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Theoretical studies of the phase transition in the anisotropic 2-D square spin lattice
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The phase transition occurring in a square 2-D spin lattice governed by an anisotropic Heisenberg
Hamiltonian has been studied according to two recently proposed methods. The first one, the
Dressed Cluster Method, provides excellent evaluations of the cohesive energy, the discontinuity of
its derivative around the critical (isotropic) value of the anisotropy parameter confirms the first-
order character of the phase transition. Nevertheless the method introduces two distinct reference
functions (either Néel or XY) which may in principle force the discontinuity. The Real Space
Renormalization Group with Effective Interactions does not reach the same numerical accuracy but
it does not introduce a reference function and the phase transition appears qualitatively as due to
the existence of two domains, with specific fixed points. The method confirms the dependence of
the spin gap on the anisotropy parameter occurring in the Heisenberg-Ising domain.

I. INTRODUCTION

The study of spin or electron lattices, even when they
are governed by simple model Hamiltonians, requires in
general approximate methods in order to obtain reliable
estimates of the cohesive energy, of the excitation gap,
of the spatial correlation, etc... The treatment of phase
transitions is a special challenge for approximate methods
since it is in general not easy to identify the values of the
interactions at the critical points, the nature of the phase
transition, as well as the behavior of the properties on
both sides of the phase transition. The purpose of the
present work is to compare the abilities of two methods
recently developed by the authors to study a first-order
phase transition.
Despite its rather formal character the spin 1

2 anisotropic
Heisenberg Hamiltonian on an infinite 2-D square lattice
may be used as an excellent model problem to test the
ability of a theoretical method to treat a phase-transition
phenomenon. This Hamiltonian is given by

H = J
∑

〈i,j〉

(Sx
i Sx

j + Sy
i Sy

j + λSz
i Sz

j ), (1)

where 〈i, j〉 runs over all pairs of nearest neighbor
sites. This 2-D square lattice model has no exact
solution and has therefore been the subject of numerous
calculations1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27

in the recent past, which employ either ana-
lytic expansions,13,14,15,16 or numerical algorithms
such as Coupled Cluster approaches,8,9,10,11 exact
diagonalizations17,18 and Quantum Monte Carlo
calculations.19,20,21,22,23,24,25,26,27 At λ = −1 a first-
order transition takes place between the ferromagnetic
phase and a planar-like phase in which the spins in the
ground state wave function lie in the XY plane. This
so-called XY polarized function is such that the sites of
one sublattice bear

X = (α + β)/
√

2, (2)

where α and β are the usual spin up and spin down func-
tions, and those of the other sublattice bear

X = (α − β)/
√

2. (3)

If one works in the basis of (X,Y) functions instead
of (α, β) ones, this XY polarized function will appear
as the leading configuration for the −1 < λ < 1 do-
main. At λ = 1 (isotropic Hamiltonian) a transition
to an Ising-like phase occurs. Actually for λ → ∞
the Hamiltonian becomes an Ising Hamiltonian and the
ground state becomes the Néel fully spin-alternate func-
tion Φ0 = αβαβ..., which is also the leading configu-
ration for λ > 1. Early Quantum Monte Carlo (QMC)
calculations6 suggested, although with some imprecision,
that this transition is of first-order type. More recent
and more accurate calculations (see for instance27) have
confirmed its first-order character. One may also quote
elaborate Coupled Cluster (CC) calculations8,9,10 which
start from either a planar-like function or the Néel wave
function as reference function Φ0 and assume an expo-
nential form of the wave operator

|Ψ〉 = expS|Φ0〉, (4)

where S is restricted to a certain number of local many-
body operators (up to 6-body operators). The results
agree very well with those of QMC calculations in the two
regions around λ = 1, each region being treated using the
relevant reference. Although the authors do not conclude
explicitly, the results support the first-order character of
the phase transition at λ = 1. The extent of the domain
of bi-stability is more difficult to assess since it seems
to depend on the sophistication of the wave-operator.
The present work studies the same problem using two
new methods have different characteristics. The methods
employed hereafter

