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Abstract

Let pn be the probability for a planar Poisson-Voronoi cell to have
exactly n sides. We construct the asymptotic expansion of log pn up to
terms that vanish as n → ∞. Along with it comes a nearly complete
understanding of the structure of the large cell. We show that two in-

dependent biased random walks executed by the polar angle determine
the trajectory of the cell perimeter. We find the limit distributions of
(i) the angle between two successive vertex vectors, and (ii) the one
between two successive perimeter segments. We obtain the probabil-
ity law for the perimeter’s long wavelength deviations from circularity.
We prove Lewis’ law and show that it has coefficient 1/4.

1. Introduction

Cellular structures are observed in a great diversity of situations in science
and technology. A common phenomenological description of such structures
makes use of Voronoi cells [1], constructed around centers which for simplicity
are referred to as “particles”: the Voronoi cell of a particle a is made up of
those points in space for which a is the closest particle. Hence Voronoi
cells constitute a “tessellation”, i.e. a division of space into nonoverlapping
regions. An excellent review of tessellations, with in its introduction many
historical and anecdotal details, is due to Okabe et al. [2]. It offers a thorough
discussion of much fundamental and applied work in this area. This includes
applications to biological tissues, mesh generation in numerical algorithms,
coding in telecommunication, etc.

Whereas the Wigner-Seitz cell associated with the regular lattices of solid
state physics is a special case, the generic Voronoi tessellation is based on
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randomly distributed particles; for uniformly distributed point-particles the
result is called a Poisson-Voronoi tessellation.

Voronoi cells appear in physics for many different reasons. Meijering [3]
used them to characterize the end result of a crystal growth process starting
from independent centers. In the theory of the solid-liquid transition they
serve to define nearest-neighbor relations between atoms, which in turn allow
the identification of lattice defects. Recently Voronoi tessellations of fractal
sets have been considered [4]. In field theory the use of random lattices and
the associated Voronoi tessellation [5, 6] was motivated by their advantage of
being statistically invariant under arbitrary translations and rotations while
still preserving a short-distance cutoff.

Here we are interested in two-dimensional Poisson-Voronoi tessellations.
Planar Voronoi cells are convex polygons. The first and foremost quantity
that appears in both theoretical and applied work is the probability pn for
a planar Voronoi cell to be n-sided. Approximate values for pn have been
tabulated by many authors [2]; they peak at n = 6 and fall off rapidly
for larger n. Connected questions concern the statistics of the cell area, its
perimeter, and its angles, as well as correlations with neighboring cells. They
have been studied by methods ranging from heuristic arguments and Monte
Carlo simulations to exact methods. Whereas some statistical properties
are readily obtained, others, among which the fraction pn, still defy solution
[6, 2].

Interest in planar Voronoi cells having a large number n of sides first
arose in biology. Lewis’ empirical law [7, 2], formulated more than seventy
years ago, states that when n becomes large, the average area of the n-
sided cell grows as ≃ c(n − 2)/ν, where ν is the particle density. In spite of
attempts, this asymptotic proportionality with n has not so far been proved
[9]. Numerical estimates of the coefficient c are in the range 0.199 − 0.257
[8, 10, 2]. In metallography large cells were observed by Aboav [11] in the
arrangement of grains in a polycrystal. His empirical law states that the
neighbor of an n-sided cell has itself on average a0 + a1n

−1 neighbors. Only
recently Hug et al. [12] showed rigorously that when a Voronoi cell becomes
large (in an appropriate sense), its shape tends towards a circle. In a different
approach mathematicians study those large cells that allow for an inscribed
circle whose given radius becomes asymptotically large [13].

Drouffe and Itzykson (DI) [8] estimated the probability pn for a planar
Voronoi cell to be n-sided by Monte Carlo simulations for n up to 50. The
rejection rate limits the statistical precision of generating such very rare
events. All other simulations cited in Ref. [2] (see e.g. [10]) were restricted

to n <
∼ 14, so that the work by DI is still today the main reference for the

large n behavior.

This note is the first announcement of a collection of new analytical results
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on planar Poisson-Voronoi tessellations. All of them are by-products of our
asymptotic evaluation of pn, and together they lead to a nearly complete
understanding of the large n-sided cell. Our analysis uses an accumulation of
classical mathematical methods; however, the asymptotics is beset by a great
number of difficulties, of which the correct choice of variables of integration
is merely the first one. It will be possible here to indicate only the main steps
and the main results.

