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Boundary Value Problems in Some Ramified Domains with a

Fractal Boundary: Analysis and Numerical Methods.

Part I: Diffusion and Propagation problems.

Yves Achdou ∗, Christophe Sabot †, Nicoletta Tchou ‡.

December 16, 2004

Abstract

This paper is devoted to numerical methods for solving boundary value problems in self-
similar ramified domains of R2 with a fractal boundary. Homogeneous Neumann conditions
are imposed on the fractal part of the boundary, and Dirichlet conditions are imposed on
the remaining part of the boundary. Several partial differential equations are considered.
For the Laplace equation, the Dirichlet to Neumann operator is studied. It is shown that
it can be computed as the unique fixed point of a rational map. From this observation, a
self-similar finite element method is proposed and tested. For the Helmholtz equation, it
is shown that the Dirichlet to Neumann operator can also be computed as the limit of an
inductive sequence of operators. Here too, a finite element method is designed and tested.
It permits to compute numerically the spectrum of the Laplace operator in the irregular
domain with Neumann boundary conditions, as well as the eigenmodes. The repartition of
the eigenvalues is investigated. The eigenmodes are normalized by means of a perturbation
method and the spectral decomposition of a compactly supported function is carried out.
This permits to solve numerically the wave equation in the self-similar ramified domain.

1 Introduction

In this paper, we deal with the numerical simulation of diffusion and propagation phenomena
in a self-similar ramified domain of R

2 with a fractal boundary. This work was motivated by a
wider and very challenging project aiming at simulating the diffusion of medical sprays in the
lungs. Our ambitions here are more modest, since the geometry of the problems (two dimen-
sions only) and the underlying physical phenomena are much simpler, but we hope that giving
rigorous results and methods will prove useful. The geometry under consideration is that of a
self-similar ramified bidimensional domain, see Figure 1 below. It can be seen as a simple model
for a tree or for lungs. This domain can be obtained by glueing together dilated/translated
copies of a simple polygonal domain of R

2, called ω0 below.
Partial differential equations in domain with fractal boundaries or fractal interfaces is a rela-
tively new topic: variational techniques have been developed, involving new results on fonctional
analysis, see [12, 9, 10]. A very nice theory on variational problems in fractal media is given in
[13].
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The difficulty of solving boundary value problems with partial differential equations in this kind
of domains comes essentially from the multiscale character of the boundary. Yet, when the
equation is homogeneous, it is possible to make use of the geometric self-similarity in order to
compute very accurately the restrictions of the solutions to subdomains obtained by interrupting
the fractal construction after a finite number of generations.
We consider first Poisson problems (with the Laplace operator) with homogeneous Neumann
conditions on the fractal part of the boundary. On the remaining part of the boundary, noted
Γ0 below, we impose a Dirichlet condition. In other words, we aim at computing the harmonic
lifting of a function defined in Γ0. For that, it is possible to solve an equivalent boundary value
problem in a subdomain obtained by interrupting the fractal construction after a finite num-
ber of generations: this equivalent problem involves a non local Dirichlet to Neumann operator,
which maps a function defined on Γ0 to the normal derivative of its harmonic lifting in the whole
domain. It turns out that the Dirichlet to Neumann operator on Γ0 can be computed very ac-
curately by making use of the geometric self-similarity. The Dirichlet to Neumann operator is
approximated as the limit of an inductive sequence, see (41) (42) below. When discretizing the
problem with finite elements with self similar meshes, the same procedure can be implemented.

Next, turning to vibration problems in the domain described above leads to consider boundary
value problems with Helmholtz equation. Here again, it is very natural to study the Dirichlet to
Neumann operators (depending on the pulsation of the related harmonic wave), which, thanks
to the self-similar structure of the set, can be approximated by iterations of a renormalization
operator, see (77) (78) below. The discrete counterpart of this can be implemented with finite
elements as soon as the mesh is self-similar. A related problem arises in the analysis of the
spectrum of fractal domains such as Sierpinski gasket (the present paper does not consider a
fractal domain, but a domain with a fractal boundary). The numerical method developed in this
paper is very reminiscent of some of the techniques involved in the theoretical analysis of finitely
ramified fractals (see [15],[20], [17], [16], and [2, 14, 5] for numerical simulations). The simple
structure of these sets allows to do an explicit analysis of the spectral properties. This involves
the dynamics of a renormalization map which acts on the Dirichlet to Neumann operator on the
boundary (which for finitely ramified fractal consists only on a finite number of points). In this
paper, the natural boundary is not so simple, but the numerical method is based on a similar
strategy.

Once we know how to solve the boundary value problems with Helmholtz equation, it is natu-
ral to turn our attention to the spectral analysis of the Laplace operator in the domain under
consideration. The above mentioned Dirichlet to Neumann operators contain a lot of infor-
mation on the eigenvalues and their eigenfunctions. In particular, their construction permits
to compute numerically the spectrum, and the eigenmodes of the domain. Several important
problems concerning spectral analysis on domains with fractal boundaries motivate our numer-
ical computations. The first one concerns the eigenvalue repartition. Rigorous results about
the eigenvalue repartition have been obtained when the domain has a smooth boundary, but
when the boundary of the domain is fractal, we only have some bounds and conjectures (the
so-called Weyl-Berry formula, see [11]). In § 6.4.2, we present the numerical results relative to
this problem. Another important problem concerns the shape of the eigenfunctions: physicists
believe that they exhibit strong localization (cf [19], [18]), close to the fractal boundary. These
kind of properties are important to understand the geometry of the set, but from the numerical
point of view, they are difficult to analyze, due to the multiscale character of the fractal bound-
ary. The methods presented here, using self-similar meshes, takes into account fine scales in the
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ramifications.
In order to solve time dependent problems in the irregular domain, the spectral information
can be used, but for that, one needs to normalize the eigenmodes: in this paper, we propose
a perturbation method for normalizing the eigenmodes. This permits to compute the spectral
decomposition of any function compactly supported in the domain, and finally to solve numeri-
cally time dependent equations like the wave equation.
It is also possible to develop numerical methods for boundary value problems with nonzero
Neumann data on the fractal part of the boundary, by making use of the Dirichlet to Neumann
operator. This is the topic of a forthcoming work, [1].

2 Geometrical setting of the model problem

Hereafter, we use the notation

sn =
n∑

i=0

2−i. (1)

Consider the following T-shaped subset of R
2

Q0 =
(
(−1, 1) × (0, 2]

)
∪ ((−2, 2) × (2, 3)) ∪ (((−2,−1) ∪ (1, 2)) × {3}) .

The self-similar ramified domain Ω0 is constructed as an infinite union of subsets of R
2 obtained

by translating/dilating Q0; at a first stage, two copies of 1/2 ·Q0 are translated respectively on
top-left and on top-right of Q0 and are glued to Q0: more precisely, let F1 and F2 be the affine
mappings

Fi(x) = ξ1
i +

1

2
x, where ξ1

1 = (−3

2
, 3) and ξ1

2 = (
3

2
, 3), (2)

and let Q1 be the set Q1 = F1(Q
0) ∪ F2(Q

0). Next, the construction is recursive: the points
ξn
i for i = 1, . . . , 2n are defined by the relation: for j = 1, . . . , 2n−1, ξn

2j−1 = ξn−1
j + 1

2n−1 ξ1
1 and

ξn
2j = ξn−1

j + 1
2n−1 ξ1

2 , and the following sets are introduced:

Qn = ∪2n

i=1Q
n
i , with Qn

i = ξn
i +

1

2n
·Q0. (3)

For an integer n, n ≥ 1, calling An the set containing all the mappings from {1, . . . , 2n−1} to
{1, 2}, and for σ ∈ An,Mσ(F1, F2) = Fσ(1) ◦ Fσ(2) ◦ · · · ◦ Fσ(2n), (3) can also be written

Qn = ∪σ∈AnMσ(F1, F2)(Q
0).

It will sometimes be convenient to agree that A0 = {0} and that M0(F1, F2) is the identity.
Finally, the self-similar ramified Ω0 is defined by

Ω0 = ∪∞n=0Q
n. (4)

The construction of Ω0 is displayed on Figure 1. It is straightforward to see that Ω0 ⊂ (−3, 3)×
(0, 6). Note that Ω0 may also be obtained as a union of overlapping open subsets of R

2, thus
Ω0 is an open set.
It will be useful to define the truncated domain ΩN , which has also a fractal boundary:

ΩN = ∪∞n=NQn. (5)
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Figure 1: Left: the first step of the construction. Right: the self-similar ramified domain (only
a few generations are displayed)

The following self-similarity property is true: ΩN is the union of 2N translated copies of 1
2N ·Ω0,

i.e.
ΩN = ∪σ∈AN

Ωσ, (6)

where
Ωσ =Mσ(F1, F2)(Ω

0). (7)

Also, ΩN\ΩN+1 = QN for any N ≥ 0.
We define the bottom boundary of Ω0 by Γ0 = ((−1; 1)×{0}) and Σ0 = ∂Ω0∩{(x, y);x ∈ R, 0 <
y < 6}. We have

∂Ω0 ∩ {(x, y);x ∈ R, y < 6} = Γ0 ∪ Σ0. (8)

Similarly, the bottom boundary of ΩN is ΓN = ∪2N

i=1Γ
N
i , ΓN

i = ξN
i + 1

2N · Γ0. In an equivalent
manner,

ΓN = ∪σ∈AN
Γσ, (9)

where
Γσ =Mσ(F1, F2)(Γ

0). (10)

For N > 0, ΓN is contained in the line y = yN = 3sN−1, see (1). We define also ΣN =
∂ΩN ∩ {(x, y);x ∈ R, 3sN−1 < y < 6}.
For what follows, it is also useful to introduce the open domains ωN , for N ≥ 0:

ωN = Int
(
Ω0\ΩN+1

)
. (11)

Remark 1 Note that it is also possible to construct similar domains using dilations with ratii
αn with α ∈]0; 1/2]; here we have chosen α = 1/2.

3 A Poincaré inequality

Consider the function space H1(Ωn) = {v ∈ L2(Ωn) s.t. ∇v ∈ (L2(Ωn))2}. Similarly, for all
positive integer p, it is possible to define Hp(Ωn) as the space of functions whose partial deriva-
tives up to order p belong to L2(Ω), and for all positive real number s 6∈ N, Hs(Ωn) is defined
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by interpolation between Hp(Ωn) and Hp+1(Ωn), where p is the integer such that p ≤ s < p+1.
Likewise, it is possible to define the Sobolev spaces Hs(ωn) for all nonnegative integers n.
Of course, for all n ≥ 0, the restriction of a function v ∈ H1(Ω0) to ωn belongs to H1(ωn), so it
is possible to define the trace of v on Γn. The trace operator on Γn is bounded from H1(Ω0) to
L2(Γn), so one can define the closed subspace of H1(Ωn):

V(Ωn) = {v ∈ H1(Ωn) s.t. v|Γn = 0}. (12)

In what follows, for a function u integrable on Γσ, the notation 〈u〉Γσ will be used for the mean
value of u on Γσ.