– the Dressed Cluster Method (DCM28) uses, as do
the Coupled Cluster expansion (CC) and pertur-
bative approaches, a single reference wave function
Φ0, which will be either the Néel function or the XY
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polarized configuration. In DCM this wave func-
tion is used as a bath in which a finite cluster is em-
bedded and treated exactly. Then the configuration
interaction matrix relative to the cluster is dressed
under the effect of excitations occurring around
the cluster, the amplitudes of which are transfered
from the amplitudes of similar excitations within
the cluster. This approach will be shown to give
extremely accurate results, very close to the best
Quantum Monte Carlo calculations of the cohesive
energy and confirm the first-order character of the
phase transition but, as well as the CC method, it
suffers from the prejudice introduced by the discon-
tinuity of the reference function Φ0.

– the Real Space Renormalization Group with Ef-
fective Interactions (RSRG-EI29) is an improve-
ment of the RSRG method originally proposed by
Wilson.30 It proceeds through the same reduction
of the Hilbert space by considering fragments (or
blocks) of the lattice, and a reduction of the Fock
space for these blocks to a few states of lowest
energy. But it extracts effective interactions be-
tween the blocks through the exact diagonaliza-
tion of dimers of blocks. The knowledge of the
exact spectrum of the dimers enables one to de-
fine, using the theory of effective Hamiltonians pro-
posed by Bloch,31 inter-block effective interactions.
The method is iterative, it is repeated to blocks
of blocks, etc... until it reaches fixed points of the
problem. The method provides at a very low cost
reasonable estimates of the cohesive energy of 1-
D or 2-D spin lattices. It does not introduce any
reference function, it is therefore in principle con-
tinuous on both sides of the critical value of the
parameter. However the method leads to two dis-
tinct fixed points for the λ < 1 and λ > 1 domains.
The iterations result in a discontinuity of the cohe-
sive energy derivative. The method also shows the
appearance of an excitation gap for λ > 1.

II. DRESSED CLUSTER METHOD

Let us summarize the main points of the Dressed Clus-
ter Method :

– one first defines a single-determinantal reference
function Φ0 on the infinite lattice, namely the Néel
or the XY function. For sake of simplicity, the
method will be presented here using only the Néel
function in the αβ representation

Φ0 =
∏

i

2i(2i + 1), (5)

– one considers a 2-D square finite cluster of N sites
which divides the atoms in two subsets, internal

and external, so that the reference function can be
written as

Φ0 = Φext
0 .Φint

0 , (6)

– the model space S is spanned by the determinants
obtained from Φ0 by all possible excitation pro-
cesses T +

i which only concern atoms within the
cluster

S = {Φi} = {Φext
0 .T +

i Φint
0 }. (7)

Let Ps be the projector onto this model space. The di-
mension of the full Configuration Interaction (CI) space
is equal to that of the isolated cluster. Nevertheless the
diagonal elements of the matrix PsHPs differ from those
of the isolated cluster CI matrix under the effect of the
embedding, i.e., the energy of each determinant is shifted
by a quantity Jl per alternating bond l, at the frontier.
the determinants Φi in the lattice problem interact only
with the outer-space determinants D+

l Φi obtained from

Φi by a spin exchange D+
l on the external bond l. Re-

placing for simplicity the determinants Φi by their index
i, the eigenequation for line i is

∑

j∈S,j 6=i

HijCj +(Hii −E)Ci +
∑

l ext

Hi,D+

l
iCD+

l
i = 0. (8)

The last summation must be evaluated through a proper
estimate of the coefficients CD+

l
i. These coefficients are

approximated to the product of the coefficients of the
determinants Φi by environment-dependent amplitudes
dl,i characteristic of the excitations D+

l on Φi.

