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Abstract. We discuss the matrix model aspect of configurations saturating a fixed number of 

fermionic zero-modes. This number is independent of the rank of the gauge group and the instanton 

number. This will allow us to define a large-Nc limit of the embedding of K D-instantons in the 

matrix model and make contact with the leading term (the measure factor) of the supergravity 

computations of D-instanton effects. We show that the connection between these two approaches 

is made through the Abelian modes of the matrix variables. 
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1. Introduction 

 

Over the past four years some tremendous progress and insights about the non-perturbative and 

global behaviour of supersymmetric gauge theory, superstring theory and supergravity have 

appeared. All these advances are founded on a web of consistent cross-checked conjectures 

culminating with the idea of M-theory as the mother of all theories. Most of the impressive 

and exact non-perturbative results were derived by considering BPS saturated amplitudes. 

Due to the saturation of the fermionic zero-modes these terms are protected by some non- 

renormalization theorems and can be computed both in the perturbative and non-perturbative 

regimes. This is the case of the eight-fermion terms in the three-dimensional super-Yang–Mills 

theory [1], the D-instantons of the type IIb string theory [2], or the wrapped D1-brane around 

tori of dimensions smaller than five in the type I theory [3]. In these cases, the D-instantons 

contributions belong to a half-BPS multiplet of the theory, and they come from amplitudes 

where 16 or eight fermionic zero-modes, respectively, for the type IIb and type I theory, have 

to be soaked up. The surprising aspect of these results is that even in a vacuum containing K 
D-instantons it is only necessary to saturate the same fixed number of fermionic zero-modes, 

independently of K. This is because of the existence of threshold bound states of D0-branes 

and the action of T-duality which exchange K Dp-branes on top of each other singly wrapped 

around a (p + 1)-torus with one D(p    1)-brane wrapped K-times around a p-torus, and the 

fact that the presence of winding modes does not break supersymmetry†. 
In the context of the correspondence between the supergravity results and the CFT 

computation, this independence of fermionic zero-modes with respect to the instanton number 

becomes much more obscure. Let us consider, for example, the case of a vacuum containing 

K D3-branes: it was claimed in [4] and impressively strengthened by the result of [5] that 

† It should be noted that is not true for bound states of the D-particle and anti-D-particle. 
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the large-Nc limit of this theory is in correspondence with the four-dimensional super-Yang– 

Mills theory with gauge group SU(Nc) in the large-Nc ’t Hooft limit (Ncg2 = constant). 

This confirmation used a sector of the theory with a fixed number of fermionic zero-modes 

independently of Nc. The puzzle is that in the super-Yang–Mills case one would normally 

think that when the rank of the gauge group increases there are extra fermionic zero-modes 

and the result cannot match the supergravity ones. In fact, it was understood by [5] that an 

embedding of a configuration of K instantons in the SU(Nc) group has a fixed number of 

fermionic zero-modes independent of the number of instantons and the rank of the group. 

The main purpose of the present paper is to explain that in the context of matrix models, 

such a configuration of fermionic zero-modes can be realized, and can lead to a way of defining 

a large-Nc limit of the matrix model. 

In section 2, we will introduce the supergravity aspect of the D-instanton effects, and in 

section 3 we will introduce the matrix model that we will use in the following. Section 4 

contains a discussion of the dynamics of these models, emphasizing the importance of 

considering a gauge-invariant model. In section 5 we compute the partition function of 

the matrix model with various symmetries, and map these results to the supergravity results 

in section 6. Section 7 contains a discussion of this approach. Appendix A contains an 

explicit computation of the partition function of the supersymmetric matrix model with two 

real supercharges and appendix B summarizes our conventions for the Г matrices used in the 

text. 

 
2. The supergravity side 

 

The type IIb chiral version of the ten-dimensional supergravity is peculiar in several respects. 

First, being chiral with a maximum number of supersymmetries, with two sets of 16 real 

component supercharges of the same spacetime chirality, defined with respect to the projector 

(1 Г11)/2, in ten dimensions it has a richer moduli space than its non-chiral counterpart, the 

type IIa supergravity. The superspace formalism of this chiral supergravity theory was worked 

out in [6] and will be used here. The superspace formalism uses a supermanifold with ten even 

coordinates, xµ (µ = 0 , . . . ,  9), and 16 odd complex coordinates†, θα (α = 1 , . . . ,  16), and 

their complex conjugates (θα)∗ 
def 

θ α¯ , the whole set being packaged in zM 
def

(xµ,θα,θ α¯ ). At 

each point in the superspace there are some local coordinates related to the 1-form dzM by the 

vielbein 

dEA def MEA , 
 

and as for usual Riemann manifolds the vielbein are invertible, 

EM EB  = δB. 

The tangent space is described by the covering of the group SO(1, 9) U (1)B.  The U (1)B 
factor is a local phase transformation on the fermionic coordinates by 

θα → exp
  

1 iГ11ξ 
 
θα, θ α¯ → exp

 
− 1 iГ11ξ

 
θ α¯ . 

It was shown in [6] that this U (1)B factor is precisely the factor appearing in the coset space 

parametrization SU(1, 1)/U(1)B Sl(2, R)/U(1)B of this theory. The Sl(2, R) is a rigid 

transformation acting on the left of the fields and the U (1)B induced by the chiral nature of 

† These coordinates will be put in correspondence with the zero-modes of the matricial fermions (see section 6.2). 
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the theory is a local transformation acting on the right of the coset. As in [7] we parametrize 

this coset with the matrix 

def 1 ρei÷
 

 
 

 

 

ρ̄e−i÷ 

The Sl(2, R) group acts by a matrix multiplication on the left of this matrix and the scalar ρ 
transforms by a fractional linear transformation ρ       (aρ + b)/(cρ + d). The U (1)B acts on 

the right by 

 

 

with 

V → V 
eiξ 0 

0 e−iξ     , 

ei2ξ cρ  ̄+ d 
. 

cρ + d 

Using the supergravity equations of motion allows us to relate the field ρ to the Ramond 

scalar field C(0) and the dilaton and the string coupling constant gs = exp(φ) as 