Theorem 1 (Poincaré’s inequality) For any u ∈ V(Ω0),

‖u‖L2(Ω0) ≤
√

32‖∇u‖L2(Ω0). (13)

Proof. We proceed by proving first the Poincaré inequality for functions in the space V(ωN ) =
{v ∈ H1(ωN ) s.t. v|Γ0 = 0}, with a constant independent of N . Since the function space
{v ∈ C∞(ωN ) s.t. v|Γ0 = 0} is dense in V(ωN ), it is enough to prove the inequality for functions
in that space.
The idea of the proof is to construct explicitly a change of variables which maps Ω0 onto a
fractured set contained in the rectangle (−1, 1) × (0, 8).

We define first a continuous and piecewise affine change of variables γ0 mapping ω̂0 = ((−1, 1)×
(0, 4])\({0} × [3, 4]) onto Q0 by

if x > 0, γ0(x, t) =






(x, t) for t ∈ (0, 3 − x]
(t− 3 + 2x, 3− x) for t ∈ [3− x, 4− x]
(x + 1, t− 1) for t ∈ [4− x, 4]

,

if x < 0, γ0(x, t) = (−γ0
1(−x, t), γ0

2 (−x, t)) for t ∈ (0, 4],

γ0(0, t) = (0, t) for t ∈ (0, 3)

It is easy to check that γ0 is one to one. The set ω̂0 is fractured in the sense that it does not
lye locally on one side of its boundary.
Note also that for each x ∈ (−1, 1), the trajectory {γ0(x, t), t ∈ (0, 4]} is made of at most three
straight lines parallel to the axes, and that for x ∈ (0, 1), γ0(x, 4) = x + 1 so {γ(x, 4), x ∈
(0, 1)} = (1, 2)×{3}. Similarly, one can check that ∇γ0 is piecewise constant and can only take
the values

∇γ0 =

(
1 0
0 1

)
or ∇γ0 =

(
2 1
−1 0

)
.

Thus, at the points where it makes sense, det(∇γ0) = 1. Therefore the mapping γ0 preserves
the measure.
It is possible to define a one to one continuous and piecewise affine mapping γ1 from ω̂1 =
((−1, 1) × (0, 6])\

(
({0} × [3, 6])

⋃
({1

2} × [112 , 6])
⋃

({−1
2} × [112 , 6])

)
onto Q0 ∪Q1, by

γ1(x, t) = γ0(x, t) for t ≤ 4,
γ1(x, t) = (3

2 , 3) + 1
2γ0(2x− 1, 2(t − 4)) for t > 4, x > 0,

γ1(x, t) = (−3
2 , 3) + 1

2γ0(2x + 1, 2(t − 4)) for t > 4, x < 0.
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It is very easy to check that det(∇γ1) = 1, at all the points where ∇γ1 is defined.
Call yN = 4sN − 2−N and consider the doubly-indexed sequence (xn

j ) for n ≥ 0 and 0 ≤ j < 2n

defined by the recursion

x0
0 = 0,

x1
j = −1

2 + j, j = 0, 1,

xn
j = xn−1

j

2

+ 2−n+1x1
j%2, j = 0, . . . , 2n − 1,

where j
2 and j%2 are respectively the quotient and remainder of the Euclidean division of j by 2.

By proceeding recursively, we can define a one to one continuous and piecewise affine mapping

γN : ω̂N = ((−1, 1) × (0, 4sN ]) \
N⋃

n=0








2n−1⋃

j=0

{xn
j }



× [yn, 4sN ]



 7→ ∪N
n=0Q

n,

which preserve the measure. Finally, introducing the open set

Ω̂0 = ((−1, 1)× (0, 8)) \
∞⋃

n=0








2n−1⋃

j=0

{xn
j }



× [yn, 8)



 ,

we also have a one to one continuous and piecewise affine mapping from Ω̂0 onto Ω0. The sets

ω̂0 and Ω̂0 are displayed on Figure 2.

2 2

8

4

Figure 2: Left: the set ω̂0. Right: the open set Ω̂0 (only the longest fractures are displayed)

Let us define IN = 1 +
∑N

i=0 2i and call ai, 0 ≤ i ≤ IN the abscissa of the vertical boundaries of

ω̂N , ordered increasingly. Consider a function u ∈ C∞
0 (ωN ) such that u|Γ0 = 0.

∫

ωN

u2 =

∫

dωN

u2(γN (x, t)) =

IN−1∑

i=0

∫ ai+1

ai

dx

∫ 4sN

0
u2(γN (x, t))dt

=

IN−1∑

i=0

∫ ai+1

ai

dx

∫ 4sN

0

(∫ t

0

d

ds
(u(γN (x, s))) ds

)2

dt

≤
IN−1∑

i=0

∫ ai+1

ai

dx

∫ 4sN

0
dt t

∫ t

0

(
∂u

∂x
(γN (x, s))

∂γN
1

∂t
(x, s)

)2

+

(
∂u

∂y
(γN (x, s))

∂γN
2

∂t
(x, s)

)2

ds
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by Cauchy-Schwarz inequality and because
∂γN

1

∂t
∂γN

2

∂t = 0. Therefore

∫

ωN

u2 ≤ 32

IN−1∑

i=0

∫ ai+1

ai

dx

∫ 4sN

0

(
∂u

∂x
(γN (x, s))

∂γN
1

∂t
(x, s)

)2

+

(
∂u

∂y
(γN (x, s))

∂γN
2

∂t
(x, s)

)2

ds

≤ 32

IN−1∑

i=0

∫ ai+1

ai

dx

∫ 4sN

0

(
∂u

∂x
(γN (x, s))

)2

+

(
∂u

∂y
(γN (x, s))

)2

ds

because |∂γN
1

∂t | ≤ 1 and |∂γN
2

∂t | ≤ 1. Performing the inverse change of variables, we obtain that

∫

ωN

u2 ≤ 32

∫

ωN

|∇u|2. (14)

By density, it is clear that (14) holds for u ∈ V(ωN ). Since the constant in (14) does not depend
of N , we obtain (13) by using Lebesgue’s theorem.
In what follows, we will use the notation . to indicate that there may arise constants in the
estimates, which are independent of the index n in Ωn or ωn or on the mesh size when dealing
with finite elements.

Corollary 1 There exists a positive constant C such that for all u ∈ H1(Ω0),

‖u‖2L2(Ω0) ≤ C
(
‖∇u‖2L2(Ω0) + ‖u|Γ0‖2L2(Γ0)

)
. (15)

Proof. Define H
1
2 (Γ0) as the space of the traces on Γ0 of the functions belonging to H1(ω0),

endowed with the norm
‖u‖

H
1
2 (Γ0)

= inf
v∈H1(ω0),v|

Γ0=u
‖v‖H1(ω0).

It is a classical result that for all v ∈ H1(ω0),

‖v|Γ0‖
H

1
2 (Γ0)

.
(
‖∇v‖2L2(ω0) + ‖v|Γ0‖2L2(Γ0)

) 1
2
. (16)

For u ∈ H1(Ω0), consider the function ũ ∈ H1(ω0) such that

∆ũ = 0 in ω0, ũ|Γ0 = u|Γ0 , ũ|Γ1 = 0,
∂ũ

∂n
= 0 on ∂ω0\(Γ0 ∪ Γ1).

It can be checked that
‖ũ‖H1(ω0) . ‖u|Γ0‖

H
1
2 (Γ0)

. (17)

Calling again ũ the extension by 0 of ũ in Ω0, we have that u− ũ ∈ V(Ω0), and from (13), (16)
and (17),

‖u− ũ‖2L2(Ω0) ≤ 32‖∇(u− ũ)‖2L2(Ω0) ≤ 64
(
‖∇u‖2L2(Ω0) + ‖∇ũ‖2L2(Ω0)

)

. ‖∇u‖2L2(Ω0) + ‖u|Γ0‖2
H

1
2 (Γ0)

. ‖∇u‖2L2(Ω0) + ‖u|Γ0‖2L2(Γ0).

We obtain (15) by using again (16) and (17).
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Remark 2 Results similar to Corollary 1 can be proved, for instance: there exists a positive
constant C such that for all u ∈ H1(Ω0),

‖u‖2L2(Ω0) ≤ C
(
‖∇u‖2L2(Ω0) + 〈u〉2Γ0

)
. (18)

By a simple scaling argument, we obtain from (15) the

Corollary 2 There exists a positive constant C such that for all integer n ≥ 0, and for all
i ∈ {0, . . . , 2n}, for all u ∈ H1(Ωn

i ),

‖u‖2L2(Ωn
i ) ≤ C

(
4−n‖∇u‖2L2(Ωn

i ) + 2−n‖u|Γn
i
‖2L2(Γn

i )

)
, (19)

and for all u ∈ H1(Ωn)

‖u‖2L2(Ωn) ≤ C
(
4−n‖∇u‖2L2(Ωn) + 2−n‖u|Γn‖2L2(Γn)

)
. (20)

Lemma 1 There exists a positive constant C such that for all u ∈ H1(Ω0), for all N ≥ 0,

‖u‖2L2(ΩN ) ≤ C2−N
(
‖∇u‖2L2(Ω0) + ‖u|Γ0‖2L2(Γ0)

)
. (21)

Proof. We use a trace inequality on Qn
i : for a constant C independent on n, we have

2n+1
(
‖u|Γn+1

2i−1
‖2

L2(Γn+1
2i−1)

+ ‖u|Γn+1
2i
‖2

L2(Γn+1
2i )

)
≤ C‖∇u‖2L2(Qn

i ) + 2n+1‖u|Γn
i
‖2L2(Γn

i ). (22)

Summing (22) over i, we obtain that

2n+1‖u|Γn+1‖2L2(Γn+1) ≤ C‖∇u‖2L2(Qn) + 2n+1‖u|Γn‖2L2(Γn). (23)

Multiplying (23) by 2N−n−1 and summing up from n = 0 to N − 1, we obtain that

2N‖u|ΓN ‖2L2(ΓN ) ≤ C2N
(
‖∇u‖2L2(ωN−1) + ‖u|Γ0‖2L2(Γ0)

)

Injecting this into (20), we obtain (21).

Theorem 2 (Compactness) The imbedding from H1(Ω0) in L2(Ω0) is compact.

Proof. From (21), we have

‖u− 1ωN u‖L2(Ω0) ≤ C2−
N
2 ‖u‖H1(Ω0).

On the other hand, the imbedding from H1(ωN ) in L2(ωN ) is compact. Combining the previous
two remarks yields the desired result.

Remark 3 In [1], we give several other theoretical results on the space H1(Ω0), among which
extension theorems, density results, and trace theorems on the top boundary of Ω0, namely
Γ∞ = (−3, 3) × {6}.

