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Abstract. This paper is concerned with the asymptotic behavior of the principal eigenvalue
of some linear elliptic equations in the limit of high first-order coefficients. Roughly speaking,
one of the main results says that the principal eigenvalue, with Dirichlet boundary conditions,
is bounded as the amplitude of the coefficients of the first-order derivatives goes to infinity if
and only if the associated dynamical system has a first integral, and the limiting eigenvalue is
then determined through the minimization of the Dirichlet functional over all first integrals. A
parabolic version of these results, as well as other results for more general equations, are given.
Some of the main consequences concern the influence of high advection or drift on the speed
of propagation of pulsating travelling fronts.

Introduction

Nonlinear propagation of fronts in reaction-diffusion equation of the Fisher type often
involves a linear eigenvalue problem. In particular, it is of interest to study the effects of
various phenomena such as diffusion, reaction, advection on the speed of fronts. Carrying
this rests on some singular limits in these eigenvalue problems. This paper is concerned
with both aspects. We derive here some limiting behaviour of eigenvalue problems and
we also establish results for nonlinear propagation phenomena.

To illustrate the type of results for the first aspect, let us consider the simple case of
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Dirichlet eigenvalue problem for the Laplacian with a large divergence free drift. Consider
a bounded domain Q C IR of class C?, with outward unit normal v = v(z) (for z € 99).
Let v be a L*>°(Q) vector field, such that

diveo =0 in D'(Q),

and, for A € IR, let A4 be the principal eigenvalue and ¢4 be the principal eigenfunction
(unique up to multiplication) of

{—A¢A+Av-wA = Apa in Q

wa = 0 on 0. (0.1)

We recall that o4 € W?P(Q) for all 1 < p < +oo (hence p4 € CH*(Q) for all 0 < a < 1),
and that one can assume that ¢4 > 0 in €.

Our purpose here is to analyze the limiting behavior of the first eigenvalue A4 in the
limit A — +o0o (note that through a change of v into —v, the limit A — —o0o is treated
similarly). As was already mentioned, the goal is to understand the influence of high
drift coefficients. In doing this, one has to understand the role of advection and that of
diffusion.

The limiting behavior of the solutions of problem (0.1) as A — +oo turns out to
be strongly related to the existence of first integrals of v in H}(£2). We now define this
notion :

Definition 0.1 A function w is said to be a first integral of the vector field v if w €
HYQ), w#0 and v-Vw = 0 almost everywhere in ).

Definition 0.2 We note Zy the set of all first integrals of v which belong to HJ(S2).

Notice that if both v and a first integral w are smooth enough, then w is constant
along the trajectories of the dynamical system X = v(X) in €.

Theorem 0.3 The first eigenvalues (Ag) of (0.1) are bounded as A — +oo if and only
if v has a first integral in Hy (). Furthermore,

1) If v does not have any first integral in H3 (), then Ay — +00 as A — +oo0.
2) If v has a first integral in H(S2), then

[Ivup
)\A — min &

weLy / w2
Q

and the minimum in the right-hand side of (0.2) is achieved.

as A — +o0, (0.2)



From the proof, we will see that furthermore,

[Ivu?
Ay < 22 (0.3)

< 7/ e
Q
for all A € IR and for all w € Z,.

Theorem 0.3 gives a necessary and sufficient condition for the eigenvalues \4’s stay
bounded as A — +o00. Formula (0.3) also says that the eigenvalues A4 are never larger
than the Rayleigh quotient of a first integral, if any. A sufficient condition for the bound-
edness of A 4, stronger than the existence of first integrals (requiring additional properties
for some first integrals), was given by Devinatz, Ellis and Friedman [13]. A large litera-
ture has been devoted to this type of question, which we recall in Section 1. Nevertheless,
as far as we know, the necessary and sufficient condition for the boundedness of A4, and
the limiting behavior of A4 given by (0.2), had not been observed until now.

More general eigenvalue problems with large drift, as well as operators with other
boundary conditions, are also dealt with in Section 2. For instance, Neumann or periodic
boundary conditions are considered.

Applications to the decay of solutions of the heat equation with large drift, under
Dirichlet boundary conditions, are given in Section 3.

Lastly, some applications to nonlinear propagation phenomena are given in Section
4. One is especially concerned with propagation of fronts for some reaction-diffusion
equations of the type

u; — div(aVu) + Av - Vu = f(u)

in periodic media. Under some assumptions on f and on the other parameters, which
are recalled in Section 4, it is known that there exist some pulsating (or periodic) trav-
elling fronts propagating in any given direction in which the domain is unbounded. One
especially gives in Section 4 a necessary and sufficient condition for the minimal speed
of pulsating fronts be asymptotically at least linear with respect to the amplitude A
of the drift as A — 4o00. This condition involves the first integrals of the vector field
v. Applications to reaction-diffusion equations with large reaction or small diffusion are
also given.

1 The case of Dirichlet boundary conditions

This section is mainly devoted to the proof of Theorem 0.3. Before proceeding to the
proof, let us examine some particular cases and briefly recall the literature which has
been devoted to this type of problem.

Let us first mention some particular cases where the field v has first integrals. For
instance, if v, say, vanishes on an open subset w CC €, then v has first integrals : namely,
any nonzero w € H}(w), extended by 0 in Q\w, is a first integral of v ; furthermore,
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under the same conditions, if follows that A4 is not larger than the first eigenvalue of
the Laplace operator in w with Dirichlet boundary conditions (the latter agrees with the
monotonicity of the first eigenvalue of an elliptic operator with respect to the domain,
see [8]).

Notice that if v and a first integral w are respectively C! and continuous in a neigh-
bourhood of some point zy € 092, and if Vw(xg) # 0, then v(zg)-v(z) = 0. Nevertheless,
as a consequence of what was just mentioned, this condition v - ¥ = 0 on 0f2 is not nec-
essary in general for the existence of a first integral w. On the other hand, in dimension
N =2, if a C*(Q) vector field v satisfies v - v = 0 on 99, together with div v = 0 in €,
then it is easy to see that v has first integrals.

In the case where v does not have any first integral, the asymptotic rate of growth
of A4 to +00 as A — +00 is not known in general. However, for general continuous v
without the divergence-free assumption, the limit of As/A? is known explicitely. It is
given by the following formula due to Wentzell [37] :

B 1 g ([ oxepa) |, (1)

— 400

where the infimum is taken over all C! functions X : [0, 7] — €. It follows in particular
that if the dynamical system X = —v(X) has a trajectory which stays in € for all ¢ > 0,
then Ay = 0(A4%) as A — +oo. In particular, Ay = o(A?) if N = 2, v € C(Q) and
v-v =0 on at least one connected component of 9€). This also holds in any dimension
if v is continuous and has at least one nonzero first integral w in C'(Q) N C*(2) that
vanishes on 0€). The last results also hold in the case div v # 0. In the case of existence
of first integrals in H}(), together with the divergence-free assumption but without the
continuity assumption for v, Theorem 0.3 is much more precise. It says further that the
Aa’s are bounded and their limiting behavior is given.

Formula (1.1) implies that, as soon as v is continuous but may or may not be
divergence-free, one has Ay = O(A4?%) as A — +oo.! In some special cases, one can
say that A4 behaves likes A% as A — +o00. For instance, if v is a gradient field which
does not vanish in Q, namely if there exists U € C?(Q) such that v = VU and v # 0
in Q, and if @4 is an eigenfunction of (0.1) for the first eigenvalue A4, then the function
Ya(z) = e~2U@y () is an eigenfunction of the following self-adjoint problem

A? A
—A¢A+<Z|U|Q—§divv) ’l/)A = /\Aq/)A in Q
Ya = 0 on 0.

! Actually, it is simple to see, using the change of variables ' = A(x — z(), that A4 = O(A?) as soon
as v is continuous at a point zy € 2.



Hence,

A? A
/Q|V<;5|2 + (ZMQ — §d1V v) ®* 2

~ ——min|v|? (1.2)
4 9

Ag = min

G H()\{0} / &’
Q

as A — 400, since v # 0 in €. More generally speaking, A4 > cA? for some positive
constant c if there exists a C1(€2) function ¢ such that v+ Ve > 0 in Q (see [13]).

On the other hand, Ay = O(A) as soon as v is continuous and vanishes at a point
g € ). More generally speaking, any upper bound like A% with any positive a can
be obtained for the As’s (see [13]). Let us lastly mention that other results on the
asymptotics of the first eigenvalues of some elliptic problems set in the whole space IRY
are given in [17].

