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Branching rules, Kostka-Foulkes polynomials and g-multiplicities in
tensor product for the root systems B,,, C), and D,,

Cédric Lecouvey
lecouvey@math.unicaen.fr

Abstract

The Kostka-Foulkes polynomials Kf u (¢) related to a root system ¢ can be defined as al-
ternated sums running over the Weyl group associated to ¢. By restricting these sums over the
elements of the symmetric group when ¢ is of type By, C,, or D,,, we obtain again a class K ‘f #(q)
of Kostka-Foulkes polynomials. When ¢ is of type C, or D, there exists a duality beetween
these polynomials and some natural g-multiplicities ux ,(q) and U ,(g) in tensor product @]
In this paper we first establish identities for the f(f #(q) which implies in particular that they
can be decomposed as sums of Kostka-Foulkes polynomials K f,:fl (¢) with nonnegative integer
coefficients. Moreover these coefficients are branching rule coefficients. This allows us to clarify
the connection beetween the g-multiplicities ux ,(¢), Ux,.(¢) and the polynomials Kf\> () de-
fined in [@] Finally we show that u, ,(¢) and U, ,(g) coincide up to a power of ¢ with the one
dimension sum introduced in 4] when all the parts of u are equal to 1 which partially proves
some conjectures of [[I4] and [27].

1 Introduction

Consider A and p two partitions of the set P, of partitions with n parts. The Schur-Weyl duality
establishes that the dimension Kizfl of the weight space p in the finite dimensional irreducible
sl,-module VA”—I()\) of highest weight A is equal to the multiplicity of VA"—l()\) in the tensor
product

VAt = VA (1 A) @ - @ VA (p, Ay).

It follows from the Weyl character formula that K/’\L"Z_l =Y ,es, (“DIOPA (a(A+p) — (1 +p))
where PAn-1 is the Kostant partition function which counts, in the root system of type A,_1, the
number of decomposition of 3 € Z™ as a sum of positive roots. The Kostka-Foulkes polynomials
can be defined by setting Kfvzfl(q) = Zaesn(—l)l(g)ﬂf" (c(A+p) = (1 + p)) where 73(}4"71 is the
g-Kostant partition function characterized by

11 m = > PM(B)e

« positive root BEL™

with p = (n—1, ...,0) the half sum of the positive roots. One can prove that they are the coefficients
of the expansion of the Schur function s, (x) on the basis of Hall polynomials { P\(z,q), A € Py} (see
[[9]). Then it follows from the theory of affine Hecke algebras that the Kostka-Foulkes polynomi-
als are Kazhdan-Lusztig polynomials [[§]. In particular they have nonnegative integer coefficients.
As proved by Lascoux and Schiitzenberger this positivity result can also be obtained by using the



charge statistic ch on semistandard tableaux. More precisely we have K ;‘72_1 (@) =2 7c ST, ¢ (@)
where ST'()),, is the set of semistandard tableaux of shape A and weight . In [2(], Nakayashiki
and Yamada have shown that the charge can be computed from the combinatorial R-matrix corre-
sponding to Kashiwara’s crystals associated to some Uq(s/i;)—modules.

Now consider ¢ a root system of type B, C,, or D,. Write g4 for the corresponding simple Lie
algebra. The Kostka-Foulkes polynomials Kf\iu(q) associated to ¢ are defined by setting

KL (@)= > (=0 ™PLwX+ py) — (1 + py))
wGW@

where Wy, p, and 77(? are respectively the Weyl group, the half sum of the positive roots and the
g-partition function corresponding to ¢. The polynomial K f u(q) can be considered as a g-analogue

of the dimension of the weight space p in V?(\). As Kazhdan-Lusztig polynomials, they have also
nonnegative coefficients. In [E], we have obtained for the root systems B,,, C,, and D,, a statistic on
Kashiwara-Nakashima’s tableaux from which it is possible to deduce this positivity for particular
pairs of partitions (A, ). Nevertheless as far as the author is aware, no combinatorial proof of this
positivity result is known in general.

The Kostka-Foulkes polynomials K f u(q) cannot be directly interpreted as ¢g-multiplicities in tensor
products. So there does not exist an equivalent result to the Schur Weyl duality for the root
system ¢. Denote by V?(\) the finite dimensional irreducible gg-module of highest weight A. In
4], we have introduced from determinantal expressions of the Schur functions associated to ¢,
two polynomials uy ,(¢) and Uy ,(¢q) which can be respectively regarded as quantizations of the
multiplicities of V?()) in the tensor products

V2 =VO(uh) @@ V(M) and WP = W2 (uAh) @ - - @ W, A)

where for any i = 1,...,n, W(u;A1) = VO (u;A) @ VO((p; — 2)A1) & - - - © V((;mod2)A1). When
n is sufficiently large they do not depend on the root system ¢ considered and we have established
a duality result between the ¢g-multiplicities uy ,(q), Uy (q) and the polynomials

KL () =Y (D) OPwA+p,) — (1 +p,))
oSy

where p, = (n,...,1). These polynomials I?fu(q) are also Kostka-Foulkes polynomials. So this
result can be interpreted as a duality between g-analogues of weight multiplicities and g-analogues
of tensor product multiplicities for the root systems B,,,C}, and D,.

At the same time Shimozono and Zabrocki [27] have independently defined by using creating oper-
ators some polynomials K;i r(q) where R is a sequence of rectangular partitions and ¢ a partition
of the set {0, (1),(11),(2)}. These polynomials can also be regarded as g-multiplicities in tensor
products. In [}, Hatayama, Kuniba, Okado and Takagi have introduced for type C,, a quantization
X ,(q) of the multiplicity of V() in WuC" This quantization is based on the determination of
the combinatorial R-matrix of some Uy (5p2y)-crystals in the spirit of [R]]. It can be regarded as
a one dimension sum for the affine root system 07(11)' In [[4] and [P7], the authors conjecture that
the polynomials X} ,,(¢), Uy ,(q) and K fi(q) coincide up to simple renormalizations. As observed
in [R7), this conjecture can be related to the X = M conjecture which gives fermionic formulas for
the one dimension sum X. Note that the X = M conjecture have been proved in various cases for

all nonexceptional affine types g, [23 and [24].



In this article we first obtained identities for the polynomials IN(f M(q) which imply that they

can be decomposed as sums of polynomials K:\L%Z*I (). Moreover the coefficients of these decompo-
sitions can be simply expressed in terms of branching rules coefficients. This gives in particular
an elementary proof of the positivity of the Kostka-Foulkes polynomials Kf H(q). Next we obtain
similar decompositions for the polynomials uy ,(q) and Uy ,(q). By comparing these identities with

those obtained for the polynomials K)<\> »(q) in 7], we derive the equalities K /(\1;}) (q) = uxu(¢*) and

Ki?;(q) = Uy .(¢?). Finally we establish some conjectures of [[4] and [P7] when all the parts of p

are equal to 1 (i.e. for the g-multiplicities defined in the tensor powers of the vector representation),
namely we have

1,1 e 2 e
K§7(11)(q) =uy (17 (¢?) = ¢"" X, (1n)(¢?) and K§\7()1n)(q) = Uy () = 2" X, (10)(¢?).
(1)

In Section 2 we review some material on root systems, branching rules coefficients, Kostka-
Foulkes polynomials and g-multiplicities uy ,(q), Uy (q) we need in the sequel. In section 3 we

obtain identities for the polynomials Kff (@), uxu(q) and Uy ,(¢) from which we clarify the relations

between uy ,,(q), Uy .(q) and K;lp’tl)(q), Kf\QZL(q) Section 4 is devoted to the proof of (). Note that
the X = M conjecture is in particular true when all the parts of p are equal to 1 [Z]. Thus in this
case the one dimension sums X and their corresponding fermionic formulas M are, up to simple

renormalizations, Kazhdan-Lusztig polynomials.