4 Diffusion problems

The aim of this section is to study some Poisson problems in Ω0 with Neumann boundary
conditions on Σ0.

8



4.1 Harmonic lifting of functions defined on Γ0

For a function u ∈ H
1
2 (Γ0), we define the harmonic lifting H0(u) of u by H0(u) ∈ H1(Ω0), the

trace of H0(u) on Γ0 is u, and for all v ∈ V(Ω0),

∫

Ω0

∇H0(u) · ∇v = 0. (24)

This is the weak form of the following problem

−∆H0(u) = 0, in Ω0,
H0(u) = u, on Γ0,
∂H0(u)

∂n = 0, on Σ0.

The existence and uniqueness of H0(u), and the fact that that H0 is a bounded operator from

H
1
2 (Γ0) to H1(Ω0) are consequences of Theorem 1.

Remark 4 All what follows holds when (24) is replaced by the more general problem

∫

Ω0

χ∇H0(u) · ∇v = 0, (25)

where χ is a symmetric and positive definite tensor.

Remark 5 In [1], we study the boundary value problem with a nonzero Neumann data on Γ∞.

Similarly, for an integer n > 0, and for σ ∈ An, one can define the lifting operator Hσ from
H

1
2 (Γσ) to H1(Ωσ): for all u ∈ H

1
2 (Γσ), the trace of Hσ(u) on Γσ is u and for all v ∈ V(Ωσ),∫

Ωσ ∇Hσ(u) · ∇v = 0. It is easy to check that, for all v ∈ H
1
2 (Γσ),

Hσ(v) ◦Mσ(F1, F2) = H0(v ◦Mσ(F1, F2)). (26)

Lemma 2 There exists a positive constant C such that, for all u ∈ H
1
2 (Γ0),

‖∇H0(u)‖L2(ω0) ≥ C‖∇H0(u)‖L2(Ω0). (27)

Proof. It is enough to prove (27) for all u ∈ H
1
2 (Γ0) such that

∫
Γ0 u = 0, becauseH0(1Γ0) = 1Ω0 .

From the analogue of (18) for functions of H1(ω0) with mean value 0 on Γ0, we have that

‖u‖
H

1
2 (Γ0)

. ‖∇H0(u)‖L2(ω0).

On the other hand, from the continuity of H0, we have that

‖∇H0(u)‖L2(Ω0) . ‖u‖
H

1
2 (Γ0)

.

The desired result follows from the previous two estimates.

Lemma 3 There exists a constant ρ < 1 such that for all u ∈ H
1
2 (Γ0),

∫

Ω1

|∇H0(u)|2 ≤ ρ

∫

Ω0

|∇H0(u)|2. (28)

Proof. The result is a direct consequence of Lemma 2.
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Theorem 3 For all u ∈ H
1
2 (Γ0),

∫

ΩN

|∇H0(u)|2 ≤ ρN

∫

Ω0

|∇H0(u)|2, (29)

where the constant ρ < 1 has been introduced in Lemma 3.

Proof. The desired result will be proved ounce we have established that

∫

Ωn+1

|∇H0(u)|2 ≤ ρ

∫

Ωn

|∇H0(u)|2.

For that, we make use of (28); we consider the two bounded operators in H
1
2 (Γ0), Li, i = 1, 2:

Li(v) =
(
(H0v)|Γ1

i

)
◦ Fi, (30)

where Fi are defined in (2). Calling Ω1
i = Fi(Ω

0), i = 1, 2, it is easy to check that for all

u ∈ H
1
2 (Γ0),

(H0 ◦ Li)(u) =
(
(H0(u))|Ω1

i

)
◦ Fi, (31)

and that ∫

Ω0

|∇(H0 ◦ Li)(u)|2 =

∫

Ω1
i

|∇H0(u)|2. (32)

Therefore, from (28),
2∑

i=1

∫

Ω0

|∇(H0 ◦ Li)(u)|2 ≤ ρ

∫

Ω0

|∇H0(u)|2. (33)

For σ ∈ An, we use the notation Mσ(L1,L2) = Lσ(1) ◦ Lσ(2) ◦ · · · ◦ Lσ(2n). For n > 1, we have,

for all u ∈ H
1
2 (Γ0),

∫

Ωn+1

|∇H0(u)|2 =
∑

σ∈An

∫

Ω0

|∇
(
H0 ◦Mσ(L1,L2)

)
(u)|2

=

2∑

i=1

∑

σ∈An−1

∫

Ω0

|∇
(
H0 ◦ Li ◦Mσ(L1,L2)

)
(u)|2,

and from (33),

∫

Ωn+1

|∇H0(u)|2 ≤ ρ
∑

σ∈An−1

∫

Ω0

|∇
(
H0 ◦Mσ(L1,L2)

)
(u)|2

= ρ

∫

Ωn

|∇H0(u)|2,

which yields (29).
From the general theory of boundary value problem, see [6] for example, we have the following
regularity:

Lemma 4 (Local Regularity) For all u ∈ H
1
2 (Γ0), for all open bounded domain O strictly

contained in R × (0, 6), and for all ǫ, 0 < ǫ < 5
3 , the restriction of H0(u) to Ω0 ∩ O belongs to

H
5
3
−ǫ(Ω0 ∩O).
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Orientation We will try to solve (24) numerically. Of course, it is not possible to represent
completely the domain Ω0 in numerical simulations, because this would imply an infinite memory
and computing time. Rather, for some n ∈ N, we aim at computing as well as possible the
restriction of H0(u) to ωn, n ∈ N. This turns out to be possible, but for that we need to
use nonlocal operators on Γσ, σ ∈ An+1. We will see later that these operators can be called
Dirichlet to Neumann operators. They will be computed by using the geometric self-similarity.

4.2 The Dirichlet-Neumann operator

Call
(
H

1
2 (Γ0)

)′
the topological dual space of H

1
2 (Γ0) and consider the Dirichlet-Neumann op-

erator T 0 : H
1
2 (Γ0) 7→

(
H

1
2 (Γ0)

)′

〈T 0u, v〉 =

∫

Ω0

∇H0(u) · ∇H0(v). (34)

We remark that

〈T 0u, v〉 =

∫

Ω0

∇H0(u) · ∇ṽ, (35)

for any function ṽ ∈ H1(Ω0) such that ṽ|Γ0 = v.
When H0(u) is regular enough, T 0u is the normal derivative of H0(u) on Γ0. This is why T 0 is
called a Dirichlet-Neumann operator.
The operator T 0 is bounded, self-adjoint and positive semi-definite. It is clear that T 01 = 0.
Call V the closed subspace of H

1
2 (Γ0):

V = {v ∈ H
1
2 (Γ0), 〈v〉Γ0 = 0}. (36)

From the definition of the norm in H
1
2 (Γ0) and from (18), we see that T 0 is coercive on V , i.e.

there exists a positive constant α such that

∀v ∈ V, 〈T 0v, v〉 ≥ α‖v‖2
H

1
2 (Γ0)

. (37)

Similarly, for σ ∈ An, one can define the operators T σ, from H
1
2 (Γσ) (see (7) and (10)) to

their respective duals by 〈T σu, v〉 =
∫
Ωσ ∇Hσ(u) · ∇Hσ(v) =

∫
Ωσ ∇Hσ(u) · ∇ṽ, for any function

ṽ ∈ H1(Ωσ) such that ṽ|Γσ = v. From the self-similarity of Ω0, we have that

∀u, v ∈ H
1
2 (Γσ), 〈T σu, v〉 = 〈T 0(u ◦Mσ(F1, F2)), (v ◦Mσ(F1, F2))〉, (38)

where the duality pairing in left (resp. right) hand side of (38) is the duality
(
H

1
2 (Γσ)

)′
- H

1
2 (Γσ)

(resp.
(
H

1
2 (Γ0)

)′
- H

1
2 (Γ0)).

Lemma 5 For all u ∈ H
1
2 (Γ0), for n ≥ 1, the restriction of H0(u) to ωn−1 is the solution to

the following boundary value problem: find û ∈ H1(ωn−1) such that û|Γ0 = u and ∀v ∈ V(ωn−1),
∫

ωn−1

∇û · ∇v +
∑

σ∈An

〈
T 0 (û|Γσ ◦Mσ(F1, F2)) , v|Γσ ◦Mσ(F1, F2)

〉
= 0. (39)

Furthermore, ∀v ∈ H1(ωn−1),

〈T 0u, v|Γ0〉 =

∫

ωn−1

∇û · ∇v +
∑

σ∈An

〈T σû|Γσ , v|Γσ 〉

=

∫

ωn−1

∇û · ∇v +
∑

σ∈An

〈
T 0(û|Γσ ◦Mσ(F1, F2)), v|Γσ ◦Mσ(F1, F2)

〉
.

(40)
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Proof. Follows from (26) and (38).

Remark 6 Note that the boundary value problem (39) is well posed because the bilinear form
in the left hand side is continuous, symmetric and coercive on V(ωn−1).

Orientation We see from (39) that once the nonlocal operator T 0 is known, the restriction of
H0(u) to ωn−1 can be computed exactly by solving a boundary value problem in ωn−1 with a
boundary condition involving T 0. Thus, if T 0 or a good approximation of T 0 is available, then
the restriction of H0(u) to ωn−1 can be approximated by a standard discrete method for (39).
There remains to compute T 0: for that, we will make use of (40), in the case n = 1.

Lemma 5, in the case n = 1, leads us to introduce the cone O of self adjoint, positive semi-
definite, bounded linear operators from H

1
2 (Γ0) to its dual, vanishing on the constants, and the

mapping M : O 7→ O defined as follows: for Z ∈ O, define M(Z) by

∀u ∈ H
1
2 (Γ0), ∀v ∈ H1(ω0), 〈M(Z)u, v|Γ0〉 =

∫

ω0

∇û · ∇v +

2∑

i=1

〈
Z(û|Γ1

i
◦ Fi), v|Γ1

i
◦ Fi

〉
,

(41)
where û ∈ H1(ω0) is such that û|Γ0 = u and

∀v ∈ V(ω0),

∫

ω0

∇û · ∇v +

2∑

i=1

〈
Z(û|Γ1

i
◦ Fi), v|Γ1

i
◦ Fi

〉
= 0. (42)

Lemma 5 tells that T 0 is a fixed point of M. In fact, we have the

Theorem 4 The operator T 0 is the unique fixed point of M. Moreover, for all Z ∈ O, there
exists a positive constant C independent of n such that, for all n ≥ 0,

‖Mn(Z)− T 0‖ ≤ Cρ
n
4 , (43)

where ρ, 0 < ρ < 1 is the constant appearing in Theorem 3.

