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ABSTRACT 

 

 

We report on the synthesis and structure of silica filled latex films. The main stage of the 

synthesis consists in physico-chemical manipulations of colloidal solutions of nanosilica and 

nanolatex beads, followed by drying and filmification. Hence, no mechanical energy which 

might contribute to building or destruction of aggregates of silica beads is supplied to the 

samples.  

 

We have analyzed the structure of the resulting filled latex films by means of Small Angle 

Neutron Scattering. The scattered intensity varies enormously with the physico-chemical 

parameters, indicating considerable structural modifications. To rationalize these results, we 

present a unified description of the data which successfully accounts for the main 

characteristics of the scattered intensity: the form factor of beads at large q vectors, the 

position of the intra- and inter-aggregate structure factor peaks, the small-q upturn observed in 

some cases, and the overall intensity in absolute units. This allows us to quantify the degree of 

aggregation of the silica in the matrix. It is found that the latter can be varied in a systematic 

manner by changing pH, silica volume fraction and quantity of added salt. In one extreme 

case, e.g., the aggregation number changes by a factor of about 1000 at constant silica volume 

fraction. 
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I. INTRODUCTION 

Elastomers filled with small and hard particles are of great importance for the rubber industry, 

where carbon black and silica are commonly used fillers [1-6]. These improve the mechanical 

properties of polymeric material like the elastic modulus or resistance to abrasion. This 

reinforcement of polymers has been studied in the past from many different points of view, by 

experiment, theory and simulation. The wealth of approaches seems to be due to the 

complexity of reinforcement, where effects on different lengthscales interact. Some studies 

focus on chain conformation and dynamics, and changes induced by the presence of filler [7-

13], others on the interactions at the filler surface [14-18], and again others on interactions 

between fillers and the large-scale structure of the filler in the polymeric matrix ('filler 

networking') [19-28]. Moreover, non spherical fillers like fibers or disks, or special filler 

surface treatments can further increase the complexity [2, 3, 16, 29-31].  

 

In this article, we present the first part of a study of the relationship between the filler 

structure and the rheological properties of a model nanocomposite material. It consists of 

(hard) nanosilica spheres embedded in a soft polymeric matrix, which is itself formed from 

nanolatex particles. Strictly speaking, the matrix is an entangled melt and not a rubber, i.e. 

there are only transient junctions between chains. At the temperature of interest, however, the 

flow of the material is sufficiently slow and the observed reinforcement effects are 

sufficiently strong that our conclusions are nonetheless relevant for filled rubber as well. Our 

system is solvent cast, i.e. it is controlled by physico-chemical manipulations in solution, 

which has a variety of advantages: (a) No mechanical mixing or mechanical energy input is 

needed for its preparation. (b) The processes governing latex film formation are now well 

understood [32-34]. (c) Silica is a lot harder than the matrix polymer. The system represents 

thus an important limiting case of practical relevance. (d) The Silica-latex-surface interactions 
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are always the same, independent of the structure of the filler. (e) The constituents, latex and 

silica particles, can be studied individually. (f) The system has a high contrast for Small Angle 

Neutron Scattering (SANS) experiments. 

 

In section II, we present experimental details about the synthesis of the nanocomposite films, 

as well as about the SANS experiments and data analysis. In section III, we turn to a SANS-

study of the individual components (latex and silica beads), and the structure of nanolatex-

silica films obtained in various physico-chemical conditions. Results are discussed in the last 

section, where we rationalize the data in terms of the aggregation number of silica in the 

matrix. In a forthcoming article we will confront the measured filler structure with the 

mechanical properties tested in uniaxial elongation. 

 

II. EXPERIMENTAL 

II.1 Sample preparation 

The colloidal silica samples Bindzil B30/220 and Bindzil B40/130 were a gift from Akzo 

Nobel, Sweden. The aqueous solution of c=30%wt for B30 (40%wt for B40, respectively) 

was initially at pH 9. They were diluted to c=10%wt, de-ionized by means of an ion exchange 

resin and filtered with a Millipore Steril Filter (0.8 µm). The resulting conductivity of the 

stock solutions was of the order of 100 µS/cm, at pH between 3 and 4. By immediate addition 

of small quantities of NaOH (1.0 M) the pH was adjusted to the desired value and the 

colloidal stability was preserved. The average size given by Akzo Nobel is R = 75 Å for B30 

and R = 125 Å for B40. The polydispersity is expected to be important. 

 

The nanolatex was kindly provided by Rhodia. It is a core-shell latex of Poly(methyl 

methacrylate) (PMMA) and Poly(Butylacrylate) (PBuA), with a hydrophilic shell containing 
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methacrylic acid. This hydrophilic shell is known to be less well defined than shells of bigger 

latex particles [26]: The surface is simply enriched in methacrylic acid in order to assure the 

colloidal stability in water. The key parameter for mechanical measurements is the glass 

transition temperature of  the core: Tg = 33°C. The initial concentration of nanolatex was 

30%wt, at pH 9, and it has been processed in the same way as the colloidal silica. The 

approximate size given by Rhodia is R = 200 Å.  

