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An extra-heating mechanism in Doppler-cooling experiments
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(Dated: December 18, 2004)

In this paper we experimentally and theoretically investigate laser cooling of Strontium 88 atoms
in one dimensional optical molasses. In our case, since the optical cooling dipole transition involves
a Jg = 0 groundstate, no Sisyphus-type mechanisms can occur. We are thus able to test quantita-
tively the predictions of the Doppler-cooling theory. We have found, in agreement with other similar
experiments, that the measured temperatures are systematically larger than the theoretical predic-
tions. We quantitatively interpret this discrepancy by taking into consideration the extra-heating
mechanism induced by transverse spatial intensity fluctuations of the optical molasses. Experimen-
tal data are in good agreement with Monte-Carlo simulations of our theoretical model. We thus
confirm the important role played by intensity fluctuations in the dynamics of cooling and for the
steady-state regime.

PACS numbers: PACS: 32.80.Pj

I. INTRODUCTION

Initiated in the mid-seventies, laser cooling, trapping and manipulation of atoms rapidly became a very successful
field of research [1], culminating twenty years later with the observation of Bose-Einstein condensation of alkali atoms
[2]. This success story begun with the seminal Doppler cooling theory which was designed for two-level systems [3, 4].
However, the first reliable tests of the Doppler theory could only be performed at the end of the eighties. As it
turned out, the measured temperatures in the experiments were well below the predicted Doppler values [5]. This
surprising results indicated that another much more efficient cooling mechanism was at work in the experiments. This
mechanism, now known as Sisyphus cooling, was identified soon after [6]. The key point was to understand that
internal groundstate degeneracies were opening the way to a new cooling mechanism based on optical pumping in the
presence of polarization gradients. This cooling mechanism is now the basic ingredient for most experiments in the
field and thus gave the Doppler theory a more academic status.

Recent laser technological advances however opened the way to cooling and trapping experiments with earth-alcaline
and rare-earth atoms (Calcium Ca, magnesium Mg, strontium Sr and Ytterbium Yb). As these atoms exhibit a zero
spin groundstate, Sisyphus cooling is absent. Interest in testing the Doppler theory to gain better control on achievable
temperatures has thus been renewed. To our knowledge, all experiments on laser cooling of these atoms [7, 8, 9, 10]
always reported much larger temperatures than the Doppler theory prediction. This is a strong clue in favor of
an extra-heating mechanism still to be clearly identified. Approaching the Doppler limit in magneto-optical traps
(MOT) operating with earth-alcaline atoms seems a challenge and a better understanding of this heating mechanism
is required for future experimental improvements. To our knowledge only one explanation has been published to
understand these high temperatures [11]. The argumentation is based on heating induced by inelastic collisions.
However, as the authors themselves show, this heating mechanism sets in only for atomic densities much higher than
for those measured in typical MOT (109 − 1011atoms/cm3). For this reason this explanation fails to understand the
results presented in this paper and also in all previously cited publications.

Heating mechanisms depending on the density and/or the number of atoms in the cold MOT cloud are well known
even for degenerate groundstate atoms [12]. They essentially rely on reabsorption of scattered photons in the cold
MOT [13]. This situation is encountered as soon as light multiple scattering sets in, i.e. when the light scattering
mean free path ℓ is comparable to the MOT size L. Similar multi-atoms and multi-photons effects certainly also exist
with earth-alcaline MOTs, but they can be made negligible by working at low densities (n ≈ 2.5 109atoms/cm3) and
at low optical thickness (b = L/ℓ ≈ 0.3 at resonance).

Strictly speaking, Doppler theory can also be tested with degenerate atoms provided a suitable molasses polarization
configuration is chosen [14]. Indeed, for 1D-cooling with parallel polarizations (σ+ − σ+ or π − π configurations), no
Sisyphus cooling can occur. However, even in this case, the authors found unusual high temperatures. They suggested
that this discrepancy was due to molasses intensity imbalance, leading to a local drift of the atomic average velocity
in the cloud. We agree with this explanation as we will show in detail in this paper.

We have performed specific temperature measurements on 88Sr (Sr in short hereafter) in a 1D-cooling configuration.
This is the ideal situation to test the Doppler theory for two reasons. First, we induce cooling on a Jg = 0 → Je = 1
atomic optical transition. Second, 2D or 3D Doppler cooling would be more difficult to analyze quantitatively. Indeed
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interference between the six laser MOT beams can induce light shifts modulations, leading to modifications of the
usual friction and diffusion coefficients [15]. These spurious effects do not exist in 1D configuration with mutual
orthogonal polarized counter-propagating laser beams. The new important ingredient here is that we incorporate in
the original Doppler theory the effect of transverse spatial intensity fluctuations of the laser molasses profiles.