We begin by a precise statement of the question. Let a subdomain of
the plane, of area L2, contain N particles with tags a, placed at positions
~Ra chosen independently and with uniform probability, and let N, L → ∞
at fixed N/L2 = ν. We consider the Voronoi cell of an arbitrarily chosen
particle a0 whose position will be the origin of the coordinate system. The
perpendicular bisectors of the ~Ra (with a 6= a0) pass through the midpoints
~Ra = 1

2
~Ra, which are uniformly distributed with density 4ν. Each side of the

cell is a segment of one of the perpendicular bisectors. An n-sided cell may be
fully specified by n midpoint vectors ~Rm (m = 1, . . . , n); or alternatively by

the n vertex vectors ~Sm (m = 1, . . . , n) that connect the origin to its vertices.
The probability pn has been expressed [8, 6, 14] as the 2n-dimensional

integral

pn =
1

n!

∫

[

n
∏

m=1

d~Rm

]

χ e−A , (1)

where we scaled lengths such that 4ν = 1; it is analogous to a partition func-
tion in statistical mechanics. The functions χ and A enforce two conditions
necessary for the n vectors ~Rm to define a valid Voronoi cell. First, each of
the n associated bisectors must contribute a nonzero segment to the perime-
ter. Calka [14] formulates this condition as a set of n inequalities, and χ is
the indicator function of the phase space domain where they are satisfied.
Secondly, the union of the n disks centered at 1

2
~Sm and of radius 1

2
Sm must

be void of midpoints. The probability for this is e−A, where A is the area
of the void region. Explicit expressions for A were given by DI [8] and by
Calka [14]. Eq. (1) has been rewritten and evaluated to seven decimal places
[15] for n = 3, but has otherwise remained untractable analytically.

2. The perimeter as a Markov process

Our approach originated from an attempt to describe the perimeter of
a Voronoi cell as a Markov process with the polar angle as independent
variable. We order the midpoints ~Rm ≡ (Rm, Φm) such that 0 < Φ1 <

. . . < Φn−1 < Φn ≡ 2π and denote by ~Sm ≡ (Sm, Ψm) the vertex where the

bisectors through ~Rm−1 and ~Rm intersect. Let βm be the angle between ~Rm−1

and ~Sm, and γm the one between ~Sm and ~Rm. These angles may be positive
or negative, since a midpoint need not (and for large n generically will not!)
itself be part of the side that it defines. The Markov process description
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leads to a transition probability between two successive midpoints which has,
essentially, the form R2

mTme−Am . Here Am, which satisfies A =
∑n

m=1 Am,
is the area of a region delimited by three circular arcs that should be void
of midpoints if the perimeter is to travel uninterruptedly between ~Sm−1 and
~Sm; and Tm = cos γm sin(βm + γm)/cos3 βm is the (unnormalized) probability

density for the perimeter to turn by βm + γm at vertex ~Sm. Considerable
algebra then gives

pn =
1

n

∫

dβdγ δ
(

n
∑

m=1

(βm + γm) − 2π
)

δ(G)

×
[

n
∏

m=1

ρ2
mTm

]

∫ ∞

0

dR R2n−1e−πR2A(β,γ) , (2)

which calls for several explanations. (i) We abbreviated

∫

dβdγ =

∫ π/2

−π/2

dβ1

∫ π/2

−β
1

dγ1

∫ π/2

−γ
1

dβ2

∫ π/2

−β
2

dγ2 . . .

. . .

∫ π/2

−γ
n−1

dβn

∫ π/2

−β
n

dγn θ(γn + β1) . (3)

Because of how they are nested, these integrations impose an orientation
on the perimeter. (ii) For an arbitrary set of angles (β, γ) ≡ {βm, γm} the
perimeter will spiral instead of close onto itself after a full turn of 2π; the
factor δ(G), where G = (2π)−1

∑n
m=1 log(cos γm/ cosβm), enforces its closure.

(iii) The ratios ρm ≡ Rm/R, where R is the average midpoint distance R =
n−1

∑n
m=1 Rm, are functions of the angles defined by

ρm =
cos γm cos γm−1 . . . cos γ1

cos βm cos βm−1 . . . cos β1
ρn (4)

for m = 1, . . . , n − 1, together with the sum rule n−1
∑n

m=1 ρm = 1. (iv)
Finally, we set A = πR2A(β, γ).

Eq. (2) fully defines our starting point. As a check one may derive it
directly from (1) by a coordinate transformation, in which the factors ρ2

mTm

then appear as the Jacobian. The decisive advantage of (2) over (1) is that
the integration limits have been made explicit so that the function χ is no
longer needed.

Integrating on R in (2) yields 1
2
(n − 1)! [πA(β, γ)]−n. If, as will appear,

A(β, γ) differs negligibly from unity for n → ∞, a steepest descent analysis
of the same integral shows that it draws its main contribution from R within
a width of order n0 around the saddle point Rc =

√

n/π.
Let now Pn(Ω) be expression (2) but with the 2π in the delta func-

tion replaced by a new variable Ω, and let P̃n(s) be its Laplace trans-
form with Laplace variable ns. Here we pass to a “canonical ensemble”
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of angles with weight exp[−ns
∑n

m=1(βm + γm)]. We define H(s) by writing
P̃n(s) =

∫

dβdγ e−H(s). The evaluation of this integral constitutes the real
problem: it is on all possible shapes (β, γ) of a Voronoi cell with average
midpoint distance scaled to unity.

