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ABSTRACT 

 

 

A study of the rheological properties of silica-filled nanolatex films by means of uniaxial 

strain experiments is presented. The samples are made by evaporating the aqueous solvent of 

mixtures of colloidal silica and colloidal nanolatex, followed by film formation. The 

reinforcement effect due to the introduction of hard silica beads is investigated as a function 

of silica volume fraction Φ, pH in solution before film formation, and silica bead size. The 

stress-strain curves show that the material can be stretched up to high elongations λ typically 

around four or more before rupture, indicating that the extensibility of the pure nanolatex film 

is conserved. It is found that the silica contributes differently at small and large deformations: 

In the small deformation regime (λ ≤ 1.2), considerable reinforcement (a factor of 10 in 

Young's modulus with respect to the pure nanolatex) is obtained with silica volume fractions 

of the order of 10%. At higher elongations, the reinforcement factor decreases, and the 

rheology of the nanocomposite samples approaches the one of the pure nanolatex films.  
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I. INTRODUCTION 

 

Reinforcement of elastomers with hard fillers is a common procedure for optimization of 

rheological properties [1-6]. Many ways of incorporating the filler in the polymer bulk exist, 

the most popular being mechanical mixing (milling). Other, usually more complex routes are 

in situ filler synthesis [7-10], or polymerization around the filler particles [11]. The 

rheological properties of the resulting composites are in general complex, e.g. they may show 

strain-softening, hysteresis, or aging effects, and are difficult to describe theoretically [12-15]. 

It is therefore often impossible to conclude on the mechanisms of reinforcement. Among 

other reasons, this might be due to the lack of structural information on the scale of the 

reinforcing objects, although some pioneering studies exist [7,8,16,17]. 

 

We have recently employed a different method of preparation of nanocomposite samples. It 

consists in mixing colloidal solutions of nanolatex and silica in the desired proportions, 

adjusting the pH, and evaporating the aqueous solvent, cf. for example refs. [18, 19]. After 

film formation of the nanolatex [20-22] with the silica inclusions, we have analyzed the 

structure of the silica in the polymeric matrix by Small Angle Neutron Scattering (SANS) 

[23] for different physico-chemical conditions. In the present article, we discuss the results of 

uniaxial strain experiments with the same model nanocomposite samples. Note that the matrix 

is an entangled melt and not a rubber (no crosslinks), and that our experiments are therefore of 

rheological nature. At the temperature of interest, however, the flow of the material is 

sufficiently slow and the observed reinforcement effects are sufficiently strong that our 

conclusions are nonetheless relevant for the mechanical properties of filled rubber as well. 
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The paper is organized as follows: In section II, we present experimental details about the 

samples and the rheological measurements. In section III, the stress-strain-isotherms are 

presented for several series of samples, varying stock solution pH, silica volume fraction and 

silica bead size. Results are discussed in section IV, where we confront the previously 

determined filler structure with the stress-strain-isotherms.  

 

II. EXPERIMENTAL SECTION 

II.1 Sample preparation  

 

We briefly recall the sample preparation, which is presented in detail in [23]. The basic idea is 

to mix two colloidal solutions and evaporate the solvent. The starting components are aqueous 

colloidal suspensions of silica from Akzo Nobel (two sizes, Bindzil 30/220 and Bindzil 

40/130, hereafter called B30 and B40, respectively) and nanolatex polymer beads. The latter 

was kindly provided by Rhodia. It is a core-shell latex of copolymerized Poly(methyl 

methacrylate) (PMMA) and Poly(butylacrylate) (PBuA), with a hydrophilic shell containing 

methacrylic acid. From the analysis of the form factors of silica and nanolatex measured 

separately by SANS in dilute aqueous solutions we have deduced the following radii Ro and 

polydispersities σ of a log-normal size distribution [23]: Ro =  76.9 Å, σ = 0.186 (B30); Ro =  

92.6 Å, σ = 0.279 (B40); Ro =  138.9 Å, σ = 0.243 (nanolatex).  Colloidal stock solutions of 

silica and nanolatex are brought to desired concentration and pH, mixed, and degassed under 

primary vacuum in order to avoid bubble formation. Slow evaporation of the solvent at T = 

65°C under atmospheric pressure takes about four days, conditions which have been found 

suitable for the synthesis of smooth and bubble-free films without any further thermal 

treatment. 
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II.2 Stress-strain isotherms 

 

Rectangular samples for rheological tests are cut at T ≈ 70°C into pieces of approximate 

dimensions 30 x 10 x 1 mm3 and brought to constant thickness using sandpaper. They are 

glued with commercial cyano-acrylate on both ends on emery paper, on which the clamps of 

the home made mechanical stretching apparatus are fixed. Samples are subjected to a very 

slight tension, leading to an offset of at most 0.05 MPa in initial tension, and immerged in 

silicon oil at T=60.0°C, well above the glass transition temperature of the matrix of Tg = 

33°C, measured by Rhodia (DSC). After a short thermal equilibration time of about 30s, the 

samples are stretched up to rupture. The deformation in a constant-rate set-up (γ' = 0.0016 s-1) 

is controlled. The relative elongation λ=L(t)/Lo, where Lo is the initial sample length, is thus 

exponential: λ=exp(γ't). This allows for a material test which is independent of the exact value 

of the initial length. The force F(λ) is measured with a HBM Q11 force transducer, and 

converted to (real) stress inside the material σ:  

 

( ) ( )
oA

F λλλσ ⋅
=                    (1) 

 

Here Ao is the cross-section of the undeformed film and the multiplication with λ accounts for 

the decrease in cross-section (∝ 1/λ) with increasing elongation. The film is supposed to 

deform homogeneously (which is true at least up to moderate elongations), and to be 

incompressible. The σ(λ) curves are analyzed in terms of Young's modulus E, the elongation 

at rupture λrupt, and the total energy e per unit volume of sample supplied by the motor of the 

stretching machine up to rupture. The latter is given by summing the product of force and 

displacement during stretching: 
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                                                        (2) 

 

Tests of selected samples identical in composition have shown that our stress-strain results are 

trustworthy. Up to moderate strain, the stress of four samples cut from the same piece of film 

superimposes within about 10%, the statistical errorbar in σ is thus well below the effects 

discussed in this paper. At large strain, the exact moment of rupture λrupt is reproducible 

within 15%. Note that rupture usually takes place at the clamps, indicating heterogeneous 

deformation in the final stages. In some cases differences are observed between films having 

the same nominal composition, but which are made from different stock solutions and/or 

made at different times. We will comment on this problem in the Discussion.  

