
HAL Id: hal-00003632
https://hal.science/hal-00003632

Preprint submitted on 17 Dec 2004

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Boundary Value Problems in Some Ramified Domains
with a Fractal Boundary: Analysis and Numerical

Methods. Part II: Non homogeneous Neumann
Problems.

Yves Achdou, Christophe Sabot, Nicoletta Tchou

To cite this version:
Yves Achdou, Christophe Sabot, Nicoletta Tchou. Boundary Value Problems in Some Ramified Do-
mains with a Fractal Boundary: Analysis and Numerical Methods. Part II: Non homogeneous Neu-
mann Problems.. 2004. �hal-00003632�

https://hal.science/hal-00003632
https://hal.archives-ouvertes.fr
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Yves Achdou ∗, Christophe Sabot †, Nicoletta Tchou ‡.

December 16, 2004

Abstract

This paper is devoted to numerical methods for solving Poisson problems in self-similar
ramified domains of R2 with a fractal boundary. It is proved that a sequence of solutions
to some nonhomogeneous Neumann problems posed on domains obtained by interrupting
the fractal construction after a finite number of generations, converges to the solution of
a Neumann problem posed in the whole domain. To define the Neumann problem on the
infinitely ramified domain and for proving the above mentioned convergence, extension and
trace results are given. Then, a method for computing the solution is proposed an analyzed.
In particular, it is shown that the small scales of the Neumann data are damped exponentially
fast away from the boundary. A self similar finite element method is developed and tested.

1 Introduction

In this paper, we deal with the numerical simulation of diffusion phenomena in a self-similar
ramified domain of R

2 with a fractal boundary. This work was motivated by a wider and very
challenging project aiming at simulating the diffusion of medical sprays in the lungs. Our ambi-
tions here are more modest, since the geometry of the problems (two dimensions only) and the
underlying physical phenomena are much simpler, but we hope that giving rigorous results and
methods will prove useful. The geometry under consideration is that of a self-similar ramified
bidimensional domain, see Figure 1 below. It can be seen as a simple model for a tree or for
lungs. This domain can be obtained by glueing together dilated/translated copies of a simple
polygonal domain of R

2, called ω0 below.
Partial differential equations in domain with fractal boundaries or fractal interfaces is a rela-
tively new topic: variational techniques have been developed, involving new results on fonctional
analysis, see [9, 7, 8]. A very nice theory on variational problems in fractal media is given in
[10].
The difficulty of solving boundary value problems with partial differential equations in this kind
of domains comes essentially from the multiscale character of the boundary. Yet, when the
equation is homogeneous, it is possible to make use of the geometric self-similarity in order to
compute very accurately the restrictions of the solutions to subdomains obtained by interrupting
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Louis Lions, Université Paris 6, 75252 Paris Cedex 05. achdou@math.jussieu.fr
†CNRS, UMPA, UMR 5669, 46, Allee d’Italie, F-69364 Lyon Cedex 07, France. csabot@umpa.ens-lyon.fr
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the fractal construction after a finite number of generations.
In a previous work [1], we have considered a Poisson problem with homogeneous Neumann con-
ditions on the whole boundary, except on the bottom part of the boundary (see Figure 1), noted
Γ0 below, where a Dirichlet condition was imposed. For that, it is possible to solve an equivalent
boundary value problem in a subdomain obtained by interrupting the fractal construction after
a finite number of generations: this equivalent problem involves a nonlocal Dirichlet to Neu-
mann operator T 0, which maps a function defined on Γ0 to the normal derivative of its harmonic
lifting in the whole domain. It turns out that the Dirichlet to Neumann operator on Γ0 can
be computed very accurately by making use of the geometric self-similarity. The Dirichlet to
Neumann operator is approximated as the limit of an inductive sequence, see (37) (38) (39)
below. When discretizing the problem with finite elements with self similar meshes, the same
procedure can be implemented. The numerical method developed in [1] is reminiscent of some of
the techniques involved in the theoretical analysis of finitely ramified fractals (see [12],[15], [14],
[13], and [2, 11, 6] for numerical simulations). The simple structure of these sets allows to do an
explicit analysis of the spectral properties. This involves the dynamics of a renormalization map
which acts on the Dirichlet to Neumann operator on the boundary (which for finitely ramified
fractal consists only on a finite number of points). Here, the natural boundary is not so simple,
but the numerical method is based on a similar strategy.
In the present paper, we are interested in solving the same kind of problem, except that the
Neumann data is nonzero on the top part of the boundary, called Γ∞ below. The first thing to
do is to give a meaning to this kind of problem. For that, it is necessary to prove nonstandard
extension and trace theorems, which are, in our opinion, interesting by themselves. This is done
in § 3.
Next, an interesting problem is to design a method which permits to approximate numerically
the restriction of the solution to a subdomain obtained by interrupting the fractal construction
after a finite number of generations. This will be done by expanding the Neumann data on
Γ∞ on the basis of Haar wavelets. hen the Neumann data is a Haar wavelet, the solution of
the boundary problem can be computed by using the operator T 0 mentioned above, thanks to
self-similarity. The program described above is carried out at a continuous level in §4, and at
a discrete level in § 5, where finite element are used with special self-similar meshes. Finally,
numerical examples are given in § 6, with reults in very good agremment with the theory.

2 Geometrical setting of the model problem

Consider the following T-shaped subset of R
2

Q0 =
(
(−1, 1) × (0, 2]

)
∪ ((−2, 2) × (2, 3)) ∪ (((−2,−1) ∪ (1, 2)) × {3}) .

The fractal domain Ω0 is constructed as an infinite union of subsets of R
2 obtained by translat-

ing/dilating Q0; at a first stage, two copies of 1/2 ·Q0 are translated respectively on top-left and
on top-right of Q0 and are glued to Q0: more precisely, let F1 and F2 be the affine mappings

Fi(x) = ξ1i +
1

2
x, where ξ11 = (−3

2
, 3) and ξ12 = (

3

2
, 3), (1)

and let Q1 be the set Q1 = F1(Q
0) ∪ F2(Q

0). Next, the construction is recursive: the points
ξni for i = 1, . . . , 2n are defined by the relation: for j = 1, . . . , 2n−1, ξn2j−1 = ξn−1

j + 1
2n−1 ξ

1
1 and

ξn2j = ξn−1
j + 1

2n−1 ξ
1
2 , and the following sets are introduced:

Qn = ∪2n

i=1Q
n
i , with Qni = ξni +

1

2n
·Q0. (2)
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For n ≥ 1, calling An the set containing all the mappings from {1, . . . , 2n−1} to {1, 2}, and for
σ ∈ An, Mσ(F1, F2) = Fσ(1) ◦ Fσ(2) ◦ · · · ◦ Fσ(2n), (2) can also be written

Qn = ∪σ∈AnMσ(F1, F2)(Q
0).

It will sometimes be convenient to agree that A0 = {0} and that M0(F1, F2) is the identity.
Finally, the fractal tree Ω0 is defined by

Ω0 = ∪∞
n=0Q

n. (3)

The construction of Ω0 is displayed on Figure 1. It is straightforward to see that Ω0 ⊂ (−3, 3)×

Figure 1: Left: the first step of the construction. Right: the fractal tree (only a few generations
are displayed)

(0, 6). Note that Ω0 may also be obtained as a union of overlapping open subsets of R
2, thus

Ω0 is an open set.
It will be useful to define the truncated fractal ΩN :

ΩN = ∪∞
n=NQ

n. (4)

The following self-similarity property is true: ΩN is the union of 2N translated copies of 1
2N ·Ω0,

i.e.
ΩN = ∪σ∈AN

Ωσ, (5)

where
Ωσ = Mσ(F1, F2)(Ω

0). (6)

Also, ΩN\ΩN+1 = QN for any N ≥ 0.
We define the bottom boundary of Ω0 by Γ0 = ((−1; 1) × {0}) and Σ0 = ∂Ω0 ∩ {(x1, x2);x1 ∈
R, 0 < x2 < 6}. We have

∂Ω0 ∩ {(x1, x2);x ∈ R, x2 < 6} = Γ0 ∪ Σ0. (7)

Similarly, the bottom boundary of ΩN is ΓN = ∪2N

i=1Γ
N
i , ΓNi = ξNi + 1

2N · Γ0. In an equivalent
manner,

ΓN = ∪σ∈AN
Γσ, (8)
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where
Γσ = Mσ(F1, F2)(Γ

0). (9)

For N > 0, ΓN is contained in the line x2 = 3
∑N−1

i=0 2−i. We define also ΣN = ∂ΩN ∩
{(x1, x2);x1 ∈ R, 3

∑N−1
i=0 2−i < x2 < 6}. Calling Γ∞ = [−3 : 3]× {6}, one can check easily that

∂Ω0 = Γ0 ∪ Σ0 ∪ Γ∞. (10)

The aim of this paper is to study boundary value problems in Ω0 with nonhomogeneous Neumann
boundary condition on Γ∞

For what follows, it is also useful to introduce the open domains ωN , for N ≥ 0:

ωN = Int
(
Ω0\ΩN+1

)
. (11)

Remark 1 Note that it is also possible to construct very similar fractal trees using dilations
with ratii αn with α ∈]0; 1/2]; here we have chosen α = 1/2.