 

Samples were prepared by mixing appropriate amounts of silica and latex stock solutions 

(previously brought to the desired pH) in order to obtain a given volume fraction Φ of silica in 

the final composite film. Note that addition of NaOH changes both the pH and the 

conductivity Ls. In some experiments, NaCl (between 0.01 and 0.25 M) was added to the 

aqueous mixture to further increase the conductivity without changing the pH. Solutions were 

de-gassed in primary vacuum for several hours at room temperature, and then cast into 

preheated teflon moulds of dimensions 4x4cm2 or 5x5 cm2. Filmification takes about 4 days at 

65°C, and bubble-free, transparent, sometimes slightly yellowish and homogeneous films of 

1-2 mm thickness were obtained [32-34]. These were further smoothed with sandpaper in 

order to achieve constant thickness, which is important for the calibration of the scattered 

intensity. 

 

II.2 Small Angle Neutron Scattering 

Experiments have been performed at LLB on beamline PACE and at ILL on beamline D11. 

Here we report mainly on the D11 experiment. The wavelength was fixed to 10.0 Å and the 

sample-to-detector distances were 1.25 m, 3.50 m, 10.00 m, 36.70 m, with corresponding 

collimation distances of 5.50 m, 5.50 m, 10.50 m and 40.00 m, respectively. On spectrometer 

PACE, two configurations were used: a first one with wavelength 9.3 Å, sample-to-detector 
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distance of 4.58 m and a collimation distance of 5.00 m, and a second one with wavelength 

5.1 Å, sample-to-detector distance of 1.13m and a collimation distance of 2.50 m. Data 

treatment has been done with a home-made program following standard procedures [35, 36], 

with H2O as calibration standard. D11-Spectra from different configurations superimpose 

almost perfectly due to the common wavelength implying the same (weak) contribution of 

inelastic, incoherent and multiple scattering. Small deviations found in the spectra at the 

overlap of two configurations are due to different resolution conditions. For absolute 

intensities in cm-1 the incoherent scattering cross section of H2O was estimated from a 

measurement of the attenuator strength and of the direct beam with the same attenuator. The 

incoherent scattering background of the nanocomposite samples was subtracted by enforcing 

a high-q Porod (I = A q-4) behavior, which is known to be present from calibration 

measurements with individual silica beads. The latter are the main building blocks of the 

nanocomposites, and have therefore been analysed by fitting theoretical spectra, which take 

polydispersity into account and which are convoluted for each configuration with the 

corresponding resolution function, calculated according to Lairez [37]. This includes the 

angular resolution due to the finite collimation, the detector cells, and the wavelength spread 

of 9% of the mechanical velocity selector. 

 

II.3 Modeling the Scattered Intensity 

The scattering from interacting aggregates formed of polydisperse spheres is easily described 

for isotropic structures with small polydispersity in the number of aggregation Nagg. The 

differential scattering cross-section per unit volume I = dΣ/dΩ  can then be written in a good 

approximation as the product of an inter-aggregate structure factor Sagg(q) and a normalised 

aggregate form factor F2
agg(q) [36,38,39]:  
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where ∆ρsi-la is the contrast, i.e. the difference in scattering length density between silica and 

the polymer matrix. Vagg is the average scattering volume of an aggregate due to silica beads 

only. In the presence of liquid-like order between aggregates, Sagg(q) has a correlation peak at 

qo = 2π α/D, where D is the average distance between aggregates, and α is a parameter 

reflecting the degree and type of positional order of the aggregates. The position of the peak 

gives an estimation of the mean aggregation number: 

 

si
3

agg VΦ D  N  / ≈       (2) 

 

where the silica volume fraction Φ and average volume of a silica sphere Vsi are known. The 

model used to derive eq. (2) is to place all aggregates on a cubic lattice of periodicity D, thus 

set α to 1, and apply the conservation of silica volume on a unit cell. Without a precise 

knowledge of α, one can only give a rough estimate of Nagg, due to the liquid-like order of the 

samples. A better description of this order would lead to a numerical prefactor α > 1, i.e. we 

typically underestimate aggregation numbers by some factor α3 between 1.2 and 2. Note that 

eq. (2) implicitly assumes that there is no higher order clustering, i.e. that the aggregates are 

homogeneously distributed in space.  

 

F2
agg(q) in eq. (1) is a decreasing function of q in the small-q range, starting from 1 with a 

decay typical for the form and size of the aggregate. The Guinier approximation holds at 

small angles (qRg  <<  1): 
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where Rg is the radius of gyration of the aggregate. The aggregate form factor can be 

decomposed into an intra-aggregate structure factor and the form factor of the silica spheres: 

 

(q)   F(q)S   V   (q)  FV 2
siintrasi

2
aggagg =                  (4) 

 

F2
si(q) is the normalised form factor of a silica sphere. Sintra is the intra-aggregate structure 

factor, and it corresponds to the correlations between the centres-of-mass of the silica spheres 

making up an aggregate. Its small angle value Sintra(q→0) is Nagg, and it tends towards 1 at 

large q values. Sintra(q) can be calculated by numerical simulation, the input being the size 

distribution of the silica spheres and an appropriate building rule for the aggregate [40, 41].  

 

In the absence of position correlations between aggregates (high dilution, Sagg(q) = 1), one can 

take polydispersity in aggregation number into account by summing the different 

contributions. An example of bidispersity will be discussed below. 