 

II.3 Small Angle Neutron Scattering 

 

The structural characterization of the samples has been presented in our previous article [23]. 

Some additional spectra have been measured on instrument PACE at LLB and results are 

reported in the present paper. Two configurations were used: a first one with wavelength 9.3 

Å, sample-to-detector distance of 4.58 m and a collimation distance of 5.00 m, and a second 

one with wavelength 5.1 Å, sample-to-detector distance of 1.13m and a collimation distance 

of 2.50 m. H2O has been used as calibration standard. 
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III.       RESULTS 

 

We will show that the rheological properties of the samples depend in a systematic manner on 

the physico-chemical parameters: The pH of the solution before solvent evaporation, and the 

type and quantity of silica beads. We will first discuss the rheology of pure latex films, and 

then the one of the nanocomposite films, along some selected lines in the phase diagram. 

 

III.1 Pure latex films 

 

The pH of the colloidal solution before film formation is a key parameter of the 

nanocomposite material. We know from the SANS data that it has a direct impact on the 

structure of the silica aggregates. In order to check if the pH influences also the nanolatex 

matrix itself, we have measured the stress σ as a function of deformation λ for pure nanolatex 

films made from colloidal solutions of pH 3.1, 7.0 and 9.3. The results are shown in Figure 1. 

They demonstrate that the pH strongly influences the rheological properties: 'acid' films (pH 

3.1) have a Young's modulus of Elatex = 0.45 MPa, and the stress stays low (< 2 MPa) up to 

very high extensions (λrupt > 7, not reached in the experiment). 'Neutral' films (pH 7.0) have 

Elatex = 1.05 MPa and λrupt ≈ 5.2, whereas 'basic' films (pH 9.3) are tougher (Elatex = 1.45 MPa) 

and break earlier (λrupt ≈ 3.7), at a rather high stress (σrupt = 9 MPa). The input in energy per 

unit volume needed to break the film, cf. eq. (2), is therefore more than a factor of three 

higher at pH 9.3 (e ≈ 3.1 J/cm3) than what can be estimated for the sample at pH 3.1.  

 

III.2 Effect of  pH on nanocomposite films 

 

We start  with the description of a  series in pH at fixed  volume fraction Φ = 5.0%, for films 
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made with small silica beads (B30). The stress-strain curves σ(λ) are shown in Figure 2. The 

stress of 'acid' films increases little with deformation  (up to σrupt ≈ 3 MPa at pH 3.9), and they 

break at λrupt > 8. At intermediate pH-values (pH 7), stress grows more and more, up to 7.5 

MPa, and the rupture occurs earlier, around λrupt ≈ 5.5. The samples at pH 5.1 and pH 6.0 

have comparable stresses, the one at pH 5.1 being slightly higher. We will comment on this 

inversion in section IV.5. Basic films, pH 8.0 and 9.1, show a similar stress-strain curve, with 

a high stress between 8 and 10 MPa at rupture, around λrupt ≈ 4.3. As a result, the energy input 

needed to break the films lies around e ≈ 4 J/cm3, whatever the pH of preparation.  

 

In Figure 3, we focus on the small deformation region of the stress-strain isotherms shown in 

Figure 2. A clearly visible feature here is the considerable increase of Young's modulus with 

decreasing pH: From E = 2.1 MPa at pH 9.1 to E = 4.8 MPa at pH 7.0, and to E = 10.6 MPa at 

pH 3.9. Thus, Young's modulus changes a factor of 5 from acid to basic pH for samples which 

contain the same quantity of silica. Moreover, the high value of Young's modulus of 'acid' 

films together with their low overall stress leads to a remarkable change in slope at very low 

strain (at λ = 1.05). This feature disappears with increasing pH.  

 

One of the problems with the data plotted in Figures 2 and 3 is that we can not unambiguously 

decide to what extent the observed sensitivity to pH is due to the nanolatex matrix, or to the 

silica. An alternative presentation of the stress-strain isotherms is to compare them to the ones  

of the pure nanolatex films at the same pH. Our analysis is motivated by the equation given 

by Smallwood [24] for the modulus of a filled elastomer as a function of filler volume 

fraction. It is analogous to the equation originally proposed by Einstein [25] for the viscosity 

of a dilute colloidal solution. Formulated for Young's modulus E of the composite, it reads: 
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( )...2.5Φ1EE latex ++=      (3a) 

 

Elatex is  Young's modulus  of  the  pure matrix. Extensions to higher volume fractions by 

including (pairwise) interactions between particles can be written: 

 

( )...B2.5Φ1EE 2
latex +Φ++=     (3b) 

 

where the prefactor of the second order term has been evaluated - originally for the viscosity 

of a suspension - to B = 14.1 [26,27]. In order to account for the often steep increase of the 

modulus with Φ, equations with an exponential increase have been proposed [28]. The 

simplest one with the same low Φ behavior as eq. (3a) reads: 

 

( )2.5ΦexpEE latex=      (4a) 

 

Other, semi-empirical equations have been proposed to account for percolation effects, 

usually by introducing a divergence in the modulus as Φ approaches the packing volume 

fraction Φmax. The correction to eq. (4a) proposed by Mooney reads [28,29]:  

 



















Φ
Φ

=

max

latex

-1

2.5ΦexpEE       (4b) 

 

The important point is that the Φ-dependent part of eqs. (3) to (4), equal to E/Elatex, is the 

factor of reinforcement of the matrix by the filler. The analogous quantity here is the strain- 

(and composition-) dependent reduced stress σ(λ)/σlatex(λ). This normalization to the stress in 
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the pure matrix is related to a commonly used representation of stress-strain-data, the Mooney 

representation. It consists in normalizing the experimental stress by the theoretical stress-

strain dependence of a phantom chain network (the "matrix"), proportional to λ2 – 1/λ. The 

result, usually plotted vs. 1/λ, corresponds to the modulus. In our case, we take the 

experimental stress σlatex(λ) instead of the theoretical prediction. Using the reduced stress 

σ(λ)/σlatex(λ) has the advantage of canceling the pH-dependence of the matrix, and the result 

can be interpreted as the reinforcement factor due to the filler structure only.  