The paper is organized as follows: after some details about the experimental procedure, we compare velocity
dispersion measurements with the Doppler theory predictions (section II). We have found temperatures 10 times
larger than predicted. Indeed, at a laser detuning δ = −Γ/2, we have measured a velocity dispersion σv = 0.7±0.2 m/s
(T ≈ 5 mK) whereas the Doppler theory predicts σv = 0.23 m/s (T ≈ 0.5 mK). In section III, we will show, on very
general arguments, why the molasses transverse intensity fluctuations heat the cold cloud. We then derive an analytical
model valid in two limiting cases: when the transverse distance L⊥ travelled by an atom during the longitudinal
velocity damping time is much shorter or much longer than the transverse correlation length ξs of the molasses
intensity fluctuations. As expected, these two different limits give rise to different final velocity distributions. In
subsection III D, we will compare our results to a Monte-Carlo simulation. Most of our experimental data correspond
to L⊥ ≪ ξs. In this case, the dynamics of the velocity distribution shows an unusual behavior. The velocity
dispersion σv is first reduced by the friction force and then increases after a time scale related to ξs (section IV).
This specific behavior confirms the dominant role played by the transverse intensity fluctuations in 1D-cooling with
a Jg = 0 → Je = 1 transition.

II. EXPERIMENTAL RESULTS

A. Magneto-optical trap

The cold strontium cloud is produced in a MOT. The Jg = 0 → Je = 1 dipole transition under consideration
is the optical atomic line 1S0 − 1P 1 at λ = 461 nm. The excited-state natural linewidth is Γ/2π = 32 MHz and
the corresponding saturation intensity is Is = 42.5 mW/cm2. First an effusive Sr beam is extracted from a 500◦ C
oven. Then a 27 cm long Zeeman slower reduces the Sr longitudinal velocity within the velocity capture range of
the MOT (∼ 50 m/s). The Zeeman slower, MOT, and probe laser beams operate at 461 nm and are generated
from the same frequency-doubled source detailed in [16]. Briefly, a single-mode grating stabilized diode laser and a
tapered amplifier are used in a master-slave configuration to produce 500 mW of light at 922 nm. This infrared light
is then frequency-doubled in a semi-monolithic standing-wave cavity with an intra-cavity KNbO3 nonlinear crystal.
The cavity is resonant for the infrared light while the second harmonic exits through a dichroic mirror providing
150 mW of tunable single-mode light, which is then frequency locked on the 461nm Sr line in a heat pipe. We use
acousto-optic modulators for subsequent amplitude and frequency variations. The MOT is made of six independent
trapping beams. Each beam is carrying an intensity of 5.2 mW/cm2 and each beam waist is 8 mm. The trapping
beams are red-detuned by δ = −Γ with respect to the atomic resonance. Two anti-Helmoltz coils generate a 70 G/cm
magnetic field gradient to trap the atoms. The number of trapped atoms, as deduced from fluorescence measurements,
is N ≈ 2.5 106. The (Gaussian-shaped) cloud dispersion is roughly 0.6 mm. The velocity dispersion of atoms in the
MOT is typically ∆v ∼ 1 m/s. Technical details about temperature measurements are given in the following section.

B. 1D-cooling and time-of-flight measurements

In addition to the previously discussed experimental set-up (MOT, Zeeman slower), two additional contra-
propagating laser beams are used to perform a 1D molasses (see figure 1). These 1D cooling beams are located
in the horizontal plane. Some quarter-wave and half-wave plates are used to fix the relative polarizations of the two
contra-propagating laser beams. An acousto-optical modulator in a double-pass configuration is used to adjust the
laser frequency from resonance down to −Γ. The same acousto-optical modulator is used to control the laser intensity
up to Is. The beam waist is 3.5 mm at the cold cloud position, thus much bigger than the MOT size.

The time sequence of the experiment is generated by a personal computer with digital output ports dedicated to
this task. An internal clock updates and synchronizes the digital output ports every 10 µs. This elementary time
step is short enough for our purposes. The digital output ports are connected to switches which turn on and off the
lasers beams (rising and falling times shorter than 1 µs), the magnetic field (rising time of few ms and falling time of
100 µs) and the CCD camera chopper (opening and closing times of 200 µs). The time sequence is designed as follows:
first the MOT is operated during about 20 ms. Then the MOT lasers and magnetic gradient are switched off. The
1D-molasses laser beams are then switched on during 500 µs. This cooling time is appropriately chosen : atoms reach
the cooling steady-state regime while, at the same time, the expanding atomic cloud remains smaller than the cooling
beams size. After the 1D-cooling sequence, the temperature of the cold cloud is extracted from a time-of-flight (TOF)
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measurement technique. For this purpose, all the laser beams are switched off and the cold cloud expands ballistically
in the dark. The duration of the dark period is varied from a few 100 µs up to 1.5 ms. Then a fluorescence image of
the expanding cloud is recorded on a CCD camera by briefly switching on the MOT beams during 20 µs. The whole
time sequence is then repeated as long as necessary to obtain a good signal-to-noise ratio (see figure 1).