ρ C(0) + 
i 

. 
gs 

The second special feature of this chiral theory resides in its peculiar point-like solitonic 

solution to the equations of supergravity. Despite the fact that this solution looks singular, 

because it is localized in spacetime, it belongs to the class of D-brane instantonic solutions 

[8]. The metric induced by the presence of N D-instantons is given (in Euclidean space) in 

the Einstein metric [9] by 

gs Nl8 
 
 

 

The presence of this D-instanton induces a correction of order αr3 = l6 to the effective 
action expressed in the Einstein frame as [2] 

1 
∫ 

l6 

where Λ is a complex chiral SO(9, 1) spinor which transforms under the UB(1) R-symmetry 

with charge 3 (see [10] for detailed expressions). Quantum effects induced by looping around 

an arbitrary number of D-instantons are given by the functions f (w,−w)(ρ, ρ¯). These functions 

are modular forms of Sl(2, Z) of indicated weight up to a phase [11] (γ ∈ Sl(2, Z)) 
  

cρ¯ + d
 w

 

They are connected to the modular function f (0,0) by repeated action of the covariant derivative 

D = (iρ2∂ρ + w/2) which maps a (q, p) modular form into a (q + 1,p − 1) form [10, 12]. The 

small-coupling expansion, gs → 0, of f (w,−w) reads 

 
(w,−w) 

1 + 2ζ(3) e−3φ/2 − 2 
 

 
 

2) eφ/2 + 
Σ
 GK,we , 

f = 
Г
  3 

+ w
   ζ(  

K=1 

where the first two terms have the form of string tree-level and 1-loop terms and K,w contains 

the charge-K D-instanton and anti-D-instanton terms. The instanton contribution to K,w has 

the asymptotic expansion in powers of Ke−φ, 

Gk,w  = µ(K)(4πKe−φ)−7/2
 
e2iπKρ SD  + e−2iπK ρ̄ SD 

 
. (2.2) 

2 

2 

  

g φ 

∞ 

ei÷ e−i÷ . 

E 
µν = δµν, e  = gs 1+ co 

r8 
. 

S ∼ 8 
s 

f (0,0)(ρ, ρ̄)R4  + f (12,−12)(ρ, ρ̄)Λ16 + · · ·  , (2.1) 

f (w,−w)(γ · ρ, γ · ρ¯) = f (w,−w)(ρ, ρ¯). 
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We will denote hereafter 

µ(K) = 
Σ 1 

 

 

 
(2.3) 

0<m|N 
m2

 

the measure factor, and the coefficients SD for the D-instantons and SD 

 

for the anti-D- 

instantons are given by 

 
SD = (4πKe−φ)w+4

 
 

w −w 

 √
2Г

 
− 1 − w

  
 

 
 

 
w − 2 

Σ (−1)p Г
 
p − w − 1

  

Г
 
p − w + 3 

 
 

   

The phase of these modular functions is compensated by those of the fields multiplying 

them in the action. These fields carry a tensorial structure which has a well defined U (1)B 
weight induced by the coset space structure of the theory [12]. As was discovered in [6, 7], 

all these terms can be packaged in a chiral superfield Ф(zM ) for the type IIb supergravity, 

satisfying the constraints 

DФ = 0, D4Ф = 0 = D̄ 4Ф. 

These constraints imply that this superfield is independent of (θα)∗ and is a function 

Ф(xµ − θ̄γ µθ , θ α), which can be expanded in terms of θ  and θ̄∗  = θ T Г0 as [6, 7] 

Ф = τo + Ф̂  = τ  − 2iθ̄ ∗λ −   1  Ĝ µνρ θ̄ ∗γ µνρ θ + · · · −   1  iRµσ ντ θ̄ ∗γ µνρ θ θ̄ ∗γ σ τ ρ θ + · · · (2.5) 

and the correction to the action can be obtained by picking the terms containing 16 powers of 
θ in the Taylor expansion of some unknown function of the chiral superfield Ф [12] 

S(3) = ls
−2 

∫ 

d10x d16θ det(Em)(F [Ф] + c.c.). 

The superfield Ф does not have a well defined U (1)B weight, because τ does not have a 

proper weight [13]. However, the fluctuations δτ around a classical value τo have weight +2 

like the other terms in Ф̂ †.  The superfield only depends on half of the fermionic coordinates. 

This is natural as it is related to the contribution of the D-instantons, which are half-BPS states. 

This welcome feature will enable us to find a correspondence to this field in the matrix model 

in section 6.2. We will now turn to an interpretation of the previous formulae in the matrix 

model setting. 

 
3. The matrix model 

 

The Dp-brane, and in particular the D-instantons (p          1), have their dynamics described 

by open strings attached on their worldsheet [8]; thus the low-energy excitations of N Dp- 

branes on top of each other are described by a dimensional reduction to the p + 1 dimension 

of the ten-dimensional super-Yang–Mills theory with gauge group U (N) [14] (see [15] for a 

comprehensive lecture on this subject). The ten-dimensional super-Yang–Mills theory has the 

Lagrangian 

S = 
 1  

∫ 

d10x Tr
 
− 1 F 2 + 1 iWT Г0ГµD  W

 
, 

 

† Pµ = ∂µФ with Pµ = −εαβ V α∂µV β has U(1)B weight +2.  The weights normalized as in [7] are half those of 
+ + 

[6, 13]. 

2 2 p≥1 1+  . (2.4) 

× 

p! 
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where the curvature field F = [D ,D ], the covariant derivative D def 
∂

 — i[A , ·], the 
 Hermitian connection µν  µ ν 

a 
µ =  µ µ 

Aµ AµTa and the fermion fields are 16-component Majorana–Weyl 
spinors of SO(1, 9) Hermitian matrices in the adjoint of the gauge group W WaTa. This 

theory is invariant under the supersymmetry transformation 

δ‹Aa  =  1 i‹̄ГµWa, δ‹ Wa  = − 1 ГµνF a  ‹, 

where ‹ is a Majorana–Weyl spinor. 