 

In Figure 4 we plot σ/σlatex as a function of elongation for three samples (Φ = 5.0%) with 

different pH: pH 3.9, pH 7.0, and pH 9.1, as close as possible to the available pure nanolatex 

samples presented above (pH 3.1, pH 7.0 and pH 9.3). At basic pH, the stress in the composite 

and in the pure latex is almost identical up to λ = 2. Above this strain, the pure nanolatex film 

develops higher stress and breaks earlier. In Figure 4 this yields an essentially flat curve 

which starts from approximately one and then continuously decreases down to 0.7 at high λ. 

At pH 7.0, Young's modulus E of the nanocomposite film is a factor of 4.6 higher than the 

one of the pure film, and the stress in the nanocomposite stays higher over the whole range of 

λ. Note that the pure nanolatex film breaks again earlier. At acid pH finally (pH 3.1 and 3.9, 

respectively), E of the nanocomposite is more than 20 times higher than that of the pure 

nanolatex film, and the same behavior as at pH 7.0 is observed: The reduced stress falls off 

rapidly, down to a plateau value of 2.2, and the pure film breaks earlier.  

 

We now turn to the analogous series at a higher volume fraction Φ = 15.0%, for small silica 

beads B30. The series is interesting because of the stresses which are considerably higher than 

the one of corresponding samples in other series, and because it has a new feature in the small 

deformation limit. We have studied samples in a limited pH range, from pH 7.5 to 9.5. The 
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low deformation part of the stress-strain curves is shown in Figure 5, with the complete 

curves in the inset. Let us start by discussing the small deformation regime (λ < 1.3): The 

break in slope which was already present in the σ(λ)-curve of the most acid sample at Φ = 5% 

is seen to become more important, and to be replaced by a well-defined maximum in stress for 

the lower pH-values (pH ≈ 8). Its position varies somewhat with pH (λmax = 1.1 - 1.25). Note 

that even for more 'basic' films, there is still a prominent break in slope. This leads to Young's 

moduli scattered in the range from 20 to 35 MPa, i.e. up to about 20 times higher than the one 

of the pure nanolatex film. For the sample at pH 8.3, E is even as high as 40 MPa. In the high 

deformation regime (λ > 1.3), the stress of all samples of the series looks essentially like the 

one at Φ = 5.0% shifted to higher values. All films break at elongations scattered between 

λrupt ≈ 3.3 and 5, a bit earlier than the samples at Φ = 5.0% in the same pH range. This gives 

values of the energy per unit volume of film supplied up to rupture scattered around e ≈ 12 

J/cm3.  

 

To summarize, at Φ = 5% the pH has an important effect on the rheological properties of the 

samples. The strongest reinforcement, expressed in terms of the ratio of Young's moduli of 

the composite and the pure matrix E/Elatex, is observed at low pH. The sample of highest E is 

also the one where a characteristic break in slope at small λ is observed. The results for higher 

volume fractions, Φ = 15%, show an even stronger reinforcement effect, with the particular 

feature of a maximum in stress at low deformations.  

 

III.3 Effect of silica volume fraction Φ and of the silica/latex size ratio 

 

The comparison of the Φ=5.0% and Φ=15.0% series discussed above gives some idea about 

the influence of the silica volume fraction, and we now turn to a more detailed study. The 
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stress-strain-isotherms of a series of samples at fixed pH 9.0 and increasing volume fraction 

of silica (Φ = 2.5 - 15.0%) are shown in Figure 6. At small deformations, a break in slope is 

seen to emerge with increasing silica volume fraction, around λ = 1.2. At 15.0%, this break in 

slope becomes even a maximum. It is correlated with a high increase in Young's modulus: E = 

1.3 MPa at Φ=2.5%, 2.0 MPa at Φ=5.0%, 6.7 MPa at 10.0%, up to  16 MPa at 15.0%. It is 

interesting to note that the reinforcement factor E/Elatex increases strongly, nonlinearly, with 

the silica volume fraction Φ. At larger deformation, the curves are roughly parallel, and 

rupture occurs between λrupt = 4.3 and 5.1. This shows again that one can stretch the 

nanocomposite films further than the pure nanolatex film at the same pH. The energy needed 

to break the films in uniaxial extension increases also considerably with volume fraction: 

from 3.9 J/cm3 (Φ=5.0%), to 6.4 J/cm3 (Φ=10.0%), and 11.2 J/cm3 at Φ=15.0%. It is again 

interesting to plot the reduced stress σ/σlatex as a function of elongation for different volume 

fractions, see Figure 7. At low volume fractions there is hardly any effect, and the curves are 

flat. At highest Φ, the peak emerges at low deformations, around λ = 1.20. At higher 

elongation, the reinforcement factor decreases quickly, down to a reinforcement of less than 2 

at rupture. Note that the data are necessarily scattered at very low deformations, the relative 

stress there being a ratio of two small numbers affected by statistical errors.  

 

We now explore the influence of the size of the silica beads by replacing the smaller silica 

B30 (Ro = 76.9 Å), by silica B40 (Ro = 92.6 Å, cf. section II) in the previous series in volume 

fraction Φ, at pH 9.0. The rheological response in terms of σ(λ) is shown in Figure 8. The 

general behavior is the same for B40 and B30 (cf. Figure 6): The stress is of the same order of 

magnitude (σrupt = 10-15 MPa), and it increases considerably with the volume fraction. The 

samples break somewhat earlier for the bigger silica spheres (B40): λrupt lies between 3.3 and 

4.3. The break in slope at low deformation, however, is less pronounced and seems to exist 
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only at the highest volume fraction (Φ = 15.0%), if at all. Young's modulus varies strongly 

with Φ: from E=1.5 MPa at Φ = 3.0%, it becomes 1.8 MPa at Φ = 6.0%, 3.3 MPa at 9.0%, 6.9 