Figure 2 shows three images of the cloud after different ballistic expansion times. The elliptical shape of the cloud
is a signature of the 1D-cooling sequence. Indeed the cooling axis is precisely the small axis of the ellipse. This
dimension will be thereafter referenced as the longitudinal axis. In the two other dimensions, thereafter referenced
as the transverse axes, the cloud is heated by random spontaneous emission. From these images, we extract the
dispersion of the longitudinal spatial distribution of atoms in the cloud, integrated over the transverse directions.
Because of the finite size of the image, we cannot have access to the long tail of the spatial distribution. Hence,
we truncate all recorded distributions at 2% of their maximum value. Assuming the initial atomic positions and
velocities in the MOT to be uncorrelated and centered, the ballistic time evolution of the spatial dispersion is simply
σ2

x(t) = σ2
x(0) + σ2

v t2. The velocity dispersion σv =
√
〈v2〉 is then easily extracted from the experimental data. To

cross-check these measurements, we have also used a different measurement method, namely a spectroscopic technique.
It consists in probing the cold cloud with an ultra-stable laser beam tuned on resonance with the 1S0−3P 1 Sr transition
line (note that this is also a 0 → 1 transition). Because this line is spin-forbidden, its frequency width is very small
(7.5 kHz) and is thus Doppler-broadened in the MOT [17]. Hence, we have a direct access to the velocity distribution
by measuring the Doppler-induced spectral width. We have checked that these two different techniques give the same
results, thereby confirming the validity of the TOF measurements, easier to handle, and for this reason routinely used
in this experiment for temperature measurements.

C. Doppler theory and results

Doppler theory is based on absorption-fluorescence cycles which induce a cooling mechanism competing with a
heating mechanism. Cooling is due to a mean friction force F = −mγv which damps the velocity and heating is
due to a Langevin fluctuating force Fν (photon noise) giving rise to diffusion with constant D in velocity space. At
equilibrium these processes exactly balance (fluctuation-dissipation theorem) and the Doppler temperature is found
to be kBTD = m σ2

D = m D/γ. All experimental data presented in this paper have been obtained in the lin‖lin
polarization configuration. In this case, analytical expressions for the damping coefficient γ can be found in [18] and
in [5] for the diffusion constant D. The analytical expression of the Doppler variance at low laser intensities I and
negative detuning δ is then

σ2
D =

D

γ
≈ 7

20

h̄Γ

m

1 + ∆2

2|∆|

(
1 +

2

7

11 + ∆2

(1 + ∆2)2
s0

)
= σ2

0(∆) (1 + 2β(∆) s0) (1)

Here ∆ = 2δ/Γ is the laser detuning in units of Γ/2 and s0 = I/Is is the on-resonance saturation parameter. As
could have been guessed, the Doppler temperature is related to the only energy scale of the problem, namely the
excited-state energy width h̄Γ. We thus see that, at low intensities, σD ≈ σ0(∆) (1+β(∆)s0) grows linearly in s0 with

slope β(∆)σ0(∆) from σ0(∆). Minimization of σ0(∆) is achieved for ∆ = −1 and gives β = 3/7, σ0 =
√

7h̄Γ/20m ≈
0.23 m/s.

In the strict 1D Doppler theory, the final velocity distribution and the corresponding temperature should depend
on the polarization configuration. For example, in the lin‖lin polarization channel, photon redistribution processes
between the two contra-propagating laser fields can occur, whereas they are forbidden in the lin ⊥ lin polarization
channel. Hence, the polarization configuration affects both friction and diffusion. We have tested different polarization
configurations (lin‖lin, lin ⊥ lin and σ+ −σ−) but no significative temperature modifications have been found in the
parameters range used in this experiment (see below).

Figure 3 shows the experimental variation of the velocity dispersion σv as a function of ∆ at low intensity (s0 = 0.08).
The global behavior is the same as the one predicted by the Doppler theory but systematically higher. For example,
at ∆ = −1, we get σv = 0.7 ± 0.2 m/s (T ≈ 5 mK) whereas the Doppler theory predicts σv ≈ σ0 ≈ 0.23 m/s
(T ≈ 0.5 mK). The mismatch is even more pronounced at small detuning and tends to be reduced at high detuning.
Figure 4, obtained at ∆ = −1, shows a strong linear increase of σv as a function of s0. The measured slope is 0.9 m/s
whereas the Doppler theory only predicts 0.1 m/s.

The on-resonance optical thickness corresponding to the data in figures 3 and 4 is typically b ≈ 0.3 when the
experimental sequence starts. At the end of the sequence, because the atomic cloud expands, b ≈ 0.15. These optical
thicknesses are not sufficiently low to discard multiple scattering effects (this would require b ≪ 1). The role of
multiple scattering of light is two-fold. First, it induces photon reabsorption leading to an average repulsion force
and heating. However at b ≈ 0.3, heating, as observed in [12], can here be neglected. Second, it implies beam
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attenuation (Lambert-Beer law). This means that the average optical force is weaker for atoms located deep in the
cloud and we get, as a net effect, an average compression force. In a MOT, these compression and repulsion forces are
equilibrated by the trapping force [19]. This is not the case in optical molasses. In a 1D-molasses, the compression
force is expected to dominate over the repulsion force induced by photon reabsorption, at least at moderate optical
thicknesses. A quantitative estimate of multiple scattering effects is thus not easy. For example, in our case, the
Lambert-Beer law predicts a maximum relative intensity imbalance of approximately 23% at low intensity, which is
not negligible. However our experimental results strongly suggests that multiple scattering velocity inhomogeneous
broadening is small. Indeed, as s0 is increased, the optical thickness decreases since the scattering cross-section is
reduced. The compression force is thus decreased and cannot explain the strong increase of σv vs s0 evidenced in
figure 4. Furthermore, multiple scattering induces some correlations between position and velocity which should alter
the cloud ballistic expansion. This has not been observed in figure 2. As an ultimate test, we have change the number
of atoms in the MOT by a factor 3 without detecting any modification of σv.