3 Some functions spaces

Let q be a real number such that q ≥ 1. Consider the function space W 1,q(Ωn) = {v ∈
Lq(Ωn) s.t. ∇v ∈ (Lq(Ωn))2} . Similarly, for all positive integer p, it is possible to define
W p,q(Ωn) as the space of functions whose partial derivatives up to order p belong to Lq(Ω), and
for all positive real number s 6∈ N, W s,q(Ωn) is defined by interpolation between W p,q(Ωn) and
W p+1,q(Ωn), where p is the integer such that p ≤ s < p + 1. Likewise, it is possible to define
the Sobolev spaces W s,q(ωn) for all nonnegative integers n. All the spaces introduced below
endowed with their natural norms are Banach spaces. For general results on Sobolev spaces for
domains with Lipschitz regular boundaries (which is not the case here), see [3, 4]. In the case
q = 2, the spaces are Hilbert spaces, and we use the special notation Hs(Ω0) = W s,2(Ω0).
Of course, for all n ≥ 0, the restriction of a function v ∈ H1(Ω0) to ωn belongs to H1(ωn), so it
is possible to define the trace of v on Γn. The trace operator on Γn is bounded from H1(Ω0) to
L2(Γn), so one can define the closed subspace of H1(Ωn):

V(Ωn) = {v ∈ H1(Ωn) s.t. v|Γn = 0}. (12)

In what follows, for a function u integrable on Γσ, the notation 〈u〉Γσ will be used for the mean
value of u on Γσ.
We will also use the notation . to indicate that there may arise constants in the estimates, which
are independent of the index n in Ωn or ωn or on the mesh size when dealing with finite elements.

3.1 Poincaré’s inequality and consequences

By generalizing slightly the results proved in [1], we have the

Theorem 1 For p ∈ R, 1 ≤ p and any function u ∈W 1,p(Ω0) whose trace on Γ0 is zero,

‖u‖Lp(Ω0) ≤ 8p
− 1

p ‖∇u‖Lp(Ω0). (13)

There exists a positive constant C such that
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• for all n ≥ 0 and for all u ∈W 1,p(Ω0),

‖u‖p
Lp(Ωn) ≤ C

(
2−np‖∇u‖p

Lp(Ωn) + 2−n‖u|Γn‖p
Lp(Γn)

)
, (14)

• for all integers n, q, n > q ≥ 0 and for all v ∈W 1,p(Ω0),

∣∣∣‖v|Γq‖p
Lp(Γq) − ‖v|Γn‖p

Lp(Γn)

∣∣∣ ≤ C2(1−p)q‖∇v‖p
Lp(ωn\ωq). (15)

• for all u ∈W 1,p(Ω0), for all N ≥ 0,

‖u‖p
Lp(ΩN )

≤ C2−N
(
‖∇u‖p

Lp(Ω0)
+ ‖u|Γ0‖p

Lp(Γ0)

)
.

The imbedding from W 1,p(Ω0) in Lp(Ω0) is compact.

3.2 Extensions and traces

3.2.1 Orientation

We aim at constructing an extension operator mapping a function of W 1,q(Ω0), q ≥ 1, to a
function defined in a simple polygonal domain of R

2. Call Q̃0 of R
2 the convex hull of the points
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Figure 2: The extension is performed in two steps

(−3
2 , 0), (3

2 , 0), (−5
2 , 3), (5

2 , 3), and Ω̃0 the new fractal domain

Ω̃0 =
⋃

n∈N

⋃

σ∈An

Mσ(F1, F2)Q̃
0.

It is represented on the right part of Figure 2 with full lines. It is clear that Ω0 ⊂ Ω̃0.
We call also Ω̂0 the convex hull of the points (−3

2 , 0), (
3
2 , 0), (−3, 6), (3, 6). Note that Ω̃0 is

obtained by removing an infinite family of nonoverlapping triangles from Ω̂0. More precisely,
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consider the triangle T = conv((0, 6), (1, 3), (−1, 3)) ⊂ Ω̂0\Ω̃0, which is visible on the right part
of Figure 2 and call G1, G2 the affine mappingsG1(x) = (1+ x1

2 , 3+ x2
2 ), G2(x) = (−1+ x1

2 , 3+ x2
2 ).

We have that

Ω̃0 = Ω̂0\
(
⋃

n∈N

⋃

σ∈An

Mσ(G1, G2)T

)
.

3.2.2 Bounded extension from W 1,q(Ω0) to W 1,q(Ω̃0), q ≤ 2

Our first goal is to construct an extension operator, bounded from W 1,q(Ω0) to W 1,q(Ω̃0), q, 1 ≤
q ≤ 2,. This is done in two steps.

First step CallDL the L-shaped compact setDL = conv
(
(−1,−2), (−1

2 ,−2), (−1
2 , 2), (−1, 2)

)
∪

conv
(
(−1

2 , 2), (−2, 2), (−2, 5
2), (−1

2 ,
5
2)
)

and DR the image of DL by the symmetry of axis x1 = 0.
Call also TL the triangle conv ((−1,−2), (−1, 2), (−2, 2)) and TR the image of TL by the sym-
metry of axis x1 = 0.
It is possible to construct an extension operator EL, which maps continuously W 1,q(DL) to
W 1,q(DL ∪ TL), for all q ∈ [1, 2]: for all q ∈ [1, 2], there is a positive constant c such that, for all
u ∈W 1,q(DL), ‖ELu‖W 1,q(TL) ≤ c‖u‖W 1,q(DL).

Call Ω0
L = Ω0 ∩ ⋃n∈N

Fn1 (DL) and Ω̃0
L = Ω̃0 ∩ ⋃n∈N

Fn1 (DL ∪ TL). Similarly Ω0
R = Ω0 ∩⋃

n∈N
Fn2 (DR) and Ω̃0

R = Ω̃0 ∩⋃n∈N
Fn2 (DR ∪ TR). The previous observation and the facts that

• |Fn1 (TL) ∩ Fm1 (TL)| = 0 if n 6= m.

• for any point x in Ω0
L, there exist at least one and at most two integers n such that

x ∈ Fn1 (DL).

enable to construct an extension operator ẼL, bounded from W 1,q(Ω0
L) to W 1,q(Ω̃0

L), 1 ≤ q ≤ 2,
by:

if x ∈ Fn1 (TL), n ≥ 1, then (ẼLu)(x) = EL((u ◦ Fn1 )|DL
)
(
(Fn1 )−1(x)

)
,

if x ∈ Ω̃0 ∩ TL, then (ẼLu)(x) = EL,0(u|DL
)(x),

where EL,0 is any extension operator which maps continuously W 1,q(Ω0 ∩ DL) to W 1,q(Ω̃0 ∩
(DL ∪ TL)), 1 ≤ q ≤ 2.
By symmetry, it possible to construct an extension operator, bounded from ẼR from W 1,q(Ω0

R)
to W 1,q(Ω̃0

R), 1 ≤ q ≤ 2.

Second step Let GL = {F2 ◦ Mσ(F1, F2), σ ∈ An, n ∈ N} and GR = {F1 ◦ Mσ(F1, F2), σ ∈
An, n ∈ N}. We observe that for any point x in Ω̃0\Ω0, one and only one of the four successive
items is true:

1. either x ∈ Ω̃0
L\Ω0,

2. or x ∈ Ω̃0
R\Ω0,

3. or there exists a unique tranformation τ in GL such that x ∈ τ(Ω̃0
L\Ω0),

4. or there exists a unique tranformation τ in GR such that x ∈ τ(Ω̃0
R\Ω0),

From this observation, it is possible to construct an extension operator E , bounded from
W 1,q(Ω0) to W 1,q(Ω̃0), 1 ≤ q ≤ 2, by: for x ∈ Ω̃0\Ω0,

6



• if item 1 is true: (Eu)(x) = (ẼLu)(x),

• if item 2 is true: (Eu)(x) = (ẼRu)(x),

• if item 3 is true: (Eu)(x) = (ẼL(u ◦ τ))(τ−1(x)),

• if item 4 is true: (Eu)(x) = (ẼR(u ◦ τ))(τ−1(x)),

3.2.3 Bounded extension from W 1,q(Ω̃0) to W 1,q(Ω̂0), 1 ≤ q < 2

Consider the triangle T̂ = conv((0, 6), (3
2 , 2), (−3

2 , 2)) which is displayed on the left of Figure 2,
with interrupted lines. The key observation is that

T̂\T ⊂ Ω̃0, (16)

and that

∀σ1, σ2 ∈
⋃

n∈N

An such that σ1 6= σ2, Mσ1(G1, G2)(T̂ ) ∩Mσ2(G1, G2)(T̂ ) = ∅. (17)

It is well known that there exists a extension operator F̃ , bounded from W 1,q(T̂ \T ) to W 1,q(T̂ ),
for any q, 1 ≤ q < 2. Note that the operator cannot be bounded in from W 1,2(T̂\T ) to W 1,2(T̂ ),
because its construction involves polar coordinates around the common vertex of T and T̂ .
From this and (17), we can construct an extension operator F , bounded from W 1,q(Ω̃0) to
W 1,q(Ω̂0), 1 ≤ q < 2 by

if x ∈ Mσ(G1, G2)(T ), F(u)(x) = F̃
(
(u ◦Mσ(G1, G2)) |bT\T

)
◦ (Mσ(G1, G2))

−1(x).

3.2.4 Bounded extension from W 1,q(Ω0) to W 1,q(Ω̂0), 1 ≤ q < 2

By composing the extension operators E and F constructed above, we have proved the

Theorem 2 There exists an extension operator J bounded from W 1,q(Ω0) to W 1,q(Ω̂0), for all
q, 1 ≤ q < 2,

Remark 2 Of course, since Ω0 is a bounded domain, we have also that for q, 1 ≤ q < 2, the
extension operator J is bounded from H1(Ω0) to W 1,q(Ω̂0).