MPa at 12.0% and 15.5 MPa at 15.0%. Simultaneously, the energy necessary to break the film 

about doubles from 3.6 J/cm3 at Φ=3.0% to 6.8 J/cm3 at Φ=15.0%. In Figure 9, we plot the 

reinforcement factor σ/σlatex as a function of elongation. At low volume fraction, Φ ≤ 9.0%, 

the reinforcement factor is essentially constant with λ. Its value is about 1 for Φ = 3.0%, 1.2 

for Φ = 6.0%, and 2 for Φ = 9.0%. At higher volume fractions, a strong decrease of the 

reinforcement factor at low deformation is found. The sample at Φ = 12.0% starts with a 

factor of reinforcement of 4.8, and falls off to a plateau at 1.5. For the most concentrated 

sample, at Φ = 15.0%, it starts from a height close to 10, and reaches a value of 2 at large 

deformation. To summarize, the following differences with the analogous data series for small 

silica B30, cf. Figure 7, are found: Samples with bigger silica beads break earlier, no peak is 

observed in the low deformation part, less energy is needed to extend the sample up to 

rupture, and Young's modulus or the reinforcement factor at low deformation is weaker.  

 

III.4 A double elongation experiment 

 

In the series of rheological data which we have presented above, the probably most intriguing 

feature is the break in slope of σ at small deformations, around λ = 1.2. In the early stages of 

deformation, Young's modulus is very high, and suddenly, after some 15 or 20% of extension, 

the stress increases less steeply. The resulting break in slope exists either at the highest filler 

volume fraction, or if the pH of the colloidal precursor solution is low, or both. Alternatively, 

in the reinforcement factor presentation, the reduced stress starts from a high value and 

decreases quickly with elongation, before reaching a plateau. This plateau value shows still an 

important reinforcement effect that depends on the silica volume fraction and the pH, but it is 
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clearly considerably weaker than the maximum height. It is tempting to associate this 

decrease with elongation at low λ with the destruction or reorganization of some hard filler 

structure during the very early stages of deformation. We will further exploit this idea in the 

Discussion. To test it, we have performed a double elongation experiment with one specific 

sample (Φ=15.0%, pH 9.0, B30) which presents the break in slope. The result is shown in 

Figure 10. First, the film has been extended up to rupture (1st extension). It was then given 

time to relax for one day at 60°C (1st retraction, not shown because immediately following the 

rupture), taken out, and a new clamp was fixed at the broken end of the sample. This 'new' 

sample was then stretched a second time, up to λ = 2.0 with respect to its new length (2nd 

extension). Immediately afterwards, the direction of motion was reversed, and the a third 

stress curve from λ = 2.0 to λ = 1.0 was measured (2nd retraction). From this data, two points 

become obvious: First of all, the prominent break in slope observed during the first extension 

has completely disappeared in the second one, although the stress around λ = 2.0 is 

comparable in both cases. A second, minor point is that the stress falls down to zero during 

the third (retraction) experiment before reaching λ = 1, which indicates of course that our 

samples undergo some viscous flow during the experiment, and that the equilibrium length 

after stretching and relaxation is greater than the initial equilibrium length.  

 

In order to verify that the observed behavior is not due to the latex, we have performed a 

similar double elongation experiment with a pure latex film. We find some minor differences 

between the stress during the first and second elongation, of the order of 5% in stress, which 

are by no means comparable to the differences observed with the nanocomposite sample. 
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IV.      DISCUSSION 

IV.1 General remarks on the filler structure 

 

We have seen before [23] that the structure of the model nanocomposite films varies with the 

physico-chemical conditions in solution before film formation. We have quantified the 

different structures in terms of the average aggregation number Nagg, which we have deduced 

from the peak position of the scattered intensity (cf. section IV.3 and [23]). The general trend 

is that (a) Nagg is mainly determined by the pH, lower pH giving bigger aggregates (b) 

increasing the silica volume fraction Φ affects Nagg only partially, in the sense that the order 

of magnitude of Nagg is unchanged and the number of aggregates increased, and (c) bigger 

silica spheres aggregate less than the smaller ones. We recall that our explanation is that the 

equilibrium between attractive and short-ranged Van der Waals forces and long-ranged 

electrostatic repulsion in solution depends on Φ and pH. At low pH, the OH-surface groups of 

the latex (methacrylic acid) and the silica (silanol) are less ionized. This weakens the colloidal 

stability, and the resulting aggregation (or precipitation) of the silica is frozen in by the 

coalescence and film formation of the latex particles. This leads to an organization of the 

silica in the final film, after evaporation, which depends on the conditions in solution. We 

now confront the resulting structure to the rheological data presented in section III. 

 

IV.2 Effect of pH at low silica volume fraction 

 

Of all the samples studied, the series in pH with silica B30(Φ=5.0%) presents the most 

striking changes in structure. At high pH, the aggregation number ranges from 4 to 8, whereas 

an estimation of several thousand is found at low pH. In Table 1 we compare the rheological 

properties of the pure matrix and of nanocomposites of this series. The evolution of E is 
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opposite to the one of pure nanolatex films, indicating that the presence of filler leads to a 

qualitatively new rheological behavior. There is a clear correlation between the structure of 

the filler, and the factor of reinforcement at small deformations. Both are determined by the 

pH, and the reduced modulus E/Elatex increases as Nagg increases, at constant volume fraction. 

The stress σrupt and the relative elongation at rupture λrupt, however, follow more or less the 

properties of the pure matrix. This evolution of the rheological properties from strong 

reinforcement at low λ to normal matrix properties at high λ can be seen in Figure 4, where 

the reinforcement factor is seen to decrease considerably for low pH values. It thus looks like 

the structure of the filler (quantified by Nagg) is reorganized with increasing strain, and the 

response at high deformation and the maximum elongation are mainly those of the matrix.  

 

The importance of the interaction at the polymer-silica interface can be estimated by 

comparing the reinforcement factor at small and high deformation. Indeed, one might expect 

this interaction to be influenced by pH due to the different degree of electrostatic charging in 

solution and the resulting presence of ions in the film; e.g., the silica beads might be better 

connected to the matrix at high pH by ionic bridging. These effects are thought to persist at 

high deformation, as unbinding of polymer from these very small beads is known to be 

virtually impossible [30]. The ratio of (σ/σlatex) at λ = 1 and at λ = λrupt, for the 'acid' film in 

Figure 4 of the order of 10, indicates clearly that any surface interaction effect of pH is of 

second order with respect to structural differences between samples at different pH. 