Remark 1.1 (Case of a field which is not divergence free) As already said, A4 behaves
at most like A% as A — 400, as soon as v is continuous at a point in €2, but with or
without the divergence-free assumption. Furthermore, )\, is always nonnegative, from
the maximum principle. However, Theorem 0.3 does not hold if v is not divergence-free.
For instance, if v is continuous in Q and v-v > 0 on 95, then Ay = O(Ae 1) as
A — +o0, for some constant a > 0 (see Friedman [20]). In particular, in a ball B with
center 0, for the velocity field v = z, one has Ay — 0 and v does not have any first
integral in H}(Q). Notice that Theorem 0.3 also says that A4 converges either to +oo
or to a positive constant if v is divergence-free.

We now turn to the
Proof of Theorem 0.3. We divide it into the next two lemmas from which Theorem
0.3 obviously follows :

Lemma 1.2 Let (A,)new be a sequence such that A, — 400 and (Aa,)nen 1S
bounded. Assume furthermore that the principal eigenfunctions @, are normalized with
|oanllz2@) = 1 for all n. Then there exists a subsequence n' — +oo and a function
w € Iy such that ¢4, — w strongly in L* and weakly in H', and

liminf Ay, > /|Vw|2//w2 - /|Vw|2. (1.3)
Q Q Q

n’——+oo

In particular, Ty # 0.

Lemma 1.3 Assume that v has at least one first integral in H}(Q2). Then, for allw € I,
and for all A € IR,

[Ivup?
0 <Ay < (1.4)
w
Q



Proof of Lemma 1.2. Set A\, = A4, and ¢, = ¢4,. Multiplying equation (0.1) by ¢4,
and integrating over € yields

/|V<pn|2+A—/v Vien)? = Ay /gpn = Ap-

Since the function (p,)? is, say, in Wy''(Q) (because ¢, € HE (), (¢n)? can be approx-
imated in W' norm by a sequence of functions (ug)rery € C5°(£2). Since div v = 0

in D'(Q), it follows that /v - Vu, = 0 and the passage to the limit & — 400 gives
/U - V(p,)? = 0. Hence,
A :/|V<,0n|2. (1.5)

From Rellich’s theorem, there exists a subsequence n’ — +oo and a function w €
H () such that ¢, — w strongly in L* and weakly in H'. Furthermore, ||wl|r2@q) =1
and (1.3) holds.

On the other hand, we also know that Ay, — Aw in the sense of distributions.
Therefore, dividing (0.1) by A, and passing to the limit n’ — 400, one gets that
v - Vw = 0 almost everywhere in €. r

Proof of Lemma 1.3. Let A € IR be given and let ¢ be a (positive) first eigenfunction
of (0.1) for the first eigenvalue A. We drop the subscripts A for the sake of keeping
notations simple. Observe first that A is nonnegative by (1.5) (A is actually positive
since ¢ is not constant). Let w be in Zj.

Fix any ¢ > 0 and multiply the equation (0.1) by w?/(¢ +¢) € W3 (Q). One gets

v-V(w?In(p+e)) 2A/wln p+e)v-Vw = )\/w (1.6)

p+e

Since the function w?/(¢ + €) is in W, (), it can be approximated in W' norm by
a sequence of function (ux)reny € C3°(€2). On the other hand, by standard estimates,
Ap € L>*(Q), and Vi € LN W' (for any 1 < p < +00). Therefore, the first term of
the left-hand side of (1.6) can be estimated by

2

w . .
-[ae S = i [Ap =l [Ve- Vi
w? 2w(p + )V - Vw — w?|Vpl|?
- e () - s,
p+e (p+e)

The second term of the left-hand side of (1.6) is equal to 0 since w? In(p+¢) € Wy and
v is divergence-free. Lastly, the third term clearly vanishes since w is a first integral.
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Therefore,
)\/w2i < /|Vw|2
Y+e

and (1.4) follows from Lebesgue’s dominated convergence theorem, passing to the limit
as € — 07. This completes the proof of Lemma 1.3 and that of Theorem 0.3. L

Remark 1.4 It follows from (1.5) that

o [Iver
min

Az o= 1 ;
$EHE(Q), 620 / &
Q

where Ay is the first eigenvalue of (0.1) with A = 0. Theorem 0.3 then says that if v has
a first integral, the A4’s converge to the minimum (which is achieved) of the Rayleigh

quotient / |Vw|?/ / w? over all first integrals (instead of over all nonzero ¢ € HZ(Q) for
Q Q
A=0).

Furthermore, Lemmas 1.2 and 1.3 immediately yield the following

Corollary 1.5 If v has first integrals (in H] ), then, for any sequence of eigenfunctions
(0a,) of (0.1) with |@a,|lz2 = 1, there exists a subsequence ¢4, which converges
weakly in H' and strongly in L? to a minimizer of the Dirichlet functional among all
first integrals.

Remark 1.6 Whereas the uniqueness (up to multiplication) of the minimizers of the
Rayleigh quotient among all nonzero Hy functions is a well-known fact, the uniqueness
of the minimizers of the right-hand side of (0.2), i.e. the minimizers of the Rayleigh
quotient among all nonzero H} first integrals of v, if any, does not hold in general.
Indeed, consider for instance, in dimension 2, the disk Q = {2? + 23 < 1} and
v = (0,a(ry)), where a is, say, an even C' function such that a = 0 on [—b, —a] U [a, b],
a # 0on [-1,-b) U (—a,a) U (b1] with 0 < a <b <1 Calw =Qn{-b<
r1 < —a} and wt = QN {a < 21 < b}, and let A and ¢ be the first eigenvalue and
eigenfunction of the Laplace operator in w™ with Dirichlet boundary conditions. Up to
normalization, let us assume that ¢ > 0 in w® and [|¢[/z2@+) = 1/2. Let us extend
¢ by 0 in Q\w™. Tt is straightforward to see in this case that v has first integrals and

Ty = {w € Hy(2)\{0}, w=0 a.e. in Q\(w" Uw™)}. Hence

_ /Q|Vw|2 N

mlzni—
welp /w2
Q

and the set of the minimizers of the above Rayleigh quotient is the set of functions of
the type ¢ X+ (1, 22) + ¢ Xo-@(—21, T2), where (¢, c¢7) € IR?*\{(0,0)} and x denotes
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the characteristic function. Furthermore, since each first eigenvalue 4 of (0.1) is even
in 1, one can say, assuming that |[¢a||r2() = 1, that the whole family (¢4)4 converges
to the function x,+¢(x1, a) + Xo-@(—21,22) as A — +o0.

On the contrary, let Q = {|z| < 1} be the unit ball in IRY and assume that v € C*(Q)
is such that v -2 = 0 in Q and v(z) # 0 for  # 0. Then v has first integrals and Z,
is the set of nonzero radial functions in H}(€2). But since the Rayleigh quotient has a
unique minimizer among all nonzero H;(€2) functions and since this unique minimizer
is radial and is the first eigenfunction ¢ of the Laplace operator in €2 with Dirichlet
boundary conditions, it follows that this Rayleigh quotient has a unique minimizer in
Ty. Furthermore, one can say in this case that, after normalization, each ¢4 is equal to
@, and, for all A, A\, is the first eigenvalue associated with .

2 Extensions to more general elliptic equations, and
to Neumann or periodic boundary conditions

2.1 More general linear equations with Dirichlet boundary con-
ditions
As in section 1, one still assumes that  is a C? bounded domain of RY and that v is a

bounded vector field such that div v = 0 in D'(€2). Let now a(z) = (a;;(x))1<i,j<n be a
C'(Q) symmetric matrix field such that

W<a<B Ve Vee RY, off?< S ay(z)&é; < BIEP, (2.1)

1<i,j<N

and let ¢(x) be a function in L*°(Q2). Lastly, let p be a measurable function in 2 such
that 0 < p; < p(z) < pg a.e. in 2, for some positive constants p; and po.

The proof of Theorem 0.3 can easily be extended to the following more general situ-
ation :

Theorem 2.1 Forall A € IR, let Ay be the principal eigenvalue, and @ 4 be the principal
eigenfunction (up to multiplication) of

{—div(anoA)+Av-VgoA+cgpA = Aappa in ) (2.2)

wa = 0 on 0S2.

If v has a first integral in H(S2), then

/Vw - a(z)Vw + c(z)w?
)‘A — min Q

weLy / 2
pw
Q

If v has no first integral in H}(Q), then Ay — +00 as A — +0o0.

as A — +oo.
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As for Theorem 0.3, we can add furthermore that

Vw - a(x)Vw + c(z)w?

e
Q
for all A € IR and for all w € Z,.