As a consequence of Theorem 2, we have the Sobolev imbeddings:

Proposition 1 (Sobolev imbeddings) Let q be a real number such that 1 ≤ q < 2: we have
the continuous imbeddings:

W 1,q(Ω0) ⊂ Lp(Ω0), ∀p, 1 ≤ p ≤ q∗, q∗ =
2q

2 − q
,

and the imbedding is compact if p < q∗.
Furthermore, for all q, p, 1 ≤ q < 2, 1 ≤ p ≤ q∗, there exists a constant C such that for all
N ≥ 0,

‖u‖p
Lp(ΩN )

≤ C

(
2

2N(p−q)−qpN

q ‖∇u‖p
Lq(ΩN )

+ 2
N(p−2q)

q ‖u‖p
Lq(ΓN )

)
. (18)

For all real number p ≥ 1, H1(Ω0) ⊂ Lp(Ω0) with continuous and compact imbedding.
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3.2.5 Density results

Theorem 3 For q, 1 ≤ q < 2, the space C∞(Ω0) is dense in W 1,q(Ω0), and there exists a

sequence of linear operators (Sn)n∈N from W 1,q(Ω0) to C∞(Ω̂0) such that

∀u ∈W 1,q(Ω0), lim
n→∞

‖u− (Snu)|Ω0‖W 1,q(Ω0) = 0, (19)

and for a constant c,

∀u ∈W 1,q(Ω0), ‖Snu‖W 1,q(bΩ0) ≤ c‖u‖W 1,q(Ω0). (20)

Proof. We know that C∞(Ω̂0) is dense in W 1,q(Ω̂0) and that there exists a sequence of linear

operators (Ŝn)n∈N from W 1,q(Ω̂0) to C∞(Ω̂0) such that

∀u ∈W 1,q(Ω̂0), lim
n→∞

‖u− Ŝnu‖W 1,q(bΩ0) = 0,

and for a constant c,

∀u ∈W 1,q(Ω̂0), ‖Ŝnu‖W 1,q(bΩ0) ≤ c‖u‖
W 1,q(bΩ0).

Consider an extension operator J as in Theorem 2. The operators Sn = Ŝn ◦ J answer the
question.

3.2.6 Traces

Take q, 1 < q ≤ 2 and call N q
p the mapping

N q
p : W 1,q(Ω0) → R+, N q

p (v) = ‖v|Γp‖q
Lq(Γp). (21)

Estimate (15) tells us that for any v ∈ W 1,q(Ω0), (N q
p (v))p∈N is a Cauchy sequence in R+ and

that it converges to a real number N q
∞(v). It is an easy matter to prove the following

Lemma 1 Let q be a real number such that 1 < q ≤ 2. The mapping v 7→ N q
∞(v) is homogeneous

of degree q.
There exists a constant C such that forall v ∈W 1,q(Ω0),

N q
∞(v) ≤ C‖v‖q

W 1,q(Ω0)
. (22)

For v ∈ C∞(Ω̂0),

N q
∞(v|Ω0) =

1

3
‖v‖q

Lq(Γ∞). (23)

Theorem 4 Let q be a real number such that 1 < q < 2. There is a continuous trace operator

γ from W 1,q(Ω0) onto W
1− 1

q
,q
(Γ∞), such that for all u ∈ C∞(Ω̂0),

γ(u|Ω0) = u|Γ∞ .

Proof. Consider a sequence of operators (Sn)n∈N as in Theorem 3. Let u be a function in

W 1,q(Ω0). The function Sn(u) has a trace in W
1− 1

q
,q
(Γ∞), and we have from (20) that for a

constant c (independent of n)

‖Sn(u)‖
W

1− 1
q ,q

(Γ∞)
≤ c‖u‖W 1,q(Ω0).

8



Therefore, one can extract a subsequence Sφ(n) such that Sφ(n)(u)|Γ∞ converges weakly in

W 1− 1
q
,q(Γ∞) and strongly in Lq(Γ∞) to some function w ∈ W 1− 1

q
,q(Γ∞). There remains to

prove that w is unique (i.e. the whole sequence converges), and that w depends only on u and
not on the sequence Sn.

Assume that there exist two subsequences (Sφ(n)(u))n∈N and (Sψ(n)(u))n∈N whose traces on

Γ∞ converges respectively to w and w′ weakly in W 1− 1
q
,q(Γ∞) and strongly in Lq(Γ∞). We have

from (23) that

‖w − w′‖q
Lq(Γ∞) = lim

n→∞
‖Sφ(n)(u) − Sψ(n)(u)‖qLq(Γ∞)

= 3 lim
n→∞

N q
∞(Sφ(n)(u)|Ω0 − Sψ(n)(u)|Ω0)

From (22),

‖w −w′‖q
Lq(Γ∞) ≤ 3C lim sup

n→∞
‖Sφ(n)(u)|Ω0 − Sψ(n)(u)|Ω0‖q

W 1,q(Ω0)
,

and we conclude from (19) that
‖w − w′‖q

Lq(Γ∞) = 0,

and therefore w = w′.
The same argument leads to the fact that w does not depend on the sequence of operators
(Sn)n∈N.

Therefore the mapping γ : u 7→ w is a continuous linear operator from W 1,q(Ω0) to W
1− 1

q
,q
(Γ∞).

It can also be checked by reproducing the argument above that if u ∈ C∞(Ω̂0) then γ(u|Ω0) =

u|Γ∞ . Therefore γ is a trace operator from W 1,q(Ω0) to W 1− 1
q
,q(Γ∞).

It is surjective because the trace operator from W 1,q(Ω̂0) to W 1− 1
q
,q(Γ∞) is surjective.

From the continuous imbedding H1(Ω0) ⊂W 1,q(Ω0), and from the Sobolev imbedding theorems
in dimension one, we have the

Corollary 1 The trace operator is continuous from H1(Ω0) to W
1− 1

q
,q
(Γ∞), for all real numbers

q with 1 < q < 2. The trace operator is continuous from H1(Ω0) to Lp(Γ∞), for all real number
p with 1 ≤ p <∞.

Corollary 2 For all u ∈ H1(Ω0), for all real number p, p > 1,

N p
∞(u) =

1

3
‖γ(v)‖p

Lp(Γ∞). (24)

For all u, v ∈ H1(Ω0),

lim
n→∞

∫

Γn

u|Γnv|Γn =
1

3

∫

Γ∞

γ(u)γ(v). (25)

4 Poisson problems with nonzero Neumann data on Γ∞

4.1 The boundary value problem

Let p be a real number greater than one, take g ∈ Lp(Γ∞). We are interested in the variational
problem

find u ∈ V(Ω0) such that and for all v ∈ V(Ω0),

∫

Ω0

∇u · ∇v =
1

3

∫

Γ∞

gγ(v). (26)
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From Corollary 1, the linear form v 7→
∫
Γ∞ gγ(v) is bounded on H1(Ω0), and from Theorem 1,

problem (26) has a unique solution.
The next result says that the solution to (26) can be approximated by solving boundary value
problems in ωn, n→ ∞:

Proposition 2 Let p be a real number such that 1 < p ≤ 2. If g is the trace on Γ∞ of a function
g̃ belonging to W 1,p(Ω̂0), then

lim
n→∞

‖u|ωn − un‖H1(ωn) = 0,

where u is defined by (26) and un ∈ V(ωn) is the solution to:

for all v ∈ V(ωn),

∫

ωn

∇un · ∇v =

∫

Γn+1

g̃|Γn+1v|Γn+1 . (27)

Proof. Calling en the error en = u|ωn − un ∈ V(ωn), we see that

∫

ωn

∇en · ∇v =

(
1

3

∫

Γ∞

gγ(v) −
∫

Γn+1

g̃|Γn+1v|Γn+1

)
−
∫

Ωn+1

∇u · ∇v. (28)

It can be proved that for all v ∈ V(Ω0), 1
3

∫
Γ∞ gγ(v) = limn→∞

∫
Γn+1 g̃|Γn+1v|Γn+1 , so the first

term in the right hand side tends to zero. More precisely, Proposition 1 tells us that for all r,
1 < r < p, the function g̃v belongs to W 1,r(Ω0). It is easy to check by a scaling argument that,
for all m < m′,

∣∣∣∣
∫

Γm+1

g̃|Γm+1v|Γm+1 −
∫

Γm′+1

g̃|Γm′+1v|Γm′+1

∣∣∣∣ . 2m
1−r

r ‖∇(g̃v)‖Lr(ωm′\ωm).

Since g̃ is fixed, this implies from Proposition 1 that

∣∣∣∣
∫

Γm+1

g̃|Γm+1v|Γm+1 −
∫

Γm′+1

g̃|Γm′+1v|Γm′+1

∣∣∣∣ . 2m
1−r

r ‖v‖H1(Ω0).