3. Asymptotic expansion

Anticipating that we will be able to identify a zeroth order problem we
write H(s) = H 0(s) + V. Hence

∫

dβdγ e−H(s) = 〈e−V〉
0

∫

dβdγ e−H 0(s) , (5)

where 〈. . .〉
0

is the average with weight exp[−H 0(s)]. The appropriate choice
of H 0, if there is one at all, depends delicately on how the variables of in-
tegration in (5) are assumed to scale with n. We certainly expect that for
large n only small βm and γm will contribute, but the exact scaling of these
angles with n is not a priori evident. The calculation bears out that

e−H 0(s) = π−n

n
∏

m=1

(βm + γm) exp[−ns(βm + γm)] (6)

is the right choice for H 0.
We now transform to another set of angles, viz. ξm = βm + γm and

ηm = γm + βm+1 where m = 1, . . . , n and βn+1 ≡ β1. Clearly ξm is the
angle between two successive midpoint vectors and ηm the one between two
successive vertex vectors. Since the set {ξm, ηm} does not fix the relative angle
between the systems of midpoint and of vertex vectors, we complete it by
one of the original angles, β1. Setting Φm =

∑m
ℓ=1 ξℓ and Ψm = β1 +

∑m−1
ℓ=1 ηℓ

we obtain for m = 1, . . . , n the inverse relation

βm = Ψm − Φm−1, γm = Φm − Ψm . (7)

The “zeroth order” problem is constituted by the integral that is left in
the RHS of (5) when one sets V = 0. It can be solved when reformulated
in terms of the ξm and ηm. Since ξm, ηm > 0 and

∑

m ξm =
∑

m ηm = 2π,
they must scale as ξm = n−1xm and ηm = n−1ym. In the limit n → ∞
the xm and ym may be integrated from 0 to ∞ and the problem of the
nested integrations disappears. One finds

∫

dβdγ exp[−H 0(s)] = (3n −
2)! π−n(ns)−3n+1/(2n)!, up to contributions that vanish exponentially with

n. Let P
(0)
n (Ω) be the Laplace inverse of this zeroth order expression; one

readily finds P
(0)
n (2π) = (8π2)n/[4π2(2n)!]. The inverse Laplace integral has

a saddle point at s = sc = 3/Ω; if we can show that for n → ∞ the prefactor
〈exp(−V)〉

0
in Eq. (5) has a finite nonzero value in s = sc, then it follows

that pn = 〈exp(−V)〉3/2πP
(0)
n (2π).
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Rm+1

Rm

Sm+1
Sm

O

Figure 1: Schematic picture of the two random walks associated with the perime-

ter of a Voronoi cell. The walk joining the vertices ~Sm is the actual perimeter; the

other walk joins the midpoints ~Rm. In the limit n → ∞ the increments of the polar

angle along each walk are independent random variables distributed according to

Eq. (8). The perimeter segments are on the perpendicular bisectors (dashed lines).

We pause for a few comments. The zeroth order calculation has a useful
corollary: in the limit n → ∞ the scaled angles xm and ym become indepen-
dent random variables with laws u(xm) and v(ym) given by

u(x) = π−2x e−x/π, v(y) = (2π)−1e−y/(2π) . (8)

It follows, again for n → ∞, that {Φm}
n
m=0 and {Ψm}

n
m=0 are two mutu-

ally independent one-dimensional random walks, each with a drift of 2π/n
per step and with independent increments; they describe how the polar co-
ordinate of the midpoint vector ~Rm = (Rm, Φm) and of the vertex vector
~Sm = (Sm, Ψm), respectively, increases as one progresses along the perime-
ter. These angular random walks drive the radial coordinates Rm and Sm and
couple them together, which leads to the double-stranded two-dimensional
walk depicted in Fig. 1.

Let us now pursue the analysis. The validity of the zeroth order results
hinges on our ability to prove that the first factor in Eq. (5), 〈exp(−V)〉

0
,

exists and is subdominant in the large n expansion of log pn. Actually, ev-
erything has been so prearranged that this factor is of order n0. Moreover,
it has an interesting structure.

The regular n-sided polygon is an obvious point of symmetry in phase
space. DI obtained an exact lower bound for pn by expanding the vertex
vectors ~Sm about their regular polygon positions. This procedure preserves,
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however, the long range polygonal order. Here we will advance as in the
theory of elasticity, where one considers the deviations not of the positions,
but of the interatomic distances, from their ground state values. Hence we
expand V in powers of δxm = xm − x̄ and δym = ym − ȳ (where x̄ = ȳ = 2π).
This procedure allows, in principle, for large deviations from the regular
n-sided polygon.