The comments and remarks in section 1 can be extended to the more general problem
(2.2). Let us especially mention that one always has A4 > essinfq(c/p). Furthermore,
A4 = O(A?) as soon as v is continuous at a point in  with or without the divergence
free assumption. Lastly, if there exists a C%(Q) field U such that v = aVU, then A\ is
the principal eigenvalue, with weight p, of the following problem

Ay <22

2

—div (aV) + (A

Z(VU -aVU) — ?divv) U+ ) = Aapy

with Dirichlet boundary conditions, whence Ay ~ A* x ming (VU - aVU)/(4p)) as
A — +o0 under the additional assumption that, say, p is continuous in Q and v does
not vanish in 2.

2.2 Neumann or periodic boundary conditions

The case of Neumann or periodic boundary conditions is slightly different since, as we
shall see below, first integrals always exist. Let us now describe what we mean by periodic
and/or Neumann boundary conditions.

Let d be an integer such that 0 < d < N and call x = (2q,---,24) and
Yy = (Tay1, > Tn). Let Ly, -+, Ly be d positive numbers and let 2 be a C? connected
open subset of IR such that

JR>0, V(r,y)€Q, [y <R (2.3)

and

d
V(ki,- - ka) € INZ % -+ x LaZZ, Q=0+ ke, (2.4)

=1

where (e;)1<;<y is the canonical basis of R".
Let C be the set defined by

C=A{(z,y) €Q, 2€(0,L1) x---x(0,Lg)}

In the case d = 0, then 2 is bounded and C' = € ; otherwise, {2 is unbounded and C'
is its cell of periodicity. A function w is said to be L-periodic with respect to z in 2 if
w(z + k,y) = w(z,y) almost everywhere in  for all k € L1 Z X -+ - X LyZ.



Let a(z,y) = (a;j(z,y))1<ij<n be a C*(Q) and L-periodic with respect to x matrix
field satisfying

J0<a<B, V(z,y) €Q, VEeRY, o< Y ay(z,y)&é < BIEP. (2.5)

1<ij<N

Let v be a L>®(2) vector field such that v € Wh(€,) for all b > 0, where , = {(z,y) €
QQ, |z| < b}. Assume furthermore that v is L-periodic with respect to x and satisfies

(99), (2.6)

divv=0ae inQ and v-v=0 in L},

where v denotes the unit outward normal to Q. Let c(z,y) be a L>(2) function and
assume that c is L-periodic with respect to x.

Let H be the set of all functions w which are L-periodic with respect to x and which
belong to H () for all b > 0. A nonzero function w € H is said to be a first integral of
v if v- Vw = 0 almost everywhere in 2. Let Z be the set of all first integrals. Note that
this set is not empty since it contains all nonzero constant functions.

For all A € IR, there exists a unique principal eigenvalue A4, and a unique (up to
multiplication) function ¢4, which is positive in Q, L-periodic with respect to x, and
solves

{ —div(aVpa) + Av - Vs +cps = Aapa inQ (2.7)
v-aVeoy = 0 on 0f). '

Furthermore, ¢ belongs to W2P(€2,) for allb > 0 and 1 < p < +oo (hence, p4 € CH*(Q)
forall 0 < a < 1).

This general framework includes the case of a bounded domain with Neumann type
boundary conditions (case d = 0), that of an infinite (straight or oscillating) cylinder
with periodic coefficients and Neumann boundary conditions, as well as the case of the
whole space IRY with periodic holes and/or periodic coefficients (see also [4] for a detailed
study of problem (2.7)).

Theorem 2.2 The principal eigenvalues A4 are bounded and

/ Vw - a(z,y)Vw + c(z, y)w?
A4 — min

A
we /w2
C

As for Theorems 0.3 and 2.1, one can say furthermore that

as A — +o0. (2.8)

/ Vw - a(x, y)Vw + c(z, y)w?
c

v
c

A <

forall Ae IR and w e T.
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Remark 2.3 It is clear that, unlike problems (0.1) or (2.2), the principal eigenvalues
A4 of problem (2.7) are always bounded as A — +o0. Indeed, one has

VA € IR, igfchAgsup c.
Q

The purpose of Theorem 2.2 is to prove that the A4’s do converge as A — +o0 and to
determine their limit.

Remark 2.4 In the case of the whole space IRY, and under the additional assumption
that v has zero average, it is known that there exists a skewsymmetric and L-periodic
matrix field B such that v = —div B (see [14], [23]). In this particular case, (2.7) reduces
to —div((a + AB)Va) + coa = Aapa. However, because of the lack of symmetry of
the diffusion term, this last formulation does not seem to be helpful to derive the limit
of Mg as A — +oo.

Proof of Theorem 2.2. The proof follows the main lines of that of Theorem 0.3. Let
us especially mention that the integrations by parts are made over the set C'. Notice also
that the additional assumptions v -v = 0 in L}, (0Q) and v € WH(€,) (for all b > 0),

together with div v = 0, are used to guarantee that the integrals of the type / v V3
c

vanish (from Green’s formula and the periodicity assumptions).

Let us just sketch the proof of the upper bound for A4. Choose A € IR and w € Z.
Since p4 € C1(Q) is positive on €, the function w? /@4 is in W1(€2,) (for all b > 0), and,
since (2 is L-periodic and at least of class C!, the function w?/@4 can be approximated
in the norms of W1(€,) by a sequence of functions (u;); € C*(Q) which are L-periodic
with respect to . Each function uy, is in H, whence

/ Vuy - aVps + A/ upv - Vou + / Cuppa = )\A/ Uppa
c c c c
and

2
/Vw—-an0A+A/w2v-V1n¢A+/cw2:)\A/w2
C pa c c c

after passing to the limit k& — +o00. Since w € Z, one has w*v-VInps = v-V(w?Inpy,).
The function w?Ingy is in WHH() (for all b > 0) and L-periodic with respect to
z. It can then be approximated in the norms of W1(€),) by a sequence of functions
(Up)x € C1(2) which are L-periodic with respect to z. Therefore, using Green’s formula
and (2.6), one gets

VY (w?1 :1'/-:1'/':.
/CU V(wInpya) Jm CU VU, Jm CdeIVU 0

One then concludes as in Lemma 1.3 that




and the proof of Theorem 2.2 is complete. r

Remark 2.5 (On the necessity of the assumption v - v = 0 on 0f2) Unlike problems
(0.1) or (2.2) with Dirichlet boundary conditions, the additional assumption stating that
v-v =0 on 0N is needed to determine the limit of the principal eigenvalues A4 of (2.7).
Otherwise, formula (2.8) may or may not hold in general.

Consider for instance the eigenvalue problem

—Pa+ Agy +c(z)pa = Aapa in (0.1) (2.9)
Pa0) = ¢u(1) = 0. '

The velocity field v = 1 does not satisfy the assumption v - v = 0 at 0 and 1. The
first integrals of v are the nonzero constants. If ¢ = 0, then (2.8) is clearly true since
A4 =0 for all A € IR. On the other hand, for general ¢, after rewriting problem (2.9) in
a self-adjoint way :

)\Ae_AISOA in (07 1)
0,

—N
[
—
CBI
b
5]
&
N
/\_+—
= O
—~
[
ml
S
=~ F
=0
I

it follows that
1 1
/ e—Aa;(d)/)Q + C(I)G_AwQSQ / C(l‘)e_Aw
Ag = Inlin 0 T < 20 T
$eH1(0,1) /e—Ax¢2 /e—Aa:
0 0

Hence, limsup4_, . Aa < ¢(0). On the other hand, since the first integrals to the vector
field v = 1 are the nonzero constants, the right hand side of (2.8) is here nothing else but

1 1
/ c(x)dz. Therefore, (2.8) does not hold for problem (2.9) as soon as ¢(0) < / c(z)dx.
0 0

3 Applications to parabolic equations

The results of section 1 can be applied to characterize the behavior in finite time of the
solutions of Cauchy problems with large advection. Namely, let Q be a C? bounded
domain in IRV, let v be a L>(£2) and satisfying div v = 0 in D’(Q2). For any uy € H} ()
and A € IR, let u® = u?(t,-) be the solution of

uft = Aut— Av-Vud, t>0,
,-) = 0 on0f, t>0, (3.1)
7')

= Up.

~+

(
(

This solution u# belongs to C(IR*, H}) N L?(0,T; H; N H?), and u* € L2(0,T; L?) for
all ' > 0.