Notation: In the sequel we frequently define similar objects for the root systems B, C, and D,,.
When they are related to type B, (resp. C,, D,,), we implicitly attach to them the label B (resp.
the labels C, D). To avoid cumbersome repetitions, we sometimes omit the labels B, C' and D when
our definitions or statements are identical for the three root systems.

2 Background

2.1 Convention for the root systems of types B,,C,, and D,

Consider an integer n > 1. The weight lattice for the root system C,, (resp. B, and D,) can be
Z n

identified with Po, = Z™ (resp. Pp, = Pp, = (—) ) equipped with the orthonormal basis ¢;,

2
i=1,...,n. We take for the simple roots

af” =&, and afg" =¢€; —&i+1, t =1,...,n — 1 for the root system B,
aln = 2¢, and a;" =¢; —€i+1, 1 =1,...,n — 1 for the root system C, . (2)
af” =¢ep +éep_1 and ozZD" =¢€; —&i+1, t =1,...,n — 1 for the root system D,

Then the set of positive roots are

REH ={e;—¢gj,ei+e; with1 <i<j<n}U{g with 1 <i <n} for the root system B,
Ré‘n ={ei—¢gj,ei+¢; with 1 <i < j<n}U{2¢ with 1 <i <n} for the root system C,
Rlen = {e; —¢j,e; +¢; with 1 <i < j <n} for the root system D,,

Denote respectively by Pgn, Parn and Pgnthe sets of dominant weights of s09,41, sp2, and soa,.



Let A = (A1,..., A\n) be a partition with n parts. We will classically identify A with the dominant
weight > | A\;e;. Note that there exists dominant weights associated to the orthogonal root systems
whose coordinates on the basis ¢;, ¢ = 1,...,n are not positive integers (hence which cannot be
regarded as partitions). For each root system of type B,,C), or D,, the set of weights having
nonnegative integer coordinates on the basis €1, ..., €, can be identify with the set P, of partitions
of length n. For any partition A\, the weights of the finite dimensional sos, 1, $poy or sos,-module of
highest weight X are all in Z". For any o € Z" we write |a| = a1 +---4ay, and [|of = X1} (n—i) .
The conjugate partition of the partition X is denoted X as usual. Consider \, 1 two partitions of
length n and set m = max(Aq, ;). Then by adding to A" and g’ the required numbers of parts 0
we will consider them as partitions of length m.

The Weyl group Wpg, = W, of soa,+1 and spa, is identified to the subgroup of the permutation
group of the set {m,...,2,1,1,2,...,n} generated by s; = (3,3 + 1)(4,i +1), s = 1,..,n — 1 and
$n = (n,m) where for a # b (a,b) is the simple transposition which switches a and b. We denote by
[p the length function corresponding to the set of generators s;, i = 1,...n.

The Weyl group Wp,, of soa, is identified to the subgroup of Wp, generated by the transpositions
si = (i,i+1)(,i+1),i=1,...,n—1and s/, = (n,n — 1)(n — 1,m). We denote by Ip the length
function corresponding to the set of generators s/, and s;, i = 1,...n — 1.

Note that Wp, C Wp, and any w € Wpg,, verifies w(i) = w(i) for i € {1,...,n}. The action of w on

8= (B4,...,8,) € Z" is given by

w - (617 7ﬁn) - (6111}7 7ﬁg)

where 3’ = B, if (i) € {1,...,n} and B;" = —f3,,;) otherwise.
The half sums pp ,pe, and pp —of the positive roots associated to each root system By, (), and
D,, verify:

1 3 1

pg, = (n— 3T g 5),;)0” = (n,n—1,..,1) and pg = (n—1,n—2,...,0).
In the sequel we identify the symmetric group S,, (which is the Weyl group of the root system

Ap—1) with the subgroup of Wp, or Wp, generated by the s;’s, i =1,...,n — 1.

2.2 Branching rules coefficients

For any partition \, we denote by V.Z(\),V.¢()\), and V,P(\) the finite dimensional irreducible
modules of highest weight X respectively for spa,, s02,41 and s09,,. Then VE(X), V.¢(\), and V,P())
can also be regarded as irreducible representations respectively of the groups Spay,, Sos,+1 and Sos,.
By restriction to GL,,, they decompose in a direct sum of irreducible rational representations. Recall
that the irreducible rational representations of GL,, are indexed by the n-tuples

(7+777) = (7?77;7 "'7’}/;707 "'707 _7;7 c _’Yl_) (3)

where v and v~ are partitions of length p and ¢ such that p + ¢ < n. Write VnA(*y*, ~~) for the
irreducible rational representations of GL, of highest weight (y",77). When v~ = (), we write
simply V,A(v) instead of VA(y+,y7).

As customary, we use for a basis of the group algebra Z[Z"], the formal exponentials (e?) Bezn
satisfying the relations e®1ef2 = #1182, We furthermore introduce n independent indeterminates



X1, ..., Ty, in order to identify Z[Z"] with the ring of polynomials Z|[x1, ..., x,, xl_l, ..., ;1] by writing
el = xfl cooabn = 28 for any 8= (84,....,0,) € Z".

Set
1 <1_ ! ‘1> 1 <1_i>1— S by @
Ty A T - ’
1<r<s<n 1<i<n BeL
1 -1
_ — -6
I (1-5) =X s
1<r<s<n BE€Lc
1 \! 5
I (1-5) - X e
1<r<s<n BELp
where

Lg={peZ",p= Z ers(er +6€5) + Z e;e; with e, ¢ > 0 and e; > 0}

1<r<s<n 1<i<n
Le={B€Z", 3= Y ensler+e,) with e, > 0} and
1<r<s<n
LD = {B € Zn?ﬁ = Z 67’,8(67' + 63) Wlth 67-78 Z 0}
1<r<s<n

Denote respectively by [V, (v",77) : VPV, VA (vT,47) : ViEV)] and [VA(yF,47) - VP (V)] the
multiplicities of V,A(y,~7) in the restrictions of VB( ), V.E(\) and V.P(\) to GL,.

n

Proposition 2.2.1 With the above notation, we have:
L VA7) VP ] = Euews, (D @b(wo A = (vF,97)),
2 VAT VP = Zuewe, (D @e(wo A = (vF,97)),
3. VAT A7) VPO = Zaews, (D dwo A = (vF,97)).

Proof. The proposition can be considered as a corollary of Theorem 8.2.1 of [J] with G one of
the Lie groups Soop11, Spon, Sos, and H = GL,. m

For any partitions A and v of length n, write [V, (v) : V,B()\)] for the multiplicity of V,”(v) in the
restriction of V.B()\) to Soa,.

Lemma 2.2.2 With the notation above we have

V2w): VPO = > (D 1in(woe - v)

wGWBn

where for any B € Z™, 1n(5) = 1 if all the coordinates of 3 are nonnegative integers and 1n(3) = 0
otherwise.



