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Gradient estimates for elliptic regularizations
of semilinear parabolic and degenerate elliptic
equations

Henri Berestycki * Francois Hamel f

Abstract. This article is chiefly concerned with elliptic regularizations of semilinear parabolic equa-
tions of the type
euy —up + Lu+ f(u) =0

where L is an elliptic operator in the space variables x. We establish L gradient estimates up to
the boundary which are uniform with respect to the small elliptic regularization parameter . Such
estimates were used for instance in proving the existence of pulsating travelling front solutions for
reaction—diffusion equations in a previous work [2].

Similar z-gradient estimates are also obtained, both in the interior of the domain and up to the
boundary, for elliptic (in (z,y) variables) regularizations

Lyu+eLlgyu+ B(z,y) Vi u+ f(z,y,u) =0

of degenerate elliptic equations.

1 Introduction and main results

The aim of this paper is to state some L> gradient estimates which are uniform with respect to

some small parameter . We are concerned here with bounded solutions of some regularizing

elliptic approximations of parabolic equations or more general degenerate elliptic equations.
To illustrate our results on a simple case, consider the semilinear parabolic equation :

w = Azu+ f(u). (1.1)

set in a domain (in (¢, ) variables)  C IR x IRV. Associated with this equation, we can define
a family of elliptic equations :

cuy — up + Agu+ f(u) =0 (1.2)

For each € > 0, this equation is elliptic in all the variables X = (¢, z).
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Problem (1.2) formally degenerates to a parabolic equation as ¢ — 0. The problem we
investigate here is concerned with obtaining uniform gradient estimates for the solutions of
(1.2), uniformly with respect to e, say € € [0, 1]. Actually, gradient estimates can be obtained
from classical parabolic theory for e = 0 or from classical elliptic theory for any given gy > 0.
But the classical elliptic a priori estimates blow up when € — 07. The purpose of this paper is
to derive some estimates which are uniform with respect to € € [0, 1]. Such a priori estimates
are needed in order to pass to the limit e — 0" for solutions of equations of type (1.2).

More precisely, consider a sequence of classical solutions u® of (1.2). Under some boundary
conditions on 9N for the functions u¢, uniform H?! estimates can easily be derived by integrating
equation (1.2) or by multiplying it by u® or u$ (see e.g. Lions [11] or Lions and Magenes [12]).
In some situations, stronger pointwise estimates are required. For instance, this is the case
when one wants to pass to the limit in some quantities like maxx u® where K is a compact
subset of ().

Such a case occured in [2|, where elliptic regularizations of the type (1.2) were used in
the analysis of pulsating travelling fronts for a class of parabolic reaction-diffusion-advection
equations in periodic domains. Actually, equations more general than (1.1) or (1.2) were dealt
with in [2]. To make sure that the limiting function as ¢ — 07 is not trivial and satisfies some
a priori upper bounds, a normalization of the type maxy u® = a was used, for some constant
a independent of ¢ and for some compact set K. Uniform gradient estimates of the type (1.5)
or (1.7) below then allowed us to pass to the limit ¢ — 0%,

Let us also mention that Heinze [7] and Xin [14] used similar limiting procedures for
equations in the whole space, for which estimates of this type are useful.

Regularization techniques are a very classical approach and uniform gradient estimates have
also been derived in other contexts. Let us mention for instance regularizing approximations
of free boundary problems with singular reaction terms [1], [3], or the viscous approximations
of some models in fluid mechanics [4], [5].

Theorem 1.6 below states some x-gradient estimates for bounded solutions of a more general
class of elliptic regularizations. There we study degenerate equations which are elliptic with
respect to the Ny first variables © = (z1,--+,25,) (1 < Ny < Ny) and which are degenerate
in the Ny — Ny other variables y = (xy, 41, -, Zn,). Although the class of elliptic equations
dealt with in Theorem 1.6 is more general than these in Theorems 1.1, 1.2 and 1.3, we choose
to state Theorems 1.1, 1.2 and 1.3 first. The latter are concerned with elliptic regularizations
of parabolic equations. Theorems 1.2 and 1.3 below are devoted to some uniform pointwise
gradient estimates for bounded solutions of a more general class than (1.2) of elliptic regular-
izations of parabolic equations. Both interior and boundary estimates for the gradients in x
variables are derived. However, to illustrate our results, we first state Theorem 1.1 on interior
x-gradient estimates in the case of problem (1.2).

In what follows, for any d and & € IR, |¢| denotes the euclidian norm of € : [£] =

VEE 4 -+ &2 For any r > 0, B,(§) denotes the open ball with center £ and radius r. For
any sufficiently smooth function v defined in a set D C IRM*!, with the generic notation

(t,z1,+-+,zy) for the points of RN*! we set vy = Ov, v; = Opv, for 1 < i < N, and call
oscp(v) = supp v — infp v (the oscillation of v in D) if v is bounded in D. We also use the
usual summation convention for the partial derivatives. Lastly, d(X, D) denotes the euclidian
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distance of a point X to the set D, under the convention that d(X, D) = +o0 if D = 0.