UA
UA

]
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Theorem 3.1 The following properties are equivalent :
(i) there exists ug € HE(Q) such that u(1,-) /4 0 in L*(Q) as A — +oo,
(ii) the vector field v has a nonzero first integral w € H3 (),
(i) the first eigenvalues s of (0.1) are bounded as A — +oo0.

One has already proved in Theorem 0.3 that properties (ii) and (iii) are equivalent.
Theorem 3.1 says further that the nonexistence of first integrals is equivalent to the fact
that the solutions of (3.1), with any fixed initial datum, go to 0 in L? in finite time (see
also Remark 3.2 below) as the amplitude of the drift goes to +o0.

In the case of Hamiltonian systems in even dimensions, where v is given as the
orthogonal gradient of a first integral H, v = VH, the behavior of the functions u”
can be made more precise (see Fannjiang, Papanicolaou [14], Wentzell and Freidlin [38]).
But, as far as we know, the characterization of the decay of the functions u# in finite
time in terms of the first integrals of v, in the general case of non-Hamiltonian systems,
had not been investigated yet.

Remark 3.2 (On the behavior of the solutions of (3.1) at other finite times or other
times scales) Theorem 3.1 also holds if time ¢t = 1 in property (i) is replaced with any
positive time ¢ = T', and even if property (i) is replaced with miny, <;<y, [|[u?(¢, )| z2@) 7 0
as A — +oo, given any two positive times 0 < t; < t5. Indeed, as it can easily be seen
by multiplying (3.1) by u®, each function ¢ — ||u*(t.-)||r2¢) is nonincreasing (see the
proof of Theorem 3.1 below).

On the other hand, any solution u? of (3.1) with A > 0 gives rise to a solution
UA(t,-) = u(t/A,-) of

U = AT'AUA —v-VUA, >0,
UAt,) = 0 ondQ, t>0,
UA(Oa') = Up.

The limiting behavior of the functions U4 in finite time ~which corresponds to times
proportional to 1/A for the solutions of problem (3.1)— has been thoroughly studied (see
[14] and [38]). The above Theorem 3.1 then gives some information about the behavior
of the functions U4 for times proportional to A.

Proof of Theorem 3.1. As already emphasized, assertions (ii) and (iii) are equivalent,
from Theorem 0.3.

Proof of ((ii) and/or (iii)) == (i). From the proof of Theorem 0.3, there exists a se-
quence A,, — +oo and a nonzero first integral w € H}(2) such that the first eigenfunc-
tions ¢, = @4, of problem (0.1), normalized so that ||y, ||r2@) = 1, converge to w weakly
in H} and strongly in L2

Take the initial condition uy = w for the solutions w,, := u”" of problem (3.1), and
call

ho(t, ) i= un(t, ) — va(t, ),

13



where v, (t,+) = e Mntp, (+). Since each function v, solves (3.1) with A = A,, and initial
condition ¢, it follows that h,, is a solution of

(hn): = Ah,—Aw-Vh,, t>0,
hn(t,-) = 0 on 09, t>0,
Multiplying the above equation by h,(t,-) and integrating by parts over 2 and [t;, 5]
leads to

Lin 2 — wllh : § ho(t, ) 2dz ) d
laltz ey = 5t My = = [ ([ IVhalt)Paz)at oo
0

IN

for all 0 < t; < t,. Therefore,

[ (1, ) 2@) < 170, 9) [ L2() = lw — @ullL2(0)-

Since the right-hand side of the above inequality goes to 0 as n — 400, it follows from
Theorem 0.3 that u,(1,-) — e™*=w # 0 in L?(Q), where Ao, = Hélll_l /|Vw|2// w?.
welo JQ Q

Proof of (i) = ((ii) and/or (iii)). Let ug € Hj(2)\{0}, ¢ > 0 and A,, — +o0 such
that

Vn € Wa ||un(]—7 )||L2(Q) > g, (33)

where u,, = u?n.

Call u,, + the solution of problem (3.1) with A = A,, and initial condition ug- € H(} (),
where u§ = X{+uo>0}Uo. By linearity and uniqueness, one has wu, = u, + u,_. On
the other hand, the maximum principle implies that, for all ¢ > 0, w,, 4(t,z) > 0 and

_(t,z) < 0 almost everywhere in 2. Lastly, one has either ||un+( MNz2) > €/2 or
||un,( )22y = €/2. Therefore, up to extraction of some subsequence, and even if it
means Changlng £/2 into &, one can assume without loss of generality that (3.3) holds
with ug > 0 a.e. in  (and hence, for all £ > 0, u,(¢,-) > 0 a.e. in Q).

Call now u{’ = X {up<rryio and M > 0 large enough so that ||u0—ué\4||L2(Q) < ¢e/2. Let
uM and v, be the solutions of (3.1) with initial conditions u)! and up—ud! € HZ (). One
has u, = ud+v, and, as in (3.2), the function t — |v,(¢, -)|| 2(q) is nonincreasing, whence
(1Y) < [0a 0. ez — lto—d 2y < /2. Thus, [ (1, )20y > /2. On
the other hand, it follows from the maximum prln(nple that, for all t > 0, uM(t,-) < M
a.e. in ). Therefore, even if it means changing £/2 into €, one can assume without loss
of generality that (3.3) holds with 0 < ug < M a.e. in Q (and hence, for all ¢ > 0,
0 <up(t,r) < M ae. in Q).

Since the function ¢ — ||un(t, )| 12() is continuous and nonincreasing, it follows that

Vn € IN, unllL20,x0) < lluollz2@)

14



Up to extraction of some subsequence, one can then assume that u, — w weakly in
L2((0,1) x Q).

Furthermore, it also follows as in (3.2) that Vu,, is uniformly bounded in L2((0,1) x
), namely

1
[ oo Vel < 5ol (3.4)
0,1)x

ow
Therefore, standard arguments give that — P € L?((0,1)x Q) for all 1 <4 < N. Fubini’s
T

theorem then yields that w(t,-) € H'(Q) for almost every t € (0,1).

Fix now any ¢ € {1,---, N} and any function ¢(¢,z) of class C' and with compact
support in (0,1) x IRN. For all n € IN and t € (0,1), the function u,(t,-) is in H}(Q)
and o(t,-) € CH(IRN) with compact support. Hence

ou,,

( ) 2@ le(t, )l 2o

Jyp
, <
[yt 5 e < 15

and it follows from Cauchy-Schwarz inequality that
[[ e
D% 0T

Therefore, one gets from (3.4) that

[ o) = Lo
w = lim U,
onxQ  0x; n—+oo ) Joxa = Ox;

where C' = ||lug||12(n)/v/2 is independent of ¢. One then concludes that w(t,-) € Hg(S)
for almost every ¢ € (0, 1).

On the other hand, the functions (u,): (resp. Au,) converge to w; (resp. Aw) in
D'((0,1) x Q). By dividing by A, the equation (3.1) satisfied by w, and by passing to
the limit n — 400, it follows that v - Vw = 0 almost everywhere in (0,1) x 2. Hence,
for almost every ¢t € (0, 1), the function v(-) - Vw(t,-) € L*(Q2) and is equal to 0 a.e. in
Q.

Lastly, since 0 < u,, < M and since the function ¢ +— |u,(t, -)||.>() is nonincreasing,
it is found that

012 [ [ 2 2 [ 08> 0
Q[ > (0,1)xszu 0.1)x ||U (1, )||L2(Q)

where |€2| denotes the Lebesgue measure of €. Thus,

MQ>// >_
|| 0,1)x "= M
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from (3.3). Since u,, — w weakly in L?((0,1) x Q) and since (0,1) x Q is bounded, one

gets that // Uy — // w as n — +00, whence
(0,1)x2 (0,1)x

2
g
MO >// > S0, 35
| |_ (0,1)xszw_M ( )

To sum up, one knows that, for almost every t € (0,1), the function w(t,-) is in
Hi(2) and satisfies v(-)- Vw(t, -) = 0 almost everywhere in . From (3.5), one eventually
concludes that there exists at least a t € (0, 1) such that w(¢, ) is a nonzero first integral
of vin H}(Q).

That completes the proof of Theorem 3.1. L

Remark 3.3 Under the same notations as in section 2.1, it is immediate to check that
Theorem 3.1 also holds if equation (3.1) is replaced with the more general parabolic
problem

u = div(aVu?) — Av - Vu? + cu?,

where ¢ € L°(Q) and a is a C*(Q) symmetric matrix field satisfying (2.1).

4 Applications to nonlinear propagation phenomena

The previous sections dealt with the asymptotic behavior of some solutions of linear
elliptic or parabolic equations with high first-order coefficients. This behavior is directly
related to the first integrals of the underlying velocity field v.