 

IV.3 Effect of pH at high silica volume fraction  

 

In Table 2 the average number of aggregation Nagg deduced from Small Angle Neutron 

Scattering experiments using the same method of analysis as before [23] is given for the series 



 17

in pH (silica B30, Φ=15%). Nagg is seen to decrease monotonously with increasing pH, from 

about 42 down to below ten at high pH. The rheological response of the samples presents the 

peak in stress at small deformations at lower pH, and a pronounced break in slope at higher 

pH, cf. Figure 5. The rheological data for this series is far from being uniform. There is no 

clear dependence on pH neither of Young's modulus (scattered between 20 and 40 MPa), nor 

of the stress at rupture (between 17 and 28 MPa) or elongation at rupture (between 3.3 and 5). 

In addition to this, the position of the maxima and breaks in slope does not vary 

monotonously with pH. They are located between λ = 1.10 and 1.25. It is therefore difficult to 

correlate these rheological properties with the structure of the samples, which varies in a more 

systematic manner with the pH (cf. Table 2). The only thing one might conclude at these high 

volume fractions is that there is considerable reinforcement, but the rheological properties do 

not seem to depend strongly on pH, besides the peaks in stress that exist only at low pH.  

 

We have developed a simple geometric model relating the maximum of stress to the 

compacity of aggregates. The entire aggregate is thought to be contained in a sphere of radius 

Ragg. The ratio of the volume of silica in the aggregate and the volume of the sphere defines 

the compacity η: 

3
agg

siagg

R
3

4π
VΝ

 η
 

 =                     (5) 

 

Vsi is the average volume of a silica bead. The model is based on the fact that aggregates are 

well dispersed in space, which is known from the scattering experiments. Indeed, the 

repulsion between them leads to a strong scattering peak. The picture developed here applies 

only in the early stages of deformation, up to collision between aggregates. It is a mean field 
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model, by taking the equilibrium inter-aggregate distance as a constant, i.e. all fluctuations in 

size and position are ignored.  

 

We interpret the low deformation maximum in the stress σ(λ) discussed in section III as the 

result of collisions between aggregates. When two aggregates collide, the polymer between 

them is subjected to high compression, thereby increasing the macroscopic stress. As soon as 

the local stress between aggregates exceeds some critical value, aggregates need to be 

reorganized in the matrix (e.g. turn around each other, break up, etc.). This would result in a 

local relaxation of polymer, decrease the macroscopic stress and thus explain the observed 

maximum.  

 

Aggregates are supposed to be identical in compacity and aggregation number, with an 

average initial center-to-center distance Do deduced from the position qo (in Å-1) of the 

scattering peak, Do = α 2π/qo, cf. ref. [23] for details. α is a constant, a priori unknown, which 

quantifies the inter-aggregate structure. For a cubic arrangement of aggregates, α would be 1. 

The aggregation number is determined from Do and the knowledge of Vsi (determined 

independently):  

 

si

3
o

agg V
ΦDN =          (6) 

 

It can be supposed that aggregates start by following the polymer matrix and thus the 

macroscopic displacement affinely [1]. Under uniaxial strain, an elongation λ along z of the 

incompressible sample leads then to the following equations of motion of the center of an 

aggregate initially located at (xo,yo,zo) in a Cartesian coordinate system: 
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 =

     =

=

            (7) 

 

Collisions will occur for the first time between aggregates in the xy-plane, where the distance 

between two aggregates evolves according to (see Appendix for details)  

 

D = Do/λ1/2                     (8) 

  

On average, aggregates touch when the center-to-center distance equals two aggregate radii, 

D = 2 Ragg. We arbitrarily identify this moment with the maximum in stress, which occurs at λ 

= λmax, and combining eqs. (5), (6) and (8) gives the following result (cf. Appendix): 

 

3/2
maxλ 

π
6Φ η  =                                               (9) 

 

Note that it is independent of α, because η is a ratio between the total volume and the volume 

of silica of the aggregates, both estimated from the scattering wave vector qo. The limitations 

of this simple model are obviously that aggregates are probably neither all identical, nor 

equally spaced in the matrix. The model does not allow to estimate the observed stress either, 

as no constitutive rheological equation is included. It allows us to link the strain value at the 

maximum to the compacity of the aggregates. The results are given in the 4th column of Table 

2. They vary from 34% to 40%. It can easily be seen that these are reasonable values, e.g. in 

the case of pH 9 by constructing a simple aggregate with Nagg = 10: nine spheres of radius R 

can be aggregated in one layer around a central one, the maximum radius of the aggregate 
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being simply 3R. The compacity is obtained by dividing 10 bead volumes 10*4πR3/3 by the 

volume of the aggregate, and  we obtain a compacity of η = 37%. In a similar way, a 

compacity of 34% is found for the sample at pH 7.5 (Nagg = 42), which is close to the value 

deduced from the model (36%). In conclusion, this would indicate that aggregates are rather 

compact (not tenuous), although not close-packed. 

 

IV.4 Comparison between small (B30) and bigger (B40) silica beads 

 

We now turn to the series in Φ, at pH 9.0, which exists for both the smaller (B30) and the 

bigger (B40) silica beads. We have seen in our previous article that samples of the series in Φ 

at pH 9.0, with silica beads B30, have an average number of aggregation of the order of 10. In 

the case of the bigger silica beads (B40), the neutron scattering results indicate rather little 

aggregation at this pH: Nagg is between 1 and 2. In the SANS-spectra a small-q upturn 

indicates the presence of bigger aggregates, which are so rare that their contribution to the 

total stress is probably negligible. The important result of the structural study is that the 

numbers of aggregation do not change significantly with Φ in the two systems, and that there 

is at least five times higher aggregation in the case of the smaller silica beads.  