Proof. It is easy to check by induction that

∀u ∈ H
1
2 (Γ0), ∀v ∈ H1(ωn−1),

〈Mn(Z)u, v|Γ0〉 =

∫

ωn−1

∇û · ∇v +
∑

σ∈An

〈Z(û|Γσ ◦Mσ(F1, F2)), (v|Γσ ◦Mσ(F1, F2))〉 ,
(44)

where û ∈ H1(ωn−1) is such that û|Γ0 = u and

∀v ∈ V(ωn−1),

∫

ωn−1

∇û ·∇v+
∑

σ∈An

〈Z(û|Γσ ◦Mσ(F1, F2)), (v|Γσ ◦Mσ(F1, F2))〉 = 0. (45)

Let Hn(û) ∈ H1(Ω0) be defined by

Hn(û) =

{
û in ωn−1,

the harmonic lifting of û|Γn in Ωn.
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It can be proved that for a constant C independent of n, ‖Hn(û)‖H1(Ω0) ≤ C‖û‖H1(ωn−1). Then

∫

ωn−1

|∇(û−H0(u))|2 +
∑

σ∈An

〈
Z((û−H0(u))|Γσ ◦Mσ(F1, F2)), (û −H0(u))|Γσ ◦Mσ(F1, F2)

〉

=−
∫

ωn−1

∇(Hn(û)−H0(u)) · ∇H0(u)−
∑

σ∈An

〈
Z((H0(u))|Γσ ◦Mσ(F1, F2)), (û−H0(u))|Γσ ◦Mσ(F1, F2)

〉

=

∫

Ωn

∇(Hn(û)−H0(u)) · ∇H0(u)−
∑

σ∈An

〈
Z((H0(u))|Γσ ◦Mσ(F1, F2)), (û −H0(u))|Γσ ◦Mσ(F1, F2)

〉

.

(∫

Ωn

|∇H0(u)|2
)1

2
(∫

Ωn

|∇Hn(û)−∇H0(u)|2
) 1

2

.ρ
n
2 ‖∇H0(u)‖L2(Ω0)

(
‖∇(H0(u))‖L2(Ωn) + ‖∇(Hn(û))‖L2(Ωn)

)

.ρ
n
2 ‖∇H0(u)‖L2(Ω0)

(
‖H0(u)‖H1(Ω0) + ‖û‖H1(ωn−1)

)

.ρ
n
2 ‖u‖2

H
1
2 (Γ0)

But

〈(Mn(Z)− T 0)u, v〉 =I + II + III,

I =

∫

ωn−1

∇(û−H0u) · ∇v

II =
∑

σ∈An

〈
Z((û−H0(u))|Γσ ◦Mσ(F1, F2)), v|Γσ ◦Mσ(F1, F2)

〉

III =
∑

σ∈An

〈
(Z − T 0)(H0(u))|Γσ ◦Mσ(F1, F2)), v|Γσ ◦Mσ(F1, F2)

〉

Thanks to the estimate above, |I + II| . ρ
n
4 ‖u‖

H
1
2 (Γ0)

‖v‖
H

1
2 (Γ0)

. Estimate (29) implies that

|III| . ρ
n
2 ‖u‖

H
1
2 (Γ0)

‖v‖
H

1
2 (Γ0)

. Estimate (43) is proved. As a consequence, T 0 is the unique

fixed point of M.

4.3 A self similar finite element method

4.3.1 Description of the method

We consider a regular family of triangulations T 0
h of ω0, (see [3]) with the special property that

for i = 1, 2, the set of the nodes of T 0
h lying on Γ1

i is the image by Fi of the set the nodes of T 0
h

lying on Γ0. Thanks to this property, the set of triangles T 1
h = T 0

h ∪
⋃2

i=1 Fi(T 0
h ) is a triangulation

of ω1. Similarly, let us call T N
h the triangulation of ωN : T N

h =
⋃N

n=0 ∪σ∈AnMσ(F1, F2)(T 0
h ).

Finally, it is possible to construct a self-similar mesh T ∞
h =

⋃∞
n=0 ∪σ∈AnMσ(F1, F2)(T 0

h ). Let
us call Vh(ωn) the set of piecewise linear functions:

Vh(ωn) = {vh ∈ C0(ωn), ∀τ ∈ T n
h , vh|τ is linear}. (46)

Similarly,
Vh(Ω0) = {vh ∈ H1(Ω0), ∀τ ∈ T ∞

h , vh|τ is linear}. (47)

It is clear that for all vh ∈ Vh(Ω0), the restriction of vh to ωn belongs to Vh(ωn). Consider
Vh,0(Ω

0) = {vh ∈ Vh(Ω0); vh|Γ0 = 0}, and let Vh(Γn) (resp. Vh(Γn
i ), 1 ≤ i ≤ 2N ) be the space
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of the traces of the functions of Vh(Ω0) on Γn (resp. Γn
i ). It is clear that for all vh ∈ Vh(Γ1

i ),
vh ◦ Fi ∈ Vh(Γ0).
We have the approximation result, whose proof is skipped for brevity:

Lemma 6 For all u ∈ H1(Ω0),

lim
h→0

inf
uh∈Vh(Ω0)

‖u− uh‖H1(Ω0) = 0.

We are now ready to define the discrete harmonic lifting operator H0
h : Vh(Γ0) 7→ Vh(Ω0),

∀uh ∈ Vh(Γ0), H0
h(uh)|Γ0 = uh and

∀vh ∈ Vh,0(Ω
0),

∫

Ω0

∇H0
h(uh) · ∇vh = 0. (48)

As a consequence of Lemma 6 and of Céa’s lemma (see [3]), we can state the following result,
whose proof is omitted for brevity:

Proposition 1 Call Ih any linear operator from L2(Γ0) to Vh(Γ0), such that, for all u ∈
H

1
2 (Γ0), limh→0 ‖u− Ihu‖

H
1
2 (Γ0)

= 0, (take for example the Clément’s local regularization oper-

ator, see [3, 4]). For all u ∈ H
1
2 (Γ0),

lim
h→0
‖H0(u)−H0

h(Ihu)‖H1(Ω0) = 0,

Remark 7 It should be possible to obtain sharper results when u is more regular.

We have the analogue of Theorem 3:

Theorem 5 There exists a constant ρ < 1, independent of h such that for all uh ∈ Vh(Γ0),
∫

ΩN

|∇H0
h(uh)|2 ≤ ρN

∫

Ω0

|∇H0
h(uh)|2. (49)

Proof. Exactly similar to that of Theorem 3.
We can also define the discrete Dirichlet-Neumann operator T 0

h : Vh(Γ0) 7→
(
Vh(Γ0)

)′

〈T 0
huh, vh〉 =

∫

Ω0

∇H0
h(uh) · ∇H0

h(vh) =

∫

Ω0

∇H0(uh) · ∇ṽh, (50)

for any function ṽh ∈ Vh(Ω0) such that ṽh|Γ0 = vh. Exactly as for the continuous problem,
we introduce the cone Oh of self adjoint, positive semi-definite, bounded linear operators from
Vh(Γ0) to its dual, vanishing on the constants, and the mapping Mh : Oh 7→ Oh defined as
follows: for Zh ∈ Oh, define Mh(Zh) by

∀uh ∈ Vh(Γ0), ∀vh ∈ Vh(ω0), 〈Mh(Zh)uh, vh|Γ0〉 =

∫

ω0

∇ûh·∇vh+

2∑

i=1

〈
Zh(ûh|Γ1

i
◦ Fi), vh|Γ1

i
◦ Fi

〉
,

(51)
where ûh ∈ Vh(ω0) is such that ûh|Γ0 = uh and

∀vh ∈ Vh(ω0) with vh|Γ0
= 0,

∫

ω0

∇ûh · ∇vh +

2∑

i=1

〈
Zh(ûh|Γ1

i
◦ Fi), vh|Γ1

i
◦ Fi

〉
= 0. (52)

We have the analogue of Theorem 4:
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Theorem 6 The operator T 0
h is the unique fixed point of Mh and for all Zh ∈ Oh, there exists

a positive constant C independent of n such that, for all n ≥ 0,

‖Mn
h(Zh)− T 0

h‖ ≤ Cρ
n
4 , (53)

where ρ, 0 < ρ < 1 is the constant appearing in Theorem 5.

Proof. Exactly similar to that of Theorem 4.

4.3.2 The linear algebra viewpoint

Let us call Nh(ω0) (resp. N) the dimension of Vh(ω0), (resp Vh(Γ0)). Call (xi)i=1,...,N the
abscissa of the mesh-nodes lying on Γ0, ordered increasingly. Let us introduce the nodal basis
(φi)i=1,...,Nh(ω0) of Vh(ω0) ordered as follows:

1. for j = 1, . . . , N , φj corresponds to the node (xj, 0) ∈ Γ0.

2. for i = 1, 2 and j = 1, . . . , N φiN+j corresponds to the node Fi(xj , 0) ∈ Γ1
i .

3. for 3N < j ≤ Nh(ω0), the node corresponding to φj belongs to ω0\(Γ0 ∪ Γ1).

Consider the bilinear for ah : Vh(ω0) × Vh(ω0) 7→ R: ah(uh, vh) =
∫
ω0 ∇uh · ∇vh, and let A be

the matrix of ah in the nodal basis described above. We have the block decomposition

A =




AΓ0,Γ0 0 AΓ0,I

0 AΓ1,Γ1 AΓ1,I

AT
Γ0,I AT

Γ1,I AI,I



 ,
AΓ0,Γ0 ∈ R

N×N

AΓ1,Γ1 ∈ R
2N×2N . (54)

The block AI,I is positive definite; it is the matrix arising when dealing with a Poisson problem
with Dirichlet conditions on Γ0 ∪Γ1 and Neumann conditions on Σ0. The Schur complement of
A obtained by eliminating the degrees of freedom corresponding to the mesh nodes in ω0 ∪ Σ0

is S ∈ R3N×3N :

S =

(
SΓ0,Γ0 SΓ0,Γ1

ST
Γ0,Γ1 SΓ1,Γ1

)
,

SΓ0,Γ0 = AΓ0,Γ0 −AΓ0,IA
−1
I,IA

T
Γ0,I ∈ R

N×N

SΓ1,Γ1 = AΓ1,Γ1 −AΓ1,IA
−1
I,IA

T
Γ1,I ∈ R

2N×2N

SΓ0,Γ1 = −AΓ0,IA
−1
I,IA

T
Γ1,I ∈ R

N×2N

. (55)

The block SΓ0,Γ0 is the matrix in the nodal basis of Vh(Γ0) of the bilinear form mapping (uh, vh) ∈
Vh(Γ0)× Vh(Γ0) to

∫
ω0 ∇ûh∇v̂h, where ûh and v̂h satisfy

ûh ∈ Vh(ω0), ûh|Γ0
= uh, ûh|Γ1

= 0,
v̂h ∈ Vh(ω0), v̂h|Γ0

= vh, v̂h|Γ1
= 0,

∀wh ∈ Vh(ω0) such that wh|Γ0
= 0, wh|Γ1

= 0,
∫
ω0 ∇ûh∇wh =

∫
ω0 ∇v̂h∇wh = 0.