For later convenience, we rewrite the fields and the supersymmetry transformation by 
splitting the SU(N) and the Abelian U (1) part of the matrices: W 

def 
ψ + θ I, A def 

X
 + x I, 

= 

Fµν = Fµν + fµνI and 

δ1Xa  =  1 i‹̄Гµψa, δ1ψa  = − 1 ГµνF a  ‹, 

µ = µ µ 

for the SU(N) part and 

δ2xµ =  1 i‹̄Гµθ , δ2θ  = − 1 Гµνfµν‹, 
  

‹ 2 ‹ 4 

for the U (1) part. 

In the particular case of the D-instanton we obtain a zero-dimensional model (i.e. the 

variables no longer depend on any coordinates) called the IKKT matrix model [14, 16]. The 

Lagrangian reduces to 

S = 
 1 

Tr 

  
1 

Σ 
[X ,X ]2 + 1 ψ T Г0Гµ[X ,ψ]

 

, (3.1) 

δ1Xa  =  1 i‹̄Гµψa , δ1ψa  = − 1 ГµνF a  ‹, 

where ‹ is a Majorana–Weyl spinor. The model possesses an additional supersymmetry 

transformation which only involves the U (1) part of the fields 

δ2θ = ζ, δ2xµ = 1 iζ¯ Гµθ, (3.2) 

with ζ a Majorana–Weyl spinor.   As all the fields are in the adjoint of the group, the 

Abelian piece of the coordinates has disappeared in the previous action, but as we will see in 

section 6.2 this part still plays a role in the dynamics of the model. It should be noted that this 

supersymmetry transformation is a superspace translation for the coordinate zM . 
As this model gives a description of the low-energy excitation of the open string with end 

points fixed on the D-instantons, the gauge coupling of this model is fixed to be g2 = gs/l4. 

Two other models relevant to this paper are: (a) the dimensional reduction to the quantum 

mechanical model in 1 + 0 dimensions [17–19], known as the BFSS model after its revival by 
the paper [20], 

S = 
 1 

∫ 

dt Tr

 

− 
1 

(∂ Am)2 +
  i  

WT Г0∂ W 

+
  1 Σ  

[X  ,X ]2 +
    1  

ψ T Г0Гm[X  ψ ]

  

, (3.3) 
 

where the coupling constant is given by g2 = gsls ; and (b) the dimensional reduction to 1 + 1 
dimensions considered by [21], 

S =
 1 

∫ 

d2x Tr

 

− 
1 

F 2 − 
  1  

(D A )2 +
   i   

WT Г0ГaD W 

+
  1 Σ 

[X ,X ]2 +
    1  

ψ T Г0ГI [X ,ψ]

  

, (3.4) 
 

the coupling constant is given by g2 = gs(2πls)−2. 

s 

s 
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In order to stress the importance of the supersymmetry we will consider more generally 

the models deduced by dimensional reduction from the D      3, 4, 6 and 10 super-Yang– 

Mills theory. The amplitudes associated with these half-BPS contributions correspond to the 

vacuum expectation values of the same number of fermionic zero-modes as the non-broken 

supersymmetries. That is, 16 real fermions for D = 10, eight real fermions for D = 6 and 

four real fermions for D = 4. This product of fermionic zero-modes is the fermion number 

operator of the theory (−)F . So this amplitude is (a part of) the Witten index of the model. 

 
4. The dynamics of the models 

 

These matrix models all have in common a quartic bosonic potential VB       Tr[X, X]2 and 

a fermionic one VF Tr WT Г0Гµ[Xµ,W]. As the coordinates are Hermitian matrices, the 

potential VB is negative definite. The classical space of configurations is given by the vanishing 

of this potential VB    0     VF , and is described by the space parametrized by the eigenvalues 

of the matrices modulo permutations, so this is 

M = (R ) /SN , 

if we have d-matrix coordinates Xi (i       1 , . . . ,d )  in the adjoint of U (N) whose Weyl group 

is SN . The potential is composed of valleys along the direction in the Cartan subalgebra of 

the group with a harmonic-oscillator-like shape VB ω2y2 for the coordinates orthogonal to 

these directions. 

The description of this system in terms of harmonic oscillators shows that the spectrum of 

the purely bosonic theory is discrete (see [22] for a mathematical proof and [23] for numerical 

evidence). The physical argument given in [19], is that one chooses a flat direction by setting 

the coordinate Xd in the Cartan subalgebra of the group; then all transverse coordinates have a 

harmonic potential VB    Xd 2Y 2. The quantum model has a zero-point energy E0     Xd /2 

which grows linearly along the flat direction, preventing the wavefunction from extending to 

infinity along Xd and localizing it. It then follows that the spectrum is discrete. As was shown 

rigorously by de Wit et al in [19], the spectrum of the supersymmetric theory is continuous. 

This is due to the cancellation of the zero energy between the transverse fluctuations of the 

bosonic coordinates orthogonal to the Cartan directions and their fermionic partners. Their 

result showing that there is continuous spectrum, does not prevent the theory from having a 

discrete spectrum sitting in the middle of it. A non-zero value for the Witten index of the theory 

will show that. The computation of the index is complicated by the presence of the continuous 

spectrum and the flat directions which could lead to infrared divergences. However, as noticed 

from explicit computation [24–26], this is not the case. We recall briefly how to perform the 

computation of the Witten index in order to justify the infrared finiteness of the model we will 

consider later on. 

The Witten index of the U (N) supersymmetric quantum mechanical model in D 1 

dimensions (3.3 is the particular case D 10) is defined as the trace with insertion of the 

fermion counting operator 

I 
def lim tr 

 
(−)F e−βH 

 
. 

W = 
β→∞ 

It was shown by Yi [25] and Sethi and Stern [26], that the computation can be reduced to 

computing the bulk part 

I  (β) lim
  1 

dη [dx]D−1 tr  (  )F eiηACA  

e−βH  , 
β→0 Vol G 
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eff s 
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4g 

deficit 
dβ 
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D→ 
4π 2gsl5 

4 2 

B 2 
eff 

s s 

s 

 

and a deficit part 

I = 

∫ ∞ 

dβ
 d 

tr
 

(−)F e−βH 
 
 

 

which can be rewritten as 

Ideficit = − 

∫ ∞ 

dβ tr 
 
(−)F H e−βH 

  
= 

∫ 

{ρ+(E) − ρ (E)}. 
  