This section is concerned with nonlinear propagation phenomena for some reaction-
diffusion-advection equations in periodic domains. We study the asymptotic behavior
of the speeds of propagation of pulsating travelling fronts in the limit of large advection
coefficients, and, as in the previous sections, we will shed light on the role played by the
first integrals of the velocity field.

We consider here the general framework described in section 2.2. Let 2 be a domain
satisfying (2.3-2.4) and assume here that d > 1. The latter implies that € is unbounded
in the d variables (z1,---,24). Let v = (v1,---,vy) be an L-periodic with respect to x
and C°(Q) (with § > 0) vector field satisfying (2.6) and

V1 <i<d, / v; dz dy = 0. (4.1)
C

Let a(z,y) = (a;j(7,y))1<ij<n be a symmetric, L-periodic with respect to z, and C3(Q)
matrix field satisfying (2.5).
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Lastly, let f(z,y,u) be a nonnegative function defined in Q x [0, 1] and such that

f is L-periodic with respect to z,

f is globally Lipschitz-continuous and 30 > 0, f is C1 with respect to wu,

V(z,y) € Q f(z,y,0) = f(z.y,1) =0, (4.2)
e (0,1), Y(x,y e, Vi-p<s<s <1, flz,ys) > flzys) '
Vs € (0,1), I(z,y) €, f(x,y,s) >0,

V(z,y) € Q, fl(x,y,0) = lim,_o+ f(x,y,u)/u> 0.

The simplest case of a function f(x,y, u) satisfying (4.2) is when f(x,y,u) = f (u) and
the C% function f satisfies : f(0) = f(1) =0, f > 0 on (0,1), f'(0) > 0 and f'(1) <
Such nonlinearities arise especially in combustion and biological models [1], [15], [31].
Another example of such a function f is f(z,y,u) = h(z,y)f(u) where f is as before
and h is L-periodic with respect to z, Lipschitz-continuous and positive in Q (see [33]
for such an example in ecology).

We are interested with the propagation of fronts in the domain €2, with the diffusion
a, the advection Av and the reaction f, and we want to analyze the asymptotic behavior
of their speeds of propagation in the limit A — 400 : more precisely, for any given unit
vector e = (et -+, e?) in IRY, a function u(t,z,y), defined for all ¢ € IR and (z,y) € Q,

satisfying 0 < u < 1 and solving

{@—dlv(aVU)jLAv Vu = f(z,y,u), t€ R, (z,y)€ Q, (4.3)

ot
v-aVu = 0, te€ R, (z,y) € 0,

is called a pulsating travelling front propagating in direction e with a so-called effective
speed ¢ # 0 if it satisfies

d
_ L -
vk € Hlea \V/(t,l’,y) € R x Qa u (t_ —eaxay) = U(t,I+k,y), (4 4)
i=1 ¢ :
U(t,ZE,y) —+> 0 U(t/CE,y) —_> 17

where the above limits hold locally in ¢ and uniformly in y and in the directions of R?
orthogonal to e. Call & the vector defined by é = (e!,---,e,0,---,0) € IRY.

Under the above assumptions, it was proved in [4] that there exists c%(e) > 0 such
that pulsating travelling fronts u in the direction e with the speed c exist if and only
if ¢ > c*(e) (other results with more general nonlinearities f were proved in [4], see

Remark 4.2 below).

Theorem 4.1 Let e be a unit direction in IR®. Under the above assumptions and under
the notations of section 2.2, one has :

a) if there is a first integral w € T such that / (v-&)w? >0, then
c

0<y< hrgilg Af(l °) < lzrgig) CA/(f) <4, (4.5)
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where

/C( - é)w? m/c(v-é)w2

v-é
0 <7y =max | sup ==———, sup ,
weTt /w weT? m/w2+/Vw-an—/Cw2
c c c c

C(2.y) = fi(2,y,0), m = |0|1/C<,

Ilz{weI,/CwQE/Vw-an>0},
C C

_ 2 .
- {wel o</0gw </va aVw),

and

/C(v - é)w?

0<d=sup =————,
weL /w2
c

b) if all first integrals w € T satisfy / (v-&)w? <0, then ¢ (e) = o(A) as A — +oo.
C

Remark 4.2 (General positive nonlinearities and combustion-type nonlinearities) Since
the necessary and sufficient condition for the minimal speed to have a lower bound which
is linear with respect to the amplitude of the flow only depends on the flow v itself, the
results of Theorem 4.1 can be used to deduce some facts for other nonlinearities f.
Consider for instance either the case of a general nonnegative nonlinearity f satisfying
the first five assumptions in (4.2), but maybe not the last one, or, second, let f be a
nonnegative function satisfying

f is L-periodic with respect to z,

f is globally Lipschitz-continuous and 3§ > 0, f is C° with respect to u,

30 € (0,1), V(x,y)€Q, Vse[0,00U{l}, f(x,y,s)=0, (4.6)
Jp € (0,1 —0), V(z,y) €Q, V1 —p<s<s <1, f(x,y,8) > f(x,y,s),

Vs e (0,1), Fz,y)e€Q, fla,y,s)>0.

It is known (see [4]) that, under the above notations, there still exists a minimal speed
c(e) > 0 in the first case, whereas there is a unique speed c4(e) > 0 and a unique (up
to shift in time) pulsating travelling front solving (4.3-4.4) if f satisfies (4.6). In both
cases, one has % (e) (resp. ca(e)) < ¢y(e), where (e) is the minimal speed associated
with a nonlinearity f satisfying (4.2) and such that f > f. Therefore, ¢’ (e) (resp. ca(e))
= O(A) and

ca(e) cale)

0 < limsup —=—— (resp. limsup c <sup [ (v- 'é)w2// w?, (4.7)
A—+oo A—oo weZl JC C
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where the latter is zero if there is no first integral w € Z such that / (v-&w* > 0
c

(indeed, the choice w =1 gives / (v-é)w? = 0 because of (4.1)). Furthermore,
c

lim supcA—(e) (resp. limsup CA—@) < max_ v(z,y) - €. (4.8)
A—+o00 A A—+4oc0 A (z,y)EN

Many papers have been devoted to the study of travelling fronts for reaction-diffusion
equations of the type (4.3) since the pioneering paper by Kolmogorov, Petrovsky and
Piskunov [31] in the one-dimensional case, for the equation u; = u,, + f(u). Other
results for other nonlinear functions f, including the bistable case, were obtained in [1],
[15], [29]. Periodic nonlinearities f(x,u) in space dimension 1 were first considered by
Shigesada, Kawasaki and Teramoto [33], and by Hudson and Zinner [28]. The case of
shear flows v = (a(y),0,---,0) in straight infinite cylinders 2 = IR x w was dealt with
by Berestycki, Larrouturou, Lions [6], and Berestycki and Nirenberg [7]. The case of the
whole space IRY with periodic diffusion and advection was considered by Xin [35] for a
combustion-type nonlinearity f (for which the speed of propagation of fronts is unique).
The homogenization limit in IRY with coefficients having small periods was investigated
by Fannjiang, Papanicolau [14], Freidlin [18], Heinze [23], Majda and Souganidis [32],
and Xin [36]. Heinze also considered the case of the whole space with small periodic holes
[24]. Formulas for the unique or minimal speeds of propagation of fronts were obtained
by Hamel [22] and Heinze, Papanicolaou and Stevens [26] (similar formulas for systems
of one-dimensional equations had been proved by Volpert, Volpert and Volpert [34]).

Let us temporarily come back to the case of shear flows

in straight infinite cylinders Q = R x w = {(x1,2'), 21 € R, 2’ = (29, -, 2n) € W},
where the section w may or may not be bounded (under our general assumptions, the
boundedness of w simply means that d = 1). Assume that the diffusion a and the
reaction f are independent of x1. Therefore, under the general notations of this section,
Ly can be any arbitrary positive number and the travelling fronts in direction 4+e; can
be written as u(t,z) = ¢(x1 + ct,2’). Without loss of generality, assume furthermore
that a is not constant and has zero average (over w if d = 1 or over the cell of periodicity
if d > 1). Under these conditions, several lower and upper bounds for the speeds of
such fronts were derived by Audoly, Berestycki and Pomeau [2], Constantin, Kiselev and
Ryzhik [12], [30] and Heinze [25] for combustion-type or general positive nonlinearities.
Furthermore, Berestycki [3] proved that, if the function f = f(u) satisfies (4.2) and the
additional assumption f(u) < f(0)u for all u € [0, 1], then 1) ¢%(4e;) is increasing with
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A2 2) ¢y (+ey)/A is decreasing with A and
36 >0, c(+e))/A—F>0as A— +oo.