 

We first focus on the evolution of the low deformation response with volume fraction, which 

we confront with the theoretical models described in eqs (3) and (4). In Figures 11 and 12, we 

have plotted the ratio E/Elatex  as a function of volume fraction for the B30 and B40-samples, 

respectively. In the rheological response of these systems, the main difference seems to be the 

rather weak break in slope in σ(λ) at small deformations for the B40-system, whereas it is 

clearly visible for Φ=12.0% in the B30-system, and becomes even a maximum at Φ=15.0%. 

The fact that the series with the small silica develops quickly the break in slope can be seen 
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by the jump in E/Elatex between 9% and 12%, after which E/Elatex seems to level off (Figure 

11). The series with the bigger silica beads reaches about the same final value of E/Elatex at 

Φ=15%, but apparently more progressively (Figure 12).  

 

Our first verification was to test the Einstein equation, eq.(3a), and its extension to higher 

volume fractions, eq. (3b). Both functions are shown in Figures 11 and 12. Not surprisingly, 

Einstein's equation (thick lines) is below the data set as soon as the volume fraction exceeds 

some 5%. If the extension to second order, eq. (3b), is used, the prefactor B has to be chosen 

absurdly high in order to meet at least the order of magnitude of E/Elatex at Φ=15%. This is 

plotted in thin continuous lines in the Figures, with B = 429 for B30 and B = 338 for B40. It is 

obvious that the data are not well described by eqs. (3a) and (3b). The same is true for eq. 

(4a), which superimposes with the original Einstein equation within a few percent on the 

whole range shown here, and thus severely underestimates the experimental data for Φ > 5%. 

The percolation approach, eq. (4b), does a bit better then the other models. Fitting it to the 

data, however, yields rather low packing volume fractions Φmax between 17% and 18%. The 

quality of the fits is not very good, the data are underestimated up to a violent divergence 

when approaching 15% (broken lines in Figure 11 and 12).  

 

Given the poor performance of the standard models, an obvious way to improve them is to 

take the compacity of the aggregates into account. It is well known that aggregates contain 

occluded and/or bound rubber, which is blocked inside (or on the surface of) the aggregates 

and behaves as hard filler [31-33]. Thus, bound rubber increases the efficient volume of the 

aggregates, and the total volume fraction of filler plus bound rubber in aggregates Φagg can be 

expressed through the compacity η as defined in eq. (5): 
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η
Φ

=Φ agg       (10) 

 

We now identify the silica volume fraction Φ in eqs. (3) - (4) with the aggregate volume 

fraction Φagg, and leave η as a free parameter for a fit. The linear Einstein equation, eq. (3a), 

of course, stays linear and can not account for the observed nonlinearity of the data. The 

shape of the curve predicted by the extension of Einstein's equation to second order, eq. (3b), 

with B fixed to 14.1, is too weakly curved compared to the data (not shown in the Figures). It 

overestimates the low-Φ data by a factor of 2, and the corresponding compacities, η = 20% 

and 23% for B30 and B40, respectively, are rather low. The exponential function, eq. (4a), has 

the same flaws as eq. (3b): It overestimates the low-Φ data by almost a factor of 2, and 

predicts η-values between 15% and 17% (not shown).  

 

The prediction of eq. (4b), finally, is closest to the data. Let us go back to the case of E/Elatex 

of  B30, shown in Figure 11. The relatively weak increase between 12% and 15% is 

impossible to reproduce with any of the equations proposed here. We have therefore fitted 

two data sets, one with and one without the data point at Φ = 15%. It is found that the data set 

without the last point can be described with Φmax = 21% and η = 35%, which corresponds to a 

packing fraction of aggregates Φagg,max of Φmax/η = 60%, a reasonable value. The resulting 

curve is plotted in Figure 11 (dotted line), and the agreement is acceptable. Including the last 

point leads to fits of the (low) quality of the quadratic expression, eq. (3b), with unreasonable 

parameter-values (Φmax > 100%, not shown in the Figure). 

 

The complete data set of the B40-series as plotted in Figure 12 has also been fitted with eq. 

(4b), with the substitution of Φ by Φagg  = Φ/η (eq. (10)). The result (dotted line) has been 
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obtained for Φmax = 23% and η = 45%. Considering that the aggregates are smaller (Nagg 

between 1 and 2), that smaller aggregates have usually a higher compacity (an aggregate 

made of a single bead has a compacity of η = 100%), the value of 45% for η seems 

acceptable. The same is true for the aggregate packing volume fraction, which turns out to be 

Φagg,max = Φmax/η = 51%.  

 

We have just seen that the low deformation response, a strong increase of E with Φ, can be 

described by the diverging 'packing' (or percolation) term. As we have also seen before (cf. 

Figures 7 and 9), even initially very high reinforcement factors decrease considerably with 

deformation. It is therefore interesting to study the evolution with volume fraction of a 

quantity which rationalizes the reinforcement effect over the complete deformation range. We 

have tried to do this with the energy per unit volume of sample needed to break the film, as 

defined in eq.(2). Although there are some problems with the energy, mainly due to the fact 

that rupture occurs in an uncontrolled manner, we present in Figure 13 the reduced energy 

e/elatex as a function of silica volume fraction Φ for the small silica beads B30. In the absence 

of any complete theory for the stress-strain function of nanocomposite samples, we compare it 

to the predictions of eqs. (3a) and (4b) for the relative modulus E/Elatex [28]. The substitution 

of Φ by Φagg, eq. (10), is again included. At low deformations, eq. (3a) does a good job 

provided that the compacity of the aggregates is set to η = 50% (broken line in Figure 13). A 

fit  with eq. (4b), yields a good description of the data, with η = 52% and Φmax = 34%, thus 

Φagg,max = 65%, a reasonable value (solid line in Figure 13).  

 

We have analyzed the energy up to rupture for the bigger silica beads B40 in an analogous 

manner. The results, plotted in Figure 14, are rather different from the B30-case. Namely the 

rather low value at Φ  = 15% makes satisfactory fitting with the functions at hand, eqs. (3) - 
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(4), impossible. A tentative fit in the low-Φ region with the Einstein equation (including eq. 

(10)) yields a compacity of η = 45%, close to the previously determined value (broken line in 

Figure 14). Setting η to 45% and the packing volume fraction to 34% as in the case of B30 

gives the solid line, which of course is not satisfying because it does not describe the high-Φ 

part well.   