From this expression it is obvious that the non-zero value of the deficit term is given by the 

continuous part of the spectrum, as the discrete parts cancels by supersymmetry. The total 

index can be rewritten as 

IW = IW (0) + Ideficit. 

Following the above references, we rescale the field by 

η → β X0, Xm →  Xm, W → W. 

In the β → 0 limit it is possible to expand the trace over the bosonic coordinates using the heat 

kernel expansion [25, 26], and the bulk term can easily be rewritten as IW (0) = limβ→0 Z
(N)

 

with 
 

 
 

(N) 
[D→0] 

[D→0] 

 
  1  

[dX][dW] e−βS[D→0] (4.1) 
β(N2 −1)(D−2+N/2) 

where S[D→0] is the zero-dimensional matrix model action 

S[ 0] = Tr 
  

1 
 

Xµ, Xν
 2 

+ 1 WT Г0Гµ[Xµ,W]
}

, (4.2) 

obtained by dimensional reduction from the D-dimensional one. The upshot of expression (4.1) 

is that the overall power of β cancels due to identity of the bosonic transverse and the fermionic 

degrees of freedom, so the β 0 limit is well defined. In the previous path integral the 

integration over the fermion has to be done with periodic boundary condition as enforced by 

the insertion of the ( )F operator in the definition of the index†. In the final expression, we see 

that we have reduced the model to a zero-dimensional matrix model with an effective coupling 

constant given by g2    = 4π 2gsl5/β. 

Of course, in a rigorous computation along the lines of [25, 26] or [27], all the elements of 

the matrices belonging to the non-Cartan part of the group have to be included, but as we will 

see in the following, putting this model on a 2-torus and sending β to zero before computing 

the integrals gives the correct answer. We want to use the non-trivial structure of the orbifold 

limit of two-dimensional gauge field theory [21]. When taking this limit, the scaling of the 

fields is crucial, as the important contributions have to come from fixed points of this orbifold 

space [28]. In our case the relevant scaling can be understood as follows. 

We start from the zero-dimensional model (4.2) and we compactify the coordinates X0 

and X9 on a 2-torus. Rewriting those fields in a Fourier transform basis [29] FT (X0,D−1) = 
2πl2D0,D−1 gives 

S   = 
   1    

∫ 

d2σ Tr 
 
(2πl2)4F 2 + (2πl2)2(DXI )2 + [XI , XJ ]2

 
. 

 

† Hereafter, we call this contribution a partition function, but one should keep in mind that the fermions satisfy 

periodic boundary conditions. 

E>0 0 

0 

Z 
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eff 
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eff 
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→ 
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ĝ 
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YM s 

YM s 

[D→2] 2 
YM 

ab a a 

YM eff s 

 

As the limit β → 0 is the same as g2 →  ∞ in order to exhibit the non-trivial dynamics of 

this limit, we rescale the fields as 
 

rescaled 

∫ 
2    (2πl2)4 2 1 

 

 

2 I  2 eff 
 

I J 2 

SB = d σ 2 eff Tr F + 
4 

Tr(DX ) + 
4(2πl2)2 

Tr[X ,X ] . 
 

We can now consider the infrared limit (g2 → ∞). In this limit the gauge field decouples 

and we have to set the bosonic and fermionic potentials to zero. The existence of flat directions 

gives rise to a moduli space with an orbifold structure (RD−2)N /SN where the group of 

permutations SN is the Weyl group of U (N). This is a convenient way to separate the dynamics 

of these matrix models, which split naturally into the dynamics of two of the coordinates, the 

gauge field and an X9 coordinate for the 0 + 1 quantum mechanical models analysed in [19] 

or for the topological setting of [27]. 

Moreover, due to the supersymmetry of the model and the fact that we will subtract the 

zero-modes of the fields (see the definition of the measure of (5.1)), the computation will not 

suffer from any infrared divergences as the regulator cancels automatically between the D 2 

bosonic coordinates and the /2 fermionic ones†. This is intimately linked to the underlying 

gauge symmetry of the problem. A U (N) matrix model without the gauge symmetry has no 

reason to be free of infrared divergences. In the end, we will be left with a two-dimensional 

gauge field theory, as we will see in equation (5.5)‡. 

 
5. The quasi-classical evaluation of the partition function 

 

In order to perform the computation we put the previous matrix model on a two-dimensional 

torus, and adopt the language of the reduction to two dimensions of the ten-dimensional super- 

Yang–Mills theory. We will follow closely the notation and the logic of [30], except that the 

Yang–Mills coupling constant will be reintroduced. We will consider the generalized setting of 

the model deduced by dimensional reduction from the D 3, 4, 6 and 10 U (N) super-Yang– 

Mills theories. A subscript [D         d] will indicated the dimension D of the mother theory 

and the dimension d of the model under consideration. The computation will be done after 

having projected all the fields onto the Higgs branch, described by the symmetric orbifold space 

(RD−2)N / N , and the zero-size limit of the torus will be taken to return to the zero-dimensional 

model of equation (3.1). 

The partition function under study is 

 
Z(N) 

[D→2] 
(T , g) = 

∫ 

[DA][DX][DW] e−S[D→2][A,X,W]. (5.1) 
 

The action is that of the matrix string on a two-dimensional Minkowskian torus (3.4) 

S =  
  1   

∫ 

d2z Tr 
 
F 2  + 

 
D  XI 

 2  
+ iW̄ ГaD  W − [XI , XJ ]2 + W̄ ГI [XI , W]

 
, (5.2) 

 

with the coupling constant ĝ2 = g2  RT  = 4π 2gs l5RT /β.  T-duality relates the radii to the 

string coupling gs and the T-dual dilaton φr constant by RTgs = RT exp(φ) = exp(φr)l2; 
henceforth the gauge coupling is expressed as ĝ2 = 4π 2l7 exp(φ r)/β. Due to the invariance 

of the theory under area-preserving diffeomorphisms of the two-dimensional model, every 

quantity computed in this theory is a function only of the parameter RT ĝ2 = 4π 2l9 exp(2φr − 
 

† With the normalizations of [30], the contributions of the bosonic and fermionic Higgs fields cancel; this is, in 

particular, independent of the gauge coupling. 