The latter is more precise than the results of Theorem 4.1 in that case. Such an exact
linear behavior is unknown for the general periodic setting, as well as for a function
f = f(u) satisfying only (4.2), or (4.6), even in the case of shear flows. However, one can
deduce from Theorem 4.1 that, for a shear flow v = (a(2'),0, - - -, 0) with nonconstant «
having zero average, one has

Gl

lim inf (4.9)

A—+00
for any function f satisfying (4.2) and for any unit vector e € IR such that é-e; # 0, the
diffusion a and the reaction f maybe depending (periodically) on z; with period L; (a
more precise lower bound in (4.9) can also be derived from Theorem 4.1). Formula (4.9)

follows from the observation that any nonzero function w = w(z,2") = w(z’) which is
in H is a first integral ; therefore, there are first integrals w € Z such that / (v-&)w? >0
c

(see also the proof of Corollary 4.3 below).

Recently, Heinze [25] showed that, in the case of shear flows in infinite cylinders,
without dependance on x; in the coefficients of (4.3) and with f = f(u) satisfy-
ing (4.2), inequality (4.8) for c%(%e;) may be strict if, for instance, f’(0) is small
enough. Audoly, Berestycki and Pomeau [2] formally derived the asymptotics ¢’ (+e;) ~
Amax,ez(Ea(z’)) in the limit of high reaction (together with high advection). Under
the above assumptions, the latter was made rigorous by Constantin, Kiselev and Ryzhik
[12]. That can also be viewed as an immediate consequence of Theorem 4.1, in a more
general periodic setting and with the direction of propagation which may not be that of
the flow :

Corollary 4.3 Under the assumptions of Theorem 4.1, call ¢y g(e) the minimal speed of
pulsating travelling fronts solving (4.3-4.4) with nonlinearity B f instead of f, for B > 0.
Then, for any e > 0, there exists By > 0 such that, for all B > By,

[w-ew? e cnle)  fLow?
sup 24— — ¢ < liminf 10 < limsup 10 <sup “——-—. (4.10)
weZ /UJ2 A—+o0 A A—+o0 A weZL /’ZU2
c c
In particular, under the above assumptions, let v = (a(2’),0,---,0) be a non-constant
shear flow with zero average, in an infinite cylinder Q2 = IR X w, where ' = (x9,- -+, xN),

where w may or may not be bounded, and where a and f depend (periodically) on x1 with
period Li. Then, for any e > 0, there exists By > 0 such that, for all B > By,
(¢) a,p(€)

C*
max (€-e; a(2')) —e < liminf 2222 < limsup & < max (€-e; a(z)). (4.11)
=) A—+4o0 A—too A r'€w

20ne here makes a slight abuse of notation by calling ¢% (+e1) the minimal speed of the travelling
fronts propagating in the direction £z;.
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The proof of this corollary is given at the end of this section.

Another special class of flows are the rotating flows. Consider, say, a two-dimensional
rotating flow of the type v = (—0,%, 0,1), where 1)(x, y) = sin(z) sin(y). Under the above
notations, formal arguments by Audoly, Berestycki and Pomeau [2] lead to an asymptotic
behavior proportional to ¢’ (e;) ~ BAY* as A — o0, for some 3 > 0. The estimate
¢ (er) > KAV, for some positive constant s, was obtained by Kiselev and Ryzhik [30]
(these estimates actually hold for the bulk burning rate see [11] which concerns more
generally speaking the solutions of the Cauchy problem (4.3) in infinite cylinders and
coincides with the speed of propagation for travelling fronts, if any).

Theorem 4.1 applied to this case gives the following additional information that, in
any direction e, the minimal speed can not grow like A :

Corollary 4.4 Let v = (—0,¢,0,%) be a two-dimensional rotating flow where, say,
Y(x,y) = sin(x)sin(y). Then, under the notations of Theorem 4.1, c’y(e) = o(A) as
A — +o0, for any direction e of IR?.

Proof. For such a flow v, it is easy to see that, for any direction e and any first integral

w € Z, then /( )2(11 -e)w? = 0. The conclusion follows then from Theorem 4.1. r
0,2m

Before going into the proof of Theorem 4.1, let us lastly point out another consequence
of Theorem 4.1, which deals with the case of small diffusion and bounded (from above
and below) advection and reaction :

Corollary 4.5 Under the notations at the beginning of this section, let v:(e) > 0 be the

minimal speed of propagation of pulsating fronts u solving (4.4) and

{ @ — 8diV(aVU) +v-Vu = f(xayau)a le R) (Ivy) € Q’ (412)

ot
v-aVu = 0, te R, (z,y) € 09,

a) Then

/(v é)w?

liminf ~7(e) > sup Z¢&—r—. (4.13)
e—0t weZL w2
c

b) Furthermore, if v is a shear flow v = (a(2),0,---,0) with zero average, in an
infinite cylinder Q@ = IR X w, where ' = (x5, -+, xy) and w may or may not be bounded,

if aix = 0 fori > 2, if a1y is constant and if a and f only depend on z', then

v (+e;) — max (fa(2') ase — 07,
' €W

Corollary 4.5 is proved at the end of this section.

21



Remark 4.6 Other asymptotics have been considered in the literature. Many works
have for instance dealt with the solutions of Cauchy problems for equations of the type
(4.12), with small diffusion ¢, together with large reaction ¢~1f. Typically, the solutions
of such Cauchy problems converge as ¢ — 07 to two-phase solutions of Hamilton-Jacobi
type equations, separated by interfaces : see Freidlin [19] and Majda and Souganidis
[32], where other spatio-temporal scales and various homogenization limits have also
been considered.

Let us now turn to the
Proof of Theorem 4.1. Let us begin with the

Proof of the lower bound of a). Let e be a unit direction of IR? and choose any first
integral w € 7 such that

/C(v-é)w2 > 0.

We shall now estimate the minimal speed ¢’ (e) from below for large A.
Remember that ¢ is the function defined in Q by ((x,y) = f/(z,y,0). It follows from
[4] and [5] that

(e > min 11 (4.14)

where u() is the principal eigenvalue of the operator
Lyt == div(aVy) — M[div(aé ¥) + € - aVy] — Av - Vb + (NAv - € + N\?é - aé + ()

acting on the set F of functions v (z,y) which are L-periodic with respect to x in 2 and
satisfy v - a(—é\) + Vi) = 0 on 9.3

The right-hand side of (4.14) only depends on e, the domain €2, the coefficients Av
and a, and the dependence on f is only through the f!(-,-,0). Let us also mention that
the equality holds in (4.14) under the additional assumption f(z,y,u) < f!(z,y,0)u for
all u € [0, 1] and for all (z,y) € Q (see [5]). In the case where Q = RN, a = I, v =0 and
[ = f(u) satisfies (4.2) with f(u) < f'(0)u in [0, 1]), the latter reduces to the well-known
KPP formula ¢ (e) = 24/ f/(0) for the minimal speed of planar fronts [31].

Fix any positive A and call ¢ the unique (up to multiplication) positive (in ) solution
1/1 S E)\ of
L = p()Y. (4.15)
First, divide (4.15) by ¥ and integrate over the cell C'. Using (2.6) and the boundary
conditions satisfied by 1, it follows that

Vi - aVi é-aVi
/C SR

3Such operators Ly also arise in Bloch eigenvalue problems (see [9], [10]).

A2 - aé + ¢ = p(N)|C].
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Therefore,
el = [ (SF 0] -a(TE 0] 4

) = m=C [ ¢ (4.16)

whence

because of (2.5).
Then, multiply (4.15) by w?/1, where w € T is a first integral such that /C(v-é)w2 >
0. Observe that the term
/ Av - —w

vanishes after integration by parts since v - Vw = 0, since v, ¥ and w are L-periodic with
respect to x, and because of (2.6). Therefore,
\ ,€-aVy

Vi - aV wVw - aV
Nfw = | ——w?—2———— — 2w
#l )/c /c P ¥ ¥ (4.17)
+/02)\w € - aVw + Nw?€ - aé + Cw? + MA(v - &)w?.

