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1 Introduction

One of the main goals of this article is to present a somewhat general framework

for the quantization of classical observables on a cotangent bundle which are poly-

nomials at most cubic in momenta. This approach enables us to investigate the

quantization of classically Poisson-commuting observables, and hence to tackle the

problem of quantum integrability for a reasonably large class of dynamical systems.

What should actually be the definition of quantum integrability is a long stand-

ing issue, see, e.g., [29]. The point of view espoused in this paper is the following.

Start with a complete set of independent Poisson-commuting classical observables,

and use some quantization rule to get a corresponding set of quantum observables;

if these operators appear to be still in involution with respect to the commutator,

the system will be called integrable at the quantum level.

Our work can be considered as a sequel to earlier and pioneering contributions

[11, 4, 5, 18, 27] that provide worked examples of persistence of integrability from the

classical to the quantum regime. The general approach we deal with in this paper

helps us to highlight the general structure of quantum corrections and to show that

the latter actually vanish in most, yet not all, interesting examples.

Returning to the general issue of quantization, let us mention that our choice

of quantization procedure, which we might call “minimal”, doesn’t stem from first

principles, e.g., from invariance or equivariance requirements involving some spe-

cific symmetry. Although this “minimal” quantization only applies to low degree

polynomials on cotangent bundles, it has the virtue of leading automatically to the

simplest symmetric operators that guarantee quantum integrability in many cases.

In order to provide the explicit form of the quantization scheme, hence of the quan-

tum corrections, we need a symmetric linear connection be given on the base of our

cotangent bundle. In most examples where a (pseudo-)Riemannian metric is con-

sidered from the outset, this connection will naturally be chosen as the Levi-Civita

connection.

To exemplify our construction, we consider a number of examples of classical

integrable systems together with their quantization. For instance, our approach for

dealing with quantum integrability in somewhat general terms allowed us to deduce

the quantum integrability of the hamiltonian flow for the Kerr-Newmann-de Sitter
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(KNS) solution of the Einstein-Maxwell equations with a cosmological constant first

discovered by Carter [9, 10, 11]. Also does our quantization scheme leads us to an

independent proof of the quantum integrability for Stäckel systems originally due

to Benenti, Chanu and Rastelli [4, 5].

The paper is organised as follows.

In Section 2 we gather the definitions of the Schouten bracket of symmetric

contravariant tensor fields on configuration space, M . We make use of Souriau’s

procedure to present, in a manifestly gauge invariant fashion, the minimal coupling

to an external electromagnetic field; this enables us to provide a geometric definition

of the so called Schouten-Maxwell bracket. The related definitions of Killing and

Killing-Maxwell tensors follow naturally and will be used throughout the rest of the

paper. We recall the basics of classical integrable systems, with emphasis on the

Stäckel systems. We give, en passant, a proof that the Jacobi system on the ellipsoid,

even allowing for an extra harmonic potential, is locally of the Stäckel type; this

extends previous work of Benenti [3] related to the geodesic flow of the ellipsoid.

Similarly, we show that the Neumann system is, also locally Stäckel. A number of

additional examples, not of Stäckel type, e.g., the Di Pirro system, and the geodesic

flow on various (pseudo-)Riemannian manifolds such as the Kerr-Newmann-de Sitter

solution and the Multi-Centre solution are also considered.

We introduce, in Section 3, a specific “minimal” quantization scheme for ob-

servables at most cubic in momenta on the cotangent bundle T ∗M , extending a

previous proposal [11]. The computation of the commutators of quantum observ-

ables is carried out and yields explicit expressions for quantum corrections. We then

provide the detailed analysis of quantum integrability for a wide class of examples

within the above list.

The concluding section includes a discussion and brings together several remarks

about the status of the “minimal” quantization that has been abstracted from the

various examples dealt with in this paper. It also opens some prospects for future

investigations related to quantum integrability in the spirit of this work.