Proof. The lemma also follows from Theorem 8.2.1 of [[f]. =
For any partitions A and v of length n, write [V,Z(\) : Vi (v)] for the multiplicity of V,Z()\) in the
restriction of ViA(v) from GLg, to Sog,. Similarly write [V.¢()\) : Vit (v)] for the multiplicity of
V.€(A) in the restriction of Vi (v) from GLa, to Spa, and [V.P(\) : Vi (v)] for the multiplicity of
V.P(A) in the restriction of Vii(v) from GLa, to Sog,y1. Denote respectively by P2 and PLHY
the sub-sets of P, containing the partitions with even rows and the partitions with even columns.
The Littlewood-Richardson coefficients are denoted c? , as usual.
Let us recall a classical result by Littelwood (see [[7] z;ppendix p 295)

Proposition 2.2.3 Consider A and p in P,. Then:
L [VE) : Vi) = Xep, & a
2 VEN) Vi) =3 pan & s
3 VP Vi) =32 oo ¢
The proposition below follows immediately from Theorem A; of [[Ld].

Proposition 2.2.4 Consider v € P, and X", A\~ two partitions such that (AT, A7) has length n.
Then:

1 VAN AT VEW)] = X, sep, sl o
2 VAN A) VEW] = 5 pn &

5 VAT AT) VP =30 5 p0m € 5s 5o
When (AT, A7) = \ is a partition (that is A\~ = ), we obtain the following dualities:
Corollary 2.2.5 Consider \,v two partitions of length n, then

1 VAR VEW)] = [VEQ) : VAW = ¥oep, &

2 VAN VEW)] = VPO Vi) = 3 o ¢

3 V) VP = Ve (W) Vi) = 3 oo &4
2.3 Kostka-Foulkes polynomials
For any w € Wp,,, the dot action of w on 3 € Z" is defined by

wo B =w(B+pg,)—Pp,-

The g-analogue 73;3” of the Kostant partition function corresponding to the root system B, is
defined by the equality




Note that Pf" (6) = 0 if § is not a linear combination of positive roots of Rgnwith nonnegative
coefficients. We write similarly PqC" and Pé)" for the ¢-partition functions associated respectively
to the root systems C,, and D,. Given A and p two partitions of length n, the Kostka-Foulkes
polynomials of types B,,C, and D,, are then respectively defined by

Egi@) = Y (“D)“PP (oA +pp,) — (n+p5,)):

JGW%n

K@) = Y (=D)'OPI (A +pe,) — (n+pc,)),
JGan

KQZ(Q) = > (=1)@PP oA+ pp,) — (u+pp,))-
JGan

Set

K@) =Y ()PP (oA +pp,) = (1+pa)):

oESy

En(@) = Y (=D OP 0N+ p,) = (1 + ),
oESy

K@) =Y (=1 PP (c(\+ pp,) = (1 + )
€S

where p,, = (n, ..., 1). In [[4], we have proved that the polynomials K Au(q) are also Kostka-Foulkes
polynomials. More precisely we have:

Lemma 2.3.1 Consider A\, pu two partitions of length n such that |A| > |u|. Let k be any integer
such that k > w Then we have

I?)\,M(Q) = K)\—l—k/@n,u—l—knn (Q)

where Kk, = (1,...,1) € Z™.

Remark: Since o(k,) = Kk, for any o € S,,, we have I~()\+k,€n7“+k,,m(q) = [?,\7“(q) for any integer
k > 0. So we can extend the above definition of K ,(q) for A and ;1 decreasing sequences of integers
(positive or not).

2.4 The ¢-multiplicities u, ,(¢) and U, ,(q)

Set
1 1 8
H 1—q% H 1_L:Zf‘1(ﬂ)x and
1<i<j<n Tj 1<r<s<n LT BEL™
1 1
- _ g
H 1— g% H 1 4 —ZFq(ﬂ)x.
1<i<j<n Tj 1<r<s<n TiT;  Bezn

Given A and p two partitions of length n, let uy ,(q) and Uy ,(q) be the two polynomials defined
by



uau(@) = D (D" fole(A+p,) = p—p,) and U u(q) = > (-1 F(c(X+p,) — 1 — py)
€Sy €S

where p,, = (n,...,1). Then uy ,(¢) and Uy ,(q) can be regarded as quantizations of tensor product
multiplicities [[14]. Consider the tensor products

VMB = VB(:U’IAl) @& VB(:U’nAl)’ VMC = VC(:U’IAI) Q& VC(:U’nAl)’

VE=VPuh) @@ VP (1,A)

and

WP =W8(uA) @ - @ WP (p,A), WS =W (uA) @@ W (u,A1),
WP =WP(uA) @ @ WP (u,A)

where for any k € N, W (ky) = V(kA1) @ V((k —2)A1) & - - - & V((kmod 2)A;). Then we have the
following proposition:

Proposition 2.4.1 [I]] Let A and p be two partitions of length n. Then

1. uy ,(q) is a g-analogue of the multiplicity of the representation V/(\) in V,,

2. Ux,(q) is a g-analogue of the multiplicity of the representation V (X) in W,.

Remarks:

(i) : It follows from the definition of f; and Fy that uy ,(q) = Uy u(q) = 0 if [A] > |p].

ii) : When ¢ = 1, we recover that the multiplicities of VE(X), VE()\) and VP () respectively in

(ii) q=1 p , p y

VB, vV, and VP are equal [I0].

iii) : In , we have also obtained that u) ,(q) and Uy ,(q) can be regarded as g-multiplicities in
M M

tensor product of column shaped representations.

(iv) : Like the definition of K ,(¢), the definitions of uy ,(¢q) and U ,(g) can also be extended for

A and p decreasing sequences of integers.

(v) : Consider \, u € P, and set \* = (X1, ..., \n,0), u# = (s, ..., ft,, 0). Then uy# #(q) = unpu(9)

and Uy# () = Ux,u(q)-

Theorem 2.4.2 [] Consider X\, u two partitions of length n and set m = max(\y, ;). Then
A=(m—Apyym — A1) and o = (m — i,y ..., m — py) are partitions of length n and

ux () = f(gg(qx Uu(q) = ~%(Q)-

Write I for the involution defined on Z" by I(84,...,5,,) = (=B, ...,—B1). For any decreasing
sequence of integers vy, I(y) is also a decreasing sequence of integers. By Theorem R.4.9, this means
that the correspondences

UA,M(Q) — k[D(K)J(u) (Q) and U)\,M(Q) — I?[C(’T)L\),[(M)(Q) (5)

where A, are decreasing sequence of integers can be interpreted as a duality result for the g¢-
multiplicities associated to the classical root systems.