For any ¢ € (0,1), the first three terms in the right-hand side of (4.17) can be estimated
as follows : Vi - aVi v v -
a s wVw-a s€-a
— W - 2— — 2w —
o 7 ;
Vi -aViy wVw - aVi) / Vi -aViy 2 € aV
N PAS AL AL 4 -~ 22 9y
/c ( v w 7 + g ( ) e w w 7
1
> —/ -Vw - aVw + —— )\2w2é - aé
ct 1—-
because of (2.5). Putting the above inequality into (4. 17) leads to

/w > / < Vw - aVw + — N2w?é - aé)
L=t (4.18)
+/ 20w é - aVw + Cw? + NA(v - &)w?.
c

Let us set

vz/Vw-an>0 and n:/wzé-aé>0.
c c
Maximizing the right-hand side of (4.18) over all ¢ € (0,1) gives, with ¢t =

(L+2am)
)\)/sz > /C—<1+)\\/2>Vw aVw — )\\/;we aé + 2 \w é - aVw

+/0Cw2 + AA(v - &)w? (4.19)

= /C(Cﬂuﬂ—Vw-an)—)\\/g/cz-ozz—k)\A/C(v-é)w2
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where z = \/§Vw — W €.
Y

Let us now consider two cases, according to the sign of / Cw? — Vw - aVw.
c

Case 1 : /Cw2 > /Vw -aVw > 0. From (4.14) and (4.19), it follows that
c c

cZ(e)ngg \/7/2 - /w)w

lim inf < ( ) / il

A
—+00 /w
n case 1.

Case 2 : 0 < /Cw2 < /Vw -aVw. It follows from (4.16) and (4.19) that, for any
c c

A>0,
@ ZmaX(A,h()\)>

/w</ ~ V- aVuw) \[/zaHA/ve)

The functions A — m/X and h are respectively decreasing and increasing, and, for A
large enough, their graphs have exactly one intersection point, which is the minimum
over all positive A of the function A — max(m/\, h(\)). Since ¢’ (e) > minyso pu(A)/A, a
straightforward calculation gives
m / v Ee)w
lim inf A

Amtoo m/w —|—/Vw aVw — /Cw

2

Therefore,

where

in case 2.
Putting cases 1 and 2 together completes the proof of the lower bound in part a) of
Theorem 4.1.

Let us now turn to the

Proof of the upper bound in a) and proof of part b) of Theorem 4.1. Fix a direction
e of IR? and assume that limsup,_,, . ¢ (e)/A > 0 and choose any positive number x
such that

0< k< hmsup chle ) (4.20)
A—+o0 A
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Let g = g(u) be a function satisfying (4.2), and such that f(z,y,u) < g(u) for all
(z,y,u) € Q2 x [0,1] and g(u) < ¢'(0)u for all u € [0,1]. Call v%(e) the minimal speed
of pulsating travelling fronts solving (4.3-4.4) with the nonlinearity ¢ instead of f. Let
X : IR — IR be a smooth nondecreasing function such that x(s) = 0 for all s < 1,
0 < x(s) < 1forall se (1,2) and x(s) = 1 for all s > 2. For each 6 € (0,1/2),
the function fy(x,y,s) = x(s/0)f(x,y, s) is of the type (4.6). It was proved in [4] that,
for each 6 € (0,1/2), there exists a unique speed cqg(e) and a unique (up to shift in
time) pulsating travelling front solving (4.3-4.4) with the nonlinearity fp. Furthermore,
cagle) — cile) as 0 — 07.

Similarly, there exists a unique speed v49(e) and a unique (up to shift in time)
pulsating travelling front solving (4.3-4.4) with the nonlinearity go(s) = x(s/0)g(s) ;
furthermore, y44(e) — vii(e) as @ — 0. But the results in sections 3 and 4 in [4] yield
cap(e) < yaple) for each 6 € (0,1/2) (since fy < go and both fy and gy satisfy (4.6)).
Therefore, ¢ (e) < v3(e).

From (4.20), there exists then a sequence A,, — 400 such that

Va,(€) = KAy, (4.21)

for all n € IN.

On the other hand, since g satisfies (4.2) and g(s) < ¢’(0)s for all s € [0, 1], it follows
from [5] (as already noticed at the beginning of the proof of Theorem 4.1) that, for all
A€ R,

ey ka(N)
vale) = min —=,

where k4(\) is the principal eigenvalue of the elliptic operator

Ly = div(aVy) — A[div(eé ) +é-aVy] — Av - Vi
+(ANAv - €+ A% - aé + ¢'(0))v

acting on the set F) of functions ¢ (z, y) which are L-periodic with respect to x in 2 and
satisfy v - a(—éXp + Vb)) = 0 on 0.
From (4.21), it resorts that

YA>0, Vn € IN, ka,(N) > kAA,. (4.22)

Fix any € > 0. Take )\, = (¢4,)"! in the above inequality and call ¢, € F,, the
principal eigenfunction of

Lapann = div(avwn) (eAn)~ [dlv( € Yyn)+é-aVih,| — Ayv -V,
+(e7tw- e+ (eA,) 2 +¢'(0))y, (4.23)
- kAn()\n)q/)n

such that [[vy | L2y = 1.
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Multiply the above equality by 1, and integrate by parts over C'. One obtains

R e R e Oy
: (4.24)
> / w2

from (4.22) and due to the definition of A,. Since / Y2 = 1 and since the matrix a is

uniformly elliptic, one concludes that the sequence ||1/?n|| (o) is bounded. It also follows
that the sequence k4, (A,) is bounded (from above and below by two positive constants).

From Rellich’s theorem, there exists then a subsequence n’ — +o0o and a function
w. € H}.(Q) such that ¢, converges to w. weakly in H} ., strongly in L7, and almost
everywhere in {2. The function w, is then L-periodic with respect to x, and it is not the
zero function since |lw;||r2c) = 1.

Multiply (4.23) by 1/A,, and pass to the limit in the sense of distributions in €. It
follows that v - Vw. = 0 almost everywhere in €. That means that w. is a (nonzero)
first integral of v.

Passing to the limit n’ — oo in (4.24) immediately leads to

(£-st0) [z fo-omt

Therefore, choosing e smaller than x/¢’(0) proves the existence of a first integral w. € 7
such that / (v-&)w? >0 and
c

AGEE: L ew?

< sup ————

+¢e4'(0 +¢4'(0).
/w weTL /w

That already proves part b) of Theorem 4.1. Furthermore, the passages to the limit

£ — 0" and then k= limsup ¢’ (e)/A lead to
A—+o00

c*( ) / (v- e)w2
limsup 4+~ < sup 2——
A—+o00 weL /UJ

That completes the proof of Theorem 4.1. C

Let us now turn to the
Proof of Corollary 4.3. The upper bound in (4.10) follows from Theorem 4.1 and

(4.7), which holds whether or not there exists w € Z such that / (v-é)w? > 0.
c
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The lower bound in (4.10) is immediate if all first integrals w € T are such that
/ (v-&)w? <0, since ¢ z(e) > 0 for all A and B > 0. In the other case, let any £ > 0
O )

and choose a first integral wy in Z such that / (v-é)wi > 0 and
c

2,2 2, 2
/C(U é)w ey /C(v é)w;
SUp “—— — e < T
wel /U} /wo
c c

Let ((z,y) = f!(x,y,0). Since ¢ is continuous and positive in 2, there exists By such
that, for all B > By,

/ Bng > / Vuwy - aVwy.
c c

Therefore, for all B > By, under the notations of Theorem 4.1, w, belongs to the set Z!

associated to the nonlinearity B f. Hence,
o2 ~\o 2
gl Jeeed [
VB > By, l}lm inf > > sup

c —
—to0 A T / w? weT / w?
C C

To prove (4.11) in the case where v = (a(z’),0,---,0), it is enough to prove that

/ (v- &)w?
sup 24— = max (é-¢; a(z)).
weTL / w2 z'€w

c

E.

The left-hand side is clearly less than or equal to the right-hand side. On the other hand,
fix any € > 0 and choose an open set U C @ such that

V' eU, é-e; a(z') > max (€-e; a) —e.
w
Then take a smooth nonzero function wy = wy(z’) in H whose support is such that

supp(wy) C U Uu+k.
kELQZX"'XLdZ

One can immediately see that wy is a first integral and

/C(U-é)w2 N /(v-é)wg

sup - ; C S 2 max (€-e; ala)) —e.
/e_
wel /U) /wO z'ew
c c
Since € > 0 was arbitrary, one gets the desired result. L
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Proof of Corollary 4.5. Proof of a). Let us first observe that any solution u(t,z,y)
of (4.12) and (4.4) with the speed c gives rise to a solution w(t, x,y) := u(t/e, z,y) of

1
{ aa—l: _le(avw) + g -Vw = gf(xvva)a te R’ (l'/y) = Q’
v-aVw = 0, te R, (z,y)€ 04,

satisfying (4.4) with the speed c/e. Therefore, under the notations of Corollary 4.3, one
has

vi(e) = eci-1.-1(e), (4.25)

where ¢Z_; __:(e) is the minimal speed of pulsating travelling fronts solving (4.3-4.4) with
A = 1/e and with the nonlinearity f/e instead of f.