 

For the sake of completeness we wish to mention two alternative calculations relevant for the 

rheology of aggregates suspended in a matrix. The first is the self-consistent viscosity 

calculation by Potanin [34]. Its low-shear, low volume fraction limit gives a result which can 

essentially be looked at as a combination of the second order Einstein equation, eq. (3b), with 

a percolation term like the one in eq. (4b), and the volume fraction of aggregates determined 

by eq. (10). The second is the model developed by Witten et al [35]. In their analysis of the 

reinforcement of elastomers by fractal aggregates, they start with an expression for the 

modulus as a function of volume fraction. This equation predicts a rather high power in Φ, 

between ν = 3.3 and 4.4, depending on the fractal dimension and connectivity exponent of the 

aggregates. We have compared the data presented in Figures 11 and 12 to this prediction 

(E/Elatex = 1 + a Φν ), and obtain good fits for exponents of ν = 3.65 (for B30, neglecting the 

point at Φ= 15%), and of ν = 4.14 (B40). This is in line with our results, as it corresponds to a 

higher fractal dimension in the case of B40, i.e. a higher compacity. One should not 

overestimate this finding, though, because the calculation is based on the mathematical 

concept of fractals, which probably does not apply to our case of rather small aggregates. On 

the other hand, the underlying physics in both cases is the approach of percolation of 

aggregates, which is responsible for the steep increase of the modulus with silica volume 

fraction. 
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IV.5 Criticism of the data and a tentative scenario 

 

Before turning to a tentative picture coherent with all observations, we discuss the quality of 

the data, which do not always behave as it would be convenient for a straight-forward 

interpretation. There are two types of problems. The first one is the obvious statistical nature 

of the rupture process, which leads to a large scattering of the stress and strain at rupture, and 

the total energy supplied up to rupture. The second one is the presence of apparent 

incoherences in the data, like inversions with respect of the nominal order of a series. The 

system under study being complex enough, it can a priori not be excluded that there is a 

physical reason for these deviations. It has to be recognized, however, that identical physico-

chemical manipulations (like de-ionization) of the stock solutions of industrial origin may not 

always lead to exactly the same result, namely concerning the concentration of ionic species 

[36]. The same might be true for the exact gelation time of the sample before film formation. 

Nevertheless, once the film is formed with a given number of aggregation, it has a clear 

rheology - structure relationship. We are therefore convinced that the main conclusions of the 

article are not affected in spite of these shortcomings. Let us now summarize the key points of 

the data presented here and in the structural study: 

 

• At low volume fractions, with decreasing pH, the average aggregation number and the 

reduced modulus E/Elatex increase considerably. 

• At higher volume fractions, the aggregation number still increases with decreasing pH, but 

the stress-strain curves are less systematic. At lower pH, a maximum in stress at low 

deformations is observed. This maximum can be linked to a compacity of aggregates of 

the order of 35% by a geometric model. 
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• Small beads at basic pH aggregate (Nagg ≈ 10) more than the bigger ones (Nagg ≈ 1-2). The 

reinforcement factor of films made with small beads (B30, Φ = 15%) is very high at low 

deformations, presents a maximum, and then decreases quickly. The one of films made 

with the bigger beads is weaker, has no maximum, and decreases less rapidly.  

• The break in slope disappears after a first elongation up to rupture (double elongation 

experiment). 

• The evolution of the reduced modulus E/Elatex with volume fraction can be understood 

with a packing model (Φmax = 21%) and an aggregate compacity of 35% in the case of 

B30. For B40, the values are  Φmax = 23% and η = 45%. The evolution of the reduced 

energy e/elatex, which takes the complete stress-strain curve into account, indicates higher 

compacity after deformation in the case of B30, and unchanged compacity for B40. 

 

We propose the following tentative scenario. Two types of dissipative processes have to be 

considered. The first is breaking up of aggregates, the second reorganization of relative 

aggregate positions, accompanied by stress relaxation. Bigger aggregates break up more 

easily than smaller ones, and breaking up of aggregates is considered irreversible. The bigger 

the aggregates, the more energy is spent in the first stages of deformation to break them up. 

Young's modulus increases accordingly with the aggregation number. If the aggregates are 

close enough (high volume fraction), this is accompanied by collisions and spatial 

reorganization of the filler structure. After deformation up to rupture, aggregates will be 

smaller and more compact, and a second elongation will not bring them in contact any more. 

In the case of small aggregates (B40, basic pH), the compacity is higher from the beginning. 

Upon deformation aggregates can only reorganize spatially, without any breaking up of 

aggregates because they are small, which explains why the reduced stress decreases less 

steeply with B40 than with B30. The compacity of the B40-aggregates is thus unchanged.  
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V. CONCLUSION 

 

We have studied the rheological properties of a special nanocomposite material, obtained by 

film formation of mixtures of colloidal silica and nanolatex solutions. The stress-strain 

isotherms show considerable sensitivity to the physico-chemical parameters of the solutions 

before film formation, namely pH, silica volume fraction, and silica bead size. At low silica 

volume fraction, for instance, the small deformation behavior (Young's modulus) depends in a 

crucial way on the pH, such that samples of identical silica volume fraction can differ by as 

much as a factor of five in the modulus. By leading our investigation in parallel with a Small 

Angle Neutron Scattering Study of the structure at rest, it is also found that the rheological 

properties are correlated with the degree of aggregation.  