III. COOLING WITH INTENSITY IMBALANCE

We analyze in this section how spatial stationary transverse intensity fluctuations can modify the Doppler cooling
predictions in a quantitative way. Starting from the analytical expression of the average force in 1D molasses, we
take into account these spatial intensity fluctuations and we derive analytical results in two limiting cases, namely
when cooling is achieved before intensity fluctuates and in the opposite case. This analytical model neglects the
photon noise encapsulated in the Langevin force Fν leading to a nonzero Doppler temperature. However, for a
quantitative comparison with experimental data, we have developed a Monte-Carlo simulation which fully takes into
account all fluctuating mechanisms (molasses intensity fluctuations and photon noise). These results will be detailed
in subsections III C and III D.

A. Origin of spatial intensity imbalance

In the standard Doppler theory, the molasses beams are described as perfect plane waves. In real experiments
however, the beams have a Gaussian-shaped transverse profile. Usually one can ignore the transverse dimensions of
the beams because they are generally much larger than the MOT size. Nevertheless, the transverse intensity profiles
are not defect-free ideal Gaussian profiles. Indeed, even starting from diffraction-limited laser beams, imperfections
of optics elements (dust, aberrations, etc) induce scattering which generates an intensity speckle. Of course, in well-
controlled experiments, this speckle pattern remains relatively small compared to the average beam intensity, but
those two fields add coherently. In our experiment, we have measured the laser beam spatial transverse fluctuations
by placing a CCD camera at the approximative position of the MOT. Subtracting the ideal Gaussian profile, we have
computed the intensity fluctuations histogram (see figure 5). We found a Gaussian histogram with a relative standard
deviation (with respect to the average intensity) in the range 10 − 20%.

The 1D-molasses is created by two contra-propagating beams issued from the same source. However, the speckle
intensity generated by the optics imperfections in each arm are independent. It is thus reasonable to consider, at
each transverse position in the beam profile, the intensities Ii (i = 1, 2) of the two molasses beams to be random
independent Gaussian variables. Noting by si the corresponding on-resonance saturation parameters, we assume the
probability distribution P(si) to be the same for the two beams. Hence the (common) first two moments, at each
transverse position, are 〈si〉 = s0 and σ2

s = 〈(si − s0)
2〉 (i = 1, 2). In the following we will characterize the molasses

intensity fluctuations by the ratio rs = σs/2s0. From experimental data, we have rs in the range 5 − 10%. Another
important feature is the transverse spatial correlation function (assumed to be the same for each beam), namely
C(r) = 〈si(r

′) si(r
′ + r)〉 (i = 1, 2). The characteristic decay length of C(r) defines the transverse correlation length

ξs. Strictly speaking, because of diffraction effects, ξs cannot be zero. We have experimentally found ξs to be of the
order of few tenth of µm (ξs = 30µm for the example shows in figure 5).

B. Analytical model

For a 0 → 1 transition in the lin‖lin configuration, atoms are modelled by a two-level system involving the same
Zeeman states for each molasses beam. The two beams have the same red-detuned frequency (δ < 0), opposite wave-
vector k but locally different saturations which fluctuate independently across the transverse profile of the beams
but with the same correlation length ξs. The mean local radiation pressure force experienced by a single atom, with
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longitudinal velocity v, takes the simple following form:

F = m
vRΓ

2

[
s1

1 + s1 + s2 + (∆ − 2kv/Γ)2
− s2

1 + s1 + s2 + (∆ + 2kv/Γ)2

]
(2)

≈ m
vRΓ

2

[
s1

1 + 2s0 + (∆ − 2kv/Γ)2
− s2

1 + 2s0 + (∆ + 2kv/Γ)2

]
(3)

where vR = h̄k/m is the recoil velocity (≈ 6 mm/s for Sr). We have here assumed that the mechanical actions of
the two laser beams can be added independently, only considering the total saturation of the optical transition to be
(s1 + s2). We have furthermore replaced (s1 + s2) by 2s0 in the denominator. A more careful analysis, along the lines
given below, shows that this is indeed valid with our experimental parameters.

Near the steady state, the Doppler broadening become negligible, kv ≪ (Γ, δ) and the force can be safely approxi-
mated by:

F ≈ −m(s1 + s2)γv v + m(s1 − s2) a (4)

≈ −2ms0γv v + m(s1 − s2) a (5)

Defining the recoil angular frequency ωR = 2π νR = h̄k2/2m (νR ≈ 10.6 kHz for Sr), we have

γv = ωR

4|∆|
(1 + ∆2 + 2s0)2

and a =
vRΓ

2

1

1 + ∆2 + 2s0
(6)

The friction force is given by the term proportional to v and gives rise to a mean damping time:

τv = (2s0γv)−1 (7)

Consider now an atom moving across the molasses beams with transverse velocity v⊥. This velocity is unaffected by
the longitudinal cooling. So, as the atom flies across the beam, it may experience induced temporal molasses intensity
fluctuations. The induced correlation time of these fluctuations is simply

τs = ξs/v⊥ (8)

We have thus two competing dynamical processes, the cooling one with characteristic time τv and the intensity random
(induced) temporal variations with correlation time τs. The global velocity dynamics can be easily analyzed when
these time scales are well separated.