2.5 Crystals of type C,, and the one dimension sum X, ,(q)

We have seen that Uy ,(¢) can be regarded as a g-analogue of the multiplicity of V(\) in WE .In
[, Hatayama, Kuniba, Okado and Takagi have introduced another quantification X Au(q) of this

multiplicity based on the determination of the combinatorial R-matrix of certain Ué(C’,(ll))—crystals
Bk,c. Considered as the crystal graph of a U,(Cy,)-module, Bg is isomorphic to

B (kA1) ® BY((k —2)A1) @ - - - @ BY(kmod 2A) (6)

where for any i € {k,k — 2,...,kmod2}, B¢(kA,) is the crystal graph of the irreducible finite
dimensional U,(C,,)-module of highest weight kA;. In [], Kashiwara and Nakashima have obtained
a natural labelling of the vertices of B¢ (kA;) by one-row tableaux of length k filled by letters of
the alphabet

Ch={l<---<n-1l<n<n<n-1<---<1}

such that the letters increase from left to right (that is by semistandard one-row tableaux on C,).
Then the vertices of Bkc can be depicted by one-row tableaux of length k by adding p pairs (0,0) to
the tableaux appearing in the crystals B¢ ((k — 2p)A1) of the decomposition (f). Then by setting

Chii={0<l<---<n—-l<n<n<n-—-1<-..--<1<0}

the crystal Bg can be regarded as a subcrystal of the C,41-crystal associated to the dominant
weight kA; (labelled by the one-row semistandard tableaux on C,y1 with length k).

Recall that the combinatorial R-matrix associated to crystals Bg is equivalent to the description
of the crystal graph isomorphisms

B @ B = B¢ @ BY
b1 ® by — b, @ )

together with the energy function H on BZC ® B,?. As proved in [f], this can done by using the
insertion algorithm for C,,y1-tableaux of [l or [[F. In the sequel we only need the description
of the energy function HC. Consider b, € BZC and by € Bkc and denote by z = min(#0 in by,
#0 in bg) = min(#0 in by, #0 in be). Let b] and b} be the row tableaux obtained by erasing
z pairs of letters (0,0) in by and by. Write I* and k* for the lengths of b} and b%. Denote by
Pfﬂ(b’{ ® b3) the tableau obtained by inserting the row b3 into the row b following the Cj41-
insertion algorithm. Then P, (b ® b3) is a two-row C,,11-tableau which contains k* + I* letters.
Since the plactic relations for the root system C), 1 are not homogeneous, pairs of letters (0,0) can
appear in P¢,, (b} ® b3). Write m for the length of the shortest row of PY,, (b ® b3).

Proposition 2.5.1 [/ For any by ® by in BlC ® Bkc we have
HC (b ® by) = min(l*, k*) — m.

The multiplicity of V(A) in WE is then equal to the number of highest weight vertices of weight

A in the crystal Bf = Bgl R ® BEn' Then the one dimension sum X} ,(q) for Cr(Ll)—crystals is
defined in [{] by

Xaula) = Z qHC(b) with H (b) = Z HC (b ® b§i+1))
beE) 0<i<j<n



where F) is the set of highest weight vertices b =b; ® - - - ® b, in Bf of highest weight A, bgi) is
determined by the crystal isomorphism
C C C C C C C C
BM & Bui7L1 & Bui+2 Q- & BM]' _>(')Bm ® Bﬂj ® BM¢+1 U ®BM171 (7)
bi @bit1®@---®b; —>ij ®b @@
and for any j =1,...,n, H(by ® bgl)) is equal to the number of letters 0 in bg-l)
When |\ = |u| the vertices of E) contain only unbarred letters. In this case H4(b; ® b§i+1)) =
HE(b; ® b§i+1)) that is the energy function of type A defined on the vertices b which do not
contain any barred letter is the restriction of that of type C. In [2(]] Nakayashiki and Yamada have
proved the equality H4(b) = ch(Q(b)) where Q(b) is the semistandard tableau associated to b by
generalizing the Robinson-Schensted correspondence and ch is the charge defined by Lascoux and
Schiitzenberger in [[J] and [[J]. Recall that the charge statistic verifies

Ap— C
SYRUESED DI S (8)
TeSSTu(N)

where SST,,(\) is the set of semistandard tableaux of shape A and weight p. This implies that
An—
Xnula) = K{2 (q) when [A] = |u].

Many computations suggest the following identities:

Conjecture 2.5.2 Consider A\ € P,. Then we have
) I —1Al
(1) runany(@) =g 2 Xy an(9),
(it) : Unp(q) = ¢~ Xy L(q) for any p € Py

Remarks:

(i): A g-analogue for the multiplicity of V,¢(\) in W€ () can also be defined from rigged config-
urations. The X = M conjecture gives a simple relation called fermionic formula between X and
M. In [PZ], Okado, Schilling and Shimozono have proved this conjecture when all the parts of x
are equal to 1. In [, we will prove (i) of Conjecture and (ii) when p = (1,...,1). Thus by
combining our results with those of 29| we obtain very simple relations between the three different
g-analogues for the multiplicity of V,¢()\) in WY(1*) = V(1").

(ii): By Theorem P.4.39, the polynomials Uy ,(q) are Kostka-Foulkes polynomials. Thus (ii) of
Conjecture implies that, up to a simple renormalization, the one dimension sums X ,(q) are
affine Kazhdan-Lusztig polynomials.

3 Identities for the g-multiplicities

3.1 Decomposition of the [?,\,u(q) in terms of the K/‘\L‘,Z‘l(q)

Denote by 77;14 the g-Kostant partition function defined by

I (1-e2) =3 P

1<i<j<n nezn

10



Then for any A, u € P, the Kostka-Foulkes polynomial Kfz_l(q) is such that

Kt g) = Y (D) P ox— p).
oeSy

Since Kff;;im“ij,in(Q) = Kizfl(q) for any positive integer k, the definition of Kizfl(q) can be

extended for A and p decreasing sequence of integers. By definition of the g-partition function ch
we must have .
C ()P — _ -1 _ =

SRt = ] -anag I (1-42)

BeZL™ 1<r<s<n 1<i<j<n
Now we can write by ()

I[I -gza)™ =" d"7c5)2 (9)
1<r<s<n d€Lc

since the number of roots appearing in a decomposition of § € Lo as a sum of positive roots &, + &5
with 1 <r < s < n is always equal to |0| /2. Thus we obtain

S P = 3 ST ¢EPA)e(s)at . (10)

pBeZ™ neLZ" §€Lc
By using similar arguments for Pé) we derive the following lemma:

Lemma 3.1.1 For any 0 € Z™ we have

PEB) = > ¢°1Pc(6)PH(B—06) and PS(B) = D ¢°V*d(6)P;H (B - 6)

serly! serly!
where LIS = {6 € L¢, 18] = |8} and LIS = {6 € Lp, |6] = |8]}.

Proof. >From ([[() we derive the equality Pg(ﬁ) =D nt6=p c(5)q|5‘/273&4” (n). Since 73&4” (m)=0

when || # 0, we can suppose |n| = 0 and |[0| = |3| in the previous sum. Then 6 € L‘g‘ and the
result follows immediately. The proof for Pé) (B) is similar. =

Remark: A similar result for the g-partition function Pf does not exit. Indeed the number of
roots appearing in a decomposition of § € Lp as a sum of positive roots e, + €5 with 1 <r <s<n
and ¢; with 1 < ¢ < n does not depend only of |J| since |e, + &5| # |&;] .