 

 

III. RESULTS 

III.1 Scattering from isolated spheres 

The scattering length density of macroscopic silica (SiO2) is ρsi = 3.5 1010 cm-2, while typical 

values for hydrogenated polymers lie around 1. 1010 cm-2. For the colloidal silica and 

nanolatex this was confirmed by external contrast variation in H2O/D2O mixtures (ρNL = 0.9 

1010 cm-2). The form factor of the silica particles F2
si(q) was measured in a highly diluted 
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(0.12%vol) solution in D2O, in order to suppress the contribution of the inter-particle structure 

factor. The spectra I(q) are shown in Figure 1. They have the typical shape of scattering from 

polydisperse objects, i.e. they present some oscillations reminiscent of form factor 

oscillations. They have been analyzed in the following manner: the limiting scattered intensity 

at zero angle I(q→0) and the equivalent sphere radius RGuinier were read of from a ln I(q) vs. q2 

plot. Together with the Porod constant A from the high-q tail, one can determine the 

polydispersity, the average radius and the contrast (cf. Appendix A for details). For B30, the 

scattering can thereby be shown to be consistent with a log-normal radius distribution 

function (see fits1 in Figure 1) of spheres with parameters Ro =  76.9 Å, with a polydispersity 

in radius of σ = 0.186, and a contrast of 2.7 1010 cm-2. The latter value is exactly what one 

expects from the solvent (D2O and some H2O from the silica colloidal solution) scattering 

length density of 6.2 1010 cm-2. Note also that the Schultz-Flory distribution gives equivalent 

results, whereas the Gaussian is less satisfactory, presumably due to the absence of a tail. For 

B40, the parameters are Ro =  92.6 Å, with a polydispersity in radius of σ = 0.279, and a 

contrast of 2.9 1010 cm-2, which is also reasonably close to the calculated value. Both 

distribution functions are shown in the inset of Figure 1. An equivalent treatment of the 

nanolatex yields an average radius of Ro = 138.9 Å, a polydispersity of σ = 0.243, and a 

scattering length density of 0.9 1010 cm-2. The data shows that our particles are relatively well 

defined and not aggregated. This demonstrates also the absence of aggregation in the stock 

solutions used to produce the nanocomposite films, the samples for the data shown in Figure 1 

having been prepared after the film samples. All data on colloidal particles are summarized in 

Table 1.  

 

 

                                                           
1 The small discontinuities in the fits stem from the overlap of different configurations. 
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III.2 Scattering from nanocomposite films 

We present here some representative results, which show a systematic variation with the 

different physico-chemical parameters. Among these, pH and volume fraction induce the 

largest and most interesting changes. The samples in some of the series in volume fraction are 

made with the bigger silica beads (B40), in order to test the influence of the size ratio with 

respect to the latex spheres. The average radius < R > of the silica (B30 and B40) particles is a 

bit more than one half and about two thirds of the radius of the nanolatex, respectively, a 

small but significant change which allows us to study the influence of the size on the packing 

and aggregation behavior of the silica spheres during film formation. 

 

• Effect of pH 

Samples from solutions with six different values of pH have been made, from 3.9 to 9.1, with 

silica particles B30 at a fixed volume fraction Φ = 5.0%, and without added salt. In Figure 2 

we show the intensity I as a function of scattering vector q in a double logarithmic 

presentation. The same data is represented in the inset of Figure 2, with the intensity 

multiplied by powers of 10, starting at low pH (i.e., pH 3.9 unchanged). Let us first describe 

the curves qualitatively. All of them superimpose at large q, and in the intermediate q-range, 

around 3-4 10-2 Å-1, all curves display a shoulder (or even a maximum for pH 3.9). The low-q 

intensity increases considerably as the pH decreases, up to very high values (105 cm-1 at q = 

10-3 Å- for pH 3.9), which possibly indicate some multiple scattering. Besides the sample 

made from the most acid solution, the curves show a maximum with a high intensity at low q, 

and the position of this maximum shifts toward higher q as the pH increases. Note that the 

two samples made from the most basic solution have also a small-q upturn. We will see later 

that this is systematic for all 'basic' samples. 
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Let us translate these trends in direct space: the more acid the conditions of synthesis, the 

larger the aggregates formed by the silica. This explains both the overall increase of the 

intensity, which is roughly proportional to the mass of individual aggregates, and the shift in 

the low-q maximum. In this picture, the latter corresponds to a distance between these 

aggregates, which is larger when the aggregates are larger, at constant volume fraction. Let us 

check this model. From eq. (3) one sees that the typical range of the decay of F2(q) is of the 

order of 1/Rg, the exact form of F2 being not of importance here. The argument is the 

following: if one changes the scale of the system without changing the compacity of the 

aggregates or the type of interaction between them, then a scaling law should relate the 

intensity I(qo) of the low-q maximum to its position qo: 

 

o
1/3

o qβ  )I(q  / =      (5) 

 

where β is some constant of proportionality. Physically, blowing up the system at constant 

silica volume fraction means increasing the distances and sizes by some factor while 

increasing the volume of aggregates and thus the overall intensity by the same factor cubed. 

The plot of I(qo)1/3 vs. 1/qo is shown in Figure 3. The linear relationship is quite well fulfilled. 

One can conclude that our picture in real space of the aggregation is correct. Moreover, the 

interaction between aggregates and their compacity do not change much as the pH changes, 

i.e. the product Sagg (qo) F2
agg (qo) remains approximately constant when increasing the size of 

the aggregates. We will further discuss this point in section IV. 