Thus, the sequence of continuous linear forms on V(Ω0): v 7→
∫
Γn+1 g̃|Γn+1v|Γn+1 is a Cauchy

sequence in the dual of V(Ω0), and the limit can be identified by using Theorem 3: therefore,

lim
n→∞

sup
v∈V(Ω0),v 6=0

∣∣1
3

∫
Γ∞ gγ(v) −

∫
Γn+1 g̃|Γn+1v|Γn+1

∣∣
‖v‖H1(Ω0)

= 0. (29)

We also have that

lim
n→∞

sup
v∈V(Ω0),v 6=0

∫
Ωn+1 ∇u · ∇v
‖v‖H1(Ω0)

= 0. (30)

From (28) (29) and (30), we deduce the desired result.
We will try to solve (26) numerically. Of course, it is not possible to represent completely the
domain Ω0 in numerical simulations, because this would imply an infinite memory and computing
time. Rather, for some n ∈ N, we aim at computing as well as possible the restriction of u in
(26) to ωn. This turns out to be possible, but for that, we need to use nonlocal operators on
Γσ, σ ∈ An+1. These operators have been studied theoretically and numerically in [1].
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4.2 The Dirichlet to Neumann operator

Here we give results which where proved in [1]. For an integer n ≥ 0, and for σ ∈ An, one can

define the harmonic lifting operator Hσ from H
1
2 (Γσ) to H1(Ωσ): for all u ∈ H

1
2 (Γσ), the trace

of Hσ(u) on Γσ is u and for all v ∈ V(Ωσ),
∫
Ωσ ∇Hσ(u) · ∇v = 0. Since A0 = {0}, we denote by

H0 the harmonic lifting in Ω0. It is easy to check that, for all v ∈ H
1
2 (Γσ),

Hσ(v) ◦Mσ(F1, F2) = H0(v ◦Mσ(F1, F2)). (31)

Theorem 5 There exists a positive constant C such that, for all u ∈ H
1
2 (Γ0),

‖∇H0(u)‖L2(ω0) ≥ C‖∇H0(u)‖L2(Ω0). (32)

There exists a real number ρ, 0 < ρ < 1 such that for all u ∈ H
1
2 (Γ0),

∫

ΩN

|∇H0(u)|2 ≤ ρN
∫

Ω0

|∇H0(u)|2. (33)

For σ ∈ An, one can define the operators T σ, fromH
1
2 (Γσ) to their respective duals by 〈T σu, v〉 =∫

Ωσ ∇Hσ(u) ·∇Hσ(v) =
∫
Ωσ ∇Hσ(u) ·∇ṽ, for any function ṽ ∈ H1(Ωσ) such that ṽ|Γσ = v. From

the self-similarity of Ω0, we have that

∀u, v ∈ H
1
2 (Γσ), 〈T σu, v〉 = 〈T 0 (u ◦Mσ(F1, F2)) , (v ◦Mσ(F1, F2))〉, (34)

where the duality pairing in left (resp., right) hand side of (34) is the duality
(
H

1
2 (Γσ)

)′
-H

1
2 (Γσ)

(resp.,
(
H

1
2 (Γ0)

)′
- H

1
2 (Γ0)).

Lemma 2 For all u ∈ H
1
2 (Γ0), for n ≥ 1, the restriction of H0(u) to ωn−1 is the solution to

the following boundary value problem: find û ∈ H1(ωn−1) such that û|Γ0 = u and ∀v ∈ V(ωn−1),
∫

ωn−1

∇û · ∇v +
∑

σ∈An

〈
T 0 (û|Γσ ◦Mσ(F1, F2)) , v|Γσ ◦Mσ(F1, F2)

〉
= 0. (35)

Furthermore, ∀v ∈ H1(ωn−1),

〈T 0u, v|Γ0〉 =

∫

ωn−1

∇û · ∇v +
∑

σ∈An

〈T σû|Γσ , v|Γσ 〉

=

∫

ωn−1

∇û · ∇v +
∑

σ∈An

〈
T 0(û|Γσ ◦Mσ(F1, F2)), v|Γσ ◦Mσ(F1, F2)

〉
.

(36)

Lemma 2, in the case n = 1, leads us to introduce the cone O of self adjoint, positive semi-
definite, bounded linear operators from H

1
2 (Γ0) to its dual, vanishing on the constants, and the

mapping M : O 7→ O defined as follows: for Z ∈ O, define M(Z) by

∀u ∈ H 1
2 (Γ0), ∀v ∈ H1(ω0), 〈M(Z)u, v|Γ0〉 =

∫

ω0

∇û · ∇v +
2∑

i=1

〈
Z(û|Γ1

i
◦ Fi), v|Γ1

i
◦ Fi

〉
,

(37)
where û ∈ H1(ω0) is such that û|Γ0 = u and

∀v ∈ V(ω0),

∫

ω0

∇û · ∇v +
2∑

i=1

〈
Z(û|Γ1

i
◦ Fi), v|Γ1

i
◦ Fi

〉
= 0. (38)

Lemma 2 tells that T 0 is a fixed point of M. In fact, we have the

11



Theorem 6 The operator T 0 is the unique fixed point of M. Moreover, for all Z ∈ O, there
exists a positive constant C independent of n such that, for all n ≥ 0,

‖Mn(Z) − T 0‖ ≤ Cρ
n
4 , (39)

where ρ, 0 < ρ < 1 is the constant appearing in Theorem 5.

4.3 Solving (26) with g = 1

Let uF ∈ V(Ω0) be such that for all v ∈ V(Ω0),

∫

Ω0

∇uF · ∇v =
1

3

∫

Γ∞

v. (40)

Let y ∈ (H
1
2 (Γ0))′ be the normal derivative of uF on Γ0, defined by : for all v ∈ H1(Ω0),

〈y, v〉 =

∫

Ω0

∇uF · ∇v − 1

3

∫

Γ∞

v. (41)

It can be checked that for all n > 0, for σ ∈ An, u
σ
F = uF ◦(Mσ(F1, F2))

−1 satisfies: uσF ∈ V(Ωσ)
and for all v ∈ V(Ωσ), ∫

Ωσ

∇uσF · ∇v =
1

3

∫

Γ∞

v ◦Mσ(F1, F2). (42)

Call now ũσF ∈ V(Ωσ), the solution to the following problem:

for all v ∈ V(Ωσ),

∫

Ωσ

∇ũσF · ∇v =
1

3

∫

Γ∞∩Ωσ

v. (43)

It is easy to prove that

ũσF =
1

2n
uσF . (44)

Let us call ũF the function defined by

ũF |ω0 = 0,
ũF |Ωσ = ũσF , σ ∈ A1.

(45)

From the definition of ũσF , we see that ũF ∈ V(Ω0), and we can check that for all v ∈ V(Ω0),

∫

Ω0

∇ũF · ∇v =
1

3

∫

Γ∞

v +
1

2

2∑

i=1

〈
y, v|Fi(Γ0) ◦ Fi

〉
. (46)

Calling e the error e = uF − ũF , we have: for all v ∈ V(Ω0),

∫

Ω0

∇e · ∇v = −1

2

2∑

i=1

〈
y, v|Fi(Γ0) ◦ Fi

〉
. (47)

Since e|Ω1 is harmonic, and e coincides with uF in ω0, we have that for all i = 1, 2 and v ∈
H1(Fi(Ω

0)), ∫

Fi(Ω0)
∇e · ∇v =

〈
T 0 (uF ◦ Fi) , v|Fi(Γ0) ◦ Fi

〉
. (48)
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From the fact that e and uF coincide in ω0, from (47) and (48), we obtain that uF |ω0 is the
unique function in V(ω0) such that: for v ∈ V(ω0),

∫

ω0

∇uF · ∇v +
2∑

i=1

〈
T 0 (uF ◦ Fi) , v|Fi(Γ0) ◦ Fi

〉
=

∫

Ω0

∇e · ∇v = −1

2

2∑

i=1

〈
y, v|Fi(Γ0) ◦ Fi

〉
, (49)

and from (41), y satisfies: for all v ∈ H1(ω0),

〈y, v〉 =

∫

ω0

∇uF · ∇v +

2∑

i=1

〈
T 0 (uF ◦ Fi) , v|Fi(Γ0) ◦ Fi

〉
+

1

2

2∑

i=1

〈
y, v|Fi(Γ0) ◦ Fi

〉
. (50)

Note that (50) is trivially (for any y) satisfied if v is constant, because T 0 is symmetric and
T 01 = 0. On the other hand, from (41), y satisfies also:

〈y, 1〉 = −1

3
|Γ∞| = −2. (51)

Conversely, for z ∈ (H
1
2 (Γ0))′, call U(z) ∈ V(ω0) the function uniquely defined by: for v ∈ V(ω0),

0 =

∫

ω0

∇U(z) · ∇v +

2∑

i=1

〈
T 0 (U(z) ◦ Fi) , v|Fi(Γ0) ◦ Fi

〉
+

1

2

2∑

i=1

〈
z, v|Fi(Γ0) ◦ Fi

〉
. (52)

Regularity results for Laplace’s equation imply the following Lemma

Lemma 3 For all z ∈ (H
1
2 (Γ0))′, U(z) ∈ H

3
2 (ω0 ∩ {x2 < 1}).

Notice that, thanks to (52), for v ∈ H1(ω0),

∫

ω0

∇U(z) · ∇v +

2∑

i=1

〈
T 0 ((U(z) ◦ Fi) , v|Fi(Γ0) ◦ Fi

〉
+

1

2

2∑

i=1

〈
z, v|Fi(Γ0) ◦ Fi

〉

depends on v|Γ0 only. From Lemma 3, we see that this quantity is in fact
∫
Γ0

∂U(z)
∂n

|Γ0v|Γ0 .

Therefore, one can define the operator B0 bounded from (H
1
2 (Γ0))′ to L2(Γ0) by

B0z =
∂U(z)

∂n
|Γ0 ,

or in an equivalent manner, ∀v ∈ H1(ω0),

〈B0z, v|Γ0〉 =

∫

ω0

∇U(z) · ∇v +
2∑

i=1

〈
T 0 ((U(z) ◦ Fi) , v|Fi(Γ0) ◦ Fi

〉
+

1

2

2∑

i=1

〈
z, v|Fi(Γ0) ◦ Fi

〉
,

(53)

and we have
∀z ∈ H

1
2 (Γ0), 〈B0z, 1〉 = 〈z, 1〉.