Theorem 1.1 (Interior estimates for problem (1.2)) Let  be an open subset of IR x RN . Let
[ be a C*(IR) function, with bounded derivative.
Let 0 < e <1 and let u be a solution of class C3(2) N LS.(Q) of equation (1.2) in €.
Then, for all X € (2,

1
LX) < 1+ ———= 1.
TP < 0 (14 gt ) (13
where

C'=Cy x ||u||L°°(BX) x (oscpy (u) + ”fHL"O([mX,MX])):
Bx = Baxp0)2(X), mx = infp, u and Mx = supg,u. The constant Co = Co(N, || f'|| Lo ()
only depends on N and || f'|| Lo (m)-

The following theorem deals with interior z-gradient estimates in the case of a elliptic
regularizations of more general parabolic equations :

Theorem 1.2 (Interior estimates for elliptic regularizations of parabolic equations) Let € be
an open subset of IR x IRN. Let (a)1<; j<n be a CY(Q) symmetric matriz field such that there
exists o > 0 with
V(X&) eQx RY, > a(X)&& > ol¢)?
1<i,j<N
Let (B%)1<i<n be a CH(Q) vector field and f = f(X,u) be a CL (2% IR) function such that 8, f
is bounded in Q2 x IR. Let b > 0 be such that, for all 1 <i,7 < N, ||aij||cl(§) + ||Bi||cl(§) +
10uf || Loo(oxm) < 0.
Let 0 < e <1 and let u be a solution of class C3(2) N L$2.(Q) of the equation

eug — up + o (X)ui; + B(X)u; + f(X,u) =0 in Q. (1.4)

Then, for all X € €0,

IV,u(X)? < C x (1 + m> , (1.5)

where
O = Oy x [ [l o) (050 (1) + | Fllzo By ximsontd) + 1Vef [B(mesime ar) |

Bx = Bax,00)2(X), mx = infg, v and Mx = supp, u. The constant Cy = Cy(N,0,b) only
depends on N, o and b.

Theorem 1.3 below is devoted to z-gradient estimates up to the boundary for the same
class of problems (1.4) :



Theorem 1.3 (Estimates up to the boundary for elliptic regularizations of parabolic equa-
tions) Under the conditions of Theorem 1.2, let X be a smooth (at least globally C*) subset
of 02 and assume that, at each point X € X, the unit normal v = v(X) to Q ezists and
that its t-component is zero. Assume that for each X € X, there exists rx > 0 such that
0N B, (X) CX. Let p be a C3(X) unit vector field whose t-component is zero and assume
that there exists v > 0 such that p(X) - v(X) >~ >0 for all X € 3.

For each X € 0 and each § > 0, let I'xs denote the connected component of 02 N
Bs(X) containing X. Assume that there exists n > 0 such that, for all X € ¥, the connected
component of B,(X)\I'x,, containing X — rv(X) for r > 0 small enough is included in ).
Assume also that the function f is in CL.((QUX) x IR).

loc

Let 0 < e <1 and let u be a solution of class C*(QUX)NC3*(Q) N L2

loc

(Q2) of the equation

pw-Vxu = 0 on . '
Then, for all X € QU X,
|V u(X)|2<C>< 1+; (1.7)
* - d(X,00\X)% )’

where

C'=Cyx [ [ul| oo (Bxn0) (05CBxna (W) + || fllzoeBx e xpmxaax]) + [ Vaf | Fos(Byna xim.rre) } ,

Bx = Baxoeo\n)2(X), mx = infpyrou and Mx = supp rqu. The constant Cy =
Co(N,0,b,m,7, 11, X2) only depends on N, o, b, 1, 7, ||ppllcszy and on the bounds of the deriva-
tives up to the third order of the functions representing 3.

Remark 1.4 Theorem 1.3 is clearly stronger than Theorem 1.2, which corresponds to the
case where ¥ = (). But for the sake of clarity we chose to write two different results for the
interior estimates and for the estimates up to the boundary.

Remark 1.5 Let us mention now some special cases of applications of the above Theorems
1.1, 1.2 and 1.3,

The first and simplest case is when the function u is constant. In this case V,u = u; = 0,
whence f(X,u) = V,f(X,u)=0in Q,! and the right hand sides of inequalities (1.3), (1.5) or
(1.7) are equal to 0.

Assume now that (uf)g<.<; is a family, bounded in L>((), of solutions of class C*(Q U
¥) N C3(Q) of equations of the type (1.2), (1.4) or (1.6), with some coefficients o, 3¢, f¢ or
1 such that the hypotheses of the above theorems are valid for some o, b and 7 uniformly
in g,-in case where such assumptions make sense, according to which problem (1.2), (1.4) or
(1.6) is concerned and assume that supg<.<; [|#°]|csx) < 0o and that the family (f¢)o<c<1 is
bounded in C*(Q x IR) (this is the case if there is only one such function f). Then the above

Lin case of problem (1.2), one then has f(u) =0 in



theorems say that the family (u®)p<.<; is bounded in CJ,.(Q U X) with respect to z, namely,
for each compact set K C QU X, there exists Ax > 0 such that

) <e< 1, ”vaEHL‘X’(K) < AK.