 

The other feature of the scattering curves is the shoulder in the intermediate q-range which is 

more and more pronounced as pH increases. Its abscissa is independent of the system and 

must thus be due to a distance between elementary silica particles, at q ≈ 2π / 2R = 0.04 Å-1, 
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in good agreement with the observed position of the shoulder. Its enhancement can be 

understood because in bigger aggregates there are more and more directly neighbouring beads  

[40]. We now turn to a detailed study of the influence of Φ. 

 

• Effect of silica volume fraction and of the silica/latex size ratio 

The structure of nanocomposite films of increasing silica (B30) volume fraction Φ, without 

added salt and at constant pH = 9.0 has been studied. The series of spectra corresponding to Φ 

= 2.5%, 5.0%, 7.5%, 10.0%, 12.5% and 15.0% has been measured on instrument PACE 

(LLB). They are shown in Figure 4 in I(q)/Φ representation. The spectra superimpose well at 

higher wave vector, and show some characteristic differences at smaller wave vectors. In the 

inset of Figure 4, we plot the low-q part of the data. At low volume fractions (Φ < 7.5%) the 

spectra show only a soft shoulder at q ≈ 0.01 Å-1 instead of the low-q maximum described 

above (cf. Figure 2). At these rather low Φ, the inter-aggregate structure factor is thus too 

weak to be clearly visible in the spectra. The position of the shoulder, however, is 

approximately stable with the volume fraction2. At higher Φ (10.0%, 12.5% and 15.0%), the 

shoulder evolves into a low-q inter-aggregate correlation peak. Its position qo is shifted to 

slightly higher q-values, and we will see in the discussion that this can be translated by a 

roughly constant number of aggregation. In other words, as the volume fraction increases, 

there is creation of new aggregates, all more or less of the same size. Two other general 

features of these spectra are that the relative intensity I(q)/Φ in the range of the peak is lower 

for higher volume fractions, and the presence of a small-q upturn. 

  

                                                           
2 This is confirmed by the spectrum of a sample of almost identical composition (B30, Φ=5.0%, pH9.1) which 
had been mesured on D11 (cf. Figure 2), thus with a higher resolution and larger q-range. A small-q upturn is 
also present. 
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The structure of nanocomposite films made up of the same nanolatex but of larger silica 

spheres (B40, characterized in section III.1) has been studied in analogous series in volume 

fraction, at pH 9.0 : Φ = 3.0% to 15.0%. The spectra, measured on D11, are shown in Figure 5 

in I(q)/Φ representation. The good superposition of the spectra in this representation is 

striking. Apart from the standard high-q behavior, which superimposes again well, the main 

features are the small-q upturn, followed (in q) by a plateau around q = 0.005 Å-1 up to a 

shoulder around q = 0.01 Å-1.  

 

In Figure 5, the small-q upturn is probably due to a few large aggregates, which do not 

contribute to the scattering at higher angles. It is difficult to describe the scattering from these 

big aggregates, as both their number and their size are unknown. Moreover, the information 

contained in the spectra is incomplete due to the limited q-range. In order to extract at least 

estimations of the number of big aggregates from the measured intensity, we propose in 

Appendix B a simple model which relies on an assumption of the functional form of the 

aggregate form factor. This allows us to estimate the product of the number and of the size of 

the big aggregates from the shape and the position of the upturn. Following these calculations, 

less than 10% of all silica beads are contained in the large aggregates, which have numbers of 

aggregation of the order of several hundreds. 

 

The next interesting feature is that the relative intensities I/Φ at the plateau are again  in 

inverse order, i.e. highest for Φ = 3.0%, just like in the data series with silica B30. This is 

shown in the inset of Figure 5. We interpret this as another hint in favor of the picture of very 

few large aggregates coexisting with individual beads. Indeed, as the size of the big 

aggregates grows with increasing volume fraction, they scatter more and more at small angles 

(the small-q upturn, described by the increasing radius of gyration), and scatter thus less at 
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intermediate angles. In Table 2 we report the values of I at the plateau, and we compare them 

to the theoretical values Itheo at the same wave vector (q ≈ 0.006 Å-1) for individual spheres. 

The agreement is quite remarkable, and leads us to the following conclusion: in this system, at 

pH 9.0, increasing the concentration does not increase the number of aggregation of the 

majority of beads, which coexist with rare but quite large aggregates. The ratio of the 

intensities gives an estimation of the average aggregation number Nagg, which is of the order 

of 1 (cf. Table 2). In short, beads stay individual beads, in the whole range of volume 

fractions under examination (Φ = 3.0 - 15.0 %). To cross-check this result, we have 

superimposed in Figure 6 a typical spectrum of the series (Φ = 6.0 %) with the form factor of 

the individual beads. In this case, the scattered intensity is proportional to the number of 

aggregation, the volume fraction of scattering objects, and the square of their contrast with the 

matrix. To account for the difference in aggregation (Nagg = 1.4, cf. Table 2), volume fraction 

(Φ = 0.12% of B40 in the solution, and 6.0% of B40 in the film), and contrast conditions 

(∆ρsolvent-si = 2.9 1010 cm-2, ∆ρsi-la = 2.4 1010 cm-2, cf. Table 1), the intensity of the colloidal 

solution has been multiplied by the appropriate constant 1.4* (6.0/0.12) *(2.4/2.9)2. 