From (49), (50), (51), and Lemma 3, we have

Lemma 4 The distribution y defined in (41) satisfies the equations:

〈y −B0y, v〉 =0, ∀v ∈ H
1
2 (Γ0),

〈y, 1〉 = − 2,
(54)

and y ∈ L2(Γ0).
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Theorem 7 The normal derivative of uF on Γ0 given by (40) (41) belongs to L2(Γ0) and is the
unique solution to (54).

Proof. From Lemma 4, there remains only to prove uniqueness.
If z ∈ (H

1
2 (Γ0))′ is a solution to

〈z −B0z, v〉 = 0, ∀v ∈ H
1
2 (Γ0), and 〈z, 1〉 = 0, (55)

then z ∈ L2(Γ0). Let Ũ(z) be the harmonic extension of U(z) in Ω0. For σ ∈ An, call eσ the
function of V(Ω0) defined by:

eσ|Ωσ = Ũ(z) ◦M−1
σ (F1, F2), and eσ |Ω0\Ωσ = 0,

and call u(n) the function of V(Ω0) defined by

u(n) =

n∑

p=0

∑

σ∈Ap

eσ.

From (52), (55) and (53), the function u(n) satisfies: for v ∈ V(Ω0)

∫

Ω0

∇u(n) · ∇v +
1

2n+1

∑

σ∈An+1

〈z, v|Γσ ◦Mσ(F1, F2)〉 = 0. (56)

But
∣∣∣∣∣∣

1

2n+1

∑

σ∈An+1

〈z, v|Γσ ◦Mσ(F1, F2)〉

∣∣∣∣∣∣
≤


 1

2n+1

∑

σ∈An+1

‖v|Γσ ◦Mσ(F1, F2)‖L2(Γ0)


 ‖z‖L2(Γ0)

≤


 1

2n+1

∑

σ∈An+1

‖v|Γσ ◦Mσ(F1, F2)‖2
L2(Γ0)




1
2

‖z‖L2(Γ0)

= ‖v|Γn+1‖L2(Γn+1)‖z‖L2(Γ0)

From (15) in the case q = 2, we know that ‖v|Γn+1‖L2(Γn+1) ≤ C‖∇v‖L2(Ω0). Therefore, the

sequence u(n) is bounded in V(Ω0), and up to the extraction of a subsequence, we can assume
that u(n) converges weakly to some function w in V(Ω0). It is clear that w coincides with U(z)
in ω0.
Let I be an extension operator bounded from W 1,q(Ω0) to W 1,q(Ω̂0), for each number q, 1 <
q < 2. For any v ∈ V(Ω0),

1

2n+1

∑

σ∈An+1

〈z, v|Γσ ◦Mσ(F1, F2)〉 =
∑

σ∈An+1

∫

Γn+1

1Γσ

(
z ◦M−1

σ (F1, F2)
)
(Iv)|Γn+1

Let z̄ be the function defined on R, periodic of period 6, and such that

z̄(x1) =





0 if x1 ∈ (−3,−1)
z(x1, 0) if x1 ∈ (−1, 1)
0 if x1 ∈ (1, 3)

,
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and let zn be the function defined on (−3, 3) by zn(x1) = z̄(−3+2n(x1 +3)). The integral above
can be written ∫ 3

−3
zn+1(x1)Ĩv(x1, yn+1)dx1,

where yn+1 is the second coordinate of the points contained in Γn+1, and where Ĩv denotes the

extension of Iv by 0 out of Ω̂0. But it is easy to prove that, for p ∈ R, p ≥ 1,

lim
n→∞

‖Ĩv(., 6) − Ĩv(., yn+1)‖Lp(−3,3) = 0.

On the other hand, we know that zn converges weakly to 0 in L2(−3, 3), since
∫ 3
−3 z̄ = 0.

We have proved that, for all v ∈ V(Ω0),

lim
n→∞

1

2n+1

∑

σ∈An+1

〈z, v|Γσ ◦Mσ(F1, F2)〉 = 0. (57)

This implies that w satisfies

∫

Ω0

∇w · ∇v = 0, ∀v ∈ V(Ω0),

yielding that w = 0. Therefore U(z) = 0, which implies that B0z = 0 and finally that z = 0.
Uniqueness is proved.
Therefore, the normal derivative y of uF is characterized by (54). Once y is known, the restriction
of uF to ω0 is found by solving (49). Similarly, for any integer n, n ≥ 1, the restriction of uF to
ωn can be found by solving the variational problem: uF |ωn ∈ V(ωn) and for all v ∈ V(ωn),

∫

ωn

∇uF · ∇v +
∑

σ∈An+1

〈
T 0 (uF ◦Mσ(F1, F2)) , v|Γσ ◦Mσ(F1, F2)

〉

= − 1

2n+1

∑

σ∈An+1

〈y, v|Γσ ◦Mσ(F1, F2)〉 .
(58)

We see that the knowledge of the operator T 0 enables to compute exactly the restriction of uF
to any domain ωn, n ≥ 0.
Note also that uF can be computed by the following induction on n: for all n ≥ 1 and σ ∈ An,
uF |Mσ(F1,F2)(ω0) ∈ H1(Mσ(F1, F2)(ω

0)),

• uF |Mσ(F1,F2)(Γ0) in known from step n− 1,

• ∀v ∈ H1(Mσ(F1, F2)(ω
0)) such that v|Mσ(F1,F2)(Γ0) = 0,

∫

Mσ(F1,F2)(ω0)
∇uF · ∇v +

2∑

i=1

〈
T 0 (uF ◦Mσ(F1, F2) ◦ Fi) , v|Mσ(F1,F2)◦Fi(Γ0) ◦Mσ(F1, F2) ◦ Fi

〉

= − 1

2n+1

2∑

i=1

〈
y, v|Mσ(F1,F2)◦Fi(Γ0) ◦Mσ(F1, F2) ◦ Fi

〉
.

Note that the domains involved by the induction above are all deduced from ω0 by affine map-
pings. Therefore, when implementing the discrete analogue of this induction by using the finite
element method, no other mesh than that of ω0 will be needed.
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4.4 Solving (26) with g being a Haar wavelet

4.4.1 g is the Haar mother wavelet

We start by considering the boundary problem (26) with g = g0 = 1{x1<0} − 1{x1>0}, (g0 is the
Haar mother wavelet), namely to find u0 ∈ V(Ω0) such that for all v ∈ V(Ω0),

∫

Ω0

∇u0 · ∇v =
1

3

∫

Γ∞

(
1{x1<0} − 1{x1>0}

)
v. (59)

Consider the function ũ0 ∈ V(Ω0):

ũ0|ω0 = 0,

ũ0|Fi(Ω0) = (−1)i+1

2 uF ◦ F−1
i , i = 1, 2

(60)

and the error e = u0 − ũ0 satisfies, for all v ∈ V(Ω0),

∫

Ω0

∇e · ∇v = −1

2

2∑

i=1

(−1)i+1
〈
y, v|Fi(Γ0) ◦ Fi

〉
, (61)

where y is defined in (41).
From the fact that e and u0 coincide in ω0, we obtain that u0|ω0 is characterized by: for
v ∈ V(ω0),

∫

ω0

∇u0 · ∇v +
2∑

i=1

〈
T 0 (uF ◦ Fi) , v|Fi(Γ0) ◦ Fi

〉
= −1

2

2∑

i=1

(−1)i+1
〈
y, v|Fi(Γ0) ◦ Fi

〉
. (62)

Once u0|ω0 is known, then

u0|Fi(Ω0) =
(−1)i+1

2
ũF ◦ F−1

i +
(
H0(u0|Fi(Γ0) ◦ Fi)

)
◦ F−1

i ,

so u0 can be computed by an induction formula similar to the one for uF .
It will be useful to denote by y0 the normal derivative of u0 on Γ0. We have

∫
Γ0 y

0 = 0.

4.4.2 g is a wavelet in the level n, n > 0

Let n be a positive integer and take σ ∈ An. Call gσ the Haar wavelet on Γ∞, defined by

gσ |Mσ(F1,F2)(Γ∞) = g0 ◦M−1
σ (F1, F2),

gσ|Γ∞\Mσ(F1,F2)(Γ∞) = 0,
(63)

and call uσ the function in V(Ω0) such that for all v ∈ V(Ω0),

∫

Ω0

∇uσ · ∇v =
1

3

∫

Γ∞

gσv, (64)

and yσ the normal derivative of uσ on Γ0.
Define ũσ ∈ V(Ω0) by

ũσ|Ωσ =
u0 ◦M−1

σ (F1, F2)

2n
, and ũσ|Ω0\Ωσ = 0.

16



The error e = uσ − ũσ satisfies, for all v ∈ V(Ω0),
∫

Ω0

∇e · ∇v = − 1

2n
〈
y0, v|Γσ ◦Mσ(F1, F2)

〉
. (65)

The restriction of e to ωn−1, i.e. uσ|ωn−1 satisfies: for all v ∈ V(ωn−1),
∫

ωn−1

∇uσ·∇v+
∑

µ∈An

〈
T 0 (uσ ◦Mµ(F1, F2)) , v|Γµ ◦Mµ(F1, F2)

〉
= − 1

2n
〈
y0, v|Γσ ◦Mσ(F1, F2)

〉
.