‡ The finiteness of the matrix integral (4.1) for the U(2) case was shown by the explicit computations of [23–26]. 

s 

4g 
s 
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s = 

√ √ 

σ √   

¸ 
dτ  ϑ(τ) 

σ I 

ĝ 

YM 

YM 

N 

= { } 

ˆ → → 

(

ˆ = 

N ! 

s 

W(0) = T   

NRT 
, XI 

T   

NRT 

i ti i si 

, 

 

φ)/β 4π 2l9/(gsβ). In the second equality we used the invariance under area-preserving 

diffeomorphisms to set to zero the value of the T-dual dilaton φr†. This will be important when 

we make contact with the supergravity theory in section 6.2. The integration measure has the 

zero-modes deleted [30]: 

Tr 
¸
 

 

 

2 d2z Wα 
 

(0) 
Tr 

¸
 2  d2z XI 

 

ϑ(τ) = Tr 
R 

dσ Aσ (σ, τ), A(0) 
0 

mT 
0 

 

NRT 

[ ] = DAδ 
   

A(0) 

!

, [DX] = DX .
  

X(0) 
!
 

 
  DA , 

2 
, 

2
 

2π gˆYM 

. W(0) 
 

 
 

  

I 2π gˆYM 

[DW ] = DW α . 
YM 

The worldsheet coordinates are z = (σ, τ) ∈ [0, R] × [0,T ]. 
 

5.1. The ĝ2 → ∞ limit 

The limit ĝ2 → ∞ (corresponding to β  → 0) for the bulk term of the Witten index projects 

the computation on the Higgs branch of the model. In [30] the field configuration in the 

infrared limit of the model was worked out. In this limit all matrices f Da, XI , Wα are 

simultaneously diagonalizable with a unitary matrix V (σ, τ) such that 

f(σ, τ) = V −1(σ, τ)fD(σ, τ)V (σ, τ)  

where fD = diag {f1 , . . . ,  f }. We therefore have 

fD(R, τ ) = T̂ −1fD(0, τ )T̂ , fD(T , σ ) = Ŝ−1fD(0, σ )Ŝ 

where Ŝ  = V −1(R, τ )V (0, τ ) and T̂  = V −1(σ, T )V (σ, 0).  By construction, ŜT̂  = T̂ Ŝ, and 

the matrices Sˆ and Tˆ represent two commuting permutations, sˆ and tˆ, of the diagonal elements. 

The permutations are given explicitly as commuting elements s : i si and tˆ : i ti of the 
symmetric group SN 

 
T̂ −1fT̂

  
= f , 

 
Ŝ−1fŜ

  
= f . 

The saturation of the fermionic zero-modes restricts the computation to a one-component 

covering of the torus, and the permutations are given by 
 

sˆ = {i → i + m(mod N)}, t 
{i → i + 1(mod m)} if j = 0 

{i → i − j (mod N)} if j = 1 , . . . ,n  − 1. 

 
(5.3) 

 

The topological sectors of the partition function are classified by the permutations 
∫ 

[DA][DX][DW] → 
  1   Σ ∫ 

[DAD][DXD][DWD], 

sˆtˆ=tˆsˆ 

† This choice of unit corresponds to the limit RT → 0 and ls → 0 with l2/(RT ) kept fixed. 

2 α 

, δ 

α 

∫ 

= , 

= 
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Z 
m,n 

YM 

∫

|

 

= 
D 

n 

Σ 

= 

N = 
= 

        

YM N ! m,n m m,n 

Z[D→2](RT ĝYM) =  
T

 
m2 

δm,n 
exp − 

2ĝ2
 

YM m2 m,n 

= n 

α α̇ 

= 

m|N 

 

and the partition function after integration over the bosonic Higgs fields and the fermions can 

be written as 
 

(N) (RT ĝ2
 ) = 

(N − 1)!  Σ Σ 
δsusyZ = 

Σ 1 
δsusyZ 

 

 

. (5.4) 

The function δsusy is a function of the boundary conditions induced by the integration over 

the fermions, which will be discussed in the next subsection. It was shown in [30] that mn 
reduces to the partition function of a U (1) gauge theory defined on the torus of area NRT with 

periods (mT, j R) and (0, nR) because, having subtracted the zero-modes, supersymmetry 

ensures that the bosonic and fermionic determinants cancel exactly, with the result† 

 
(N) 2 1 Σ 1  

 

 

susy 
Σ E2

 
 

 

 
 

 
Decompactifying with the limit RT  → 0 and setting V 

def
(RT ) 

7 N 2  

Vol(SU (N)/Z 
 

) to be the 
2 N 

overall volume factor, the partition function is 

(N)   
2  

 7/2 
Σ 1   susy 

= V × RT gˆ δ . (5.6) 

The factor RT ĝ2
 

comes from the normalizations of the U (1) part of the matrices. 
 

5.2. Constraints from supersymmetry 

We have to compute the integral over the fermionic variables 

 

Z[A] mn 
b.c. 

[DWD] exp 
 

W̄ D i DWD
  

(5.7) 

with boundary conditions (5.3). To compute the integral over the fermions it is crucial to define 

the measure. The measure [  WD] is defined using the mode expansion of the Wi with respect 

to the kinetic operator [33]. We consider 

iDφn = λnφn W(σ, τ ) = 
Σ 

φn(σ, τ )an, W̄ (σ, τ ) = 
Σ 

φ†(σ, τ )bn. 

 
Hence 

[DWD] def 
. 

da 
 

 

n n 
 
 

db . 

In the case with N  = 16 real supercharges the kinetic operator splits as S t DSα + S t D̄ Sα̇ , with 

respect to the two fermionic Spin(9) representation of a Majorana–Weyl spinor W16 (Sα Sα˙ ). 
The index α runs over the 8s representation, and α̇  over the 8c representation of Spin(9); see 

[34] and appendix B for representations of the Clifford algebra. So the mode expansion for 

the lightcone fermions S is S n φn(σ, τ)an and all boundary conditions are satisfied. 