Terms from various sources contribute to V and have to be examined one
by one. The scaling of the ξm and ηm and their asymptotic independence
determine how the other variables scale; Eq. (7) implies, in particular, that

the original angles scale as βm = n− 1

2 bm and γm = n− 1

2 cm. One finds that
V = V0 + n− 1

2 V1 + . . . . Hence 〈exp(−V)〉
0

= 〈exp(−V0)〉0
[1 + O(n− 1

2 )]. It
appears that V0 is quadratic in the δxm and δym with contributions coming
from (i) the O(n−1) terms in the expansion A = 1 + n−1A1 + . . ., and (ii)
the product

∏n
m=1 ρ2

mTm/(βm + γm). In terms of the Fourier components

ẑq = (2πn
1

2 )−1
∑n

m=1 e2πiqm/nδzm, where z = x, y and q is integer, one finally
finds, with s = 3/(2π),

V0 =
∑

q 6=0

[

(q−2 + 2q−4)(x̂q − ŷq)(x̂−q − ŷ−q) + 2q−2(x̂q − ŷq)ŷ−q

]

, (9)

where q runs through all nonzero integers. The decay of the Fourier coeffi-
cients as ∼ q−2 for large q is characteristic of interacting Coulomb charges.
Since the x̂q and ŷq are sums of independent variables, they are Gaussian dis-
tributed with variances determined by (8). We can show that the quantity
exp(−V0) may be averaged by Gaussian integration: in terms of Coulomb
charges this amounts to a Debye-Hückel approximation, which becomes exact
in the high temperature limit; here the inverse “temperature” is 1/n and the
exactness of our procedure follows [16] from a Hubbard-Stratonovich trans-
formation. Gaussian integration then leads to 〈exp(−V0)〉3/2π = C where
C =

∏∞
q=1 (1 − q−2 + 4q−4)−1 = 0.344... Hence the finite size correction fac-

tor C is the partition function of the deformational modes of the perimeter
with wavelength 2π/q, the main contributions coming from the long wave-
lengths.

4. Results

Upon combining the zeroth and first order result we conclude that the
probability pn for a Voronoi cell to be n-sided behaves as

pn =
C

4π2

(8π2)n

(2n)!

[

1 + O(n− 1

2 )
]

, n → ∞, (10)

which may also be written as the asymptotic equality

log pn ≃ −2n log n + n log(2π2e2) − 1
2
log(26π5C−2n). (11)
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Figure 2: Straight solid line: the asymptotic formula, Eq. (11). Open squares:

Monte Carlo data by Drouffe and Itzykson (Ref. [8], Table 1). Dashed line:
Eq. (11) with an additional term an− 1

2 , where we adjusted a = −0.24 to
fit the data.

We compare this to existing work. DI assume an expansion similar to (11)
and provide strong analytic an numerical evidence for the coefficient of the
n log n term to be equal to −2. This has now been confirmed. Further-
more, DI prove that the term proportional to n has a coefficient larger than
log(π2/e) = 1.289..., and from their numerical data estimate that it is ac-
tually between 4 and 5. Our value log(2π2e2) = 4.982... satisfies DI’s exact
inequality, as of course it had to, and is just inside the range of values that
these authors judged likely.

In Fig. 2 our asymptotic result Eq. (11) is shown as a straight solid line of
slope −1

2
. It is compared to the Monte Carlo data of Ref. [8] (open squares)

in the range 50 ≥ n ≥ 7 (the abscissa value of 2 corresponds very nearly to
n = 7). The first term not displayed in the asymptotic series of Eq. (11) will

be of the form an− 1

2 ; if, venturing at this point beyond our analytic results,
we choose its amplitude to fit the data, very good agreement (the dashed
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line) with the Monte Carlo results is obtained for a = −0.24 ± 0.02. We

believe that the downward trend in the DI data for n >
∼ 30 (abscissa <

∼ 0.75)
is due to the great difficulty of such simulations; in that region the authors
estimated their error bars to be at least of the order of the data themselves.

Consistency of the asymptotic scaling with Eq. (4) requires that ρm =

1 + n− 1

2 rm, where rm remains of order n0 as n → ∞. Hence the midpoint
distances Rm = Rρm deviate by order n0 from their average R, which itself
is typically within n0 from Rc. Therefore the area of the n-sided Voronoi
cell is sharply peaked around an average equal to πR2

c = n/(4ν), where we
restored the particle density. This demonstrates that to leading order Lewis’
law holds. Its coefficient c = 1

4
agrees with DI’s observation that c ≈ 1

4
.

It is amazing that the analysis of a problem defined on only a random
set of points in the plane evokes associations with so many phenomena in
statistical physics. A full account [16] of this work is in preparation. In an
extension of it we will revisit Aboav’s law.
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