The block SΓ1,Γ1 is the matrix in the nodal basis of Vh(Γ1) of the bilinear form mapping (uh, vh) ∈
Vh(Γ1)× Vh(Γ1) to

∫
ω0 ∇ûh∇v̂h, where where ûh and v̂h satisfy

ûh ∈ Vh(ω0), ûh|Γ1
= uh, ûh|Γ0

= 0,
v̂h ∈ Vh(ω0), v̂h|Γ1

= vh, v̂h|Γ0
= 0,

∀wh ∈ Vh(ω0) such that wh|Γ1
= 0, wh|Γ0

= 0,
∫
ω0 ∇ûh∇wh =

∫
ω0 ∇v̂h∇wh = 0.
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The block SΓ0,Γ1 is the matrix of the bilinear form mapping (uh, vh) ∈ Vh(Γ0) × Vh(Γ1) to∫
ω0 ∇ûh∇v̂h, where where ûh and v̂h satisfy

ûh ∈ Vh(ω0), ûh|Γ0
= uh, ûh|Γ1

= 0,
v̂h ∈ Vh(ω0), v̂h|Γ1

= vh, v̂h|Γ0
= 0,

∀wh ∈ Vh(ω0) such that wh|Γ1
= 0, wh|Γ0

= 0,
∫
ω0 ∇ûh∇wh =

∫
ω0 ∇v̂h∇wh = 0.

Denoting O the cone of the positive semi-definite matrices Z ∈ R
N×N such that for i = 1, . . . ,N ,∑N

j=1 Zij = 0, it is clear from the interpretations of SΓ0,Γ0 , SΓ1,Γ1 and SΓ0,Γ1 given above that
the matrix counterpart of the operator Mh defined in (51) (52) is the operator M : O 7→ O:

M(Z) = SΓ0,Γ0 − SΓ0,Γ1

(
SΓ1,Γ1 +

(
Z 0
0 Z

))−1

ST
Γ0,Γ1. (56)

As a corollary to Theorem 6, we have the

Proposition 2 For any Z ∈ O, the sequence Mn(Z) converges geometrically to the unique fixed
point T of M , and T is the matrix of the discrete Dirichlet-Neumann operator T 0

h defined in
(50) in the nodal basis of Vh(Γ0).

4.3.3 Algorithmic issues

Proposition 2 tells us that, for obtaining an approximation of the matrix T with an accuracy
ǫ (in a fixed matrix norm), one can depart from any operator Z ∈ O, (Z = 0 is possible) and
repeat M(Z) ← Z, O(| log ǫ|) times. Assuming that SΓ0,Γ0, SΓ1,Γ1 and SΓ0,Γ1 are known, and
performing a Cholesky factorization of

SΓ1,Γ1 +

(
Z 0
0 Z

)
,

the mapping M(Z)← Z requires O(N3) operations.
Thanks to the sparsity of the matrix A, and using a multifrontal algorithm for factorizing AII

(for example SuperLU), one may compute the matrices SΓ0,Γ0 , SΓ1,Γ1 and SΓ0,Γ1 in O(N3)
operations. This has to be done once and for all. Finally, one may approach T with an accuracy
ǫ with a work of O(| log ǫ|)N3 operations.
Once T is computed, for any uh ∈ Vh(Γ0), computing the restriction of H0

h(uh) to ω0 by solving
the discrete counterpart of (39) can be done by

1. finding the trace of H0
h(uh) on Γ1 by solving a system of the kind

(
SΓ1,Γ1 +

(
T 0
0 T

))
U1 = SΓ1,Γ0U0,

2. solving a linear system with the matrix AII .

4.4 Numerical Results

In the numerical tests, we have taken for Ω0 a dilation by a factor π of the domain described in
§ 2. We are interested in computing the Dirichlet-Neumann operator corresponding to problem
(25) for the Laplace operator (χ = Id) and for an anisotropic diffusion operator

χ =

(
1 0
0 100

)
.
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The mesh used for ω0 is plotted on Figure 3. It has the property mentioned in § 4.3, which per-
mits the construction of a self-similar mesh of Ω0. We apply the fixed point method introduced
above. On Figure 4, we plot the Frobenius norm of Mn+1(0) −Mn(0) for the two cases above.
We see that the norm of the increment Mn+1(0)−Mn(0) decays exponentially as n grows and
that the decay factor is quite small (of the order 10−6 in the case of the Laplace operator and
10−4 in the anisotropic case). We see that a few iterations are enough to have a very accurate
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Figure 3: The mesh used for ω0
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Figure 4: The Frobenius norms of the increments Mn+1(0)−Mn(0) (in log-scale) vs. n

approximation of T 0. This says that (25) is well approximated by solving the same problem in
Ωn (with a Neumann condition on Γn+1) with n reasonably small, (n = 4 in most problems).
As we shall see in the following, this will not be the case for Helmholtz equation.

Remark 8 Let n be a positive integer number. Once T 0 is known, it is easy to compute the
restriction to ωn, by solving successively problems in ω0, in Fi(ω

0), i = 1, 2, inMσ(F1, F2)(ω
0),

σ ∈ A2, and so on... Note that all the linear systems to be solved involve the same matrix, which
can be factorized and stored once and for all.
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5 Propagation problems

In this part, we wish to study time-harmonic waves in Ω0.

5.1 The continuous problem

The aim of this section is to study weak solutions of the Helmholtz equation in the domain Ω0.
Our first tool is the compactness of the imbedding of H1(Ω0) in L2(Ω0), see Theorem 2, and as
in the preceding part, we are going to make extensive use of the self-similarity in order to design
an accurate finite element methods.
More precisely, let us consider the solutions to the variational problem:
for an integer n ≥ 0, and for σ ∈ An, given k a real number and u ∈ H

1
2 (Γσ), (with the notation

Ωσ =Mσ(F1, F2)(Ω
0), Γσ =Mσ(F1, F2)(Γ

0)),

find û ∈ H1(Ωσ) such that û|Γσ = u and for all v ∈ V(Ωσ),
∫

Ωσ

∇û · ∇v − k

∫

Ωσ

ûv = 0,
(57)

whose solution, if it exists, is a weak solution to the Helmholtz equation ∆û + kû = 0 in Ωσ.
Let us define the operator Lσ

k :

Lσ
k : V(Ωσ) 7→ (V(Ωσ))′ , 〈Lσ

k(w), v〉 =

∫

Ωσ

∇w · ∇v − k

∫

Ωσ

wv. (58)

Let us call (ker(Lσ
k))◦ the closed space of the functions u ∈ H

1
2 (Γσ) such that, for all lifting

ũ ∈ H1(Ωσ) of u, ∫

Ωσ

∇ũ · ∇v − kũv = 0, ∀v ∈ ker(Lσ
k).

As a corollary to Theorem 2, we have the

Proposition 3 For all n ∈ N, there exists a countable set SpD,n = {λp, p ∈ N} of positive
numbers, with λp ≤ λp+1 and limp→∞ λp = +∞ such that for σ ∈ An,

• for k ∈ R\SpD,n, the operator Lσ
k is one to one, with a bounded inverse.

• for all k ∈ SpD,n, ker(Lσ
k) has a positive and finite dimension.

One can obtain an Hilbertian basis of V(Ωσ) by assembling bases of ker(Lσ
k), k ∈ SpD,n.

We have
SpD,n = 4nSpD,0. (59)

For u ∈ (ker(Lσ
k))◦, there exists û ∈ H1(Ωσ) satisfying (57), and û is unique up to the addition

of functions in ker(Lσ
k ). Problem (57) defines an injective bounded operator Hσ

k from (ker(Lσ
k))◦

to H1(Ωσ)/ ker(Lσ
k) by Hσ

k (u) = û.

Proof. The existence of a nondecreasing sequence of nonnegative eigenvalues, converging to
+∞, is a consequence of Theorem 2. The self-similarity of Ω0 implies (59). We have seen in
§ 4 that 0 6∈ SpD,n. The last statement of Proposition 3 is a consequence of the Fredholm
alternative.
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Remark 9 In relation with Proposition 3, we know from (59) that for any k ∈ R, there exists a
nonnegative integer N(k) such that for all n ≥ N(k), for all σ ∈ An, the operator Lσ

k is coercive
on V(Ωσ) which implies that k 6∈ SpD,n. We have N(k) = 0 if k ≤ 0 and N(k) ∼ log(k) as
k → +∞.

Remark 10 Thanks to Remark 9, we have the analogue to Theorem 3: for all u ∈ (ker(Lσ
k))◦,

‖∇Hσ
k (u)‖L2(Ωp) decays exponentially with p as p→∞.

Remark 11 Similarly, for all n ∈ N and σ ∈ An, the eigenvalues of the operator L̃σ

L̃σ : H1(Ωσ) 7→
(
H1(Ωσ)

)′
,
〈
L̃σ(u), v

〉
=

∫

Ωσ

∇u · ∇v (60)

form a nondecreasing sequence of nonnegative numbers (µp)p∈N with µ0 = 0, µ1 > 0, and
limp→∞ µp = +∞. These numbers do not depend on σ. Calling SpN,n = {µp, p ∈ N}, we have
SpN,n = 4nSpN,0.

5.2 The Dirichlet-Neumann operator

The Dirichlet-Neumann operator T σ
k : (ker(Lσ

k))◦ 7→
(
H

1
2 (Γσ)

)′
is defined by: ∀u ∈ (ker(Lσ

k))◦,

∀v ∈ H
1
2 (Γσ),

〈T σ
k u, v〉 =

∫

Ωσ

∇Hσ
k(u) · ∇ṽ − k

∫

Ωσ

Hσ
k(u)ṽ, (61)

for any function ṽ ∈ H1(Ωσ) such that ṽ|Γσ = v. For k /∈ SpD,n, T σ
k is a bounded self-adjoint

operator from H
1
2 (Γσ) to its dual.

For simplicity, since A0 has only one element, we use the notation H0
k and T 0

k if n = 0.

Lemma 7 The operator T σ
k is a perturbation of a bounded self-adjoint coercive operator from

(ker(Lσ
k))◦ to

(
H

1
2 (Γσ)

)′
by a compact operator.

Proof. For a large positive constant α, one may write

〈T σ
k u, v〉 =

∫

Ωσ

∇Hσ
k (u) · ∇ṽ + α

∫

Γσ

uv − k

∫

Ωσ

Hσ
k(u)ṽ − α

∫

Γσ

uv, (62)

for any function ṽ ∈ H1(Ωσ) such that ṽ|Γσ = v. But from (15), we know that for α large
enough, the operator T̂ σ

k :

〈T̂ σ
k u, v〉 =

∫

Ωσ

∇Hσ
k(u) · ∇ṽ + α

∫

Γσ

uv − k

∫

Ωσ

Hσ
k (u)ṽ

is coercive, whereas T σ
k − T̂ σ

k is clearly compact.