In particular, if  is a straight infinite cylinder of the type IR x D, where D is a C® bounded
domain of RN, and if ¥ = 99, then |V,u®(X)| is bounded uniformly with respect to X € Q
and independently of €. This case occured in our previous paper [2]. Gradient estimates of
the type (1.7) allowed us to pass to the limit in some quantities like max u®, where K was a
fixed compact subset of €.

For similar problems with C! source terms f(X), interior estimates involving the C'' norm
of f have been obtained by Lieberman [10]. Similar estimates up the boundary involving the
C? bound of the trace of u on the boundary have also been derived in [10]. Our point of view
here is different since the nonlinear term f depends on X as well as on v and, therefore, the
C! bound of the function X — f(X,u(X)) is not given. Furthermore, no assumption is made
here on the C? bound of the trace of u on the boundary.

As already emphasized, when, say, ¢ = 1, the gradient estimates (1.3), (1.5) or (1.7) are
particular cases of classical elliptic estimates (see e.g. [6]). But, as far as we know, for regu-
larizing problems of the type (1.2), (1.4) or (1.6), either interior or boundary estimates have
not been yet obtained uniformly with respect to small €.

Further on, a parabolic equation can also be viewed as a degenerate elliptic equation,
which is elliptic in  and degenerate in ¢. It is then natural to wonder whether similar gradient
estimates hold for more general degenerate elliptic equations. More precisely, the following
Theorem 1.6 is concerned with some L gradient estimates with respect to a set of variables
x, for elliptic regularizations of equations which are elliptic in  and degenerate in another set
of variables .

In what follows, for 1 < N; < N,, we use the generic notation

X:(I,y), 'T:(xl)"'?le)? y:(l'NH—l:"'axNz)

for the points in R™?, and we write

Nl N2
R =>_l&l, k= > l&l®
1=1 I=N1+1

for all £ € IRM2. For any sufficiently smooth function v defined in a set D C IR™2, we use the
notations v; = 0,v, v; = Jy;v and v = O, v for the partial derivatives of v with respect to
the variables z; and z;, with 1 < ,5,k < Ny, and v; = 9,v and v, = 0,,,v for the partial
derivatives of v with respect to the variables z; and z,,, with Ny +1 <1,m < N,. We use the
same type of notations for the higher-order derivatives. For instance, the notation v; = Qfmv
means the partial derivative of v with respect to the variables z; and x;, with 1 <17 < N
and Ny +1 <1 < N,. More generally speaking, we use the notation v; = 0,,v for the partial
derivative of v with respect to the variable xy, with 1 < I < N;. We also use the usual

summation convention for the partial derivatives.



Theorem 1.6 (Interior and boundary estimates for elliptic regularizations of more general
degenerate equations) Let 1 < Ny < Ny and let Q2 be an open subset of R™?. Let (a')1<1 7<n,
be a C*(Q) symmetric matriz field and assume there exist o1 > 0 and oo > 0 with

> al(X)&g; = aulel >, a"(X)&m = olé] (1.8)

1<4,§ <Ny Ni+1<l,m<Ns

for all (X,€) € Q x RYN. Let (') 1<1<n, be a CHQ) vector field and b > 0 be such that, for
all 1 < I,J < Ny, [la"lagy + 16" |y < b Assume also that o = 3} = 0 in Q for all
1<EZS N and Ni+1<[,m< Ns,.

Let Y3 be a smooth (at least globally C?) subset of 02 and assume that, at each point X € X,
the unit normal v = v(X) to Q) exists and that its y-components are zero. Assume that for each
X € X, there exists rx > 0 such that 90 N B, (X) C X. Let p be a C*(X) unit vector field
whose y-components are zero and assume that there exists -y > 0 such that p(X)-v(X) >~ >0
for all X € X. Assume moreover that there exists n > 0 such that, for all X € X, the connected
component of B, (X)\I'x,, containing X —rv(X) forr > 0 small enough is included in §2, where
I'x,, has the same definition as in Theorem 1.3.

Let f = f(X,u) be a CL(QUX X R) function such that d,f is bounded in Q x IR and

10uf || Loeaxmy < b. Let 0 < e <1 and letu be a solution of class C*(QUX)NC?(Q)N L2, (QUY)
of the equation

o (x, y)ug; + 2e0’ (@, y)ug + o™ (y)u,
+B4 2, y)u; + B (y)w + f(z,y,u) = 0 in (1.9)
p-Vxu = 0 onX.

Then there ezists €y = Eo(N1, No, 01, 09,b,7, 11, 2) € (0,1] such that if 0 < e < &,

for all X € QU X, where
C'=0C3 % [ [ull 2o By ney (03¢ na (W) + | fllLoeBx e ximxarx])) + 1Vaf oo (Byxno ximx.arx) } :

Bx = Baxoax)2(X), mx = infpinqu and Mx = supg,qu. The constant C3 =
C3(Ny, Ny, 01,09,0,1,7, 11, %) only depends on Ny, No, o1, 09, b, 1, 7, ||PJ||C3(2) and on the
bounds of the derivatives up to the third order of the functions representing .