(66)
It is possible to compute the family (uσ, yσ) by an induction on n, from the following observation:
if σ = Fi ◦ η for some i ∈ {1, 2} and η ∈ An−1, then (uσ, yσ) can be computed from (uη, yη), by
solving, for all v ∈ V(ω0),
∫

ω0

∇uσ|ω0 · ∇v +
∑

µ∈A1

〈
T 0 (uσ|Γµ ◦Mµ(F1, F2)) , v|Γµ ◦Mµ(F1, F2)

〉
= −1

2

〈
yη, v|Fi(Γ0) ◦ Fi

〉
,

with

uσ|Fi(Ω0) =
1

2
uη ◦ F−1

i +
(
H0(uσ|Fi(Γ0) ◦ Fi)

)
◦ F−1

i ,

uσ|Fj(Ω0) =
(
H0(uσ|Fj(Γ0) ◦ Fj)

)
◦ F−1

j with j = 1 − i.

and ∀v ∈ H1(ω0),

〈yσ, v〉 =

∫

ω0

∇uσ|ω0 ·∇v+
∑

µ∈A1

〈
T 0 (uσ|Γµ ◦Mµ(F1, F2)) , v|Γµ ◦Mµ(F1, F2)

〉
+

1

2

〈
yη, v|Fi(Γ0) ◦ Fi

〉
.

4.4.3 The asymptotic behavior of uσ|ωp, for σ ∈ An as n→ ∞
For what follows, it is useful to define the spaces

W 0 = {g ∈ (H
1
2 (Γ0))′ such that 〈g, 1〉 = 0},

W σ = {g ∈ (H
1
2 (Γσ))′ such that 〈g, 1〉 = 0}, for σ ∈ An, n > 0.

(67)

It is clear that

‖g‖W 0 = sup
v∈H1(Ω0),‖∇v‖

L2(Ω0) 6=0

〈g, v|Γ0〉
‖∇v‖L2(Ω0)

, ∀g ∈W 0,

‖g‖Wσ = sup
v∈H1(Ωσ),‖∇v‖

L2(Ωσ) 6=0

〈g, v〉
‖∇v‖L2(Ωσ)

, ∀g ∈W σ,
(68)

are respectively norms on W 0 and W σ.

Remark 3 For µ ∈ An and φµ ∈ W µ, defining the distribution φ0 ∈ W 0 by ∀v ∈ H
1
2 (Γ0),

〈φ0, v〉 = 〈φµ, v ◦M−1
µ (F1, F2)〉, we have that ‖φ0‖W 0 = ‖φµ‖Wµ.

Lemma 5 For all g ∈W 0,

‖g‖W 0 = sup

v ∈ H
1
2 (Γ0),

v nonconstant

〈g, v〉
‖∇H0(v)‖L2(Ω0)

. (69)
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Proof. Clearly, for all nonconstant v ∈ H
1
2 (Γ0), and for all lifting ψ ∈ H1(Ω0) of v, (i.e. such

that ψ|Γ0 = v), 〈g,v〉
‖∇ψ‖

L2(Ω0)
≤ ‖g‖W 0 . Therefore, 〈g,v〉

‖∇H0(v)‖
L2(Ω0)

≤ ‖g‖W 0 , which yields

‖g‖W 0 ≥ sup

v ∈ H 1
2 (Γ0),

v nonconstant

〈g, v〉
‖∇H0(v)‖L2(Ω0)

.

On the other hand, for all nonconstant v ∈ H1(Ω0), we have

• either v|Γ0 is constant, thus 〈g, v|Γ0〉 = 0 and

|〈g, v|Γ0〉|
‖∇v‖L2(Ω0)

= 0 ≤ sup

w ∈ H
1
2 (Γ0),

w nonconstant

|〈g,w〉|
‖∇H0(w)‖L2(Ω0)

. (70)

• or v|Γ0 is not constant: in this case, we use the fact that

‖∇v‖L2(Ω0) ≥ ‖∇H0(v|Γ0)‖L2(Ω0) > 0,

because the harmonic lifting is the one with minimal energy. This implies

|〈g, v|Γ0〉|
‖∇v‖L2(Ω0)

≤ |〈g, v|Γ0〉|
‖∇H0(v|Γ0)‖L2(Ω0)

.

Therefore,

sup
v ∈ H1(Ω0),
‖∇v‖L2(Ω0) 6= 0

|〈g, v|Γ0〉|
‖∇v‖L2(Ω0)

≤ sup
v ∈ H1(Ω0),
‖∇v‖L2(Ω0) 6= 0

|〈g, v|Γ0〉|
‖∇H0(v|Γ0)‖L2(Ω0)

≤ sup

v ∈ H
1
2 (Γ0),

v nonconstant

〈g, v〉
‖∇H0(v)‖L2(Ω0)

.

Finally, for all g ∈W 0,

‖g‖W 0 ≤ sup

v ∈ H 1
2 (Γ0),

v nonconstant

〈g, v〉
‖∇H0(v)‖L2(Ω0)

.

Lemma 6 There exists a positive constant C such that uσ defined by (64) satisfies

‖∇uσ‖L2(Ω0) ≤
C

2n
. (71)
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Proof. From (65) and (68), and since
∫
Γ0 y0 = 0, we deduce that

‖∇e‖2
L2(Ω0) ≤ 1

2n ‖y0‖W 0‖∇(e ◦Mσ(F1, F2))‖L2(Ω0)

= 1
2n ‖y0‖W 0‖∇e‖L2(Ωσ),

(72)

which yields that

‖∇e‖L2(Ω0) .
1

2n
. (73)

On the other hand,

‖∇ũσ‖L2(Ω0) =
1

2n
‖∇(u0 ◦M−1

σ (F1, F2))‖L2(Ωσ) =
1

2n
‖∇u0‖L2(Ω0). (74)

The desired result follows from (73) and (74).

Lemma 7 Consider i ∈ {1, 2} and y ∈ W 0. The unique function f ∈ V(Ω0) such that, for all
v ∈ V(Ω0), ∫

Ω0

∇f · ∇v = 〈y, v|Fi(Γ0) ◦ Fi〉 (75)

satisfies ∂f
∂n

|Γ0 ∈W 0 and

‖∂f
∂n

|Γ0‖W 0 ≤ ρ‖y‖W 0, (76)

where ρ, 0 ≤ ρ < 1 is the constant appearing in (33).

Proof. We know that for all v ∈ H1(Ω0)
〈
∂f

∂n
|Γ0 , v|Γ0

〉
=

∫

Ω0

∇f · ∇v − 〈y, v|Fi(Γ0) ◦ Fi〉.

Therefore, for all v ∈ H
1
2 (Γ0),

〈
∂f

∂n
|Γ0 , v|Γ0

〉
=

∫

Ω0

∇f · ∇H0(v) − 〈y, (H0(v))|Fi(Γ0) ◦ Fi〉. (77)

But from the definition of H0(v),
∫
Ω0 ∇f · ∇H0(v) = 0. Therefore, from (69),

〈
∂f

∂n
|Γ0 , v|Γ0

〉
= −〈y, (H0(v))|Fi(Γ0) ◦ Fi〉

≤ ‖y‖W 0‖∇(H0(v) ◦ Fi)‖L2(Ω0) = ‖y‖W 0‖∇H0(v)‖L2(Fi(Ω0)).

(78)

But from (33),
‖∇H0(v)‖L2(Fi(Ω0)) ≤ ρ‖∇H0(v)‖L2(Ω0).

This and (69) yield the desired result.

Lemma 8 For all n ≥ 1, for all σ ∈ An and for all y ∈ W 0, the unique function f ∈ V(Ω0)
such that for all v ∈ V(Ω0),

∫

Ω0

∇f · ∇v = 〈y, v|Γσ ◦Mσ(F1, F2)〉, (79)

satisfies, for all integer p ≥ 1 such that n− p ≥ 0,

‖∇f‖L2(ωn−p) ≤ ρp−1‖y‖W 0 , (80)

where ρ < 1 is the constant introduced in (33).
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Proof. The proof is done by induction on n.
The result is true for n = 1, since ‖∇f‖L2(Ω0) ≤ ‖y‖W 0 .

Assume that the induction property is true up to n − 1, n > 1. For σ ∈ An, let f̃ ∈ V(Ω0) be
defined by: f̃ |ωn−2 = 0 and for all v ∈ V(Ωn−1),

∫

Ωn−1

∇f̃ · ∇v = 〈y, v|Γσ ◦Mσ(F1, F2)〉. (81)

Call µ the unique element of An−1 such that Γσ ⊂ Ωµ. It is clear that f̃ vanishes out of Ωµ, and
that

∂f̃
∂n

|Γµ ∈W µ (here n is the unit vector normal to Γµ pointing outside Ωµ). Lemma 7 applied

to the function f̃ ◦Mµ(F1, F2) ∈ V(Ω0) and Remark 3 applied to φµ = ∂f̃
∂n

|Γµ tell us that

‖∂f̃
∂n

|Γµ‖Wµ ≤ ρ‖y‖W 0 . (82)

Consider now the function f̂ = f − f̃ , where f is defined by (79). We have that

f̂ |Ω0\Ωµ = f |Ω0\Ωµ ,∫
Ω0 ∇f̂ · ∇v = 〈∂f̃

∂n
|Γµ , v〉, ∀v ∈ V(Ω0).

(83)

The induction hypothesis together with (83) and Remark 3 tell us that for all integer q ≥ 1 such
that n− 1 − q ≥ 0,

‖∇f̂‖L2(ωn−1−q) ≤ ρq−1‖∂f̃
∂n

|Γµ‖Wµ . (84)

From (82) and (84), taking p = q + 1, we deduce that for all p ≥ 2 such that n− p ≥ 0,

‖∇f‖L2(ωn−p) ≤ ρp−1‖y‖W 0 .