The agreement gives further credibility to our interpretation of the data, especially because the 

last important feature, the shoulder, is very nicely reproduced. Note that this works equally 

well with other samples of the series, whereas the analogous superposition is not possible in 

the B30 series, indicating higher numbers of aggregation there. As a last point, we would like 

to mention that the structure factor between individual beads should have its maximum in the 

zone between q = 0.01 Å-1 and 0.02 Å-1, where it is too weak to be detected in the overall 

decrease of the intensity. 

 

We now report on a series in silica (B40) volume fraction at constant pH = 5.0, i.e. under 

conditions where a rather high aggregation is expected. The spectra are plotted in Figure 7. As 
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it was the case with the other spectra discussed before, the high-q part is simply the form 

factor of the silica beads, and would superimpose well in I(q)/Φ representation. In the low-q 

part, a very prominent maximum can be seen. In the inset of Figure 7, we present the data in 

linear form, which emphasizes this main peak. With increasing volume fraction, from 3.0% to 

15.0%, the intensity increases considerably, and the peak shifts from qo=0.0020 to 0.0030 Å-1. 

The intensities are very high, indicating strong aggregation. It is interesting to note that I(q)/Φ 

has again an inverted order in the intensity at the peak, i.e. the sample with Φ=3.0% has the 

highest relative peak intensity I(qo)/Φ, almost a factor of 2 higher than the 15.0%-sample. 

This result is particularly striking in the presence of a structure factor peak, it can be 

explained by  the same type of argument as in the previous series. There the decrease of the 

relative plateau intensity I/Φ could be traced back to the growth of some big aggregates. Here 

we have only big aggregates, and in the discussion we will show through a simulation of the 

corresponding intra-aggregate structure factor Sintra(q) that the picture is correct. 

 

• Effect of added salt 

We have investigated the effect of mono-valent salt (NaCl) on the structure of the silica-

polymer nanocomposites. Salt screens the stabilizing electrostatic repulsion between colloidal 

particles, and addition of high amounts leads to flocculation of the solution. Small quantities 

of salt, however, may change the range of the electrostatic interaction without destabilizing 

the colloid. Changes in the resulting aggregate structure (after filmification) are therefore to 

be expected. To study this we have measured the intensity scattered from four films with 

different conductivities Ls = 450 (no added salt), 550, 725 and 1050 µS/cm. All four have the 

same volume fraction of silica B30 (Φ = 15.0 %) and a pH of 9.0 in order to start from a 

system with initially little aggregation. The results are shown in Figure 8, with the intensities 

multiplied by powers of ten for clarity (lowest Ls-data unchanged). The scattering curves can 
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be interpreted along the same lines as the pH-series discussed above. The high-q scattering is 

identical, and data can be brought to perfect superposition there (not shown).  The low-q 

structure peak moves very slightly to the left with increasing salinity (this is visible in linear 

scale), and disappears completely for the highest salinity. Although we have only a few data 

points, one can test the simple scaling law, eq. (5): from Ls = 450 µS/cm to Ls = 725 µS/cm 

the peak shift indicates an increase in Vagg by a factor 1.5, which is not followed by the peak 

height. The latter increases only a factor of 1.2, and we have two ways of interpreting this: 

either the inter-aggregate structure factor weakens due to screening, or the aggregates become 

less compact (higher Rg), or both. As the screening due to salt may influence both the inter- 

and intra-aggregate correlations, both hypotheses seem reasonable, and a detailed modeling of 

the aggregate structure and interaction would be necessary to solve this issue. What is sure is 

that the aggregation number increases by 50% when adding salt up to 725 µS/cm, and above 

725 µS/cm the aggregation (or even flocculation) increases too much to be followed by 

SANS.  

  

IV. DISCUSSION IN TERMS OF AGGREGATION NUMBERS 

We have seen in section III that the scattering from the model nanocomposite films varies 

considerably with the physico-chemical conditions in solution before film formation. 

Physically, this is due to the fact that the equilibrium between attractive, short-ranged van der 

Waals forces and long-ranged electrostatic repulsion is modified by, e.g., addition of salt. The 

effect of pH is more subtle, as it affects both the colloidal charge and the screening length. 

Under low pH-conditions or high salt content, the colloidal stability is weakened. Even if the 

suspension is still stable at the beginning of the drying process, it will eventually become 

unstable as the concentration of ions increases also during drying. This instability favors 

aggregation which competes with the coalescence of the latex beads. These form a continuous 
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matrix and finally freeze the aggregation of silica. Thus, the modification of the interactions 

in solution leads to a different organization of the silica in the final film, after evaporation.  

 

The scattering from our nanocomposite films can be understood using the tools given in eqs. 

(1) to (4), and a coherent description has been obtained. In particular, as we have seen in 

section II, aggregation numbers can be deduced from a simple cubic lattice model, eq. (2). 

Keep in mind that they are estimations (α=1), and that higher-level clustering can not be 

completely ruled out due to the limited q-range. However, they can be compared among each 

other because the type of order is not expected to be changed fundamentally from one sample 

to the next (no colloidal crystallization). Of course, the aggregation numbers are estimated 

with higher precision in the presence of a well defined peak than with a soft shoulder. We 

summarize all our results in Tables 3 to 6. 