Theorem 1.6 is clearly stronger than Theorems 1.1, 1.2 and 1.3, the latter corresponding
to the case No = Ny + 1 and t =y = zp,.

Notice that the approximating operator in equation (1.9) involves cross derivatives of the
type u; with 1 < ¢ < Ny and Ny +1 <[ < N,. The operator acting on the x-variables is
elliptic. The operator acting on the y-variables is elliptic as well, but its ellipticity constant
is proportional to & (note here that for some technical reasons the coefficients o™ and 3! of
the elliptic regularization are assumed to depend only on the y-variables). It follows from the
proof of Theorem 1.6 (see Lemma 2.1 below) that the operator in equation (1.9), acting on
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all the (z,y)-variables, is actually elliptic for ¢ small enough, with ellipticity constant being
proportional to . For the same reason, &, can be chosen equal to 1 in the case where there is no
cross second-order partial derivatives, namely if o = 0 forall1 <i < Ny and N;+1 < < No.
This is especially the case in Theorems 1.1, 1.2 or 1.3.

Remark 1.7 Estimates for the gradient of u with respect to the y-variables do not hold in
general. For instance, in 0 = IR? the functions u®(x,y) = sin(y//2) (for ¢ > 0) satisfy the
equations ug, + eug, + u = 0 but, say, |ug(0,0)| is not bounded uniformly with respect to
e € (0,1].

On the other hand, the estimates (1.10) do not hold in general for large . For instance,
in Q ={z € R, y < 0}, the functions u°(x,y) = sin(y/ex)e? are bounded solutions of the
equations ug, + eu;, = 0 but do not satisfy (1.10) uniformly with respect to € > 1.

Theorem 1.6 is concerned with both interior and up to the boundary estimates. Let us
just mention here a corollary about the uniform interior estimates for a family of solutions of
equations of the type (1.9).

Corollary 1.8 Under the assumptions of Theorem 1.6, let (uf)o<e<1 be a family, bounded in
L>(Q), of solutions of equations of type (1.9) in Q C RN, for some coefficients af, 3¢, f¢ or
s such that the hypotheses of Theorem 1.6 are valid for some o1, o9, b and v uniformly in
e, and assume that supg<.<; [|1°]|csx) < 0o and that the families (f%)o<e<1, (Ouf®)o<e<1 and
(Vauf®)o<e<1 are bounded in L>(2 x IR) (this is the case if there is only one such function f
bounded in Q) x IR together with its derivatives). Then, for some small enough &y > 0, the
Jamily (V,u®)o<e<z, is bounded in L2 (22U ).

Remark 1.9 Under the notations of Theorem 1.6, if the function u as well as the coefficients
of the equation (1.9) are smoother, then estimates of the type (1.10) for the higher-order
derivatives |0 N1y /92 - Oyt |? of u could be obtained, where d(X, 9Q\X)? is replaced
with d(X, 9Q\X)2m+-Fnw),

The proofs of Theorems 1.2 and 1.6 are based on the maximum principle applied to
Bernstein-type functions involving |V, u|? and u?, following the ideas of Ladyzenskaja, Solon-
nikov and Ural’Ceva [8] for parabolic equations. Similar techniques had been applied for
non-degenerating elliptic equations, see e.g. Ladyzenskaja, Ural’Ceva [9] and Sperb [13].

2 Proof of the theorems

Since the other results are particular cases of Theorem 1.6, we give directly the proof of the
general case of Theorem 1.6.

Before going into the proof of Theorem 1.6, let us prove the following elementary lemma,
which states that the operator in equation (1.9) is actually elliptic in all (x, y)-variables, with
ellipticity constant being proportional to €, for € small enough.



Lemma 2.1 Under the assumptions of Theorem 1.6, call @'’/ = o'’ if 1 < I,J < Nj,
and @'/ = ea!’ if 1 < I,J < Ny and I or J is greater than N,. There exists ey =
£0(N1, No, 01, 09,b) € (0,1] such that, if 0 < e < &g, then

> a(X )£€J_—|£|1+ —Iflz

1<I,J<N;
for all (X,€) € Q x RY.

Proof. Let (X,¢) € Q x IRY. Under the summation conventions given in the introduction, it
follows from (1.8) that

' (X)&18s > o1|€]] + 2ea(X)&& + €023

Since [|a!”|| peo(@) < b, the middle term of the right-hand side can be bounded by

N1 N1 N2
> z 2eal(X)e8l < S0 <2Nlb€|&|2 6"2|&|2>

i=1 I=N74+1 i=1 1=Ny+1
< 2 NINPE ey 2
02
Therefore,
Y(X0&Es = IR + e TIels
for 0 < e < g¢, with g9 = min(1, 0y09/(4(Ny — N1)N1b?)) € (0, 1]. =

Remark 2.2 Ifa” = 0 for all 1 < i < Ny and N; +1 <1 < N, then the conclusion of
Lemma 2.1 itmmediately works with ¢y = 1.

