ)) = Ap2(#(π(u)),#(π(σ))) (definition of Ap2),
and ρ(uσ) = ρ(u)(ρ(σ)).

Let us take X = ρ(σ). Then type(X) ∼tp #(π(σ)) by compatibility of

π, ρ. Furthermore R
τ [α:σ]
Υ = Rτ

Υ[α:T ] where T = Rσ
Υ (Lemma 66).

The aim follows from the induction hypothesis on u instantiated to Υ[α :
(ρ(σ), T )], ρ[α : ρ(σ)], and π[α : π(σ)].

¨

References

[1] M. Abadi, G. D. Plotkin, A logic for parametric polymorphism, in
TLCA’93, SLNCS n0 664, p.361-375, Springer 1993.

[2] R. Amadio, K. Bruce, and G. Longo, The finitary Projection Model for 2nd
Order Calculus, IEEE Conference on Logic in Computer Science, Boston,
June 1986.

[3] A. Asperti and G. Longo, Categories, Types and Structures : an Introduc-
tion to Category Theory for the working Computer Scientist, Cambridge,
Mass., MIT Press, 1991.

[4] H. Barendregt, The λ-calculus, its syntax and semantics, Studies in Logic
vol.103, North-Holland, revised edition 1984.

53



[5] F. Barbanera, S. Berardi, ”A full continuous model of polymorphism”,
technical report, University of Turin, 1997, available on the authors’ web
pages.

[6] S. Berardi, Retractions on dI-Domains as a Model for Type:Type, Infor-
mation and Computation 94, p.204-231, 1991.

[7] S. Berardi, C. Berline, Building continuous webbed models for System F,
preprint, Octobre 1998 revised September 2000, available on the authors’
web pages.

[8] S. Berardi, C. Berline, Easy models for FωY , Calculus of Construction, and
kinds = types, in preparation.

[9] C. Berline, Rétractions et Interprétation Interne du Polymorphisme : le
Problème de la Rétraction Universelle, Informatique théorique et Applica-
tions/Theoretical Informatics and Applications vol.26, n◦1, p.59-91, 1992.

[10] C. Berline and K. Grue, A κ-denotational semantics for Map Theory in
ZFC+SI, Theoretical Computer Science 179 (1997) , p.137-202.

[11] K. Bruce, A.R. Meyer, and J.C. Mitchell, The semantics of 2nd order λ-
calculus, Information and Computation 85 (1990), p.76-134.

[12] T. Coquand, C. Gunter, and G. Winskel. Domain theoretic models of poly-
morphism, Information and Computation, vol.81, 123-167, 1989.

[13] P. Di Gianantonio, F. Honsell and G. Plotkin, Uncountable limits and the
lambda-calculus, Nordic Journal of Computing 2 (1995), 126-145.

[14] R.C. Flagg, κ-continuous Lattices and Comprehension Principles for Frege
Structures, Ann. of Pure and Applied Logic 36, p.1-16, 1987.

[15] H. Friedman, Equality between functionals, In R. Parikh, editor, Logic
Colloquium 1972-1973, Lecture notes in Mathematics 453, Springer-Verlag,
New-York, 1975.

[16] J.Y. Girard, Une extension de l’interprétation de Gödel à l’analyse, et son
application à l’élimination des coupures et à la théorie des types. Proceed-
ings of the 2nd Scandinavian Logic Symposium, J.E. Fenstadt, ed., p.63-92,
North Holland, 1975.

[17] J.Y. Girard, Interprétation fonctionnelle et élimination des coupures de
l’arithmétique d’ordre supérieur, Thèse de doctorat d’état, Université Paris
7, 1972.

[18] J.Y. Girard, The system F of variable types, fifteen years later, Theoretical
computer Science, vol.45, p.159-192, 1986.

[19] G. Longo, Parametric and Type-dependent Polymorphism, Fundamenta
Informaticae, vol. 22, 1-2, p.69-92, 1995.

54



[20] G. Longo, K. Milsted and S. Soloviev, The genericity theorem and the no-
tion of parametricity in the polymorphic λ-calculus, Theoretical Computer
Science 121, p.323-349, 1993.

[21] G. Longo and E. Moggi, Constructive natural deduction and its ω-set in-
terpretation, Math. Struct. in Comput. Science, vol. 1, pp. 215-254, 1991.

[22] N. J. McCracken, An Investigation of a Programming Language with a
Polymorphic Type Structure, PhD Dissertation, Syracuse University, New
York, 1979.

[23] N. J. McCracken, A Finitary Retract Model for the Polymorphic λ-calculus,
unpublished, 1984.

[24] P. O’Hearn, Parametric Polymorphism, in: M. P. Fiore, A. Jung, E. Moggi,
P. O’Hearn, J. Riecke, G. Rosolini and I. Stark, Domains and Denotational
Semantics : History, Accomplishments and Open Problems, Bulletin of
EATCS, vol.59, p.227-256, 1996.

[25] A.M. Pitts, Polymorphism is set-theoretic, constructively. In: Category
Theory and Computer Science, Lecture Notes in Computer Science 283,
Springer, 1987.

[26] G.D. Plotkin, Lambda-definability and Logical Relations, Technical report
SAIRM-4, School of artificial intelligence, University of Edinburgh, 1973.

[27] G. D. Plotkin, Lambda-definability and the full-type hierarchy, in: J.P.
Seldin and J.R. Hindley, eds., To H.B. Curry: Essays on Combinatory
Logic, Lambda-calculus and Formalism, Academic Press, New-York, 1980.

[28] G.D. Plotkin, A power domain for countable nondeterminism, in: Lecture
Notes in Computer Science vol. 140, ICALP’82, p.418-428, Springer Verlag,
Berlin, 1982.

[29] J.C. Reynolds, Towards a Theory of Type Structure. In Colloque sur la
Programmation, LNCS 19, p.408-425, Springer-Verlag, 1974.

[30] J.C. Reynolds, Polymorphism is not set-theoretic, in: Mathias and Rogers
eds., Cambridge Summer Scool in mathematical Logic, Lecture Notes in
Mathematics 337, p. 232-252, Springer Verlag 1973.

[31] A. Simpson, Categorical completeness results for the simply-typed λ-
calculus, in : M. Dezani-Ciancaglini and G. Plotkin eds., Lecture Notes in
Computer Science vol. 902, TLCA’95, p.414-427, Springer Verlag, Berlin,
1995.

[32] D. Scott, Data Types as Lattices, S.I.A.M. J. of Computing 5, p. 522-587,
1976.

[33] D. Scott, A Space of retracts, manuscript, 1980.

55



[34] R. Statman, Completeness, Invariance and λ-definability, J. of Symb. Logic,
vol.47, n◦1, 1982.

[35] A.S. Troelstra, Notes on second order arithmetic, in: Mathias and Rogers,
eds., Cambridge Summer Scool in Mathematical Logic, Lecture Notes in
Mathematics 337, p. 171-205, Springer Verlag 1973.

S. Berardi, C. Berline, CNRS-Université Paris 7
Dipartimento di Informatica, UFR de Mathématiques (case 7012)
Università degli Studi di Torino, Université Paris 7
Corso Svizzera 185, 2 place Jussieu,
10149 Torino, ITALIA. 75251 Paris cedex 05, FRANCE.
e-mail : stefano@di.unito.it e-mail : berline@pps.jussieu.fr
URL: www.di.unito.it/˜stefano URL: www.logique.jussieu.fr/www.berline

56