 

The series in pH, cf. Table 3, presents the most striking changes in structure. At high pH, the 

number of aggregation is in the range from 4 to 8, whereas a lower bound of several thousand 

is found at low pH. Let us discuss the structure of the most 'acid' sample, where a lower bound 

of the aggregation number is deduced from the absence of the peak: if it exists, qo is outside 

the accessible q-range: qo < 10-3 Å -1. We obtain the estimation of the aggregation number Nagg 

> 5500, which in turn would give a scattered intensity of isolated aggregates for I(q→0) of 

more than 5.105 cm-1. Due to the many unknown variables of the system like the aggregate 

geometry (eq. (3)) and the inter-aggregate structure factor, it is no longer possible to make any 

precise estimation. It is encouraging, however, that the magnitude of the scattered intensity is 

of the same order as our estimation. Moreover, the data follows a power law which is very 

close to q-4 over a large range at low q, indicating very compact aggregates. Note that this 

agrees with our interpretation of the peak at q ≈  3-4  10-2 Å-1 (effect of pH, section III.2). At 



 18

this q-value, the other samples, at higher pH, have only a shoulder. The fractal dimension of 

these aggregates is also reported in Table 3. As one can see, the fractal dimension decreases 

from about 2.9 to 2.5 with increasing pH, i.e. the aggregates are less and less compact. This 

change in compacity and therefore of the intra-aggregate structure factor is apparently 

insufficient to invalidate eq.(5), as can be seen in Figure 3, but we can not exclude that 

phenomena on bigger length scales, like higher-order clustering, bias the picture. 

 

Like the pH, the quantity of added salt has a direct influence on the final structure of the film, 

via the Debye screening length. The changes in scattered intensity as a function of the 

quantity of added salt are much more abrupt, though, cf. Table 4. Initially, the aggregation 

number stays roughly constant (i.e. below Ls = 725 µS/cm), and above this value it is already 

unmeasurably high, i.e. there is no observable structure factor peak. This suggests that salt 

destabilizes completely the colloidal solution at some stage of the drying process. We can 

only guess about the details of this collapse, but it is interesting to see that the resulting 

structure of the sample with a high quantity of added salt is different from the one at low pH 

(cf. preceding paragraph): the scattered intensity is a lot weaker, and the low-q scaling of the 

intensity with q is different. Although there is no clear power-law behavior, the intensity 

decreases roughly like q-1 at q < 10-2 Å-1, and not at all like q-4,as in the case of the very low 

pH sample. It is tempting to interpret this as scattering from one-dimensional aggregates 

(chains or long branches), at least at the length-scales relevant to the scattering. This agrees 

also with the less prominent peak at q ≈ 3-4  10-2 Å-1. In this case there is no possibility to 

estimate the aggregation number. On a more speculative basis, the power law suggests the 

formation of some infinite network formed by the silica in the matrix. 
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Although the results are less spectacular, the series in volume fraction are equally interesting. 

At high pH, cf. Table 5, there is evidence for the presence of a second, small population of 

very big aggregates. The aggregation of the silica of the majority of beads does not increase 

with volume fraction. A comparison of the data from the small and the larger silica beads 

shows that the smaller silica beads are more aggregated by about a factor of ten.  

 

At low pH, cf. Table 6, no evidence for a second population is found. Instead, the aggregates 

are a lot bigger, they grow with volume fraction, and the degree of organization of the 

structure seems very high because of the very pronounced structure factor peak. In the results 

section, we have already underlined the fact that the relative peak intensities I/Φ are in inverse 

order. It is plausible that this is due to the decrease of the intra-aggregate structure factor 

Sintra(q) between 0.002 and 0.003 Å-1 (B40, pH 5.0). We have used the estimation of the 

average number of aggregation given in Table 6 as input for a simulation of the Sintra(q). In 

Figure 9, three examples are shown for Nagg = 188, Nagg = 292 and Nagg = 400. Between qo = 

0.0020 to 0.0030 Å-1 the curves fall steeply, which explains nicely why the peak for Φ=15% 

is below the one for Φ=3% in I/Φ, instead of the higher aggregation number. Indeed, 

comparing in Figure 9 the value of the curve at the peak position qo = 0.0020 Å-1 for Nagg = 

188 at Φ=3% to the one at 0.0030 Å-1 (the peak position at Φ=15%) for Nagg = 292, we find a 

factor of 2.4. Now, with the change in volume fraction from 3% to 15%, the peak heights of 

the inter-aggregate structure factor may increase with volume fraction by 20 or 30%. This 

gives a total change in peak height of the intensity of a factor of 2, as observed.  

 

We do not have any detailed physical model to explain the observed difference in aggregation 

for beads of different size (B30 and B40), nor of the pH-dependence. It is interesting to note 

that these results differ from what is known from 'normal' aggregation, i.e. aggregation of a 
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single component at constant concentration [42,43], where the primary particle size is of little 

importance. In our case, we have two components, latex and silica, and monotonously 

increasing concentrations during drying. The presence of the latex which eventually forms a 

continuous matrix by filmification allows to stop the aggregation of silica. We think that the 

competition between the silica aggregation and the solidification of the film is the key: at low 

pH, for instance, the mutual repulsion between silica beads is reduced, and beads can 

aggregate before being immobilized. The size dependence is less clear. Theoretical and 

experimental evidence for higher colloidal stability of bigger spheres exist [44], but it is 

questionable if the small difference in size between B30 and B40 is sufficient to explain the 

results. Another possibility might be the trivially a higher surface charge on the bigger 

spheres. Here theoretical studies of the pair correlation functions during drying might allow 

for a deeper understanding. 