Lemma 8 For all σ ∈ An, for all u ∈ (ker(Lσ
k))◦, u ◦ Mσ(F1, F2) ∈ (ker(L0

k
4n

))◦ and for all

v ∈ H
1
2 (Γσ),

〈T σ
k u, v〉 =

〈
T 0

k
4n

(u ◦Mσ(F1, F2)) , v ◦Mσ(F1, F2)
〉

. (63)

For all u ∈ (ker(L0
k))

◦, the restriction û to ωn−1 of any function in the class H0
k(u) satisfies, for

all σ ∈ An,
û|Γσ ∈ (ker(Lσ

k ))◦ (64)
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and is a solution to the following boundary value problem: û|Γ0 = u, and ∀v ∈ V(ωn−1),

∫

ωn−1

∇û · ∇v − k

∫

ωn−1

ûv +
∑

σ∈An

〈T σ
k û|Γσ , v|Γσ 〉 = 0. (65)

The last problem has a unique solution up to restrictions of functions of ker(L0
k) to ωn−1. Fur-

thermore, ∀v ∈ H1(ωn−1),

〈T 0
k u, v|Γ0〉 =

∫

ωn−1

∇û · ∇v − k

∫

ωn−1

ûv +
∑

σ∈An

〈T σ
k û|Γσ , v|Γσ 〉

=

∫

ωn−1

∇û · ∇v − k

∫

ωn−1

ûv +
∑

σ∈An

〈
T 0

k
4n

(û|Γσ ◦Mσ(F1, F2)), v|Γσ ◦Mσ(F1, F2)
〉

.

(66)

Proof. Equation (63) is a consequence of the tree self-similarity. Then (65) (66) are proved by
induction.

Orientation We see from (63) (65) that, once the nonlocal operator T 0
k
4n

is known, the re-

striction of H0
k(u) to ωn−1 can be computed exactly by solving a boundary value problem in

ωn−1, with a boundary condition involving T 0
k
4n

. The equations (63) (65) (66) can be seen

as a backward induction formula with respect to n, in order to compute T 0
k . Observing that

limn→∞ T 0
k
4n

= T 0 enables to initialize the induction. The aim of what follows is to carry out

this program in details.

5.3 Approximations of the Dirichlet-Neumann operator

For σ ∈ An and p ≥ n, let us introduce Lσ,p
k the operators

Lσ,p
k : V(Ωσ) 7→ (V(Ωσ))′ ,

〈
Lσ,p

k (u), v
〉

=

∫

Ωσ

∇u · ∇v − k

∫

ωp−1∩Ωσ

uv.

Note that for u ∈ H
1
2 (Γσ), a solution to the problem

find û ∈ H1(Ωσ) such that û|Γσ = u and for all v ∈ V(Ωσ),

〈Lσ,p
k û, v〉 = 0,

(67)

is a weak solution to the Helmholtz equation ∆û + k1ωp−1∩Ωσ û = 0 in Ωσ.

Call (ker(Lσ,p
k ))◦ the closed space of the functions u ∈ H

1
2 (Γσ) satisfying, for all lifting ũ ∈

H1(Ωσ) of u, ∫

Ωσ

∇ũ · ∇v − k

∫

ωp−1∩Ωσ

ũv = 0, ∀v ∈ ker(Lσ,p
k ).

We have the analogue of Proposition 3:

Proposition 4 For all n ∈ N and p ≥ n, there exists a countable set SpD,n,p = {λq, q ∈ N} of
positive numbers, with λq ≤ λq+1 and limq→∞ λq = +∞ such that, for all σ ∈ An,

• for all k ∈ R\SpD,n,p, the operator Lσ,p
k is one to one, with a bounded inverse.

• for all k ∈ SpD,n,p, ker(Lσ,p
k ) has a positive and finite dimension.
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We have
SpD,n,p = 4nSpD,0,p−n. (68)

If u ∈ (ker(Lσ,p
k ))◦, then there exists û ∈ H1(Ωσ) satisfying

find û ∈ H1(Ωσ) such that û|Γσ = u and for all v ∈ V(Ωσ),
∫

Ωσ

∇û · ∇v − k

∫

ωp−1∩Ωσ

ûv = 0,
(69)

and û is unique up to functions in ker(Lσ,p
k ). Problem (69) defines an injective bounded operator

Hσ,p
k from (ker(Lσ,p

k ))◦ to H1(Ωσ)/ ker(Lσ,p
k ) by Hσ

k (u) = û.

The following result will be useful for approximating T 0
k :

Lemma 9 For σ ∈ An and k 6∈ SpD,n, there exists a positive integer P (k, n) ≥ n such that for
all p ≥ P (k, n), the operator Lσ,p

k is one to one, and there exists a constant C > 0, (depending
of k but not of n and p), such that, for p ≥ P (k, n),

‖(Lσ,p
k )−1 − (Lσ

k)−1‖ ≤ C2−n−p. (70)

Proof. Since k 6∈ SpD,n, Lσ
k is one to one. From (21), we have that ‖Lσ,p

k − Lσ
k‖ . 2−n−p and

therefore limp→∞ ‖Lσ,p
k − Lσ

k‖ = 0. It is a standard matter to deduce the desired results from
the last two observations.

The Dirichlet-Neumann operator T σ,p
k : (ker(Lσ,p

k ))◦ 7→
(
H

1
2 (Γσ)

)′
is defined by: ∀u ∈ (ker(Lσ,p

k ))◦,

∀v ∈ H
1
2 (Γσ),

〈T σ,p
k u, v〉 =

∫

Ωσ

∇Hσ,p
k (u) · ∇ṽ − k

∫

ωp−1∩Ωσ

Hσ,p
k (u)ṽ, (71)

for any function ṽ ∈ H1(Ωσ) such that ṽ|Γσ = v.
We have the analogues of Lemmas 7 and 8:

Lemma 10 The operator T σ,p
k is the perturbation of a bounded and coercive self-adjoint operator

from (ker(Lσ,p
k ))◦ to

(
H

1
2 (Γσ)

)′
by a compact operator.

Lemma 11 For all p > 0, 0 ≤ n ≤ p, σ ∈ An, u ∈ (ker(Lσ,p
k ))◦, we have u ◦ Mσ(F1, F2) ∈

(ker(L0,p−n
k
4n

))◦ and for all v ∈ H
1
2 (Γσ),

〈
T σ,p

k u, v
〉

=

〈
T 0,p−n

k
4n

(u ◦Mσ(F1, F2)) , v ◦Mσ(F1, F2)

〉
. (72)

For all u ∈ (ker(L0,p
k ))◦, the restriction û to ωn−1 of any function in the class H0,p

k (u) satisfies,
for all σ ∈ An,

û|Γσ ∈ (ker(Lσ,p
k ))◦ (73)

and is a solution to the following boundary value problem: û|Γ0 = u, and ∀v ∈ V(ωn−1),

∫

ωn−1

∇û · ∇v − k

∫

ωn−1

ûv +
∑

σ∈An

〈
T σ,p

k (û|Γσ), v|Γσ

〉
= 0. (74)
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( (74) can be written in terms of T 0,p−n
k
4n

thanks to (72)) Problem (74) has a unique solution up

to restrictions of functions of ker(L0,p
k ) to ωn−1. Furthermore, ∀v ∈ H1(ωn−1),

〈T 0,p
k u, v|Γ0〉 =

∫

ωn−1

∇û · ∇v − k

∫

ωn−1

ûv +
∑

σ∈An

〈
T σ,p

k û|Γσ , v|Γσ

〉

=

∫

ωn−1

∇û · ∇v − k

∫

ωn−1

ûv +
∑

σ∈An

〈
T 0,p−n

k
4n

(û|Γσ ◦Mσ(F1, F2)), v|Γσ ◦Mσ(F1, F2)

〉

(75)

As a corollary to Lemma 9, we have the

Lemma 12 For σ ∈ An and k 6∈ SpD,n, there exists P (k, n) ≥ n and a constant C > 0
(independent of p) such that for all p ≥ P (k, n), k 6∈ SpD,n,p and therefore T σ,p

k is bounded from

H
1
2 (Γσ) to its dual, and

‖T σ,p
k − T σ

k ‖ ≤ C2−n−p. (76)

One can then construct T 0,p
k by the following induction:

Recursive construction of T 0,p
k Let us construct the operators (Zj)0≤j≤p by

• Z0 = T 0.

• Induction formula (I.F.) Suppose that after j steps, j < p, we have constructed a

possibly unbounded operator Zj, from H
1
2 (Γ0) to its dual, whose domain Dj is closed and has

a finite codimension, and such that the restriction of Zj to Dj is a perturbation of a coercive
self-adjoint operator on Dj by a compact operator. Then, from the Fredholm alternative, we
know that there exists a closed subspace Dj+1 of H

1
2 (Γ0) with a finite codimension, such that

the problem

find û ∈ H1(ω0), such that û|Γ0 = u and ∀σ ∈ A1, û|Γσ ◦Mσ(F1, F2) ∈ Dj,

∀v ∈ V(ω0) such that ∀σ ∈ A1, v|Γσ ◦Mσ(F1, F2) ∈ Dj ,
∫

ω0

∇û · ∇v − k

4p−j−1

∫

ω0

ûv +
∑

σ∈A1

〈
Zj(û|Γσ ◦Mσ(F1, F2)), v|Γσ ◦Mσ(F1, F2)

〉
= 0

(77)

has a solution if u ∈ Dj+1, which is unique up to functions belonging to a finite dimensional space.
Then we can define the operator Zj+1 whose domain is Dj+1, by: ∀u ∈ Dj+1, ∀v ∈ H1(ω0),

〈
Zj+1u, v|Γ0

〉
=

∫

ω0

∇û ·∇v− k

4p−j−1

∫

ω0

ûv+
∑

σ∈A1

〈
Zj(û|Γσ ◦Mσ(F1, F2)), v|Γσ ◦Mσ(F1, F2)

〉
,

(78)
where û is a solution to (77). It is easy to see that Zj+1 has the same properties as Zj.

Proposition 5 With the construction above, we have for j ≤ p,

Zj = T 0,j
k

4p−j

and Dj =

(
ker(L0,j

k

4p−j

)

)◦

.

Proof. By induction.
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Remark 12 In fact, for k belonging to a dense subset in R, the domains Dj, 0 ≤ j ≤ p all
coincide with H

1
2 (Γ0).

Proposition 5 says that T 0,p
k can be constructed recursively, departing from T 0. In practise,

T 0 is not available, and one has to use approximations of T 0 instead. Therefore,in order to
approximate T 0,p

k , we need to study the stability of the recursive construction above with respect
to Z0:

Proposition 6 Let Xq be a sequence of operators in O converging to T 0 as q → ∞. For an

integer p, and 0 ≤ j ≤ p, let us call Zj
q,p the operators such that

• Z0
q,p = Xq.

• for 0 ≤ j < p, Zj+1
q,p is obtained from Zj

q,p by the induction (I.F.) above.