CD+

l
i = Ci.dl,i. (9)

These amplitudes are extracted from the knowledge of
the CI wave function of the embedded cluster.
In order to be more explicit, let us consider a determinant
Φi (cf Fig.1). The cluster is delimited by a continuous-
line box and is embedded in the Néel function. Bonds
involved in the excitations from Φ0 to Φi appear with
thick lines. The elementary excitation D+

l on an external
bond l (indicated by a dashed line) leads to a determi-
nant ΦD+

l
i which interacts with Φi through an exchange

integral Jl. The excitation amplitudes dl,i depend on the
environment of the bond l (the largest considered envi-
ronment is indicated by a dashed-line box) and are taken
as

dl,i =
CD+

l−r
j

Cj
, (10)

where r is a translation from the external bond l to the
outermost equivalent bond l − r of the cluster (which is
indicated by a continuous line) and Φj ∈ S is such that
the environment of the bond l − r in Φj has the maxi-
mum resemblance with the environment of bond l in Φi.
One must notice that, in some cases, it is necessary to
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FIG. 1: Dressed Cluster Method: schematic view of the prin-
ciple of the Configuration Interaction dressing under the effect
of the spin exchanges around the cluster, pictured by a full
line box. The upper part identifies the cluster and a determi-
nant Φi, embedded in a Néel environment, as well as the outer
bond l on which a spin exchange will be performed. The lower
part pictures the two determinants from which the amplitude
dl,i (Eq. 10) will be extracted.

restore the right spin Sz = 0 of the translated determi-
nants by changing the spins of the atoms furthest from
the bond l, in order to obtain the most relevant infor-
mation from the CI wave function. Finally the quantity∑

l ext Hi,D+

l
iCD+

l
i can be replaced by

(
∑

l ext

Jldl,i)Ci. (11)

This summation can be delt with as a diagonal energy
shift (dressing)

∆ii = (
∑

l ext

Jldl,i), (12)

0 0.5 1 1.5 2

-1

-0.8

-0.6

FIG. 2: Cohesive energy as a function of the anisotropy pa-
rameter λ. (+) DCM (from a 16-site cluster) with the Néel
reference function, (�) DCM (from a 16-site cluster) with the
XY polarized reference function.

and the corresponding dressing operator ∆

∆ =
∑

i∈S

|Φi〉∆ii〈Φi|, (13)

Eq. 9 insures the translational invariance; if the deter-
minant D+

l Φi is identical through a translation T to one

of the determinants Φk belonging to S i.e., if D+
l Φi = T

Φk, then CD+

l
Φi

= CΦk
. This estimation of CD+

l
i leads to

an important simplification : the effect of excitations on
bonds l which are far from the fragment (by more than
the cluster size) is approximated to be identical for all
determinants Φi and only shifts the diagonal elements of
the CI matrix by the same amount. It has consequently
no effect on the eigenvectors of the dressed CI matrix
Ps(H +∆)Ps and can be omitted. Since the dressing de-
pends on the eigenvector the procedure must be repeated
to self-consistency. One may say that the DC method im-
plies many-body operators, up to the number of atoms in
the cluster. It does not proceed to a strict exponential-
ization of the wave function but it employs ratios of co-
efficients to transfer information from the internal CI to
take into account the effect of elementary excitations on
the external bonds. Through the environmental depen-
dence of these elementary excitation amplitudes, many-
body effects are introduced. The relation with a Coupled
Cluster expansion of the wave function32,33,34,35 has been
discussed in ref. 13. The accuracy of the DC method has
been illustrated on 1-D electron and spin (frustrated and
non-frustrated) lattices. It has also been applied to the
study of the lowest excitation energies as functions of the
bond alternation in the 1-D spin chain.36 The DC method
is now applied to the 2-D square spin lattice using a 4×4
cluster and starting from both the Néel function and the
XY polarized function as reference Φ0. The computed
cohesive energy as a function of λ is pictured in Fig.
2, where the two branches, obtained from the XY and
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FIG. 3: Cohesive energy around the isotropic point. (◦)
QMC,27 (�) DCM, (+) RSRG