Proposition 3.1.2 Consider A\, u € Py, such that |\| > |p|. Then we have:

C Alle] I(o) A1
LK@ =q 2 2 cp, Yoes,(—1)"7c(o 0 X =7) K557 (q)

~ IA =]l 0
2. KQZ(Q) =q 2 zweﬁn Zoesn(_l)l(a)d(a oA — 'Y)K%Z I(Q)

where Pr, = {7 = (Y1, s Yn) € L™, 41 > Y9 > -+ > Y}

11



Proof. We have
Kn(q) = Y (=) PE(0(A + pn) — (1 + pn))-
oeSy
Hence from the previous lemma we derive

En(g)= > c(0)d?? > (=1)!DPit(a(A+ p,) = (n+ 5+ py,))

(SEL‘C?‘ oSy

and

En(g) =Y (=1 3" e(8)d"V*Pit (oA + p, — 071 (8)) = (1 + p))

UESn 66[/‘6?‘

For any o € S,,, we have 0_1(L‘g‘) = L|g| and ¢(d) = ¢(o(6)). Thus we obtain

7 o n— lel=IAl oA,
K@) = > (=) 3 e(@)g" PPt (oAt pa—0) = (n+p)) = D e(@)a 2 K50 ().
oESn serlf serls!
(11)

Now Kffaz(q) = 0 or there exits 0 € S, and v € P, such that v = o~ o (A — §). It follows that

En(g) = > (=1 Y e((A+p) — oy + p) Ko (g)-

O'GSn 767571

Since ¢(0) = ¢(o(9)) for any o € S, and § € Lo we obtain the desired equality

Edn(@) =Y > (1) @e(a(A+p) = (v + p) K2 (g)

~EP;, 9ESn

The proof is similar for I?f\)z (q). m

By Lemma P.3.1), IN(SZ(Q) and K )1\7 . (¢) are Kazhdan-Lusztig polynomials. Thus they have nonneg-
ative integer coefficients. This property can also be obtained from the proposition below:

Corollary 3.1.3 Consider A\, € Py. For k a sufficiently large integer we have:

Rl

7> Ap_
LK@ =a 2 X5 Vat(y + kra), ViE O+ kra) K55 (a),

R llZ

I Ap—
2. Kfz(q) =q 2 P, VA + ki), VPO + kkn) | K550 (q)-

Proof. Consider v € P, and write v = (y7,~77) as in (B). We have by Proposition
VA7) : V.EN)] = > wewe, (—1)" @ ¢(wo X — ). Now if k is sufficiently large v+ kr,, is a partition
and [VA(y) : VEN)] = ZweWCn(—l)l(w)c(w oA — v + w(kky) — kky). Suppose that w ¢ S,
then |w(kky,) — kkn| < —2k. Thus we can choose k such that v + kk, is a partition and w o A —
v + w(kky) — kkp, ¢ Lo for any w € W, such that w ¢ S,. For such an integer k we have

c(wo X — v+ w(kky,) — kky,) = 0. Then we derive 1 from 1 of Proposition B.1.3. We prove 2 by
using similar arguments. m

To obtain a decomposition of the polynomial K f Z(q) as a sum of polynomials Ké wH(g), we

need first to obtain its decomposition in terms of the polynomials I?,Pﬂ(q)

12



Proposition 3.1.4 Consider \,u € P, such that |\| > |u|. Then for k a sufficiently large integer
we have: N _
KJn(g) = > ¢MMVP W + krn), VEO A+ kka) K2 (g).

VEﬁn

Proof. By definition of the partition functions Pf" and Pf " we can write

£l
> P (B = > P kaH1 T

Bezr ez

1
We have [[,_,; TR S senn @12, Thus we derive

DLAICEES DB SPLLIS

BeZ™ YEZ™ §eNT

This implies that P2 (8) = 3 scnn ¢°'PP» (8 — 6) and
Kdn(g)= > (=1 > qPIPP (oA + p,) — (n+ 6+ pn))-
0ESn dEN™
By using similar arguments to that of the proof of Proposition B.1.3, we obtain
Kjn(q)=gM My 3" (- A+ pn) = (v + pp)) K (@)
Vepn UESn

There exists a sufficiently large integer k for which w(\ + p,, + kkn) — (v + p,, + kky) ¢ N” for any
w € Wp, such that w ¢ S,,. Then it follows from Lemma that [VP(v+kry,) : VBN +kky)] =
desn(—l)l(g)lN(a o A — v) and the proposition is proved. m

Remark: From 2 of Corollary and the above proposition we obtain

2MI=lvl=lul
KBn Z Z 2 “ VD( + kknp), VB()‘+k“")][VnA(7+k“n),VnD(u+knn)]K$Z*1(q)
Vepn “/GPn

which implies in particular that the polynomials K f Z(q) have non negative coefficients.

3.2 Decomposition of u,,(¢) and U, ,(¢) in terms of the KﬁZ‘l(q)

By using similar arguments to the proof of Lemma B.1.1, we can establish that for any 3 € Z" we
have

f8) = 3 d2d@YPAB +8) and Fy(8) = S ¢V2e(8yPA(B + )

sery serlf!

which implies the following proposition:

Proposition 3.2.1 Consider \, i € Py, such that || < |A|. Then we have

13



lel=1Al Ay
LUu@)=q 2 X,ep ViV, VEWIKL 1 (9),

2 wn(@) = 4T T, VAN VLMK (0)

Proof. We proceed as in the proof of Proposition and ([1)) is replaced by
RN
Usula)= > c®)q 2 Kyj5(9).
6eL‘g‘

This time K;:'_L(;L(q) = 0 or there exits ¢ € S,, and v € P, such that v = 0~ o (A + J). Note that

v can not have negative coordinates for A + § have non negative coordinates. We deduce:

DD o+ pa) = (A pa)) K (@)

oSy vEPR

[ =\l
2

Unp(q) = ¢

We have seen in the proof of Corollary that for k a sufficiently large integer we have

VAN A+ kin), ViE (v + ki) = > (1) @e(oov = N).
oeSy

Since v is a partition and c; Jg\ﬁ_“,gﬁn =y for any £ € N, we deduce from Corollary that

VAN, VE )] = VAN + Ekky), VE (v + kky,)] which proves 1. Assertion 2 is obtained similarly. m

3.3 Link with the polynomials Kﬁu(q) of Shimozono and Zabrocki

We deduce from Corollary and Proposition B.2.3}

Theorem 3.3.1 Consider A\, € Py, such that |u| > |\| Then we have the following equalities
[ =M

(i) w@ =0 7 S VEN VAWK () =¢ 7 3 VAN VLWIKS (0)
vEPn vEPn

RN A
=q¢ 7 ) D KN

Vepn 'Yefpr(bl’l)

.. [l = Al T EdBY
(i) : U@ =a"7" 3 VPO VWK @ = a7 3 VIO V0l (@)
vEPn vePy,
lul =12 ” .
=07 ) D KT ).
VEP”WE'PT(LQ)

By comparing the leftmost equalities of the above theorem with equality (7.6) of [27] we obtain
1,1 2
K3 @) = wula®) and K2(0) = Unule?) (12

where K gll’})(q) and K §\2;)1(Q) are polynomials defined by Shimozono and Zabrocki by using creating

operators on formal series. In particular the polynomials K g\ll’}) (¢) and K §\22L(q) are Kazhdan-Lusztig
polynomials specialized at ¢2.
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Remark: In [P7] the authors have also defined another polynomial denoted K gll(q) verifying

K(l) =1 Z Z VAKA” ). (13)

vEPn “/GPn

From the duality (), it is tempting to introduce the polynomial Vaulq) = IN(I()\)J(M)(Q). A similar
result than Proposition can not exist for V ,(q) (see the remark following Lemma B.1.1)).
Nevertheless, by using Corollary B.2.5, one can establish that

V)\,,u(l) = Z [VnB()‘)7V2n( )KAn ' Z Z c’y,)\KAn !