 

V. CONCLUSION 

We have reported on the synthesis of a model soft-hard nanocomposite material formed from 

nanolatex and nanosilica spheres. The physico-chemical parameters relevant for the synthesis 

have been varied systematically, and for each sample a structural analysis by means of Small 

Angle Neutron Scattering has been performed. Due to important structural changes the 

observed SANS-spectra are very heterogeneous, and no simple description in terms of some 

generic fitting function seems feasible. However, it has been possible to identify the main 

features of the scattering function, and this has lead us to a coherent description of the 

scattered intensity of all our samples. As an important result, the evolution of the average 

number of aggregation could be followed and the close correlation between the parameters of 

the synthesis of the material and its structure could be confirmed.  
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As far as theory is concerned, it would be very interesting to have a theoretical description of 

the non trivial evolution of the structure with the physico-chemical parameters. Another 

important issue is the modeling of the scattering curves, in order to obtain a more trustworthy 

estimation of the average number of aggregation. 
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APPENDIX A 

 

 

We describe the polydispersity in size of the silica beads with a log-normal distribution with 

parameters Ro and σ: 
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At low concentrations, the structure factor between beads can be neglected and the scattered 

intensity written as a sum over the distribution function, eq. (A1), and the form factor of 

individual spheres. Several observables, which are of use for the interpretation of the data, are 

then found to be directly related to various moments of the distribution. These are the low-q 

limit of the intensity Io = I(q→0), the equivalent sphere radius RGuinier and the Porod radius Rp: 
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RGuinier is defined as the average sphere radius that yields the same low-q decay as the 

polydisperse population: 
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Rp is defined as the average radius that yields the same specific surface S/V as the 

polydisperse population: 
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pR
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V
S Φ
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S/V is obtained from the large-q limit of the scattered intensity through the Porod law [36,45].  
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APPENDIX B 

  

We wish to estimate the importance of the population of big aggregates from the limited 

information contained in the small-q upturn observed in some data sets. In our model we 

assume (a) a simple functional form for the form factor of big aggregates in order to describe 

the small-angle upturn, that (b) the plateau is the constant low-q part of the form factor of 

individual beads, and that (c) both contributions are additive. The intensity at small and 

intermediate q-values then reads: 

 

( ) ( )( )( ) 1/3Rq
aggo cm54801e1Nf1fΦI

2
g

2 −⋅+−−+⋅=    (B1) 

 

Here f is the fraction of beads present individually. Their contribution to the scattering, 5480 

cm-1, is calculated from the data for B40 given in Table 1 and the first of eqs. (A2). The form 

factor of the big aggregates, in the second part of eq. (B1), is constructed by adding the high-q 

(constant) and low-q (exponential) behavior. Rg is the radius of gyration of the big aggregates. 

It can be deduced by fitting the data, together with the product of the number of aggregation 

of the big aggregates Nagg and the fraction of beads they contain (1-f). Better fits of the upturn 

are obtained with another form factor, a Lorenzian, which is also more appropriate for non-

compact structures: 
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As the number of aggregation and the size of the aggregate are linked, it is possible to exclude 

certain combinations on physical grounds, like small Nagg and very big sizes. In the absence of 

ultra-low q spectra, however, unique solutions can not be obtained. 
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TABLE CAPTIONS 

 

Table 1:  Characterization of colloidal samples. ρ is the scattering length density. Ro and 

σ are the parameters of the log-normal distribution used to fit the scattering 

curves of dilute solutions. V is the average volume of a bead. Rp and RGuinier are 

defined in Appendix A. 

 

Table 2: The observed plateau intensity (in cm-1) for the series in volume fraction Φ, 

silica B40 and pH 9.0. It is compared to the theoretical intensity for individual 

beads at the same volume fraction and under identical contrast conditions. The 

average aggregation number is estimated through the ratio of the two 

intensities. It reflects the fact that the majority of the beads are individual 

beads. 

 

Table 3: Estimation of the average aggregation number through the position of the 

structure factor peak for the series in pH, silica B30, at Φ = 5.0%. The slope at 

intermediate angles (q > qo, the position of the structure factor peak), gives the 

fractal dimension of the aggregates. The small-q upturn can be attributed to the 

presence of very few, big aggregates. For the most 'acid' sample, a lower bound 

of the aggregation number is deduced from the absence of the peak. 

 

Table 4: Estimation of the average aggregation number through the position of the 

structure factor peak for the series in added salt, silica B30, at pH 9.0 and 

volume fraction Φ = 15.0 %. The small-q upturn can be attributed to the 

presence of very few, big aggregates. 
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Table 5: Estimation of the average aggregation number through the position of the 

structure factor peak for the series in volume fraction Φ, silica B30, at pH 9.0. 

The small-q upturn and the peak position could not be measured for Φ = 2.5% 

and 7.5%. 