Néel functions respectively, appear clearly as crossing in
λ = 1. One observes the existence of a continuation of
the Néel-generated solution in the 0.4 < λ < 1 and of
the XY-generated solution in the 1 < λ < 1.5. This may
be seen as the indication of metastable states around the
critical λ = 1 value, as expected for a first-order phase
transition.
The quality of the DCM results has to be assessed by
comparison with accurate analytical or numerical calcu-
lations. Table I and Fig. 3 report such comparisons.
For λ = 1 our estimate −0.66928J coincides to 10−4

with the most accurate QMC25,26,27 value −0.66944J . It
may be interesting to compare with CCM results8,9,10

which are −0.6670J when introducing 6-body opera-
tors, and −0.66817J when introducing 8-body operators.
The difference indicates the importance of many-body
operators, and the slow convergence in this expansion.
The 3rd-order spin-wave gives −0.6700J and a plaquette
expansion15 −0.6691J .
The agreement of our DCM values with QMC calcu-
lations is similar for λ 6= 1. For λ = 0 we obtain
−0.5489J , similar to the result of Lin et al27 −0.54882J ,
or for λ = 0.6 (DCM = −0.61094J , QMC = −0.60958J).
Fig. 3 shows the near identity of our results with those
of Lin et al in the whole 0 ≤ λ ≤ 1 domain. For
λ > 1, the agreement in similar, as may be seen from
Fig. 3 and Table I. For instance we obtain nearly iden-
tical values for λ = 2 (DCM = −1.08329J , QMC =
−1.08220J). Notice that we have no convergence prob-
lem when λ → 1+, while cohesive energies could not be
obtain in the 1 < λ < 1.09 domain in ref. 27. It is
clear that DCM represents, in view of its low cost, an
interesting alternative to QMC.

TABLE I: Cohesive energy of the anisotropice 2-D lattice.

λ DCM RSRG QMC27

0 -0.54890 -0.53966 -0.54882
0.6 -0.61094 -0.60260 -0.60958
1 -0.66972 -0.66615 -0.66944

1.2 -0.73961 -0.73072 -0.73920
2 -1.08329 -1.07849 -1.08220

III. REAL SPACE RENORMALIZATION
GROUP WITH EFFECTIVE INTERACTIONS

A. Method

The Real Space Renormalization Group proposed by
Wilson essentially consists in an iterative truncation of
the Hilbert space. The method proceeds through the def-
inition of blocks of N sites, periodisable fragments of the
periodic lattices and the research of the (lowest) eigen-
states of the Hamiltonian relative to these blocks. For a
block I, and the corresponding Hamiltonian HI

HIφK,I = EK,IφK,I . (14)

One shall retain a few (let say m) eigenstates of HI . Then
one will consider a block of blocks (1...I...J...N), and one
will approach the wave function for this superblock by
working in a truncated Hilbert space constituted of all
products of the m eigenstates kept for each block.

∏

I=1,N

φK,I , K = 1, m. (15)

Then the process can be repeated, till convergence. If the
blocks and the sets of selected eigenstates are properly
defined the problem at each iteration may keep its for-
mal structure, while the interactions between the super-
super... sites change along the iterations. One then
reaches in a certain number of steps a fixed point of the
problem.
This idea is extremely elegant. However the attempts to
use it as a practical numerical tool for the study of peri-
odic lattices (of either spins or electrons) were extremely
discouraging. And the method was abandoned, although
it gave birth to a deeply different formalism, namely
the Density Matrix Renormalization Group, which is
extremely performant, but limited to the treatment of
(quasi) 1-D systems.
The failure of the RSRG method is due to the simple
truncation of the Hilbert space and the total neglect
of the non-selected eigenstates of the blocks. Rather
than trying to treat the effect of the non selected states
in a 2nd-order perturbative approach,37 two of the au-
thors have suggested to define effective-interactions be-
tween adjacent blocks A and B by solving exactly the
Schrodinger equation for the AB dimer, and by mak-
ing use of the Bloch’s theory of effective Hamiltonians.
We shall not repeat here the formalism, given in ref.
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29, which leads to a modified RSRG formalism, called
RSRG-EI (EI = Effective Interactions). The first test
applications of the method were quite encouraging. We
simply make explicit hereafter the specification of the
method in its simplest version for the study of a square
spin lattice.
The method consists in considering a square (3×3) block
of 9 atoms. Its ground state is a doublet with Sz = ±1/2
and it is the only state kept hereafter. Let call a and ā
the Sz = 1/2 and Sz = −1/2 degenerate doublet ground
states of the block A. The block can therefore be seen as a
super-spin. In order to establish the effective interactions
between the ground states of adjacent blocks, one treats
exactly the 18 (3 × 6)-site superblock AB. One wants
to establish the effective energies of and interactions be-
tween the four products of ground state wave functions
which define a model space ab, ab̄, āb, āb̄. Diagonal-
izing the exact Hamiltonian for the AB superblock one
may identify the eigenstates Ψ+