For the theories with 4, 8 real supercharges, such a chiral factorization is not allowed 
as the fermions only satisfy the Majorana condition. The kinetic operator for the case with 

N = 4 real supercharges reads 

t χα  iσ 3∂1χα + σ 2∂0χ̄ α̇    + t χ̄ α̇   iσ 3∂1χα + σ 2∂0χ̄ α̇   . 

† The fact that the U(N) partition function can be decomposed as a sum over U(1) partition functions with respect 

to SN -cycle decomposition over a torus of size extended by the length of the cycle, was known byIK Kostov and the 

author and appeared in [31]; this was discovered independently by [32]. 

n 

RT N YM E∈Z m|N 

m|N 

Z 

Z 

[D→2] 
mn=N j =0,...,n−1 

[m,n;j ] mn 

. (5.5) 

[D→0] 

n 
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α 

˙ 

Σ    
=

 

= = = 

YM 

= 

× T 

× T 

A 

Σ

=

 

n 

0 1 

1/N2 for   N = 4, 8   i.e. D = 4, 6 

= − 
28π 4

 
T2 

 

In the Higgs phase χα = diag(χl ) (l = 1 , . . . ,N )  the equations of motions read for each 

eigenvalue 

∂1χ1 − ∂0χ̄ 2̇ 
∂  χ 1̇

 
= 0, −∂1χ2 + ∂0χ̄ 1̇

  
= 0 

2 

1 ¯   − ∂0χ2 = 0, −∂1χ̄   + ∂0χ1 = 0. 

These equations imply that all fermions satisfy the Klein–Gordon equation (∂2 − ∂2)χ = 0, 

and due to the reality condition χα  = (χα)∗ and χ̄ α̇  = (χ̄ α̇ )∗ their mode expansion is 

χα e−nτ   an,α  e
−inσ  + an

∗
,α e

inσ   . 

n 

Therefore, only trivial boundary conditions in the σ direction are possible. This means that only 

the configuration with n 1 (i.e. S 1) and m N contribute to the partition function (5.6). 

From this analysis, the constraints from the integration over the fermions are summarized 
by 

δsusy = 

( 
n = 1, m = N when   N = 4, 8 

 

 
(5.8) 

m,n 

 

giving the final result 

mn = N when   N = 16, 

 

 
(N) 
[D→0] = V  × 

 
RT ĝ2

 

 7/2 
×

 

 

Σ

m|N 

 
1/m2 for   N = 16   i.e. D = 10. 

 

(5.9) 

The special case with two real super-charges (D 3) is treated independently in 

appendix A. 

 
6. Contact with threshold corrections 

 

6.1. The heterotic/type I threshold corrections 

There is another example where the matrix string setting is helpful to analyse the configuration 

of fermionic zero-modes, namely the case of the F4 and R4 terms in the effective action 

for the Spin(32)/Z2 type I theory. The contribution of the complete effective action for the 

type I string on R1,7 2 consists of perturbative and non-perturbative terms induced by the 

wrapped Euclidean† D1-brane on a 2-torus included in the d-torus‡. These contributions can 

be completely evaluated because they are all mapped together to the 1-loop amplitudes of the 

heterotic string on R1,7  2. The non-perturbative part on the type I side can be written in 
the compact form as [3, 37] 

(10)    ∞ 2iπKT 
 

inst V Σ e 
H

 

 

[OÂ](U ) + c.c. 

where O = 1+ · · ·  is a differential operator, whose action is induced by the non-holomorphic 
terms in the elliptic genus ˆ and gives rise to a finite number of higher-loop effects around the 

D-instanton. Here 

 1 

HK [Â](U ) =  
K

 

 
 

mn  K 
0≤j<n 

Â

  
j + mU 

 
 

† This wrapped D1-brane should be Euclidean, so a Wick rotation on the worldsheet of the previous two-dimensional 

model is necessary. The Majorana–Weyl fermions are now converted to complex Weyl fermions. See [35], for 

instance, for an explanation of how to handle this case. 

‡ While this paper was being proof read the preprint [36] appeared with some related comments. 

K=1 

Z 

I K 
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Σ
=

 

× 
= 

s 

aȧ 

  

2 

→ 

4     2  4    A(U) = t8 tr F + 
2932 η24 

+ η24  
− 2 

η24 
− 2 3 t8(tr F ) 

µ 
N N 

 

is the Hecke operator of rank K acting on the modular elliptic genus Â, whose gauge field part 

ˆ 4 1 
 

E3 Ê2E2 Ê2E4E6 7   2

 

2 2 

 

only will be needed for this discussion. The coefficient of the tr F 4 terms is given explicitly 

by 

(1) 
1 

. 

m|K 
m 

In this case the pertinent (T-dual) matrix model is the (8, 0) quantum mechanical model 

considered in [38–40] 
1 

S[10 1] = Tr 
  

1 (DXm)2 − 1 (DФ)2 + 1 
 
Xm, Xn

 2 
+ 1 i①D① 

 
     

→ 2g 2 
1 

 
 

2 4 2 

1 m 2 1 1 
 

   — 2 i①[Ф, ①] − 2 [Ф, X ] − 2 iλDλ − 2 iλ[Ф, λ] 

+ iXmγ m {①a , λȧ} + iχ I Dχ I  + iχ I Фχ I  + imIJ χI χJ 

The coordinates X and ① are in the symmetric representation of SO(N), while Ф, λ and the 

gauge connection A0 are in the antisymmetric representation.   χI  (I         1 , . . . ,  2N) are in 

the real representation (K, 2N) of SO(K)   SO(2N).  We now put the coordinate Ф on a 

circle of radius l2/R, and convert it into a second gauge connection component. We obtain a 

two-dimensional gauge model. This model presents several important differences relative to 

the one studied previously. Only the matrices X and ① have Abelian degrees of freedom. The 

gauge coordinates do not have any Abelian quantum numbers because the group is SO(K). 
Then the measure for the gauge connection is simply 

[DA] = DA. 