Let us now turn to the
Proof of Theorem 1.6. In all what follows, we assume that all the hypotheses in Theorem
1.6 are satisfied. Let ¢ be as in Lemma 2.1 and assume that 0 < ¢ < gy and u satisfies (1.9).
Under the notations of Lemma 2.1, let M be the elliptic operator defined by

Mo = a(z,y)di; + 2ea(z,y)du + €™ (Y) i + B (z,y)d; + B (y) o
= a'’(X)¢rs + 81 (X)or.

Let ¢ = ¢(X) be a smooth function defined in IR™? such that 0 < ¢ < 1, ¢(0) = 1 and
¢(X) = 0 whenever |X| > 1/2. Assume moreover that ( is radial and nonincreasing; namely,
there exists a smooth nonincreasing function h defined on IR* such that {(X) = h(|X]) for all
X € IRN. In the sequel, the function  is fixed and we call C its C? norm. Especially,

I€lloos 1€rlloos ISrslloe < Co for all 1 < 1,J < Ns.

Let Xo = (20,%) = (o1, -, Tonys ToN +1,° - s Ton,) e a point in Q U Y and let dy =
d(Xo, 02\%). This distance is positive whenever Xy lies in © or on X, since X is relatively
open in 0f).



To prove the estimates (1.10), one shall consider two cases : the first one is when the open
ball By, (Xy) with center X, and radius dy is included in €2, the second case is when this ball
meets .

Case 1 : the open ball By, (Xy) is included in 2. Note that this case always occurs if
Y =10. Let
d = min(dy/2,1) > 0,

let x be the function defined by

VX e R, x(0) =
and let P be defined in 2 U X by

VX € QUY, P(X) = P(z,y) = *(X)|Voul> + A u?(X) + per@—01)
= XQ(X)(Uk(X))2 + A u2(X) + pe**i(frl*:ro,l)’

where A, p and k are three nonnegative real numbers to be chosen later. In order to prove
the estimates (1.10) in this case 1, the key-point will be to apply a maximum principle for the
function P.

Now let B = By(Xg) be the open ball with center X, and radius d. One has B C €2 and,
since d < do/2, B C Byyja(Xo) C €, and the function u is bounded in B and By, 2(Xo),
since it is locally bounded in QU X. Call By = Bg,/2(Xy), m = infg,u < m’ = infgu and
M = supp u > M' = supgu. Lastly, the functions f and V, f are bounded in By x [m, M].

The function P then is of class C? since u is of class C?(€2). One is going to apply the
maximum principle for the function P in B. More precisely, one is going to check that M P > 0
in B for some well-chosen A, p and &, in order to get that

sup P < limsup P(X).
B X—0dB, X€B

In what follows, the arguments of ¢ and its derivatives are (X — Xj)/d, the arguments of
f and its derivatives are (X, u(X)) and the argument of all other functions is X. Under the
summation conventions given in the introduction, a straightforward calculation leads to

MP = a'P+ 3P
= a"’ {%(CIJC + (i€ )up + %C(CIUJI@ + Crure)uy
+2CH (up g + upptige) + 2\ (ursu + upug)] + prattew@—To)
87 [2610u2 + 2unan, + 2\ura] — prgte-rn o
= 2¢? [@U(Uljkuk + urgugr) + 5Iulkuk}
+2\u[a! ury + Blugl
+al’ EC(CIUM + Crtunr)up, + %CICJUQ
l@”CUC 6ICIC]

~IJ 2
2 o urug + 2ug 7 + 1

T1—T0,1)

+pr(katt — Bl)e " :



By differentiating the equation (1.9) satisfied by u with respect to the variable x; and by

multiplying by wug, it is found that
aTurpur + Blurguy = —@é‘]uuuk - 5]5”1”16 — frur — Ouf Ui in €.
Therefore,
MP = 2¢ [EUUIkUJk —afuryur — Blurug — frur — 0uf Uﬂ
—2\uf
s[4 2 2
+a |:8<(CIUJ/C + Crure)ug + ECIQIUIJ
laIJCIJC ﬂICIC]

2)\—[] 2 2
+2 X uruy + 2ug 7 + P

x1—x0,1)

+pr(rall — gl "

and
MP = C2 (EUququ — 2@£Juuuk)

4 2
+a'’ [CQUIkUJk + gC(CIUJk + k) uk + ﬁuiCICJ}
~1J I
+2 e uguy + 2u? [a diUC - P glg — Czauf] — 2C%BLusuy,
—2\uf — 2C2 fyup, + pr(kalt — Bl)er@—eon),
Now let us estimate each line of the right hand-side of (2.1). From Lemma 2.