VvEP, vEPn YEPH
Thus K( )( 1) = V) ,(1). However we have K ( ) # Vau(¢?) in general. For example if we take A =

(1,0,0) and p = (1,1,1) we obtain K/(\L( ) = ®+2¢°+2¢* +¢? and V), ,(¢%) = ¢+ +2¢°+¢*+¢>

Consider v in P,,. For any standard tableau 7 of shape v and weight (1"), let 2/ be the standard
tableau of shape v/ and weight (1™) obtained by reflecting 7 among the diagonal. Then one can
verify that ch(r') = @ — ch(7) which by () implies the identity:

A n(n=1) A, _ _
KV/’(lrlz)(Q) = q 2 KV7(1nl)(q 1)' (14)

The following proposition will be useful in Section [J.

Proposition 3.3.2 Consider \ € P,, such that n > |\| Then we have

. n(n—1) ne o . n(n—1) ne o
() : Uyamyl@) =q = Py quy(q™) and (i) : uy qny(@) =q 2 U 1y (g7H).
Proof. By (ii) of Theorem we have
U)\/ (1n = ’\/,)\IKV (171,) ) (15)
llepn ’YEP(

Since Kf?fnl) (¢) = 0 when |v| # n, we can suppose that v belongs to P, = {v € Py, |v| = n} in
the above sum. For any v in P,, we have ¢Z y = 0 unless [y| = n — [A|. So we can suppose that v

belongs to P = {y € PP, |y| < n} in ([5). The map T : v — ¢/ is an involution of P,,. Moreover
F(A1(12)) =P = {y € PT(LI’I), |7] < n}. Thus we can write

U)\/ (1n - / )\/ )(Q)

veP, fyGP(l 1
. l// _ v .
Now since Cox = Cyx We derive by )

n(

Uy (@) =q 2

Z Z AL q_l)'

VE'Pn 7673(1 D
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Finally the equality Uy 1n)(q) = qn(n;l) +"_|)‘|u/\,(1n)(q*1) is deduced from (i) of Theorem B.3.1]
We obtain (ii) similarly. m

Remark: By introducing for the root system A,,_; generalized Kostka-Foulkes polynomials K, r(q)
where R = (Ry,...,R,) is a sequence of rectangular partitions, Schilling and Warnarr [Rj] have
proved the equality K, r/(q) = ¢/®I K, p(¢g™') where R' = (R}, ..., R)) and ||R|| = >icj [ Ri N Ry
which can be considered as a generalization of ([4). In [R7], Shimozono and Zabrocki have also
defined their polynomials K)? (@) when R is a sequence of rectangular partitions. By (1Y), the
above proposition can also be regarded as a Corollary of Proposition 28 of [27].

4 Proof of Conjecture when p = (1,...,1)

4.1 The crystals B=

For any integer [ > 0, let BA(Z) be the crystal graph of the irreducible finite dimensional Uy (slay,)-
module of highest weight [A;. In the sequel we choose to label the vertices of B4(1) by the letters
of Cy,, that is we identify B4(1) with the crystal

Recall that the crystal graph BY(1) has been identified in 2.5 with

152 . op-1p g1 . 53 L T
Thus the crystals B4(1) and BY(1) have the same vertices. For any partition u € P,, set B(“:L) =
BA(up) ® - - - ® BA(p,,) and B((’;) = BY(uA\) ® - - - ® BY(pu,,A1) (note that B(c;l) # BE defined

in R.§). Then B{L ) and B(C) have also the same vertices. Nevertheless their crystal structure are
distinct and their decompositions in connected components do not coincide.

Denote by H4 the energy function associated to B4(l) ® BA(k). Then for any b; ® by belonging to
BA(1) ® BA(k), we have HA(b; ® by) = min(l, k) — m where m is the length of the shortest row of
the semistandard tableau PA(b1 ® by) obtained by inserting the row by in the row by following the
column bumping algorithm for semistandard tableaux. Given b=5b; ® -- - ® b,, € B{L ) set

HA) = Y HAGob )

J
1<i<j<n

where the vertices b§i+1) are defined as in (). In the sequel we need the following result due to
Nakayashiki and Yamada:

Theorem 4.1.1 [2d] Consider v and u two partitions of P,. Then

A
Ko@) =2 a""
beGy

where G, is the set of highest weight vertices of weight v in Bé).
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Remark: It is possible to show that P4 (b; ®bo) = PS, (b1 ®bs) (see R.) for any by @ by belonging
to BA(l) ® BA(k) if and only if I = k = 1. Moreover if we choose I > 2 and k > 2, these two
tableaux can have distinct shapes. For example, by taking n = 2, [ = k = 2, by = by = 22, we
obtain

2\?\ 1

= NI

2
PA(b; @ by) = 5 and PY (b1 ® by) =

Hence the two statistics H4 and H® do not coincide in general on the vertices of B{L )

Suppose now that x4 = (1,...,1). Then any vertex b of B(“in) or B(Cln) can be written
b=r1® - Rz,

where x4, ..., z,, are letters of C,,. We have

n—1

HA(b) = HE(b) = Y (n—)H(; @ wi11)

i=1

where H(z; @ j41) = 1 if ; > 2,41 and H(x; ® x;41) = 0 otherwise.

To each vertex b, we associate the (n—1)-tuple Z(b) = (£, ...,&,,_1) such that for any i = 1,...,n—1,
& =0if z; < w41 and &1 = 1 otherwise. For any (n — 1)-tuple = with coordinates equal to 0 or
1, set

A —_ —_

Then the statistics H4 and HC are invariant on the vertices of Bz and we have

n—1
HA(b) = HO(b) = 0(b) = > _(n — i)¢; for any b € Bz with Z = (&;,...,&,_1).
i=1

Lemma 4.1.2 Let Z = (&4,...,§,_1) be a (n — 1)-tuple with coordinates equal to 0 or 1. Then the
set Bz has a structure of Asp_1-crystal and a structure of Cy,-crystal.

Proof. Consider K a Kashiwara crystal operator for Uy(slon—1) or Uy(sp2n) and z, y two letters
of C,. Set K (z ® y) = 2’ ®y'. From the description of the crystals B4(1)®2? and B(1)®? given by
Kashiwara and Nakashima in [[]] we derive the equivalence:

r<y<+=1 <y

This implies that B= is stable under the action of any Kashiwara crystal operator. Thus Bz has a
structure of Ao, 1-crystal and a structure of C,-crystal. m

4.2 The X = u conjecture when = (1,...,1)

Theorem 4.2.1 For any partition A of length n we have

n—|\|
uy,1m () =g 2 Xy 1) (q).