The case p = 1 comes from the fact that ‖∇f‖L2(Ω0) ≤ ‖y‖W 0 . The induction property is proved
at step n.
Going back to the function uσ defined by (64), using (65) and Lemma 8, we have proved the

Theorem 8 There exists a constant C such that for all nonnegative integers p, n such that
0 ≤ p < n− 1, the function uσ defined by (64) satisfies

‖∇uσ‖L2(ωp) ≤
Cρn−p

2n
, (85)

where ρ < 1 is the constant appearing in (33).

4.5 Approximate solutions to (26) for general data g

We are now aiming at approximating the solution to (26) where g ∈ L2(Γ∞). The idea is to
express g in the Haar wavelet basis:

g = αF 1Γ∞ + α0g
0 +

∞∑

n=1

∑

σ∈An

ασg
σ, (86)

where g0 is defined in § 4.4.1 and gσ is defined in § 4.4.2, or in equivalent manner,

lim
N→∞

∥∥∥∥∥g − αF 1Γ∞ − α0g
0 −

N∑

n=1

∑

σ∈An

ασg
σ

∥∥∥∥∥
L2(Γ∞)

= 0. (87)

Note that αF = 〈g〉Γ∞ . We have the
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Proposition 3 The function u solution to (26) satisfies

lim
N→∞

∥∥∥∥∥u− αFuF − α0u
0 −

N∑

n=1

∑

σ∈An

ασu
σ

∥∥∥∥∥
H1(Ω0)

= 0. (88)

where the functions uF , u0 and uσ are respectively defined in (40), (59) and (64).
Furthermore, there exists a constant C such that such that for all integers p,N , with 0 ≤ p <
N − 1,

∥∥∥∥∥u|ωp − αFuF |ωp − α0u
0|ωp −

N∑

n=1

∑

σ∈An

ασu
σ|ωp

∥∥∥∥∥
H1(ωp)

≤ CρN−p

√
2N

‖g‖L2(Γ∞), (89)

where ρ < 1 is the constant appearing in (33).

Proof. The convergence result (88) stems from (87) and the stability properties of problem
(26).
From (85), we see that

‖
∞∑

n=N+1

∑

σ∈An

ασu
σ|ωp‖2

H1(ωp) ≤
(

∞∑

n=N+1

∑

σ∈An

‖uσ |ωp‖2
H1(ωp)

)(
∞∑

n=N+1

∑

σ∈An

|ασ|2
)

≤ C2

(
∞∑

n=N+1

∑

σ∈An

ρ2(n−p)

4n

)
‖g‖2

L2(Γ∞)

= C2

(
∞∑

n=N+1

ρ2(n−p)

2n

)
‖g‖2

L2(Γ∞)

.
ρ2(N−p)

2N
‖g‖2

L2(Γ∞),

which is the desired estimate

Remark 4 If g is more regular, for example g ∈W 1,s(Γ∞) then the quantity

∥∥∥∥∥g − αF1Γ∞ − α0g
0 −

N∑

n=1

∑

σ∈An

ασg
σ

∥∥∥∥∥
L2(Γ∞)

converges to 0 as a power of 1
N

, and the error estimate (89) is improved.

Proposition 3 says that the restriction to ωp of the solution u to (26) can be computed accurately
by truncating the expansion in (88) to a relatively small order. In order words, the restriction
of u to ωp is not affected by the highly oscillating components of g.

5 A self similar finite element method

5.1 Function spaces

We consider a regular family of triangulations T 0
h of ω0, (see [5]) with the special property that

for i = 1, 2, the set of the nodes of T 0
h lying on Γ1

i is the image by Fi of the set the nodes of T 0
h

lying on Γ0. Thanks to this property, the set of triangles T 1
h = T 0

h ∪
⋃2
i=1 Fi(T 0

h ) is a triangulation

of ω1. Similarly, let us call T N
h the triangulation of ωN : T N

h =
⋃N
n=0 ∪σ∈AnMσ(F1, F2)(T 0

h ).
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Finally, it is possible to construct a self-similar mesh T ∞
h =

⋃∞
n=0 ∪σ∈AnMσ(F1, F2)(T 0

h ). Let
us call Vh(ω

n) the set of piecewise linear functions:

Vh(ω
n) = {vh ∈ C0(ωn), ∀τ ∈ T n

h , vh|τ is linear}. (90)

Similarly,
Vh(Ω

0) = {vh ∈ H1(Ω0), ∀τ ∈ T ∞
h , vh|τ is linear}. (91)

It is clear that for all vh ∈ Vh(Ω
0), the restriction of vh to ωn belongs to Vh(ω

n). Consider
Vh,0(Ω

0) = {vh ∈ Vh(Ω
0); vh|Γ0 = 0}, and let Vh(Γ

n) (resp., Vh(Γ
n
i ), 1 ≤ i ≤ 2N ) be the space

of the traces of the functions of Vh(Ω
0) on Γn (resp., Γni ). It is clear that for all vh ∈ Vh(Γ

1
i ),

vh ◦ Fi ∈ Vh(Γ0).
We have the approximation result, whose proof is skipped for brevity:

Lemma 9 For all u ∈ H1(Ω0),

lim
h→0

inf
uh∈Vh(Ω0)

‖u− uh‖H1(Ω0) = 0.

5.2 The discrete Dirichlet to Neumann operator

The results given in this section are proved in [1].

5.2.1 Discrete harmonic lifting and Dirichlet to Neumann operator

We are now ready to define the discrete harmonic lifting operator H0
h : Vh(Γ

0) 7→ Vh(Ω
0),

∀uh ∈ Vh(Γ0), H0
h(uh)|Γ0 = uh and

∀vh ∈ Vh,0(Ω
0),

∫

Ω0

∇H0
h(uh) · ∇vh = 0. (92)

We have the analogue of Theorem 5:

Theorem 9 There exists a constant ρ < 1, independent of h such that for all uh ∈ Vh(Γ
0),

∫

ΩN

|∇H0
h(uh)|2 ≤ ρN

∫

Ω0

|∇H0
h(uh)|2. (93)

We can also define the discrete Dirichlet-Neumann operator T 0
h : Vh(Γ

0) 7→
(
Vh(Γ

0)
)′

〈T 0
huh, vh〉 =

∫

Ω0

∇H0
h(uh) · ∇H0

h(vh) =

∫

Ω0

∇H0(uh) · ∇ṽh, (94)

for any function ṽh ∈ Vh(Ω
0) such that ṽh|Γ0 = vh. Exactly as for the continuous problem,

we introduce the cone Oh of self adjoint, positive semi-definite, bounded linear operators from
Vh(Γ

0) to its dual, vanishing on the constants, and the mapping Mh : Oh 7→ Oh defined as
follows: for Zh ∈ Oh, define Mh(Zh) by ∀uh ∈ Vh(Γ

0), ∀vh ∈ Vh(ω
0),

〈Mh(Zh)uh, vh|Γ0〉 =

∫

ω0

∇ûh · ∇vh +

2∑

i=1

〈
Zh(ûh|Γ1

i
◦ Fi), vh|Γ1

i
◦ Fi

〉
, (95)

where ûh ∈ Vh(ω
0) is such that ûh|Γ0 = uh and

∀vh ∈ Vh(ω0) with vh|Γ0 = 0,

∫

ω0

∇ûh · ∇vh +
2∑

i=1

〈
Zh(ûh|Γ1

i
◦ Fi), vh|Γ1

i
◦ Fi

〉
= 0. (96)

We have the analogue of Theorem 6:
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Theorem 10 The operator T 0
h is the unique fixed point of Mh and for all Zh ∈ Oh, there exists

a positive constant C independent of n such that, for all n ≥ 0,

‖Mn
h(Zh) − T 0

h‖ ≤ Cρ
n
4 , (97)

where ρ, 0 < ρ < 1 is the constant appearing in Theorem 9.

5.2.2 The linear algebra viewpoint

Let us call Nh(ω
0) (resp., N) the dimension of Vh(ω

0), (resp., Vh(Γ
0)). Call (xi)i=1,...,N the

abscissa of the mesh-nodes lying on Γ0, ordered increasingly. Let us introduce the nodal basis
(φi)i=1,...,Nh(ω0) of Vh(ω

0) ordered as follows:

1. for j = 1, . . . , N , φj corresponds to the node (xj, 0) ∈ Γ0.

2. for i = 1, 2 and j = 1, . . . , N φiN+j corresponds to the node Fi(xj , 0) ∈ Γ1
i .

3. for 3N < j ≤ Nh(ω
0), the node corresponding to φj belongs to ω0\(Γ0 ∪ Γ1).