@™oy < band af" = 0 for all 1 <k < Ny and Ny + 1 < I,m < Ny, the first
can be estimated by

— _ 01 02
Callupug, — 2aturuy > C? (Eufk + 6Eu12k) — 2blugjuy| — 4sb|uiluk|}
> (2 > L2 2b|ujug|
- 2N1 17 (] k
1<i,5,k<N1

o
+& Z (2—]\2[1%21 — 4b|uiluk|>

1<i,k<Np
N1+1<I<Np
_— o1 2N, \ 20N,
> 1> o sl - ue| | —
1<i,j,k <N 1 o1 o1

(2.1)

1, and since
line of (2.1)

o 4bN, 28BN,
+e Y 2—N1<\Uil|— p \Uk|> - Ui

1<4,k<Np
N1 +1<I<Ny
22N? ,  S8BEN2(N, — Ny)
_721/ J—

U
- k k>
01 02
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since 0 < & < 1. The second line in (2.1) can be rewritten as

4
al | Curpugy + EC(CIUJk + Crupg)ug

WL%UiCIéJ} = a'’ KCUM + %Cﬂ%) <<UJk + ggfuk)
14%@1@}

14bC3NZ
—Tuk.
From Lemma 2.1, and since ﬂ,i =0forall 1 <k < N;and N7 +1 <[ < Ny, the third line in
(2.1) is estimated from below as follows :

a’ JCIJC B! CIC
d

>

2xa! M uruy + 2u? — %0 f]

—2C2ﬁku1uk > A\oyuj + edogu?

N5 N
—20C3u3 (ﬁ + i + 1| — 20CF | uuy|
No

N2

Lastly, as far as the fourth line in (2.1) is concerned, one has

—22uf — 2¢? frug + pr(kall + gH)er@-eon) > —2):L||U||L°°(B) | f1l oo (Bxm?,017))
_C ; ||V f”ioo (Ux [m,M])
+,0/<5(/f01 — b)e~r@=0.1),

Putting together all the previous estimates leads to

2N\ 2 2
MP > |V,ul? l)\al — IGbggNQ — 26]2200 — 20°Nio
—8b?NZ(Ny — Ny)og ' — 2bC2(Ny + 1) — G (2.2)

—2A||ul| e B)||f||L°°(Bx[m’ M) = Va1 2o (B ar
+pr(Kkoy — b)e=F@1=To.1),

Now choose

2 A\T2 2
A = of [165320% . 25]2200
+202NPoT! + 82N (Ny — Ni)og ! + 20C3(Ny + 1) + G| > 0
o7 (1+b) > () (2.3)
po= (k™)™ (2Mull oo | Fll o B )
+||V$f||%°°(B><[m’,M”]) + ||U||L°°(B)0$CB(U)) > 0.

Since |21 — 21| < d < 1in B, it then follows that e~r#1=201) > o= whence

MP > |ju| geo(pyoscp(u) in B.

11



If w is constant in B, then Vxu = 0 in B and the estimate (1.10) is immediately satisfied at
Xo. Otherwise, if u is not constant in B, then ||u||z=g0scp(u) > 0, whence MP > 0 in B.
The maximum principle then implies that

P(Xy) < limsup P(X).

X—0B, XEB

Note that the maximum principle works for both 0 < ¢ < gy (in that case, the operator M
is elliptic in all (z,y)-variables) and € = 0 (in that case, the matrix (@7 (X))i<s <, is still

nonnegative at any point X € 2). Owing to the choice of {, one has
P(Xy) = |Vau(Xo)|? + Mu?(Xo) + p.

On the other hand, for each point X € B such that d/2 < |X — X| < d, one has x(X) =
C((X = Xo)/d) =0 and |zy — 201| < d < 1. Therefore,

limsup P(X) < )\||u||%oo(3) + pe”.
X—3B, XeB

From (2.3), it is found that

|V$U(X0)|2 P(Xo) — )\UQ(Xo)
A(lullF e () — v?(Xo)) + pe”
O(Nla N27 01,02, b) (d72 + 1) X

X [ [ull Lo By (05 (W) + || fll oo Bx e 2))) + 1 Vaf oo (B3¢ mr 1)) ]

IAINIA

(2.4)

for some positive constant C'(Ny, N, 01, 02, b) only depending on Ny, Na, 01, o and b.

Now remember that d = min(dy/2, 1), where dy = d(X,, 0Q\X), and B C By C (2. Tt easily
follows that

|va(X0)|2 < 4C(N1, NQ, 01,09, b) (da2 + ].) X

2.5
X [||UI|Loo(Bo)(OSCBo(U)+||f||L°°<Box[m,M]>)+||sz||%oo(30x[m,M])] (25)

whenever dy/2 < 1 or dy/2 > 1.

Case 2 : the open ball B (X,) meets X. Therefore,
0< d(X(], E) < dy= d(XQ, 89\2)

Call 7 = min(n,4) and d = min(7/4, dy/4) > 0, where 7 is given in Theorem 1.6. One shall
now consider two subcases : the first one is when d(Xo,¥) > d and the second one is when
d(Xo, X) < d.

Subcase 2-a : d(Xo,Y) > d. In that case, one has B = By(Xy) C Q and, since d < dy/2 <
do, then B C By,2(Xp) C QU Y, and the function u is bounded in B and By, s(X,). Call
By = By 2(Xo), m = infg,u < m/ = infgpu and M = supg, u > M’ = supgu. Observe that
the functions f and V,f are bounded in By x [m, M].