T (Sz = 1), Ψ−
T (Sz = −1),

Ψ0
T (Sz = 0), Ψ+

S (Sz = 0) which have the largest projec-
tions on the model space, and their energies ET+ = ET− ,
ET 0 and ES0 . The three energies can be seen as the
eigenvalues of a new anisotropic Hamiltonian

H
(1)
AB = J

(1)
ABλ(1)(SZA

SZB
− 1/4)

+
1

2
J

(1)
AB(S+

AS−
B + S−

AS+
B )

+EA + EB + ∆EAB . (16)

Hence

ET+ = EA + EB + ∆EAB, (17)

ET 0 = −1

2
J (1)λ(1) +

1

2
J (1) + EA + EB + ∆EAB , (18)

ES0 = −1

2
J (1)λ(1) − 1

2
J (1) + EA + EB + ∆EAB. (19)

From which one obtains

J (1) = ES0 − ET 0 , (20)

J (1)λ(1) = 2ET+ − ET 0 − ES0 . (21)

These equations define a new anisotropic Heisenberg
Hamiltonian between blocks. The process may be re-
peated, treating a block of 9 blocks and a superblock of
18 blocks, till convergence is achieved.

B. Results

The qualitative key points in that problem are the facts
that

FIG. 4: RSRG study: anisotropic parameter Φ(1) after the
first iteration, as a function of the initial anisotropic param-
eter Φ (Eq. 20). The stairs illustrate the convergence of the
iterative procedure to the fixed points, Ising on the right side,
XY on the left side

(i) for λ = 1, λ(1) = 1, the problem remains isotropic

(ii) for λ > 1, λ(1) > λ, the anisotropy is increased in
the direction of an Ising problem

(iii) for λ < 1, λ(1) < λ, the anisotropy increases in the
opposite direction towards a pure XY problem.

For graphical purposes the anisotropic Hamiltonian may
been written as

H = J [(SzSz) sinΦ + (SxSx + SySy) cosΦ]. (22)

The isotropic case corresponds to Φ = −π/4, the XY
problem to Φ = π/2, the Ising situation to Φ = −π/2.
On sees that λ = tanΦ. Fig. 4 reports the evolution
of Φ(1) as a function of Φ. The iterative process, start-
ing from as new value Φ leads to a new anisotropy angle
Φ1 = Φ(1)(Φ). The second step leads to Φ2 = Φ(1)(Φ1),
etc... The qualitative nature of the phase transition ap-
pears dramatically. Starting from Φ > π/4, Φ(1) in-
creases rapidly. As seen from Fig. 3 the process con-
verges in a few steps to the Φn = π/2 fixed point, i.e,
to an Ising problem. Oppositely, starting from Φ < π/4,
Φ1 decreases. The fixed point on that side λ < 1 is
the pure XY problem (λ = −1, Φ = −π/4). But the
curve Φ(1) = f(Φ) is tangent to the line of slope one
Φ(1) = Φ for Φ = −π/2. Hence the fixed point is in prin-
ciple reached in an infinite number of steps.
The quantity J (1) is significantly lower than one for λ < 1
and tends to zero when λ tends to -1. It increases with λ
but remains finite in the region λ > 1. Fig. 3 reports the
RSRG-EI calculated cohesive energy. For λ = 1, as al-
ready reported elsewhere29 the RSRG-EI cohesive energy
is Ecoh = −0.666155J . This value is in slightly poorer
agreement with the best QMC value −0.66934J than the
previously reported DCM value, but it is obtained at a
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FIG. 5: Appearance of the gap in the λ > 1 phase, as cal-
culated from the RSRG-EI. The full line is proportional to
(λ2 − 1)1/2.