Assume that k 6∈ SpD,0,p. Then, there exists an integer Q such that for all q > Q, Zp
q,p is a

bounded operator from H
1
2 (Γ0) to its dual, and for q > Q, for a constant C independent on q,

‖Zp
q,p − T 0,p

k ‖ ≤ C‖Xq − T 0‖. (79)

Proof. Since k 6∈ SpD,0,p, the problem: find ug ∈ V(ωp−1), such that for all v ∈ V(ωp−1),
∫

ωp−1

∇ug · ∇v − k

∫

ωp−1

ugv +
∑

σ∈Ap

〈
T 0(ug|Γσ ◦Mσ(F1, F2)), v|Γσ ◦Mσ(F1, F2)

〉
= 〈g, v〉

defines an isomorphism Ψ : g 7→ ug from V ′(ωp−1) onto V(ωp−1).

For u ∈ H
1
2 (Γ0), consider the problem: find ũ ∈ H1(ωp−1) such that ũ|Γ0 = u and for all

v ∈ V(ωp−1),
∫

ωp−1

∇ũ · ∇v − k

∫

ωp−1

ũv +
∑

σ∈Ap

〈Xq(ũ|Γσ ◦Mσ(F1, F2)), v|Γσ ◦Mσ(F1, F2)〉 = 0. (80)

Let û = H0,p
k u. Problem (80) is equivalent to finding e = ũ − û ∈ V(ωp−1) such that for all

v ∈ V(ωp−1),
∫

ωp−1

∇e · ∇v − k

∫

ωp−1

ev +
∑

σ∈Ap

〈
T 0(e|Γσ ◦Mσ(F1, F2)), v|Γσ ◦Mσ(F1, F2)

〉

=
∑

σ∈Ap

〈
(T 0 −Xq)((e + û)|Γσ ◦Mσ(F1, F2)), v|Γσ ◦Mσ(F1, F2)

〉
,

so (80) can be reformulated as a fixed point problem with a linear operator involving Ψ. For q
large enough, the operator in the fixed point is a contraction, so (80) has a unique solution and
there exists Q > 0 and a constant C > 0 such that for all q > Q

‖û− ũ‖H1(ωp−1) ≤ C‖T 0 −Xq‖‖u‖
H

1
2 (Γ0)

. (81)

Now, one can check that, for all v ∈ H1(ωp−1),

〈Zp
q,pu, v|Γ0〉 =

∫

ωp−1

∇ũ · ∇v − k

∫

ωp−1

ũv +
∑

σ∈Ap

〈Xq(ũ|Γσ ◦Mσ(F1, F2)), v|Γσ ◦Mσ(F1, F2)〉 ,

(82)
so from (75) and (74) in the case n = p, (82) and (81), one can deduce (79).
As a consequence of Theorem 4, Lemma 12 and Proposition 6, we have the

23



Theorem 7 For all Y ∈ O, p, q ∈ N, consider the sequence Zn
q,p, 0 ≤ n ≤ p :

• Z0
q,p = Mq(Y ).

• for 0 ≤ n < p, Zn+1
q,p is obtained from Zn

q,p by the induction (I.F.) above,

where M has been introduced in (41) (42). Assume that k 6∈ SpD,0. Then there exist two integers
P (k) and Q(k) such that for all p > P (k), for all q > Q(k) Zp

q,p is a bounded operator from

H
1
2 (Γ0) to its dual, and there exists a constant C such that for all p > P (k), q > Q(k),

‖Zp
q,p − T 0

k ‖ ≤ C(ρ
q

2 + 2−p), (83)

where 0 < ρ < 1 is the constant introduced in (28).

5.4 A self similar finite element method

We construct the discrete version of (57) by using the same self-similar finite element method
described for the Poisson problem in § 4.3. All the results proved in §5.1 have their discrete
counterparts.
For brevity, we do not discuss here the convergence of the discrete method when the step h
tends to 0. This can be done by using the results contained in [3].
With the same notations as in § 4.3, let us take directly the linear algebra viewpoint. The matrix
of the bilinear form Vh(ω0) × Vh(ω0) 7→ R: (uh, vh) 7→

∫
ω0 ∇uh · ∇vh − k

∫
ω0 uhvh in the nodal

basis is A − kB where A is the stiffness matrix introduced in § 4.3.2 and where B is the mass
matrix. Both A and B have the block decomposition described in (54). Let us give the matrix
counterpart of the induction formula (I.F.) described above: The counterpart of problem (77)
is: given U ∈ R

Nh(Γ0), to find ÛI and ÛΓ1 such that
((

AΓ1,Γ1 AΓ1,I

AT
Γ1,I AI,I

)
− k4n−p+1

(
BΓ1,Γ1 BΓ1,I

BT
Γ1,I BI,I

)
+

(
Z̃n 0
0 0

))(
ÛΓ1

ÛI

)

=−
(

0
(AT

Γ0,I − k4n−p+1BT
Γ0,I)U

) (84)

where

Z̃n =

(
Zn 0
0 Zn

)
.

Let us assume that the real number k is such that, for all n, 0 ≤ n ≤ p, the matrix

Gn
k =

(
AΓ1,Γ1 − k4n−p+1BΓ1,Γ1 + Z̃n AΓ1,I − k4n−p+1BΓ1,I

AT
Γ1,I − k4n−p+1BT

Γ1,I AI,I − k4n−p+1BI,I

)

in the left hand side of (84) is invertible. This occurs for k in a dense subset of R. Then the
discrete counterpart of the induction formula (I.F.) is

ZN+1 =AΓ1,Γ1 − k4n−p+1BΓ1,Γ1

−
(
0 , (AΓ0,I − k4n−p+1BΓ0,I)

)
(Gn

k )−1

(
0
(AT

Γ0,I − k4n−p+1BT
Γ0,I)

)
.

(85)

We use the following algorithm to approximate the discrete version of T 0
k : for all Y ∈ O, p, q ∈ N,

we consider the sequence Zn
q,p, 0 ≤ n ≤ p:

• Z0
q,p = M q(Y ).

• for 0 ≤ n < p, Zn+1
q,p is obtained from Zn

q,p by the induction (85),

where M has been introduced in (56).
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5.5 Numerical Results

We use the domain and mesh displayed on Figure 3. We take k = 1, and we approximate
the discrete version of T 0

k by the construction described in § 5.4. We choose q = 4 because
the numerical tests in § 4.4 show that four iterations of the fixed point algorithm described in
§ 4.3.1 are enough for computing T 0

h . Then we test the method for p ≤ 27. There is no point
in taking larger values of p when working in double precision, because 4−27 is of the order of
the machine smallest double precision number. On Figure 5 we plot the Frobenius norm of the
increments Zp

4,p−Zp−2
4,p−2 as a function of p. We see that these increments decay exponentially in

n, and the decay exponent is very close to 1
2 (in log-scale, the graph is very close to a straight

line, with a slope close to − log(2)). Figure 5 shows that for approximating T 0
k with an error of

order 10−6, we need approximately 25 iterations of the construction above. We have used this

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 0  5  10  15  20  25

"increments"

Figure 5: The Frobenius norms of the increments Zp
4,p − Zp−2

4,p−2 (in log-scale) as a function of p

approximation of T 0
k in order to compute numerically H0

ku where u = (x2−π2)2

π4 , in ω2: the result
is plotted on Figure 6.

6 The vibration modes

6.1 Characterization of the eigenvalues of the Neumann problem

The goal here is the computation of the eigenvalues and normalized eigenmodes of the Neu-
mann operator L̃0 introduced in (60). The following Lemmas will be useful for computing the
eigenvalues in SpN,0.

Lemma 13 For any real number k,

u ∈ ker(L̃0
k)⇒ u|Γ0 ∈ (ker(L0

k))
◦. (86)

Proof. We have
∫
Ω0∇u · ∇v − kuv = 0 for all v ∈ H1(Ω0). Let ũ ∈ H1(Ω0) be another lifting

of u|Γ0 , then e = u − ũ ∈ V(Ω0) and for all v ∈ ker(L0
k) ,

∫
Ω0 ∇e · ∇v − kev = 0. Subtracting

the two identities, we obtain that for all v ∈ ker(L0
k),
∫
Ω0 ∇ũ · ∇v − kũv = 0. This says exactly

that u|Γ0 ∈ (ker(L0
k))

◦.
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Lemma 14 For any real number k,

SpN,0 =
{
k ∈ R, such that ker(T 0

k ) 6= {0}
}

, (87)

and
ker(L̃0

k) = H0
k(ker(T

0
k )). (88)

One can obtain an Hibertian basis of H1(Ω0) by assembling bases of H0
k(ker(T

0
k )) for k ∈ SpN,0.

Proof. We know that k ∈ SpN,0 if and only if there exists û ∈ H1(Ω0) such that
∫

Ω0

∇û · ∇v = k

∫

Ω0

ûv, ∀v ∈ H1(Ω0). (89)

Call u ∈ H
1
2 (Γ0) the trace of û on Γ0, then û = H0

k(u) and Lemma 13 tells us that u ∈ (ker(L0
k))

◦.
So T 0

k (u) can be computed and by the definition (61) of T 0
k , we see that T 0

k u = 0.
Conversely, if u ∈ ker(T 0

k ), H0
k(u) satisfies (89). We have proved (87) and (88) and the last

statement of the Lemma follows.
From Lemma 14, one can compute the eigenmodes of L̃0 by searching the numbers k such that
Tk is noninjective, and by taking the harmonic lifting H0

k of the vectors belonging to the kernel
of T 0

k . Of course, it is possible to carry out this program with the self-similar finite element
discretization introduced above, because Lemma 13 and 14 have their discrete counterparts.

Remark 13 Conversely, it is possible to compute the eigenmodes of the Dirichlet operator L0

by studying the Neumann-Dirichlet operators related to the Helmholtz equation.

6.2 Normalization of the eigenmodes of the Neumann problem

A more difficult point is to obtain eigenmodes with unit L2(Ω0)-norm, in order to construct
an orthonormal basis of L2(Ω0). The next result says that, when k 6∈ SpD,0, it is possible to
normalize the eigenmodes thanks to a perturbation method.
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Proposition 7 Consider k ∈ SpN,0 such that k > 0 and k 6∈ SpD,0, u ∈ ker(T 0
k ), u 6= 0, and

û = H0
k(u). Let δk be a small variation of k, such that k + δk 6∈ SpD,0:

δk‖û‖2L2(Ω0) = −〈T 0
k+δku, u〉+ o(δk). (90)

For δk small enough, δk〈T 0
k+δku, u〉 < 0 and

‖û‖2L2(Ω0) = − lim
δk→0

〈T 0
k+δku, u〉

δk
. (91)

Proof. Let δû ∈ V(Ω0) be such that û + δû = H0
k+δk(u). Since u ∈ ker(T 0

k ) and û = H0
k(u), we

know that for all v ∈ H1(Ω0),
∫
Ω0 ∇û · ∇v − kûv = 0. In particular, for v = û + δû,

∫

Ω0

∇û · ∇(û + δû)− k

∫

Ω0

û(û + δû) = 0. (92)

On the other hand, we know that for all v ∈ V(Ω0),
∫
Ω0∇(û+δû)·∇v−(k+δk)

∫
Ω0(û+δû)v = 0.