12



By repeating the arguments of case 1 in this ball B and by observing that d < 7/4 <1, it
is found that

|VxU(X0)|2 S C(NI,NQ,O'l,Ug,b) (d_2 + 1) X
X [ [l Loy (05 (@) + || fll oo B 21)y) + Ve f (|00 (B a1 } )
where the constant C'(Ny, No,01,09,b) is the same as in (2.4). Since B C By C QU Y, it
follows that
|va(X0)|2 < C(Nl,NQ,O'l,O'Q,b, T]) (d0_2 -+ 1) X
X [ [[ul| oo (o) (05€8s () + || fll oo (Boxm,aa))) + 1V [ Foo (5o v } ;

whenever d = 7/4 or d = dy/2, for some constant C'(Ny, N, 01, 02, b, 1) which only depends on
N17 N27 01, 02, b and n.

Subcase 2-b : d(Xo,X) < d. Call d = 2d = min(7/2,dy/2) > 0 and B’ = By (Xp). Since
d' < dy/2 < dy, the closed ball B” does not meet 90\, and

B'NQ C Bgypa(Xo) N C QUL

Hence, the function u is bounded in B’ N Q and By N Q, where By = By, /2(Xo). Call m =
infg,nou < m' = infpngu and M = supg qu > M' = supppngu. Notice also that the
functions f and V, f are bounded in By N Q x [m, M].

Furthermore, since 0 < d(Xo,Y) < d(Xo, 02\X), there exists a point Yy € X such that
0 < |Yo — Xo| = d(Xo,X). Owing to the definition of 7 in Theorem 1.6, the connected
component of B, (Yy)\I' containing Yy — rv(Yp) for 7 > 0 small enough is included in €2, where
I' is the connected component of 9Q N B, (Yy) containing Y;. Therefore, since |Y; — Xo| =
d(Xo,X) <n/4 <n/2and d < 7/2 < n/2, it follows that the connected component of B'\0<2
(= B'\X since d' < do/2 < dy = d(Xp,00\X)) containing X if X € Q (resp. Xo — rv (X))
for r > 0 small enough if X, € ¥) is included in © (see Figure 1). Furthermore, the latter still
holds if B is replaced with Bsg /2(Xo).

Since d(Xy,¥) < d’/2 and since X is smooth (globally C®) and its normal vector v has
zero y-components, there exists a C? transform wich locally straightens ¥ so that it becomes
included in {x; = 0}, as it will be seen below. Since the vector field p is itself globally of
class C3(X) and satisfies u(X) - v(X) > v > 0 on X, another change of variables renders
w=(1,0,---,0).

More precisely, calling B the projection of B’ on the z-coordinates, there exists a C*(B)
diffeomorphism ¢ such that : -

1) the map ® : X = (z,9) — X = (&,y) = (¢(x),y) maps B’ onto B where B = Bj(X,),
Xo = ®(X,) and

0<6id <d<byd (2.6)
for some positive constants 6; and 6y only depending on >, u and 7;
2) ® maps the connected component of B'\Y containing Xy if Xy € 2 (resp. Xo — rv(Xo)

for 7 > 0 small enough if X, € %) onto B~ = Bn{# < 0}; in particular, the first component
Zo, of X is nonpositive (note that &y, = 0 if X, € X);

13



Figure 1: Subcase 2-b, with dy < 77/4, d = do/4 and d' = dy/2

3) @ maps the connected component of B’ MY containing Yy onto Y =Bn{i =0}

4) the norm of the derivatives of ® in B’ and ®~! in B up to the third order only depend
on X, p and 7;

5) the function v(X) = v(Z,y) = u(® (X)) = u(¢"'(F),y) is of class C3(B~) N C*(B-)
(note that 3 € B~). Tt ranges in [m/, M’] and satisfies an equation of the type

A (F,y)vij + 2e@M(F, y)vi + 6™ (Y) Vi
+B'(&,y)vi + B (y)w + f(&,y,0) = 0 in B-
v1 = 0 on X,

where v; = 0z,v, vy = Oyv for all 1 <7 < Ny and N; +1 <[ < N,, and so on for the

higher-order derivatives. The functions &'/ and 8! are of class C*(B~), for all 1 < I,.J < Ns.
Actually,

a"(X) = a"(y) and §'(X) = f'(y)
for all Ny +1 < I,m < N, whence @™ and §' do not depend on Z and the matrix
(8" N, 4 1<tm<n, Satisfies & (X)EE,, > 09|€|3 for all X € B~ and & € RM2. The function

f(X.s)= f(@,y,8) = f(z,y,5)

is of class C*(B~ x IR). The matrix field (&"7)1<; j<n, is symmetric and there exist four
constants g, > 0,5 >0, C; > 0 and &, € (0, 1] only depending on Ny, No, oy, 09, b, 7y, p and
> such that L

VX eB-, VeeR™ Y a’(X)&g > aldli,

1<i,j<N
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> ai(Reg e Y a'(Reate Y am(X)age > Lk + 2l

1<4,j<Ny 1<i<Ny N1+1<I,m< N,
N1 +1<I<Ng

for all 0 < e < &, and (X, ) € B- x RNz,
165 o 3=, + ||51||Cl— + 1105 Nl oo (- ) < b
forall 1 <1I,J < Ny, and

IVafllpoo (5 xpmary < CllVafllLemsnn xim,mm)-

Note that even if it means decreasing &,, one can assume that 0 < &y < g9. Furthermore,
the functions &% vanish if all functions o vanish, for all 1 < ¢ < N; and N; +1 <[ < No.
Therefore, as in Lemma 2.1, & can be chosen equal to 1 in the case where all functions o
vanish in  (that is there is no cross second-order partial derivative in (1.9)).