 

We have analyzed our data in three different ways. The first and most important one is to 

normalize the stress by the stress of the pure matrix formed at the same pH. This allows us to 

conclude on a strain-dependent reinforcement factor, independent of the matrix properties. It 

is found that the reduced stress is high at low pH and small deformation, and that it decreases 

with increasing strain. Secondly, we have analyzed the dependence of Young's modulus on 

silica volume fraction at a fixed pH. This dependence is stronger than the one predicted by the 

first order Einstein equation, non linear, and is compatible with a packing model. Thirdly, we 

have tried to analyze a global parameter, the energy supplied up to rupture, as a function of 

silica volume fraction. The data demonstrate again the high reinforcement obtained with the 

smaller silica beads. Moreover, it gives some indication on compactification of big aggregates 

during sample deformation. 
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Many aspects are still to be explored in the nanocomposite system presented here. Changes in 

structure during deformation, e.g., could in principle be detected by Small Angle Neutron 

Scattering experiments. One remarkable result, however, is out of question: the rheological 

properties of the nanocomposites can be tuned over a large range, without chemically 

modifying the silica surface.  
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APPENDIX  

 

The initial distance Do between aggregates i located at (xi,yi) in the xy-plane reads:  
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 After affine deformation (eq. (7)) the distance becomes  
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Aggregates touch when their center-to-center distance D equals two aggregate radii:  
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where we have identified this moment with λmax in the second equality of (A.3). Rewriting 

equation (A.3) yields:  
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Substituting Nagg from eq. (6) in eq. (5), we get: 
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Substituting the expression for  (Do/Ragg)3 from eq. (A.4) in (A.5) finally gives eq. (9). 
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TABLE CAPTIONS   

 

Table 1: Comparison of the rheological properties of the pure matrix and of 

nanocomposites of the series in pH, silica B30, Φ = 5.0%.   

 

The average number of aggregation is deduced from the SANS data. At pH 3.9, 

the estimated number of aggregation is greater than 5500. 

 

 

Table 2:   Average number of aggregation Nagg deduced from Small Angle Neutron 

Scattering experiments for Φ = 15.0%, small silica beads B30, for different 

values of pH.  

 

See ref. [23] for details. λ* is the position of the maximum of the stress-strain 

curve, and η is the compacity of aggregates deduced from eq. (9). Errorbars are 

due to the limited resolution in the SANS experiments. 

 



 33

TABLES  

 

Table 1: 

 

 

 

acid neutral   basic  

Structure: Nagg  > 5500 ≈ 100 ≈ 4 - 8 

Pure matrix:   

 Elatex (MPa) 

 

0.45 

 

1.05 

 

1.45 

                σrupt (MPa) < 2 5.7 9.1 

                λrupt > 7 5.2 3.7 

Nanocomposite samples, 

Φ = 5.0%, B30:  

E (MPa) 

 

 

10.6 

 

 

4.8 

 

 

2.1 

σrupt (MPa) < 3 7.5 10.1 

λrupt > 8 5.5 4.5 

E/Elatex 23.6 4.6 1.4 

 

 

 

 

Table 2: 

 

Series in pH, 

B30, 

 Φ = 15.0% 

 

Nagg 

 

λ* 

 

η 

pH  = 7.5 42 ± 10 1.16 36% 

pH  = 7.8 25 ± 5 1.24 40% 

pH  = 8.3 12 ± 3 1.13 34% 

pH  = 9.0 10 ± 3 1.22 39% 

pH  = 9.5 < 10 1.21 38% 
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FIGURE CAPTIONS  

 

Figure 1:  Stress σ in MPa as a function of relative elongation λ for pure nanolatex films 

from colloidal solution of pH 3.1, 7.0 and 9.3.  

 

Figure 2:  Stress σ in MPa as a function of relative elongation λ for nanocomposite films 

of silica B30 at Φ = 5.0% for different pH values. Due to a problem in data 

acquisition the σ(λ) for pH 3.9 is incomplete. The film itself does not break 

before λ = 8. The dotted line is a plausible continuation. 

 

Figure 3:  Stress σ in MPa as a function of relative elongation λ for the same samples as 

shown in Figure 2, in the low-deformation limit. 

 

Figure 4:  Reduced stress σ/σlatex as a function of relative elongation λ for nanocomposite 

films of silica B30 at Φ = 5.0% for pH 3.9, 7.0 and 9.1. See text for details. 

 

Figure 5:  Stress σ in MPa as a function of relative elongation λ for nanocomposite films 

of silica B30 at Φ = 15.0% for different pH values, for 1 < λ < 2. Inset: The 

complete data set up to rupture. The sample at pH 9 did not break 

instantaneously. 

 

Figure 6:  Stress σ in MPa as a function of relative elongation λ for nanocomposite films 

of silica B30, pH = 9.0, for different volume fractions Φ. 
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Figure 7:  Reduced stress σ/σlatex as a function of relative elongation λ for nanocomposite 

films of silica B30, pH = 9.0, for different volume fractions Φ.  

 

Figure 8:  Stress σ in MPa as a function of relative elongation λ for nanocomposite films 

of silica B40, pH = 9.0, for different volume fractions Φ.  

 

Figure 9:  Reduced stress σ/σlatex as a function of relative elongation λ for nanocomposite 

films of silica B40, pH = 9.0, for different volume fractions Φ.  

 

Figure 10:  Stress σ in MPa as a function of relative elongation λ for a nanocomposite film 

of silica B30, pH = 9.0, Φ = 15.0%. First extension up to rupture (λrupt = 4.6), 

followed by a free relaxation. Then second extension up to λ = 2.0, and 

retraction back to λ = 1.0. See text for details. 

 

Figure 11: Reinforcement factor E/Elatex for the series in silica volume fraction Φ at pH 

9.0, for the small silica beads B30 (squares). Model calculations are the linear 

Einstein equation (eq. (3a), thick solid line), the quadratic one (eq. (3b), solid 

line), the packing model (eq. (4b), broken line), and the packing model with 

compacity (eqs. (4b) and (10), dotted line). 

 

Figure 12: Reinforcement factor E/Elatex for the series in silica volume fraction Φ at pH 

9.0, for the bigger silica beads B40 (squares). Model calculations are the linear 

Einstein equation (eq. (3a), thick solid line), and the quadratic one (eq. (3b), 

solid line), the packing model (eq. (4b), broken line), and the packing model 

with compacity (eqs. (4b) and (10), dotted line). 
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Figure 13: Reduced energy up to rupture e/elatex as a function of silica volume fraction Φ 

for small silica beads B30 at pH 9.0. The broken line is the prediction of the 

Einstein equation (eq.(3a)), the solid line the one of the packing model (eq. 

(4b)), both combined with eq.(10). 

 

Figure 14: Reduced energy up to rupture e/elatex as a function of silica volume fraction Φ 

for small silica beads B40 at pH 9.0. The broken line is the prediction of the 

Einstein equation (eq.(3a)), the solid line of the packing model (eq. (4b)), both 

combined with eq.(10). 
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