1. The regime τv ≪ τs

For atoms fulfilling this condition, the damping process is completed before intensities fluctuate. Then the constant
force and the friction coefficient in (4) can be considered as time-independent. Atoms thus behave as if v⊥ was
zero. However, because ξs is much shorter than the cloud size, each atom experiences randomly fixed distributed
intensity imbalances and, in turn, a random constant force. The random stationary velocity is v∞ = aτv(s1 − s2). It
is Gaussian-distributed with zero mean and dispersion

σ∞ =
√

2aτv σs =
√

2
Γ

k

1 + |∆|2 + 2s0

4|∆| rs (9)

To find the final velocity distribution, one has to incorporate the photon noise force Fν . As the photon noise and
intensity fluctuations are independent, the total velocity variance is the sum of the Doppler and intensity variances
σ2

v = σ2
D + σ2

∞. In this regime, intensity fluctuations thus give rise to an extra-heating mechanism inducing an
inhomogeneous broadening of the Doppler velocity distribution. At ∆ = −1, s0 small and rs = 9%, one gets
σ∞ ≈ 0.94 m/s and σv ≈ 0.97 m/s.

2. The regime τv ≫ τs

In this regime, the molasses intensities fluctuate wildly before the atom reaches its stationary state. Thus they
cannot be treated as time-independent quantities. They can however be treated as independent Markovian (short
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memory) processes. From the expression (4) of the total force, we derive the following master equation for the velocity
distribution Pt(v) [20] (details will be given elsewhere):

P(v, t + τs) =

∫
ds1 ds2 dv′ P(s1)P(s2) P(v′, t) δ

(
v − v′ − F

m
τs

)
(10)

In this equation, at each time step τs, the saturations s1 and s2 take on new values uncorrelated with the previous
ones.

One should note that we have kept here both the additive noise, given by the (s1 − s2) term, and the multiplicative

noise, given by the (s1 + s2)v term. This last term had been replaced by 2s0v in our previous analysis (expression
(5) of the force). In the limit of small velocity changes at the elementary time scale τs, one can derive from (10) a
Fokker-Planck type equation (see Appendix VII):

∂P(v, t)

∂t
=

1

τv

∂

∂v
(vP(v, t)) +

∂2

∂v2
(D(v)P(v, t)) (11)

Defining D∞ = σ2
∞

/2τv, the velocity-dependent diffusion constant has the following expression:

D(v) = D∞

[
1 + (1 + 2r2

s) [v/σ∞]2
] τs

τv

≈ D∞

[
1 + (v/σ∞)2

] τs

τv

(12)

since generally 2r2
s ≪ 1. This velocity-dependence originates from the multiplicative noise and leads to abnormal

diffusion. The stationary velocity distribution P0 is then easily found to take the following form (N is a normalization
constant):

P0(v) ≈ N [1 + (v/σ∞)2]−(1+η) (13)

where η = τv/τs ≫ 1. The full width at half maximum of this distribution is

Γv = 2
√

ln 2

√
τs

τv

σ∞ ≪ σ∞ (14)

As easily checked D(v) ≈ D∞ τs/τv for v ∼ Γv. Hence the impact of abnormal diffusion is in fact negligible when
τv ≫ τs and the velocity distribution is very close to a Gaussian with velocity dispersion

σv ∼
√

τs

τv

σ∞ ≪ σ∞ (15)

which is much narrower than the velocity dispersion found in the long correlation limit (9) by the factor
√

τs/τv.

Figure 6 shows σv as a function of rs in the long and short correlation time limits (∆ = −1, s0 ≪ 1). When rs → 0,
σv goes to zero in both limits. This does not mean that the temperature goes to zero in experiments. Indeed, in
the previous discussion we have discarded the photon noise at the physical origin of the bare Doppler theory. Its
contribution at low saturation is given by the dotted line in figure 6. We can see that the noise induced by long
correlation times starts to dominate at rs > 2.5%, a fairly small value. Hence, to achieve cooling up to the Doppler
limit at ∆ = −1, one has to minimize the ratio τc/τv for a fixed value of rs. This can be done in different ways. First,
by decreasing the laser intensity to increase τv. Second, by decreasing τs. As shown by (8), this can be achieved
either by avoiding large transverse intensity defects in the laser profiles to decrease the correlation length ξs or by
increasing v⊥. This is indeed was has been observed in atomic beam experiment [21] where temperatures very close
to the Doppler limit had been found along one transverse dimension.

In a MOT, if the fluctuations of the transverse intensities are not the same for all three dimensions, the temperature is
expected to be anisotropic. Moreover coupling mechanisms occur between the cooling dimensions. Thus high velocity
dispersion along one dimension tends to reduce the temperature in the orthogonal plane. In our 1D-molasses, the
transverse velocity is fixed by the initial MOT sequence and τs/τv is usually bigger than 1. As we will see in Section
III.D., this means that transverse intensity fluctuations are the major heating mechanism.