In what follows, ¢ is such that 0 < e < &;. Let P be the function defined by

~ = ~ o~ X — X o
VX € B-, P(X) :C ( pi O) |Vz U|2+)\v (X) +ﬁe—n(:r1—xo,1)

where . X\, p and & are some nonnegative real numbers. This function P is of class C%(B~) N
CU(E).
By repeating the arguments of case 1, and calling

MP =a" Pry+ 5P,

it easily follows that the choices

5= o llGBCﬁNf N 26]\@03
42 d
+262 N6, + 8PN (Ny — Ny)og ' + 26C3(Ny + 1) + Cif| > 0
R 5 (1+b) >0
p (7e=202) =1 (2X[[0]] ooz 1l ooz s mrary + 1 Ve 12 5 s arny
H[0l] (- y05¢5- (v)) = 0

lead to, as in (2.2),

MP = 2)‘||U||L°° ||f||Lo<>(B x[m/,M']) ||V f”Loo(B x[m!,M'])
+pi(Réy — b)e F@1 o, 1)~
1]l oo y0sep (v) in B

A%

since e F@1=%01) > o=Rd > g=Rba2d' > 276> (remember that d < 0od’ from (2.6) and d’ < 77/2 <
2).

If w is constant in B’ N, then v is constant in B~, whence V zv(Xy) = Vxu(X,) = 0 and
the estimate (1.10) is clearly satisfied at X.
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Let us now consider the case where u is not constant in BN, that is to say that v is not
constant in B~. The latter implies that [|v[|pe5-)0scs-(v) > 0, whence p > 0 and MP > 0

in B~. Therefore, the function P cannot have a local maximum at a point in B~, whenever ¢
is positive or zero.

Now assume that P has a local maximum at a point Y € . It immediately follows that
9z, P(Y') > 0. But since the function v is of class C2(B~ U %) and since v; = 03, v = 0 on 2
(C {71 = 0}), it is found that v;; = v; =0 on Y for all 2 < I < N,. Hence,

o P(V) = 2 (Y o) g (Y n

d \ _ d_

IC SR
d d

if Y # X, since ¢((X) = h(|X]), and 05, P(Y ) = —preFtoL if Y = X,. Since the function A is
nonincreasing and since the first component Y7 of Y is zero and the first component o of X,
is nonpositive, it follows that ale(Y) < —pRef0r < () whenever Y = X, or not. As already

emphasized, this is impossible since P has a local maximum at Y. . .
Therefore, the function P cannot have a local maximum at a point in B~ U Y. As a

consequence, it follows as in case 1 that

) V(P — preson

X ) Y1—$01

Y — X,
Y — X,

x V= _ ~~ KT0,1
- < [Vau(¥)[! = fie

IV@U(Xo)P S P(Xo) — 5\1)2()20)

< limsup  P(X) — M?(Xp)
X—0B-\S, XeB-
< Mol — 2(R0) + e

Under the above notations, one has
01d < d < 0,d' < 0,77/2 < 26,

with @’ = min(7/2, do/2) and 7 = min(n, 4). Eventually, owing to the definitions of A, &, § and
putting all the above estimates together, one gets

|V@U(X0)|2 < C(va NQ: 01,02, b7 0,9 1 E)~(d62 + 1) X ~
X [||v||Lw(l;,,)(oscB, (V) + 1Sl Lo (5= e, aap)) + ||Vif||ioo(gfx[m/,Ml]J ;

for some constant C'(Ny, No, 01, 092,b, 1,7, p, ¥2) only depending on Ny, No, 01, 02, b, i, 7y, on
the derivatives up to the third order of the functions representing 3, and on the C® norm of
1.

Furthermore, there exists a constant C3(®), only depending on the C°(B’) norm of the
gradient of @, such that |V, u(Xp)|? < C3(®)|Vzv(Xp)[®. On the other hand, since B’ =
Bd/(X()) C BQ = Bd0/2(X0)7 one has

||,U||L°°(B*) = ||U||L°°(B'nﬂ) < ||U||Loo(BOnQ)
0SCp- (v) = oscpna(u) < oscpyna(u)
11 Loe (i wmr,aryy = I oo nxm ayy < 1 f [l LoeBonaxim,an)

IVafll poe - s ary < CillVaflle@naxm ar < Cil|Vafll e Bonaxm,an)-
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Finally, the inequality (1.10) holds at X, and the proof of Theorem 1.6 is complete. 7
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