Proof. Denote by € the set of the (n — 1)-tuples = with coordinates equal to 0 or 1. By Lemma
[.1.9, for any = € €, Bz has a structure of Ag,_1-crystal and a structure of Cy,-crystal. Let us denote
respectively by Bé and BEC these two crystals. There exists a Uy(gl2;,)-module Mé‘ whose crystal
is isomorphic to B‘E4. Similarly there exists a Uy(sp2y,)-module MEC whose crystal is isomorphic to
Bé‘. Recall that the weight wt?(b) of a vertex b € B‘E4 is equal to (dy,...,dpn,dp41, ..., d2,) Where
for any i € {1,...,2n}, d; is the number of letters 7 in b. Similarly the weight wt®(b) of a vertex
b € BY is equal to (01, ...,8,) where for any i € {1,...,2n}, §; is the number of letters i in b minus
the number of letters i. Then the characters of the modules MEA and MEC verify

char(M£)(z1, ..., Z 20 and char(ME) (x4, ..., ) = Z LC(0)
beB2 beBE

Let N4 and NS be two representations respectively of GLa, and Sps, such that ChaI‘(N-—) =
char(MA) and char(NC) = char(ME). Then, by definition of wt*(b) and wt®(b), we have

char(NS)(x1, ..., &) = char(N&) (x4, ..., T, —, ... —)

1
that is ch(NY) is obtained by changing z,,; in - in char(N£). Thus char(NY) = char(NZ lg}f:)

GL2n

where N~ lGLQ" is the restriction of Né4 to the action of Sps,. This implies that NS and Né4 lsp%

are 1somorph1(: representations of Spap.
Write Ef ={be Bg, b € E\} for the set of highest weight vertices of weight X\ in Bg. Then we
obtain:

card(EY) = [Vy (A), NE] = [V;7 (A), N£]
where [V,%(\), N2 is the multiplicity of V,¢()) in N2 lGLQ" Recall that X (1ny(q) = ZbeEA

where Fy is the set of highest weight vertices of weight A in B(ln). By Lemma {.1.2 and the equahty
above we can write

=3 > "0 =Y cnd(BR)g"= = Y VI (), N2g (16)

S Zee Zee

where for any = = (£,...,&,_1) in €, 0z = Y7 (n — i)¢;.
By definition of the representations Né‘ we have

@ N~ ik (17)
—e

as G Laop-representations. The irreducible components of Bén) are indexed by standard tableaux
with letters in {1, ...,n}. For any b € B(ln) denote by Q(b) the recording tableau (which is a standard
tableau with letters in {1,...,n}) associated to b by the Robinson-Schensted correspondence. The
@-symbol yields a one to one correspondence between the highest weight vertices of Bén) (thus the

irreducible components of Vi (A1)®") and the set ST of standard tableaux with letters in {1, ..., n}.
For any 7 € ST, denote by V,A(7) the irreducible component of Vi (A1)®" associated to 7. Then
Vil (1) ~ Vi (v) where v is the partition corresponding to the shape of 7. Write STk for the set
of standards tableaux 7 € ST such that there exists a highest weight vertex b € B2 (thus for the
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Asp,_1-structure of graph) with Q(b) = 7. Then from ([L7) the sets ST=, = € € are disjoints and
UeST= = ST. For any = € €, we have

NZ= @ Vi(r).
TESTE

Thus we derive from ([[f) that

Z Z V2n )] GE'

ZeETesST=

Now the multiplicity [V,¢(\), Vi ()]
means that we have the equality [V,¢
deduce that

Xam(@ = > > Wi\ Vi, )le™

EceveP, TeSTY

depends only on the shape v of the standard tableau 7. This
(), Vit (1)) = [V.I€(\), Vi (v)] for any 7 of shape v € P,,. We

where STY = {7 € STx of shape v}. So we obtain

Xxam(g) = Z [ Vgn anrd (STE)q 0=
vEPn Eec¢
But we have > o ¢ card(ST¥)q%= = Kf?ljf) () since f= = HA(b) for any highest weight vertex b of
weight v in B‘g. Thus

Xy am(@) = Y VEO), VarWIK 5 ()

llepn
Finally by Theorem B.3.1], we obtain

n=[A|

q 2 XA,(l”)(Q):uA,(I”)(Q)

and the Theorem is proved. m

Remark: One can define, from the crystal B(c;), the sum

C
ol = - 0
beF)

where F)\ is the set of highest weight vertices b = by ® - - - ® by, in B(CH) of weight A. However, the
polynomial Y} ,(¢) is not a one dimension sum related to an affine root system and the identity

|l =[]

UA,M(Q) =q YA,M(Q)

is false in general. This is in particular the case for u = (2,2,2) and A = (2,0, 0). Nevertheless, from
([[J) and Conjecture 32 of [R7], one can conjecture that the g-multiplicities uy ,(q) are equal, up
to the multiplication by a power of ¢, to the one dimension sums related to the affine root system
AP

n—1°
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4.3 The X = U conjecture when = (1,...,1)
We want to establish the equality U)\7(1n)(q) = q"*|)‘|X)\7(1n)(q). By Proposition we know that

n(n—1) _ _
Unamy(@) =a = " Py guy(@h).
Thus by Theorem we obtain

n(n—1)+n—\>\\ _

Uxnam(g) =q 2 2 Xyam(g)

and it suffices to prove the equality

1 7M+L\M
Xyvaml@ ) =q 2 2 Xy amy(q)

which is equivalent to
nn=1) n-|y

Xy,am(@) =q 2 > Xy am(g ). (18)
In [[[5] we have introduced a Robinson-Schensted type correspondence for the vertices of B((’;n). In
particular we have obtained a one to one correspondence between the highest weight vertices of
be Bgn) and the oscillating tableaux of length n. Recall that an oscillating tableau of length n is
a sequence @ = (Q1,...,Qy) of Young diagrams such that @; and @;41 differs by exactly one box
(that is Qg41/Qk = D or Qr/Qr+1 = D) We denote by Q(b) the oscillating tableau associated to
the highest weight vertex b € B(Cln) under this correspondence. More precisely set b =21 ® - - Q@ x,.
Then Q(b) is defined recursively as follows:

Q1= Jand Qiy1 = i1 — Q; (19)

where x;+1 — @; is the Young diagram obtained from @; by adding a box on the k-th row of Q;
if z;,1 = k € {1,...,n} and by deleting a box on the k-th row of Q; if z;41 = k € {1,...,m}. Given
any highest weight vertex b, it is easy to verify that Q(b) is an oscillating tableau of length n.
Suppose Q(b) = (Q1,...,Qn). Then Q' = (@, ..., Ql,), where for any ¢ € {1, ...,n} @/ is the conjugate
diagram of );, is also an oscillating tableau There exists a highest weight vertex v/ € B(Cln) such
that Q(b') = Q. Moreover if the weight of b is equal to ), then the weight of b’ is equal to \. To
prove our conjecture we need the two following technical lemmas:

Lemma 4.3.1 Suppose that b = 1 ® - - - @ T, is a highest weight vertex of B(Cln) and write
V=z{®- - -®ux,. Then:

1. for any i =1,...,n, the two letters x; and x, are simultaneously barred or unbarred,

2 H@ ®1,,) = { 1—H(z; ® xi41) if x; and xiy1 are simultaneoulsly barred or unbarred
i i+l H(x; @ ;11) otherwise
Proof. We obtain 1 immediately from the definition ([9) of @ and Q.
As usual we enumerate the rows (resp. the columns) of the Young diagrams from top to bottom
(resp. from left to right).
Suppose that z; = p and x;11 = ¢ with p,q € {1,...,n}. Then @Q;;1 is obtained by adding first a
box in the p-th row of Q;—; to give @;, next a box in the ¢g-th row of @;. Thus Q) 41 is obtained
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by adding first a box in the p-th column of Q);_;, next a box in the g-th column of Q) if p # ¢, by
adding two boxes in the p-th column of Q;_; otherwise. This implies that we have x} > zj, ; when
p<q (e z; <wiyy) and x; < x5 when p > ¢ (ie. 2; > 2i11).