C. Monte-Carlo simulations

In order to quantitatively test our theory and not relying on questionable approximations, we have developed a
Monte-Carlo (MC) simulation. This MC simulation fully takes into account the photon noise leading to the Doppler
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cooling limit, saturation of the transitions and the transverse intensity fluctuations discussed so far, i.e. with arbitrary

correlation time τs and saturation dispersion σs.
The shortest time scale in the MC calculation is given by the excited-state lifetime τe = 1/Γ. To mimic the

transverse flight of atoms, the molasses saturation fluctuations δsi = (si − s0) (i = 1, 2) become time-dependent
parameters and evolve according to the damped random path discrete equation (n labels the number of time steps
τe)

δsi(n + 1) = (1 − ρ) δsi(n) + Rn (16)

with ρ ≪ 1. The first term in this equation is the friction term, relaxing saturation to its stationary value s0, while
the last term is a random variable, with zero mean value, uniformly distributed over the range [−ǫ/2, ǫ/2]. A simple
calculation shows that 〈R2

n〉 = ǫ2/12. We further assume that the Rn’s are decorrelated. The continuous limit of (16)
is

d δsi

dt
+

ρ

τe

δsi = R(t) (17)

As the correlation time τs should correspond to the damping time of this equation, we see that ρ = τe/τs. Thus fixing
τs fixes ρ in (16). The last term of (17) is a δ-correlated Langevin term with zero mean. Its time-correlation function
is 〈R(t′)R(t)〉 = 2D δ(t − t′) where it is easily shown that D = ǫ2/24τe. The fluctuation-dissipation theorem then
dictates σ2

s = Dτs, leading to

ǫ = 2
√

6ρσs (18)

This last result can be found more elegantly by squaring (16) and averaging over the probability distribution of Rn.
Hence experimental determination (or convenient choice) of the macroscopic ingredients τs and σs fixes in principle
the microscopic ingredients ǫ and ρ in (16).

Figure 7 shows the obtained final velocity dispersion σv as a function of τs/τv for s0 = 0.04 and rs = 9%. The
velocity damping time, calculated with (7), is τv = 200 µs. As expected, σv is higher for long correlation times
τs ≫ τv. When τs ∼ τv, σv is very sensitive to τs. At lower values τs ≪ τv, σv is minimum and, for these parameters,
reaches the Doppler limit. The final distributions (not shown here) are quasi-Gaussian, even at small τs.

D. Quantitative comparison with experimental data

We have showed in section II.C that the measured velocity dispersion were always larger than the Doppler theory
predictions. We now compare our experimental data with the results of our previous MC simulation. In order to
stick as close as possible to the experiments, we also take into account the transverse velocity distribution (a centered
Gaussian with dispersion ∆v⊥ ≈ 0.8 m/s) in the MC simulation.

In figure 3 the solid curve corresponds to the MC simulation performed at rs = 9% and ξs = 60 µm. These
quantities are fit-parameters in the MC simulation but remain in the range of the measured ones (see III A). As one
can see, the agreement with experimental points is now very good, providing a clear understanding of the physics
at work in the experiment. Coming back to (6), close to resonance, the friction term decreases while the intensity
imbalance term increases. Hence, the mismatch between experiment and Doppler theory is maximal.

Again, an excellent agreement between MC simulation (solid curve) and data is found in figure 4. To properly
understand these results, one has to remind that the cross-over region between the long- and short-correlation time
limits is given by τs = τv, or equivalently by s0 = v⊥/2γvξs ∼ 0.1. TOF measurements before the molasses sequence
have shown that v⊥ ≈ 0.8 m/s whereas ξs is the chosen MC parameter. This is exactly what is seen in figure 4 and the
Doppler theory is recovered when s0 → 0. However, this short-correlation time limit (τs ≪ τv) was not experimentally
accessible because the 1D-cooling duration sequence was not long enough to reach the steady state. This is why most
of the data points correspond to the long-correlation time limit (τs ≫ τv) and can be compared to (9). This is done in
figure 4 where the dashed line corresponds to the prediction given by (9). The general behavior is correct, indicating
that saturation of the atomic transition indeed plays a significant role. However the prediction (9) is a little bit too
large. This is not surprising since, for the explored range of parameters, some atoms will always have sufficiently high
transverse velocities to fulfill the short correlation time criterion, both in the experiment and in the MC simulation.
As a consequence, the velocity dispersion σv will be reduced. In other words, (9) corresponds to a zero-transverse
velocity case giving over-estimated predictions.

Figure 8 shows the longitudinal spatial distribution obtained for the longest ballistic time at ∆ = −1 and s0 = 0.08.
It is two times broader than the initial spatial distribution and essentially proportional to the velocity distribution.
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We can then try to compare it to the velocity distribution obtained with the MC simulation (solid line). We have also
plotted the Gaussian distribution expected from standard Doppler theory (dashed line). The actual non-Gaussian
shape of the MC distribution is explained by the transverse velocity dispersion (∆v⊥ ≈ 0.8 m/s). For each fixed

transverse velocity, the distribution is quasi-Gaussian with a width depending on v⊥ (see figure 6 and discussions
in Section III B). For this simple reason, summing over the transverse velocity distribution leads to a non-Gaussian
distribution. The non-Gaussian shape of the MC simulation matches the experimental distribution better than the
Gaussian one.