We assume† that we can project the theory onto the classical moduli space, M = (R1,7 × 

T 2)K /(SK/2 × ZK/2) [42–44], and decouple the gauge degree of freedom from the Higgs field 

dynamics. Since we are only interesting in the measure factor µ(K), the gauge field degrees 

of freedom are the only ones needed. A computation similar to the one given in section 5 gives 

µtype I(K) = HK (1). 

6.2. The D-instantons 

In order to make contact with D-instanton corrections of the action (2.1) of section 2, it is 

necessary to specify the normalizations of the matrix model since for the D-instanton these are 

different from those of the gauge theory model of section 5. We identify the U (1) part of the 

matrix coordinates with the superspace coordinates of section 2, 

x   = Tr 

   
Aµ  

  

, θ = Tr

 
W 

  

. 
 

† The saturation of the fermionic zero-modes does not appears as easily as for the model (5.1). And the infrared 

finiteness of the model is not obvious. Equivalently, the β    0 limit of the bulk term for the Witten index of this 

type Ir model is not as trivial as before. However, the existence of a sound limit is linked with the supersymmetry 
content of the model, and restricts the integral to be computed. A more rigorous derivation is a little more subtle and 

is deferred to a future publication [41]. 

K H 
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2 
− 

× 

  ∫ 

→ 

‹ 

s 

gs 

4 2 

YM 

s 

2 

 

Moreover, it is necessary to eliminate the volume of the gauge group, V ; then the partition 

function of the D-instanton matrix model is defined by 
 

(N) def 

∫ . 
  

Tr Xµ 
  .16

 
  

Tr Wα 
 
 

V ZD-ins = 

1 

dX0  
µ=1 

dXµ δ 
N 

 
α=1 

dWα δ 
N 

exp(−SD-ins), (6.1) 

SD-ins = Tr 
  

1 [Xµ, Xν]2 + 1 WT Гµ[Xµ,W]
 
 

 where gins = g0 = gs/l4. Using ĝ2
 = g0RT and RT gˆ 

= gs in the formulae of section 5, 
we obtain 

s YM YM 

(N) 
D-ins = µ(N) 

 
N e−φ

 −7/2 
. (6.2) 

It should be remarked that this formula is independent of the string scale ls . Depending on 

which component of the superfield (2.5) this D-instanton background couples to, a different 

power of N exp( φ) appears, namely w + 1 , according to (2.2). This can be derived by 

explaining how to couple the supergravity field to the previous matrix model. We have seen 

that the computation of the measure factor µ(N) can be reduced to the contribution from the 

U (1) part of the two-dimensional gauge field (see equation (5.5)), a feature particularly difficult 

to analyse in the zero-dimensional version of the model. The various supergravity states which 

appear in the decomposition of the superfield (2.5) are now seen as states of the Abelian part 

of the matrix model, and it is possible to construct them as eigenstates of the centre-of-mass 

Hamiltonian [45] by decomposing the representations of SO(9) under SO(7) U (1)†. 
It is natural to represent the external supergravity states by Wilson point observables [47] 

 
def 

WWilson point = 

 
 

adjoint 
exp  

 1  
 

ĝ2
 

d2z ٨ F 

 

. 
 

This operator is the only observable which decompactifies correctly in the limit R, T 0. 

We promote the U (1) part of this curvature to a superfield FU(1)(xµ,θα) for the Abelian 

supersymmetry transformation (3.2) and identify the superfield Ф of (2.5) with l4 ٨ FU(1) = 
Ф.   We assign U (1)B weight + 2   to the supercharges associated with the supersymmetry 
transformations (3.2) and weight − 1 to the supercharges associated with the transformations 

 

δ1 of the SU(N) 
2 

part of the coordinates. Units are as before: the supergravity coordinates X 
have dimension l2 times the gauge field connection ones. The coupling of the matrix states 

with the supergravity external states is given by insertions of 
 

WWilson point = N exp 

 
  1 

Ф + c.c.

  

. (6.3) 
 

The term with U (1)B-weight w is now given by a correlation of w + 4 insertions of the operator 

WWilson point where we pick the 16-θ s term. The gauge symmetry fixes the power of the string 

coupling constant in (6.3) in such a way that the 16-θ s term is proportional to (N/gs)w+4, 

which multiplies (6.2). This is exactly what is needed to reproduce the result of (2.2). 

 
7. Discussion 

 

7.1. The large-Nc limit 

The conjecture about the equivalence between the supergravity theory and the super-conformal 

Yang–Mills theory on the boundary space relies heavily on the large-Nc limit on the Yang– 

Mills side. Here we have only discussed finite-Nc computations but we can see from these 

† See [46] for a clear lecture on the subject. 

Σ 

9 

Z 

Tr 

gins 

1 
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g 

c 

c ∝ 

    

YM 

gs 
K×K 4 µ ν 2 µ 

D-ins c D-ins c 

 

that a large-Nc limit can be defined. The guideline for this is that we have to keep a fixed 

number of fermionic zero-modes irrespective of the rank of the gauge group. If we consider a 

configuration of K long strings, restricted to join forming long strings of size a multiple of Nc, 

but not to split, all the dynamics is embedded in a U (NcK) group. From the previous analysis, 

of the zero-dimensional model for the D-instantons and the computation of section 6.2, we 

deduce that the measure factor for the interactions is µ(K), and the factor of Nc appears as an 

overall power. It is now safe to take the large-Nc limit keeping K finite. 
If we start from a configuration of fields decomposed as A def 

A ⊗ I
 for a U (N K) 

 model, the action  gets an overall NcK =   K Nc c 

SD-ins 

SD-ins
.
Nc K  

= Nc SD-ins
.
K 

 
 

Nc factor, so for such a field configuration 

 

 

 
N l 1 2 1  T µ 

  
= Tr [X  ,X ]  +  W  Г [X  ,W] (7.1) 

and since we do not obtain any extra factor of Nc from the measure, it follows that 

Z(NcK) = N −7/2Z(K) = N −7/2µ(K)(Ke−φ)−7/2. (7.2) 

The Wilson point observables are now given by 

 
WWilson point = K exp 

 
 1 

Ф + c.c.