In particular, for v = δû,

∫

Ω0

∇δû · ∇(û + δû)− (k + δk)

∫

Ω0

δû(û + δû) = 0. (93)

Adding (92) and (93) yields

∫

Ω0

|∇(û + δû)|2 − (k + δk)

∫

Ω0

|û + δû|2 = −δk

∫

Ω0

û(û + δû). (94)

But, since û + δû = H0
k+δk(u),

∫

Ω0

|∇(û + δû)|2 − (k + δk)

∫

Ω0

|û + δû|2 = 〈T 0
k+δk(û + δû)|Γ0 , (û + δû)|Γ0〉 = 〈T 0

k+δku, u〉.

So

δk‖û‖2L2(Ω0) = −〈T 0
k+δku, u〉 − δk

∫

Ω0

ûδû.

Finally, since k 6∈ SpD,0, ‖δû‖L2(Ω0) = O(δk), which completes the proof.
Proposition 7 permits to scale the vibration modes obtained by the characterization in § 6.1
so that their L2(Ω0) norm is close to one (not exactly one, since the scaling factor is obtained
by a perturbation method). This will permit to project a function accurately enough on the
eigenspace.

Remark 14 We do not know how to normalize the vibration mode when k ∈ SpN,0 ∩ SpD,0.
However, we have not observed this situation in our computations.

6.3 The projection of a compactly supported function on the space spanned

by the first N eigenmodes

Let (en)n=0,...,∞ be a Hilbertian basis of L2(Ω0) made of eigenmodes of L̃0 with unit L2(Ω0)
norm. In the following, we call kn the eigenvalue of L̃0 corresponding to en. We also call ΛN

the subspace of H1(Ω0): ΛN = span(en)n=0,...,N .
Assume that with the method described in § 6.2, we have obtained eigenmodes ẽn, n = 0, . . . ,N ,
whose L2(Ω0) norm are close to one: ẽn = µnen and |µn| is close to one. More precisely, assume
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that there exists ǫ, 0 < ǫ < 1, such that, for all n, 0 ≤ n ≤ N , |µ2
n − 1| ≤ ǫ.

Consider a function u ∈ H1(Ω0) supported for example in ω0. Call πN (u) the projection of u
onto Λn:

πN (u) =

N∑

n=0

(u, en)en =

N∑

n=0

(∫

ω0

uen

)
en.

The function πN (u) cannot be computed directly since en are not available. What can be
computed is π̃N (u) =

∑N
n=0(u, ẽn)ẽn =

∑N
n=0

(∫
ω0 uẽn

)
ẽn. It is easy to check that

πN (u)− π̃N (u) =

N∑

n=0

(1− µ2
n)(u, en)en =

N∑

n=0

(1− µ2
n)(πN (u), en)en,

therefore
‖πN (u)− π̃N (u)‖L2(Ω0) ≤ ǫ‖u‖L2(Ω0).

The numerical test below will confirm the fact that the method described in § 6.2 permits to
approximate correctly the projection of a compactly supported function on ΛN .

6.4 Numerical tests

6.4.1 The Weyl-Berry formula

Asymptotics of the density of states is an old problem which started with the well-known Weyl
formula: if Ω is an open subset of R

d then ℵD(k), the number of Dirichlet eigenvalues smaller
than k behaves like

ℵD(k) ∼ (2π)−dBd|Ω|dkd/2 when k →∞,

where Bd is the volume of the unit ball of dimension d, and |Ω|d is the volume of the domain Ω.
When Ω has a smooth boundary (and under some extra conditions), a second term in the
expansion can be obtained: it is of the form cdk

(d−1)/2, with a constant cd depending on the
length of the boundary (cf Ivrii, [8]). When the boundary is irregular then the second term
depends on the Minkowski dimension of the boundary. The Minkowski dimension is related to
the volume of the ǫ-neighborhoods ∂Ωǫ of the boundary ∂Ω. More precisely, the Minkowski
measurability can be defined relative to a gauge function h : R

+ → R
+ increasing and with

some extra properties (cf [7], part 2). The boundary is said to be h-Minkowski measurable if

0 < lim inf
ǫ→0

ǫ−dh(ǫ)|∂Ωǫ ∩ Ω|d
= lim sup

ǫ→0
ǫ−dh(ǫ)|∂Ωǫ ∩ Ω|d <∞.

In this case, the remainder term

ℵD(k) − (2π)−dBd|Ω|dkd/2

is proved to be of order (cf [7], theorem 2.12)

O(1/h(
1√
k
)),

(and it is expected to be comparable with this value). The same results hold for the Neumann
boundary condition provided that an extra regularity condition (the ”C’ condition”) is satisfied.
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6.4.2 Computation of SpN,0

We use the domain and mesh displayed on Figure 3. We have computed numerically the first
part of the spectrum SpN,0 by the method proposed in § 6.1. More precisely, we have chosen a
subdivision of the interval [0, 40], and we have computed the discrete version of T 0

k , for k at the
nodes of this subdivision. The subdivision was piecewise uniform, with step size 10−3 for k ≤ 10
and 10−2 for k > 10. When the signature of T 0

k changes from one node to the next, we run a
dichotomy method in order to compute precisely a singular value ksing between the two nodes,
which may be either an eigenvalue (in SpN,0) of the Neumann problem, if ker(T 0

ksing
) 6= {0}, or

an eigenvalue in SpD,0. Of course, this method is crude enough, and we may miss an eigenvalue
if there are more than one singular values between two successive mesh nodes.

In the present case, it is easy to check that |Ω0|2 = 16π2 and that B2 = π. The Weyl for-
mula is

ℵD(k) ∼ 4πk as k →∞. (95)

It is also easy to check that
|(∂Ω0)ǫ ∩ Ω0|2

is equivalent to

ǫ log(1 +
1

ǫ
)/ log 2,

which means that the boundary is h-Minkowski measurable, with h(x) = x
log(1+ 1

x
)
. Hence, the

remainder term for the counting function of the Dirichlet eigenvalues ℵD(k) − 4πk is of order
O(
√

k log k).

Remark 15 Note that the Dirichlet problem mentioned here consists of imposing a Dirichlet
condition on all ∂Ω0, so it is not problem (57).

In the present case, we compute numerically the counting function ℵ of the Neumann eigenvalues.
The ”C’ condition” is not satisfied, so the previous estimates are not known to be true for ℵ.
On Figure 7, we have plotted ℵh(k), the number of computed eigenvalues smaller than k vs. k,
for k < 40, and the graph of k 7→ 4πk. We see that the Weyl estimate (95) is very well satisfied
by ℵh(k). This indicates that the Weyl estimate is true for the ℵ.
We go further and plot the remainder term ℵh(k) − 4πk. We have tried to fit this function by
a function of the type f(k) = (a log(k) + b)

√
k + c. The parameters a, b, c have been computing

by using a least square algorithm in the interval k = [0, 10]. On figure , we plot the function
ℵh(k)− 4πk and f(k), for k ∈ (0, 40). Although, the least square algorithm has been used to fit
the function in the region (0, 10), we see that f(k) approaches ℵh(k)−4πk well, for k ∈ (10, 40).

On Figures 9 and 10, we have plotted the restrictions of the third and sixth eigenmodes (not
normalized yet) to ω2. On Figure 11, we have plotted the restriction of the eigenmodes 5, 10,
15 and 20 to ω0.

6.4.3 Modal decomposition of a compactly supported function

To test the normalization of the eigenmodes, we choose a compactly supported function u and
we compare u with π̃Nu for 1 ≤ N ≤ 300. We choose

u =

(
x2

1 − π2

π2

)4
(

x2(3π − x2)
9π2

4

)3

1−π<x1<π10<x2<3πe−x2
1−(x2−

3π
2

)2 . (96)
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Figure 7: The computed spectrum SpN,0: the number ℵh(k) of eigenvalues smaller than k vs k,
for k < 40, and the graph of k 7→ 4πk.
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Figure 9: Two views of the third eigenmode, restricted to ω2.
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Figure 10: Two views of the sixth eigenmode, restricted to ω2.

On Figure 12, we plot the error ‖u − π̃Nu‖L2(ω0) as a function of N . We see that the error
decays as N tends to infinity. This shows that the family (ẽn) introduced in § 6.2 is close to
orthonormal. The normalization of the eigenmodes by the perturbation method is accurate
enough. On Figure 13, we plot the reconstructed function π̃Nu and the error u − π̃Nu, for
N = 300. There is no visible difference between u and π̃300(u). To more accurately test the
normalization procedure, we compute αn =

∫
ω0(u− π̃300u)ẽn for 0 ≤ n ≤ 300; If ẽn matched en

for all n, 0 ≤ n ≤ 300, then the numbers αn would be exactly 0. On Figure 14, we plot αn as a
function of n. We see that these numbers never exceed 3.10−3, which confirms the fact that the
family ẽn is very close to being orthonormal.

6.4.4 Wave propagation in Ω0

Finally, it is possible to use the above mentioned modal decomposition of a compactly sup-
ported function in order to solve a Cauchy problem for the wave equation in Ω0 with compactly
supported initial data: assume that we wish to solve the following problem

∂2w
∂t2
−∆w = 0 in (0, T )× Ω0,

∂w
∂n = 0 on (0, T )×

(
Γ0 ∪ Σ0

)
,

w|t=0 = u0 in Ω0,
∂w
∂t |t=0 = u1 in Ω0,

(97)

where u0 and u1 are two functions supported for example in ω0. It is possible to write the modal
decompositions of u0 and u1: π̃Nu0 =

∑N
n=0 βnẽn and π̃Nu1 =

∑N
n=0 γnẽn and to solve exactly

a Cauchy problem close to (97):

∂2w̃
∂t2 −∆w̃ = 0 in (0, T ) × Ω0,

∂w̃
∂n = 0 on (0, T )×

(
Γ0 ∪ Σ0

)
,

w̃|t=0 = π̃Nu0 in Ω0,
∂w̃
∂t |t=0 = π̃Nu1 in Ω0,

(98)

by

w̃(t, x) = (β0 + γ0t)ẽ0(x) +

N∑

n=1

(
βn cos(

√
knt) +

γn√
kn

sin(
√

knt)

)
ẽn(x). (99)
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Figure 11: The restrictions of the eigenmodes 5,10,15 and 20 to ω0, viewed from south and east

32



 0.01

 0.1

 1

 10

 0  50  100  150  200  250  300

L
2
 
e
r
r
o
r

N

"l2_error"

Figure 12: The error ‖u− π̃Nu‖L2(ω0) vs. N .

On Figure 15, we have plotted the value of w̃(t, a) as a function of time, for a = (3π
2 , 3π), for

u0 = u given by (96), and u1 = 0.
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