Now suppose that z; = p and x;41 = ¢ with p,q € {1, ...,n}. Then Q41 is obtained by deleting first
a box in the p-th row of Q;_1 to give @);, next a box in the g-th row of @Q;. Thus Q;H is obtained
by deleting first a box in the p-th column of @}_;, next a box in the ¢g-th column of Q) if p # ¢,
by deleting two boxes in the p-th column of Q;_; otherwise. This implies that we have z} > a7,
when p < G (i.e. z; < x441) and 2} < xj; when p > @ (i.e. 2; > x441).

So in all cases we obtain H(zj ® xj,,) = 1 — H(x; ® ;1) when x; and x4, are simultaneously
barred or unbarred.

The equality H(z; ® 2}, ;) = H(x; ® x441) when z; and x;41 are not simultaneously barred or
unbarred follows from 1 since a barred letter is always greater than an unbarred one. m

For any vertex b = 21 ® - - - @ z, € B(Cln), set Z, = {i € {1,..,n — 1}, z; and x;4; are not
simultaneously barred or unbarred}

Lemma 4.3.2 With the above notation we have

Z(n —i)(1 —2H (z; ® 2i41)) =

€2y

n— Al
2

or any highest weight vertex b =11 ® - - - @ x,, € BS .\ of weight \.
)

Proof. Observe first that we have
i e < s
1—2H(ml®xl+1) = { lifx; < Ti+1

—1 otherwise

Since b is a highest weight vertex, it follows from the description of the action of the Kashiwara
operators [f] on a tensor product of crystals that for any i € {1,...,n}, b; = 1 ®--- ®@z; is a highest
weight vertex. In particular we must have by = x; = 1. Thus we obtain

Z(l — QH(.%'Z X xi+1)) — { 0 if In 1S unbarred

, 1 otherwise
[ASYAS

(20)

To prove the lemma we proceed by induction on n. When n = 1, we have b = 1, Z;, = 0 and
|A| = 1. Hence the lemma is true. Now suppose the lemma proved for any highest weight vertex
of B(Cln,l) and consider b = 21 ® -+ - Q@ x, € B(Cln) a highest weight vertex of weight A. Set
sp = Ziezb(n —1)(1 — 2H(z; ® wit1)). We have Z, = Z;, _, if x,_1 and z,, are simultaneously
barred or unbarred and Z, = Z;, , U {n — 1} otherwise. Write X for the weight of the highest
weight vertex b,_1 = 21 ® - - - @ Tp—1. In the two cases Z, = Z;,,_, and Zy = Z;,_, U{n — 1} we
derive by using the induction hypothesis

n—1-— ‘X‘
sp=—"77——+ > (1= 2H (2 @ 2iy1)).
1€EZy
When z,, is unbarred, we have ‘X‘ = |A] — 1. Hence n7127|)\| = n;w and we obtain s, = n;w by

(ed). When z,, is barred, we have ‘X‘ = |A| + 1 thus n7127|)\| = ";W —1 and by (R0) we also derive

—I\ .
sp = nTII which proves the lemma. m

21



Theorem 4.3.3 For any partition A of length n we have
Us,amy(@) = ¢" "M Xy (1) (q).

Proof. Consider b = 1 ® - - - ® x,, a highest weight vertex of Bgn) of weight A\ and set
V=2]{®- - -®ux,. Then

n—1
HY) =Y (n—dH( @} ) =Y (n—i)H(z@wip) + Y (n—i)(1 - H(z; © zi11))
i=1 i€y i€

by Lemma [.3.1. Thus we have

n—1
H@) =) (n—i)1—H(z;®zi41)) + Y (n—i)(2H (2; @ xi41) — 1) = “(“2— ) n —QW —H(b)
i=1 1€Zp

where the last equality follows from Lemma [£.3.3. Finally we derive

H(Y) n(n=1) _n—|A| _H n(n=1) n—|A| _
Xy @) =3 " =q 5720 ) a1 =g Xy an(eh)
bEF>\ beF/\

which by ([[§) proves the Theorem. m

Remark: Theorem can be regarded as an analogue for the affine root system ctV of Theorem
when p = (1,...,1).

4.4 Appendix on the one dimension sums

In [[7, Kang, Kashiwara and Misra have defined crystals qub for quantum affine algebras associated
to the affine root systems ¢ of types A(l) C’,(ll),A;n) I,A(Q) SLJZI, B(l) and D,gl). We give below

2n

the decomposition of the crystals qu5 as classical crystals for each affine root system ¢:

1 2 2 2 1 1
ci” N T A D
! l 21
BE(kAy) | BC(kAy) | @ BC(kAy) EB BB(kAy) | BB(kAy) | BP(kAy) 1)
k=0,k=Ilmod 2 k=0 k=0

where B¢ (kAy), BP (kA1) and BP (kA1) are the crystal graphs of the finite dimensional modules of
highest weight kA; respectively for Ug(sp,,,), Uy(s02n41) and Uy (s02,). Given any partition p € Py,
set B¢ B¢ e ® Bﬁn. Then, by using the energy functions explicited in [[] and [[], one can
define a statistic H? on the vertices of B,‘f from which it is possible to calculate the one dimension
sum Xf:u(q). In particular, with our notation, we have

oM
X)\,u (q) = X)\“u(q)

1)

since the polynomial X ,(q) is a one dimension sum for the affine root system C,(L . Denote by m

. . . . . (1)
the number of nonzero parts of . One proves that the highest weight vertices of weight A in BE"I
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. . . A% .
(considered as a Bj,-crystal) are in one to one correspondence with those of B, *"~" (considered as

.. . . . . . (1) .
a Cp-crystal). Similarly when m < n the highest weight vertices of weight A in BE" (considered as
e
a D,-crystal) are also in one to one correspondence with those of B, *"~'. Moreover the statistics
(2) (1) (1) . .
HAn—1 HBn' and HP»  are conserved via these correspondences. Thus we obtain by (B1) the

equality

AP ¥
X (@) =X, ;" (9)
for any p € P,. Similarly, when m < n, we have
A2 B P
Xy Ha) =Xy (@) =Xy (a) (22)

From Theorems and we obtain:

Corollary 4.4.1 For any A € P, we have

oV _lul=1Al _lel=A ~ o
X (@ =a" 2 Unulg) = 2 K52(q)

when = (1,...,1) € P,.

When ¢ is one of the two affine root systems A;i) or Dfizl, the structure of classical crystal of
B,‘f implies that the one dimension sum Xfu(q) cannot be naturally related to the g-multiplicities

uy,(q) or Uy ,(q) (see P.4). However they can be expressed in terms of the polynomials Kili(q)
€]

Note: While revising this work, the author have been informed that, in a paper in preparation [24],
Shimozono obtains a proof of the X = K conjecture for tensor product of the “symmetric power”
Kirilov-Reshetikin modules for nonexceptional affine algebras of type Dfizl, Agi), Cr(bl), Aan or A%)T.
With our convention for the definition of the one dimension sums (which is that of [J}]) this result

can be reformulated by writing

2 _ (1) _ ADT 1 _ 42 B (2)
K (q) = ¢MNXTn () = gMRIX e (g2) and K (q) = g7 (¢2) = gt XD (62)

for any p € Py. By ([[3) the first equality above establishes (ii) of Conjecture since Xy ,(q) is
a one dimension sum for C’,(Ll)—crystals. Thus assertion 2 of Corollary [f.4.1 holds for any u € P,.
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