As a conclusion of this section, we again stress that we have quantitatively explained both the behavior of the
velocity dispersion σv as a function of laser detuning and intensity and the observed non-Gaussian distributions. This
puts strong evidence on the fundamental role played by molasses intensity defects in the cooling process.

IV. COOLING DYNAMICS

Figure 9 show the time evolution of σv for three different values of τc corresponding to the short, intermediate
and long correlation time limit. When τs is short (or equivalently v⊥ large), the corresponding curve (a) displays an
exponential-type behavior decaying to the Doppler steady-state value. This curve is in agreement with the dashed line
Doppler prediction. When τs is long (or equivalently v⊥ small), the dynamics evidenced by curve (c) is more complex.
First σv reaches a minimum value within a time scale corresponding to the damping time τv. Then, σv increases again
and reaches the steady state value σ∞ predicted by (9). When the mean velocity and the local intensity imbalance
are uncorrelated in the initial state, then this long correlation time behavior is generic and does not depend anymore
on the initial state. Because the intensity correlation length ξs is large, the heating mechanism takes also some time
to build up and the initial velocity distribution starts first to shrink. This is easily explained by considering the
dynamics induced by (4) for times shorter than τs where transverse intensity fluctuations are dynamically frozen.
After a proper averaging over intensities fluctuations, the following analytic expression for σv(t) is derived:

σv(t)
2 = (∆v2 + σ2

∞
) exp (−2t/τv) + σ2

∞
(1 − exp (−t/τv)) (19)

where ∆v corresponds to the initial longitudinal velocity dispersion. the small time expansion t ≪ τv of this equation
gives:

σv(t) ≈ ∆v (1 − t/τv) (20)

clearly evidencing the velocity spread narrowing at small times. We have experimentally tested this specific behavior.
Once the MOT is loaded, we have switched off the cooling laser beams within a time window of variable duration
τdark. This dark sequence must be long enough to allow atoms to travel over transverse distances larger than the
correlation length ξs of intensity fluctuations. Then, once the cooling lasers are switched on again, any correlation
between the mean atomic velocity and the local intensity imbalance is wiped out. We should thus observe the behavior
predicted by curve (c) in figure 9. The velocity dispersion σv is measured after a time τ by the TOF technique (see
section II). In figure 10(a), we plot σv as a function of τ after a dark period τdark = 0.5 ms. We reproduce nicely the
corresponding theoretical prediction. First we observe a decrease of σv followed by an increase, up to the final value
(which is here the same as the initial value). We also checked that the dark period has to be long enough, as evidenced
in figure 10(b). When τdark is short enough (less than 1 ms), decorrelation between the mean atomic velocity and
local intensity imbalances is not completed. When τdark is long enough (larger than 1 ms), complete decorrelation is
achieved and the dark period no longer plays any role in the cooling dynamics.

For practical reasons, these experiments were done with the MOT (i.e. on an 3D-cooling configuration in the
presence of the magnetic field gradient) whereas the MC simulations were done for a 1D-cooling scheme. This major
difference does not allow for a quantitative comparison between theory and experiment. However, the qualitative
agreement is pretty good. This result suggests that the dominant extra-heating mechanism in a MOT is the same as
in 1D-molasses.

Because the velocity distribution always starts by a compression period, one could imagine a cooling strategy
implementing suitable repetitions of dark time windows to achieve Doppler-limited cooling. This simple idea however
is not easy to handle because complete decorrelation between initial atomic velocities and intensity imbalances during
these dark windows is requested. As the cloud cools down, the duration of the subsequent dark periods has to be
increased accordingly to maintain this decorrelation. Unfortunately, as soon as the cooling time becomes very long,
spurious effects such as large cloud expansions, then have time to set in.
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V. CONCLUSIONS

We have evidenced in this paper the important role played by transverse spatial intensity fluctuations in 1D laser
cooling of zero spin groundstate atoms where no Sisyphus cooling can occur. For intensity imbalanced molasses beams,
the total radiation pressure force decomposes, at small velocities, into a friction force and a constant force. The latter
is at the root of an additional heating mechanism. These two forces essentially depend linearly on the molasses
intensities. In the presence of sub-Doppler cooling mechanisms, the friction term becomes intensity-independent
whereas the constant force remains proportional to the intensity [5, 22, 23]. Hence, with sub-Doppler cooling, the
effect of intensity imbalances can be arbitrarily small and, in turn, does not play any significant role. This is completely
different for Doppler cooling where this effect remains dominant in most experimental cases.

The cooling steady-state reached by the atoms depends sensitively on the ratio ζ between the correlation length of
transverse intensity fluctuations and the transverse distance travelled by the atoms before reaching the steady-state.
For small ζ, the transverse fluctuations can be modelled by a Langevin force inducing an additional heating mechanism.
For large ζ, the equilibrium state is reached at frozen molasses intensities. Atoms at different transverse positions
then probe all possible intensities imbalance. This averaging procedure mainly affects the final atomic velocity and
induces an inhomogeneous broadening of the Doppler velocity distribution. The impact on the final temperature is
more severe than in the small ζ regime. This is evidenced by our experimental data which mostly lie in the large ζ
regime. It is however possible, in principle, to reach the small ζ regime by appropriately reducing the intensities of
the cooling beams and get final temperatures closer to the Doppler limit.