much lower cost. The underestimation of the cohesive en-
ergy by the RSRG-EI method is systematic but it never
exceeds 2% (cf Table I and Fig. 3). We have carefully
checked the existence of a discontinuity of the slopes of
the curve Ecoh = f(λ) around λ = 1. This discontinu-
ity clearly appears from the insert of Fig. 3. The slope
(∂E/∂λ)λ→1+ between λ = 1.02459 and λ = 1 is 0.32 in
QMC and 0.26 in RSRG, on the λ < 1 side the slope from
QMC is 0.175 (between λ = 0.97 and λ = 1), which the
slope from RSRG is 0.20 (between λ = 0.95 and λ = 1),
0.21 (between λ = 0.99 and λ = 1). Although weaker
than the interpolated estimates from QMC, the disconti-
nuity of the slope predicted from RSRG-EI is clear. The
existence of a discontinuity was not a priori evident since
the quantities J (1) and λ(1) are continuous functions of λ.
The discontinuity comes from the fact that the iterations
tend to different fixed points for λ > 1 and λ < 1.
Actually the method is also able to explain the absence
of a gap for λ < 1 and of the existence of a gap for λ > 1.
For λ < 1, since one must repeat an infinite number of
iterations with decreasing values of J (1), the lowest states
are degenerate. In the λ > 1 domain, the system will be
gapped since the process converges in a finite number of
steps, with finite values of J . Fig. 5 reports the calcu-
lated gap for λ slightly larger than 1. We have checked
the behaviors of the gap as a function of λ. Spin-wave
theory predicts that it should follow the law

∆E = 2(λ2 − 1)1/2. (23)

Previous numerical works21 have shown that the excita-
tion energies are significantly lower, by a factor close to
0.5. Fig. 5 have used an interpolation 0.86634(λ2−1)1/2

which fits well our calculated values.

IV. CONCLUSION

The present paper studies the behavior of a 2-D square
spin lattice obeying an anisotropic Heisenberg Hamilto-
nian. Since it presents a phase transition, this problem
can be seen as a convenient test to compare the abilities
of the methods available for the treatment of 2-D (or 3-D)
lattices. One may subdivide the methods in two groups.

– methods which rely on (or require the introduction
of) a simple zero order wave function. This wave
function may be perturbed, or considered as the ref-
erence function for a Coupled Cluster expansion (i.e
an exponential development of the wave operator).
In such a case different zero-order or reference wave
function will be used for the two different phases.
This choice of two distinct references may be seen
as forcing the phase transition and presents the risk
to impose artefactual discontinuities. The here em-
ployed Dressed Cluster Method only uses the refer-
ence function as a bath around a finite cluster, but
it is subject to the same criticism.

– prejudiceless methods which do not bias the treat-
ment by introducing reference wave functions.
Among them one may quote finite cluster exact
diagonalization, followed by extrapolations on the
cluster size. For 2-D systems extrapolations are
quite difficult to perform. Quantum Monte Carlo
calculations require both statistics and extrapola-
tion and the error bars may prevent a clear assess-
ment concerning the nature of the phase transition,
when for instance the change of the slope of the co-
hesive energy as a function of the internal parame-
ter is small. Recent progresses have reduced these
uncertainties.

The excellent agreement of the DCM results with the best
QMC calculations for λ = 1 gives confidence in the accu-
racy of the calculated dependence of the cohesive energy
on the anisotropy parameter and assesses the first-order
character of the phase transition.
The RSRG-EI treatment does not enable one to reach
such a numerical accuracy but it presents several advan-
tages

– it does not introduce the bias of a reference function

– it visualizes qualitatively the phase transition in
terms of a critical value of the parameter separating
two domains with their specific fixed points

– it offers a simple understanding of the gapless-
gapped character of the two phases.

The philosophy of the RSRG method is responsible for
this qualitative and pictorial advantage. The introduc-
tion of effective interactions adds a numerical improve-
ment to this conceptual tool. Of course, as shown for 1-
D lattices, the quantitative performance of the RSRG-EI
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treatment is much better when it is possible to extrap-
olate its results with respect to the size of the blocks.
This is not possible for the present time for 2-D lattices,
since the next size of a square block would be 25 (which
would require the exact treatment of a 50-site problem

for the superblock). But the accuracy of the results from
9-site blocks is surprisingly good and the elegance of the
method suggests to consider it as an excellent exploratory
tool.
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