If all first integrals w € Z are such that /(v -&)w? < 0, then (4.13) is immediate
c

since 2 (e) is positive for any € > 0.
Otherwise, for any 0 > 0 small enough, there exists a first integral wy € Z such that

Lw-aut [

(v
ey — Z sup————— — ) > (.
/wg wel /U)2
C C

Take M large enough so that

- é)w?

/MCwSZ/VwO-anO.
c c

Theorem 4.1 yields that

SN2 N2

(e / (v - €)wp / (v-éw
lim inf = 1Ml( ) > =C > sup 24— — 6. (4.26)

=0T e /w2 weL /w2
0
c c

On the other hand, as in the proof of Theorem 4.1, it follows that the minimal speed
c* is nondecreasing with respect to the nonlinearity f. Therefore, ¢Z-. _.(e) > cf-1 ), (e)

for € small enough. Putting that together with (4.25) and (4.26) leads to

/ (v-&)w?
liminf v*(e) > sup 24——— — 4.

e—0+ weT w?

c

Since 0 > 0 was an arbitrary small enough positive number, the inequality (4.13) follows.
Proof of b). Let us deal with the case of the propagation in the e;-direction (the
propagation in the —e;-direction can be treated similarly). As already observed in the
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proof of Corollary 4.3, the following formula

/C(v -ep)w?

sup ““——— = max a(z')
weT /w2 ' €W
c

holds for a shear flow v = a(z2')e;.
In order to get the upper bound for vZ(e), let us use a formula derived in [22] :

(_6div(a(£v')vw) + f(z'w) + a(:c’)> ,

Op, W

vi(er) =min  sup
(z1,2")EN

where £ = {w € C?(Q), w is periodic with respect to (zg,---,z4) with the periods
Ly, -+, Lg, O,w = 0o0n 09, d,,w < 0in Q and w(—oo,z’) = 1, w(+oo, 2') = 0 uniformly
in 2/ € w}. Actually the above formula was proved in [22] in the case of a diffusion
matrix ¢ = Id, with a nonlinearity f not depending on z’ and in an infinite cylinder
with bounded section w. The generalization to our case with diffusion and reaction
depending on 2’ with bounded or unbounded section w is immediate from the proof in
22].
Since a;; = 0 for ¢ > 2 and since aq; is constant, if follows that

<_5a11w”(561) + g(w(mﬂ))

w () + maxa(z'),

r'ew

* .
e;) < min su
IYE( ) w=w(x1)EE xle%

where ¢ is a given function satisfying 4.2 and such that g(u) > f(2/,u) for all (2',u) €
w x [0, 1]. In other words, from [22],

7z (e1) < K2+ maxa(z'),

T’ €W
where k! is the minimal speed of planar travelling fronts u(t, x1) = ¢(21 — ct) solving
Up = EQ11Ug, 2, + g(U)

with ¢(—o0) =1 and ¢(+00) = 0. It is immediate to check that k* = \/ek}. Eventually,
one concludes that

limsup . (e;) < maxa(z).
PR ' €w

That completes the proof of Corollary 4.5. L

5 Discussion and open questions

The aim of this section is to set a list of open questions and generalizations of the results
of the previous sections.
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Theorem 0.3 gives a necessary and sufficient condition for the first eigenvalues A4 of
problem (0.1), with a divergence-free vector field v, be bounded as A — +o00. Moreover,
the limit of A4 as A — 400, which always exists, is either finite or equal to +00. In both
cases, this limit is not smaller than any of the A4’s. On the other hand, (1.5) implies
that, for all A € IR, Ay > Ao, where \g corresponds to (0.1) with A = 0 (in other words
Ao is the first eigenvalue of the Laplace operator with Dirichlet boundary conditions).
Furthermore, one can observe from (1.2) that A4 is a nondecreasing function of |A| as
soon as v is a divergence-free gradient field, and it is increasing under the additional
assumption that v is not identically equal to 0. However, this monotonicity property
remains open for a general divergence-free vector field v.

As far as the first eigenfunctions ¢4 are concerned, it followed from the proof of
Theorem 0.3 (see Corollary 1.5) that, if the field v has first integrals, then each sequence
(¢4, )nerv of normalized eigenfunctions has at least a subsequence (¢4 ), Which con-
verges as n’ — +o0o to a minimizer of the Rayleigh quotient among all first integrals
of v in Zy. If this minimizer is unique (up to normalization), then the whole family
(pa) converges to it as A — +oo. We gave in Remark 1.6 an example of a rotating
field v in the unit ball, for which the Rayleigh quotient has a unique minimizer (up to
normalization) among all first integrals. This property could certainly be generalized to
more general rotating type vector fields having at least one first integral in Z, whose level
sets are connected hypersurfaces. We also showed in Remark 1.6 that the minimizers
of this Rayleigh quotient among all first integrals may not be unique. But even in the
example we gave in Remark 1.6, the whole family (¢4) still converges as A — +o00. One
can wonder whether or not this convergence property always holds. Furthermore, this
question of the convergence of the (normalized) first eigenvalues can also naturally be
asked in the case where v has no first integral.

Another natural question is about the other eigenvalues. For instance, for problem
(0.1), we proved that the first eigenvalues are bounded if and only if the field v has
first integrals. Therefore, if there is no first integral, the other eigenvalues go to +o0o as
A — +o00. But if there are first integrals, can one say that the second eigenvalues are
bounded as A — +o0o 7 And so on for the other eigenvalues ? We conjecture that the
answer is yes.

Let us notice here that, under some additional regularity assumptions for v, the results
of Theorem 0.3 could also be formally derived from the following variational formula by
Holland [27] for the first eigenvalue A4 of problem (0.1), namely

L [IV6F +4v- (V6 + 0¥V - [VVI26?
A4 = min max

pED Vel (Q) / 2 '
ch

where & = {¢p € C*(Q)NC(Q), ¢ > 0in Q, ¢*(z)/d(z) — 0 as z — N, x € Q}, and

(5.1)
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d(x) is the distance of = to 9. At least under some smoothness assumptions, one has

A/Qv-(vcp+¢VV)¢:A/Q(1 —9V)(v- Ve)o.

If ¢ € ® is not a first integral of v, then there is an open set U C €2 such that v- V¢ does
not vanish in . The choice V = (1 — x?¢ v - V@) /2, where ¥ is a nonzero Cj function
whose support is included in 4, implies that, for such a ¢, the maximum with respect to
V' in the right-hand side of (5.1) goes to +00 as A — +oo. This is a formal indication,
but not a proof, suggesting that Ay — +00 as A — +00 when v has no first integral and
that the A4’s are expected to converge to the right-hand side of (0.2) as A — +oo if v
has first integrals.

The aforementioned questions or comments have their similar counterparts for the
more general Dirichlet or Neumann/periodic problems (2.2) or (2.7).

Nevertheless, the simple question of finding a necessary and sufficient condition for
the boundedness of the first eigenvalues remains open for similar elliptic problems with
Robin type boundary conditions. The same question can also be asked for more general
elliptic problems with non self-adjoint main part, even with Dirichlet boundary condi-
tions. Namely, consider the following eigenvalue problem

—0;j0;ijpa + Av - Vs + 0,004 +cpa = Aapa in Q
o 0 on 052,

where € is a C? bounded domain of IRV, v is a bounded vector field such that div v = 0
in D'(Q), b; € C(Q), ¢ = c(x) € L=(Q) and a(z) = (a;;(z))1<i j<n is a C*(Q) symmetric
matrix field satisfying (2.1). Under these conditions, one can easily check that if there
exists a sequence (A4, )nev Which is bounded, then, after normalization in L? norm, a
subsequence (@4 ), converges strongly in L* and weakly in H' to a first integral of v
in Zy. Conversely, is it true that if there is a first integral then the first eigenvalues are
bounded ? Furthermore, even if a sequence (A4, ),en is bounded, does that imply that
it converges, and that the whole family (A4) converges as A — +o0o ? The answers are
not clear.

To finish this section, let us mention that one can also ask about the generalizations of
Theorems 0.3, 2.1 or 3.1 for elliptic or parabolic problems with large drift in unbounded
domains with Dirichlet asymptotic conditions.
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