  

; 
s 

 

because the interaction occurs only between long strings of length which is a multiple of Nc, 

we do not obtain any extra power of Nc by inserting them: 

(WWilson  point )w+4     = N1/2(1/Nc)4µ(K)(Ke−φ)−7/2+w+4. (7.3) 

This means that we can take a large-Nc limit, with the instanton number K fixed, in a well 

defined way. This splitting of the fields means that we restrict the integration in the matrix 

model to occur only between long strings with length at least Nc. This can be made much more 

rigorous by embedding a U (K) instanton constructed by Giddings, Verlinde and Hacquebord 

[48, 49], tensored with the diagonal matrices doing cycles of length Nc along the lines of 

[50]†. Finally, the scaling (7.1) shows that the combination Ncαr2 appears naturally, as a 

reminiscence of the scaling αr−1 N 1/2 of the AdS/CFT correspondence [4]. The overall 

power of αr in (7.2) is not correct, due to our inability to derive the relative normalization with 

respect to the kinetic Einstein–Hilbert term of the supergravity theory. 

 
7.2. D-instantons loop expansion 

That we were not able to obtain the full expansion of the modular form (2.2) and (2.4) from 

our matrix model analysis is certainly due to the fact that we are only getting the physics of 

the linearized version of the supergravity theory, which gives only the dominant term in the 

instantons expansion. This is not surprising since the Sl(2, Z) symmetry of the type IIb theory 

is not explicit in the model. It may be possible to understand how this symmetry can appear 

along the lines of [13] by considering the constraints from the U (1)B weight of the fields. 

Moreover, it would certainly be worth analysing how much information we can obtain about 

these αr3 corrections by deforming the superspace analysis. We hope to return to this problem 

in a future publication. 

†  This configuration smoothes the gauge interactions out of the infrared limit at finite ĝ2     . 

c s 
4 
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Appendix A. The N = 2 real supercharges case 

For the case of 2 real supercharges the two-dimensional model (5.2) is composed of a 

gauge field Aσ,τ and one bosonic Higgs X, and its real bispinor partner. The only potential is 

the one induced by the covariant derivative so it will not be necessary in that case to take the 

infrared limit of the model. The measures are defined as in section 5. 

The field X(σ, τ) is conjugate to an element in the Cartan subalgebra of U (N) 

X(σ, τ) = V −1(σ, τ)XD(σ, τ)V (σ, τ); 

likewise for the fermion due to spacetime supersymmetry 

W(σ, τ) = V −1(σ, τ)WD(σ, τ)V (σ, τ). 

Using the gauge transform 

Aα(σ, τ ) → V −1(σ, τ )  Âα (σ, τ ) + ∂α  V (σ, τ ), 

we can now integrate the diagonalized Higgs fields. Once again, the determinants (without 

the zero-modes) cancel due to supersymmetry, leaving just a constraint on the gauge field 

configurations from the equations of motion of the fermions 

 

Z(N) 
= 

∫ 

[DÂ] δsusy exp

 

−(1/4ĝ2
 ) 

∫ 

F 2
 

. 
 

The equations of motion for the fermions reads 

/ ∂WD + [Â, WD] = 0. (A.1) 

Because the fermions are in the Cartan torus the group indices of the connection in [Âα , WD] 

can be restricted to the orthogonal (with respect to the Cartan metric) complementary, n, of 

the Cartan subalgebra of u(N), [Ân , WD].  Moreover, [An , WD] belongs to n, so from (A.1) 

we deduce that 
α α 

 
 

/ ∂WD  = 0, [A/ ˆn, WD] = 0. 

The second equation implies that Ân   =  0.  Henceforth, the configurations of the fields are 

classified as before (see equation (5.4) and section 5.2) with the result 
1 

(N) 
[3→0] = V  × 

 
RT ĝ2

 
7/2 . (A.2) 

N 2 
Z 
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1   0 i 0 0 −1 

 

=

 

⊕ 

7 

= 1 ⊗ 1 ⊗ 1 ⊗ σ3 = diag(1 , −1 ), Г = aa 

µ 

 

Appendix B. Representation of the real Clifford algebra 
 

We list the d × d irreducible representations of the real Clifford algebras. The spinor are 

chosen real, ψ = ψ ∗, the charge conjugation matrix is C = Г0 and (Гµ)∗ = Гµ, 

{Г  , Гν} = 2gµν (µ, ν) ∈ {1, 2 , . . . ,  D}2, sign (g) = (−1, +1 , . . . ,  +1). 

The Pauli matrices are 

σ1 = 

    
0 1 

  

σ2 = 

    
0 −i 

  

σ3 = 

    
1 0

 

 

and we define ‹ = iσ2. 

B.1. N = 2, d = 3 

Г0 = ‹, Г1 = σ3, Г2 = σ1. 

B.2. N = 4, d = 4 

The basis used by [34] is 

Г0 0 σ3 

−σ3 0 

  

= σ3 ⊗ ‹, Г1 = −1 ⊗ σ1, 

Г2 = −‹ ⊗ ‹, Г3 = 1 ⊗ σ3, Г5 = −iσ1 ⊗ ‹. 

B.3. N = 16, d = 16 

We choose a basis well adapted for the 8s 8c decomposition of the representations of Spin(9). 

All gamma matrices are 16-dimensional square matrices, 

 
9 8 8 i 0 γ i

˙ 

 
γ

b˙b 
0 

In this basis there is no Г0 matrix. The 8 × 8 γ i matrices are defined by 

γ 1 = ‹ ⊗ 1 ⊗ 1, γ 2 = σ3 ⊗ ‹ ⊗ σ3, γ 3 = σ1 ⊗ σ3 ⊗ ‹, γ 4 = σ3 ⊗ ‹ ⊗ σ1 

γ 5 = 1 ⊗ ‹ ⊗ 1, γ 6 = σ3 ⊗ 1 ⊗ ‹, γ   = 1 ⊗ σ1 
8 

(B.1) 
⊗ ‹, γ = 1 ⊗ 1 ⊗ 1. 

We have Гi = γ i ⊗ ‹ for i = 1 , . . . ,  7 and Г8 = γ 8 ⊗ σ1. The full 32-dimensional gamma 

matrices are obtained by Гµ = Гµ ⊗ σ1. 
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