Consider the bilinear for ah : Vh(ω
0) × Vh(ω

0) 7→ R: ah(uh, vh) =
∫
ω0 ∇uh · ∇vh, and let A be

the matrix of ah in the nodal basis described above. We have the block decomposition

A =




AΓ0,Γ0 0 AΓ0,I

0 AΓ1,Γ1 AΓ1,I

ATΓ0,I
ATΓ1,I

AI,I


 ,

AΓ0,Γ0 ∈ R
N×N

AΓ1,Γ1 ∈ R
2N×2N . (98)

The block AI,I is positive definite; it is the matrix arising when dealing with a Poisson problem
with Dirichlet conditions on Γ0 ∪Γ1 and Neumann conditions on Σ0. The Schur complement of
A obtained by eliminating the degrees of freedom corresponding to the mesh nodes in ω0 ∪ Σ0

is S ∈ R3N×3N :

S =

(
SΓ0,Γ0 SΓ0,Γ1

STΓ0,Γ1 SΓ1,Γ1

)
,

SΓ0,Γ0 = AΓ0,Γ0 −AΓ0,IA
−1
I,IA

T
Γ0,I

∈ R
N×N

SΓ1,Γ1 = AΓ1,Γ1 −AΓ1,IA
−1
I,IA

T
Γ1,I

∈ R
2N×2N

SΓ0,Γ1 = −AΓ0,IA
−1
I,IA

T
Γ1,I

∈ R
N×2N

. (99)

The block SΓ0,Γ0 is the matrix in the nodal basis of Vh(Γ
0) of the bilinear form mapping (uh, vh) ∈

Vh(Γ
0) × Vh(Γ

0) to
∫
ω0 ∇ûh∇v̂h, where ûh and v̂h satisfy

ûh ∈ Vh(ω
0), ûh|Γ0 = uh, ûh|Γ1 = 0,

v̂h ∈ Vh(ω
0), v̂h|Γ0 = vh, v̂h|Γ1 = 0,

∀wh ∈ Vh(ω
0) such that wh|Γ0 = 0, wh|Γ1 = 0,

∫
ω0 ∇ûh∇wh =

∫
ω0 ∇v̂h∇wh = 0.

The block SΓ1,Γ1 is the matrix in the nodal basis of Vh(Γ
1) of the bilinear form mapping (uh, vh) ∈

Vh(Γ
1) × Vh(Γ

1) to
∫
ω0 ∇ûh∇v̂h, where where ûh and v̂h satisfy

ûh ∈ Vh(ω
0), ûh|Γ1 = uh, ûh|Γ0 = 0,

v̂h ∈ Vh(ω
0), v̂h|Γ1 = vh, v̂h|Γ0 = 0,

∀wh ∈ Vh(ω
0) such that wh|Γ1 = 0, wh|Γ0 = 0,

∫
ω0 ∇ûh∇wh =

∫
ω0 ∇v̂h∇wh = 0.

The block SΓ0,Γ1 is the matrix of the bilinear form mapping (uh, vh) ∈ Vh(Γ
0) × Vh(Γ

1) to∫
ω0 ∇ûh∇v̂h, where where ûh and v̂h satisfy

ûh ∈ Vh(ω
0), ûh|Γ0 = uh, ûh|Γ1 = 0,

v̂h ∈ Vh(ω
0), v̂h|Γ1 = vh, v̂h|Γ0 = 0,

∀wh ∈ Vh(ω
0) such that wh|Γ1 = 0, wh|Γ0 = 0,

∫
ω0 ∇ûh∇wh =

∫
ω0 ∇v̂h∇wh = 0.
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Denoting O the cone of the positive semi-definite matrices Z ∈ R
N×N such that for i = 1, . . . ,N ,∑N

j=1 Zij = 0, it is clear from the interpretations of SΓ0,Γ0 , SΓ1,Γ1 and SΓ0,Γ1 given above that
the matrix counterpart of the operator Mh defined in (95) (96) is the operator M : O 7→ O:

M(Z) = SΓ0,Γ0 − SΓ0,Γ1

(
SΓ1,Γ1 +

(
Z 0
0 Z

))−1

STΓ0,Γ1. (100)

As a corollary to Theorem 10, we have the

Proposition 4 For any Z ∈ O, the sequence Mn(Z) converges geometrically to the unique fixed
point T of M , and T is the matrix of the discrete Dirichlet-Neumann operator T 0

h defined in
(94) in the nodal basis of Vh(Γ

0).

5.3 Discrete Neumann problems

We consider now the discrete version of (26):

find uh ∈ Vh(Ω0) such that and for all vh ∈ Vh(Ω0),

∫

Ω0

∇uh · ∇vh =
1

3

∫

Γ∞

gv. (101)

Once T 0
h is computed, the approach proposed in §4 can be faithfully reproduced at the discrete

level, namely,

1. the restrictions to ωp (here we take p = 2) of the solutions to (101) with g = 1, g = g0

the Haar mother wavelet given in § 4.4.1 and g = gσ, σ ∈ An, 1 ≤ n ≤ N , see (63), are
computed first, by reproducing at the discrete level the constructions given in § 4.3, and
4.4. These functions are respectively called uF,h, u

0
h, and uσh.

2. For a general function g, g is first written in the Haar wavelet basis, see (86), and the
solution uh to (101) is approximated by the truncated sum:

αFuF,h + α0u
0
h +

N∑

n=1

∑

σ∈An

ασu
σ
h.

Since the discrete method is the transcription of the continuous one, we do not reproduce it.
Rather, we choose to focus on the linear algebra used for the solutionof the discrete version of
(54).

5.3.1 Solving (101) with g = 1

We obtain that uF,h|ω0 is the unique solution to : for v ∈ Vh(ω0),

∫

ω0

∇uF,h · ∇v +

2∑

i=1

〈
T 0 (uF,h ◦ Fi) , v|Fi(Γ0) ◦ Fi

〉
= −1

2

2∑

i=1

〈
yh, v|Fi(Γ0) ◦ Fi

〉
, (102)

where yh satisfies: for all v ∈ Vh(ω
0),

〈yh, v〉 =

∫

ω0

∇uF,h · ∇v +

2∑

i=1

〈
T 0 (uF,h ◦ Fi) , v|Fi(Γ0) ◦ Fi

〉
+

1

2

2∑

i=1

〈
yh, v|Fi(Γ0) ◦ Fi

〉
. (103)
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and

〈yh, 1〉 = −1

3
|Γ∞| = −2. (104)

Let

U =




0
UΓ1

UI




be the coordinates of uF,h|ω0 in the nodal basis (φi) introduced above. In matrix form, (102),
(103) read 


AΓ0,Γ0 0 AΓ0,I

0 AΓ1,Γ1 + T ′ AΓ1,I

ATΓ0,I
ATΓ1,I

AI,I






0
UΓ1

UI


 =




Y
−1

2Y
′

0


 ,

where Y is the vector representing yh in the dual basis of (φi)i=1,...,N , and where

Y ′ =

(
Y
Y

)
, and T ′ =

(
T 0
0 T

)
,

with T is the matrix of the discrete Dirichlet to Neumann operator.
After eliminating UI , one obtains

(
SΓ0,Γ0 SΓ0,Γ1

STΓ0,Γ1 SΓ1,Γ1 + T ′

)(
0
UΓ1

)
=

(
Y
−1

2Y
′

)
.

This implies the equation for Y :

Y +
1

2
SΓ0,Γ1

(
SΓ1,Γ1 +

(
T 0
0 T

))−1(
Y
Y

)
= 0.

which we can write

Y −BY = 0, where B = −1

2
SΓ0,Γ1

(
SΓ1,Γ1 +

(
T 0
0 T

))−1(
IN
IN

)
(105)

is the discrete conterpart of B0 introduced in (53) (54). It can be proved exactly as for Theorem
7 that Y is the unique solution to

(IN −B)Y = 0,
N∑

i=1

Yi = −2.
(106)

The problem (106) is equivalent to its least square form

((IN −BT )(IN −B) + E)Y = −2




1
...
...
1




(107)

where E is the matrix in RN×N whose entries are all 1. The matrix ((IN − BT )(IN −B) + E)
is symmetric and positive definite so (107) can be solved by means of the conjugate gradient
method, which does not require assembly of B and BT .

25



6 Numerical results

In the numerical tests, we have taken for Ω0 a dilation by a factor π of the domain described
in § 2. The mesh used for ω0 is plotted on Figure 3. It has the property mentioned in § 5,
which permits the construction of a self-similar mesh of Ω0. On Figure 4, we have plotted two
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 7

 8

 9

 10

Figure 3: The mesh used for ω0

views of uF,h, computed by the method proposed in § 5.3.1, and of u0
h,restricted to ω2. On

Figure 5, we have plotted uF,h, u
0
h and uσh, σ ∈ A1∪A2. We see that the restrictions to ω2 of the

functions uσ become smaller and smaller as n grows. To illustrate this better, we have plotted
on Figure 6 the quantities and maxσ∈An ‖uσh‖L2(ω0) for n = 0, 1, 2, 3, 4. We see clearly that the
norm of ‖uσh‖L2(ω0) decays exponentially with n, in agreement with Proposition 8. This shows
that, for g ∈ L2(Γ∞ such that ‖g‖L2(Γ∞) ≈ 1, the restriction to ω0 of u solution to (26) to an
accuracy of order 10−9 in L2 norm can be computed by using expansion (88) up to N = 3 or
N = 4 only.

On Figure 7 , we plot the solution to (26), with g(x1) = sign(−x1) cos(x1) in ω2, computed
with expansion (88) up to N = 4 and N = 2. The two plots are visually identical. On Figure 8,
we plot the quantities ‖∑4

n=i

∑
σ∈An

ασuσh‖L2(ω0) and ‖∑4
n=i

∑
σ∈An

ασuσh‖L2(ω1), for i = 1, 2, 3,
where ασ are the coefficients of the wavelet expansion of g(x1) = x1 cos(x1). As expected, these
quantities have a fast decay as i grows. This shows that carrying the expansion (88) up to N = 3
is enough to obtain u|ω0 up to an error of order 10−15 in L2 norm. To compute u|ω1 with a
comparable accuracy, it is necessary to carry the expansion further.
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[Collection of Applied Mathematics for the Master’s Degree]. Masson, Paris, 1983. Théorie
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