 

Table 6: Estimation of the average aggregation number through the position of the 

structure factor peak for the series in volume fraction Φ, silica B40, at pH 5.0. 

No small-q upturn is ever observed. 
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TABLES 

 

 

 

Table 1:  

 

 ρ (1010 cm-2) RGuinier( Å) Rp  (Å) Ro (Å) σ V (106 Å3) 

B30 3.5 98 83.8 76.9 0.186 2.23 

B40 3.3 160 113.8 92.6 0.279 4.72 

Nanolatex 0.9  210 152.7 138.9 0.243 14.64

 

 

 

 

Table 2: 

 

Series in Φ: 

B40    pH 9  

Iplateau (cm-1) Itheo(q ≈ 0.006Å-1)

(cm-1) 

Nagg 

Φ = 3.0% 230 146 1.6 

Φ = 6.0% 400 293 1.4 

Φ = 9.0% 515 439 1.2 

Φ = 12.0% 635 586 1.1 

Φ = 15.0% 810 732 1.1 
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Table 3 : 

Series in pH: 

B30 

Φ = 5.0% 

Aggregation  

Number (α = 1) 

Slope at 

intermediate q 

Small-q upturn  

 

pH = 3.9 > 5500 I ∝ q-3.8 over a 

decade 

No 

5.1 429 I ∝ q-2.9 No 

6.0 273 I ∝ q-2.8 No 

7.0 92 I ∝ q-2.6 No 

8.0 10 I ∝ q-2.5 Yes, I ∝ q-3.3 in 

short q-range  

9.1 4 - 8  I ∝ q-2.5  Yes, I ∝ q-1.5   

 

Table 4: 

Series in salinity: 

B30   Φ = 15.0% 

pH =  9 

Aggregation  

Number 

Small-q upturn  

 

450 µS/cm  

(no added salt)  

10 Yes  

550 µS/cm 15 Yes  

725 µS/cm 15 Yes  

1050 µS/cm Unknown, 

presumably very 

high 

No  
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Table 5: 

Series in Φ: 

B30 

pH =  9.0 

Aggregation  

Number 

Small-q upturn  

Φ = 5.0% 4 - 8  Yes  

Φ = 10.0% 11 not measured 

Φ = 12.5% 12 not measured 

Φ = 15.0% 10 Yes 

 

 

Table 6: 

 

Series in Φ: 

B40 

pH =  5.0 

Aggregation  

Number 

Φ = 3.0% 188

Φ = 6.0% 168

Φ = 9.0% 196

Φ = 12.0% 238

Φ = 15.0% 292
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FIGURE CAPTIONS 

 

Figure 1:  Scattered intensity I in cm-1 as a function of scattering wave vector q in Å-1 

from dilute solutions of B30 (circles) and B40 silica (squares, I(q) multiplied 

by 10 for clarity). The fits include a log-normal size distribution (shown in the 

inset) and the resolution function of the spectrometer. The parameters are listed 

in Table 1.  

 

Figure 2:  Scattered intensity I in cm-1 as a function of scattering wave vector q in Å-1 

from nanocomposites films of silica B30 at fixed volume fraction Φ = 5.0%, 

for different pH values, no added salt: (○) pH 3.9, (□) pH 5.1, (◊) pH 6.0, (x) 

pH 7.0, (+) pH 8.0, (∆) pH 9.1. In the inset the same data is shown, with the 

intensities multiplied by powers of 10, starting at low pH.  

 

Figure 3:  Low-q maximum intensity I(qo)1/3 (in cm-1/3) vs. 1/qo (in Å) for the data shown 

in Figure 2. The line is a guide to the eye. See text for details. 

 

Figure 4:  Relative scattered intensity I/Φ in cm-1 as a function of scattering wave vector q 

in Å-1 from nanocomposites films of silica B30 at fixed pH = 9.0, for 

increasing volume fraction Φ, no added salt. In the inset a close-up of the low-

q region is shown. 

 

Figure 5:  Relative scattered intensity I/Φ in cm-1 as a function of scattering wave vector q 

in Å-1 from nanocomposites films of silica B40 at fixed pH = 9.0, for 
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increasing volume fraction Φ, no added salt. In the inset a close-up of the 

plateau region is shown, in linear scale. 

 

Figure 6:  Comparison of scattered intensity I in cm-1 as a function of scattering wave 

vector q in Å-1 of a nanocomposites film (silica B40, pH = 9.0, Φ = 6.0 %) and 

of the dilute solution of B40, rescaled by the appropriate factor, see text for 

details. 

 

Figure 7:  Scattered intensity I in cm-1 as a function of scattering wave vector q in Å-1 

from nanocomposites films of silica B40 at fixed pH = 5.0, for increasing 

volume fraction Φ, no added salt. In the inset the low-q intensity is shown in 

linear scale. 

 

Figure 8:  Scattered intensity I in cm-1 as a function of scattering wave vector q in Å-1 

from nanocomposites films of silica B30 at fixed volume fraction Φ = 15.0%, 

fixed pH = 9.0, for different conductivities Ls in µS/cm. The intensities are 

multiplied by powers of 10, starting at low Ls. 

 

Figure 9:  Simulation result of the intra-aggregate structure factor Sintra(q) as a function of 

scattering wave vector q in Å-1 for Nagg = 188, Nagg = 292, and Nagg = 400. 
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