The cooling dynamics also exhibits an unusual behavior in the large ζ regime : the atoms are first cooled down
before being heated up. This specific feature is also found in our experiments, thus confirming the central role of
transverse intensity fluctuations in Doppler cooling.
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VII. APPENDIX : DERIVATION OF THE MASTER EQUATION

The Fokker-Planck type equation (11) is obtained by starting with the master equation (10):

P(v, t + τs) =

∫
ds1 ds2 dv′ P(s1)P(s2) P(v′, t) δ(v − v′ − F (s1, s2, v

′)

m
τs) (21)

By Fourier transforming this equation with respect to v, we get:

P̃(q, t + τs) =
1√
2π

∫
ds1 ds2 dv′ P(s1)P(s2) P(v′, t) exp[−iq(v′ +

F (s1, s2, v
′)

m
τs)] (22)

We plug now expression (4) of the force in this equation to find:

P̃(q, t + τs) =
1√
2π

∫
dv′ P̃ [qτs(a − γvv

′)] P̃∗[qτs(a + γvv′)] P(v′, t) exp(−iqv′) (23)

where the star denotes complex conjugation and where

P̃(u) =

∫
dsP(s) exp(−ius) (24)

is proportional to the Fourier transform of the molasses saturation distribution P . As discussed in section III A, the
distribution P is a Gaussian with mean s0 and dispersion σs. A Taylor expansion of (23) up to second order in τs

then leads to:

τv

∂P̃(q, t)

∂t
≃ 1√

2π

∫
dv′

[
i qv′ − q2 τs

2τv

[v′2(1 + 2r2
s) + 2r2

s

a2

γ2
v

]
P(v′, t) exp(−iqv′) (25)

An inverse Fourier transform then gives equation (11) once we note that σ∞ =
√

2rsa/γv according to equation (9).
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FIG. 1: Schematic drawing of our set-up and of the time sequence used in the experiment. The six independent MOT laser
beams are along the x axis and in the vertical plane (yz) at 45◦ with respect to the z axis. The one dimensional cooling beams
contrapropagate along the y axis. The recorded CCD images correspond to the cloud fluorescence signal integrated over z.
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FIG. 2: After the 1D-cooling sequence along axis y, the spatial distribution in the horizontal plane is collected at three different
ballistic expansion times by the time-of-flight technique. From these images, we extract the velocity dispersion σv in the cloud
(see text).
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FIG. 3: Velocity dispersion σv as a function of |∆| = 2|δ|/Γ for s0 = I/Is = 0.08. The experimental data (circles) are compared
to the Doppler prediction (dotted line) and to the Monte-Carlo simulation (solid line) at rs = 9% and ξs = 60 µm. As one can
see the Doppler theory is completely off while very good agreement is obtained with our theoretical model (see text).
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and ξs = 60 µm. Whereas the Doppler theory is completely off, very good agreement is found with our theoretical model. The
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FIG. 5: Figure (a) shows typical relative intensity fluctuations of a laser beam once the smooth Gaussian profile is removed.
The typical intensity dispersion is roughly 10% of the total signal. Figure (b) shows the spatial fluctuations correlation function
C(x) vs a transverse coordinate. The transverse distance at which this correlation function vanishes defines the correlation
length ξs. Experimentally we found ξs ≃ 30 µm (diamonds). The oscillation on top of the decay is due to the interference
generated by the front window of the CCD camera. The fast decrease observed at short distances is also present when the laser
is off (crosses). This fast decrease is thus due to the uncorrelated noise on the CCD camera and corresponds to the pixel size.
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FIG. 6: velocity dispersion σv for the long (solid line) and short (dashed line) correlation time limit as a function of the relative
fluctuation of the intensity rs = σs/2s0. In the short correlation time limit τs = 30µs. The dotted line corresponds to the
Doppler limit at low saturation and ∆ = −1 (see text).
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FIG. 7: Final velocity dispersion σv as a function of the correlation time τs (full circles). The transverse and longitudinal velocity
dispersions are both equal to ∆v = 0.8 m/s. The mean saturation of each beam is s0 = 0.04 and the saturation fluctuation
parameter is rs = 9%. The upper dashed line represents the long correlation time limit while the lower one represents the
Doppler-cooling limit (see text).
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FIG. 8: Velocity distribution obtained at s0 = 0.08 and ∆ = −1. Circles : experiment. Solid line : Gaussian fit. Dashed line :
Monte-Carlo simulation with rs = 7.5% and τs = 20 µs (see text).
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FIG. 9: Monte-Carlo simulations of the time evolution of the velocity dispersion σv for three characteristic correlation times: (a)
short correlation time (τs = 1.25 µs) ; (b) intermediate correlation time (τs = 125 µs) ; (c) long correlation time (τs = 1250 µs).
The transverse velocity dispersion is ∆v⊥ = 0.8m/s, the mean saturation per beam is s0 = 0.04 and the saturation fluctuation
parameter is rs = 9%. The dashed exponential decay is the bare Doppler prediction (see text).
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FIG. 10: (a) : Time evolution of the velocity dispersion σv after a dark time window of duration τdark = 0.5ms ; (b) MOT
velocity dispersion σv as a function of the dark window duration. The dark window starts 0.5 ms after the beginning of the
cooling sequence (see text).