Acknowledgements: We are indebted to Daniel Bennequin and Valentin

Ovsienko for most enlightening remarks and suggestions, and to Brandon Carter

for fruitful correspondence.
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2 Classical integrable systems

2.1 Killing tensors

Let us start with the definition of the Schouten bracket of two polynomial func-

tions on the cotangent bundle (T ∗M,ω = dξi ∧ dxi) of a smooth manifold M . Let

P = P i1...ıkξi1 . . . ξik and Q = Qi1...ıℓξi1 . . . ξiℓ be two such homogeneous polynomials

of degree k and ℓ respectively; we naturally identify these polynomials with the

corresponding symmetric contravariant tensor fields P ♯ = P i1...ık∂i1 ⊗ · · · ⊗ ∂ik and

Q♯ = Qi1...ıℓ∂i1 ⊗ · · · ⊗ ∂iℓ .

The Schouten bracket [P ♯, Q♯]S of the two contravariant symmetric tensors P ♯

and Q♯ (of degree k and ℓ respectively) is the contravariant symmetric (k + ℓ− 1)-

tensor corresponding to the Poisson bracket of P and Q, namely

[P ♯, Q♯]S = {P,Q}♯. (2.1)

Using the the Poisson bracket {P,Q} = ∂ξi
P∂iQ−∂ξi

Q∂iP , and (2.1), we readily

get the local expression of the Schouten bracket of P ♯ and Q♯. If the manifold M is

endowed with a symmetric connection ∇, the latter can be written as1

[P ♯, Q♯]
i1...ik+ℓ−1

S = k P i(i1...ik−1∇iQ
ik ...ik+ℓ−1) − ℓQi(i1...iℓ−1∇iP

iℓ...ik+ℓ−1). (2.2)

If M is, in addition, equipped with a (pseudo-)Riemannian metric, g, we denote

by

H = 1

2
gijξiξj (2.3)

the Hamiltonian function associated with this structure. The Hamiltonian flow

associated with H is nothing but the geodesic flow on T ∗M .

A symmetric tensor field P ♯ of degree k satisfying {H,P} = 0 is called a Killing

(or Killing-Stäckel) tensor; using now the Levi-Civita connection ∇ in (2.2), this

condition reads

∇(iP i1...ik) = 0. (2.4)

Remark 2.1. If the polynomials are inhomogeneous, e.g., P = P ij
2 ξiξj + P0 and

Q = Qij
2 ξiξj + Q0, and if P ♯ and Q♯ stand for the corresponding inhomogeneous

1In this article the round (resp. square) brackets will denote symmetrization (resp. skew-
symmetrization) with the appropriate combinatorial factor.
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tensors, then (2.1) yields

[P ♯, Q♯]S = [P ♯
2 , Q

♯
2]

ijk
S ∂i ⊗ ∂j ⊗ ∂k + 2(P ij

2 ∂iQ0 −Qij
2 ∂iP0)∂j (2.5)

If Q = 1

2
gijξiξj + V , then the condition [Q♯, P ♯]S = 0 is equivalent to

∇(i
P

jk)
2 = 0, & 1

2
gij∂jP0 = P ij

2 ∂jV. (2.6)

2.2 Killing-Maxwell tensors

2.2.1 Souriau’s coupling

In the presence of an electromagnetic field, F , Souriau [26] has proposed to replace

the canonical symplectic structure, ω, of T ∗M by the twisted symplectic structure

ωF = dξi ∧ dxi + 1

2
Fijdx

i ∧ dxj . The (gauge-invariant) Poisson bivector now reads

πF = ∂ξi
∧ ∂i − 1

2
Fij ∂ξi

∧ ∂ξj
.

The Poisson bracket of two observables P,Q of T ∗M is now

{P,Q}F = πF (dP, dQ) = ∂ξi
P∂iQ− ∂ξi

Q∂iP − Fij ∂ξi
P ∧ ∂ξj

Q, (2.7)

and the Schouten-Maxwell bracket of two polynomials P and Q is then defined by

[P ♯, Q♯]S,F = {P,Q}♯
F .

If the manifoldM is endowed with a symmetric connection ∇, the Schouten-Maxwell

bracket takes on the following form

[P ♯, Q♯]S,F = [P ♯, Q♯]
i1...ik+ℓ−1

S ∂i1 ⊗ · · · ⊗ ∂ik+ℓ−1

−kℓ FijP
i(i1...ik−1 Qik ...ik+ℓ−2)j∂i1 ⊗ · · · ⊗ ∂ik+ℓ−2

(2.8)

with the expression (2.2) of the Schouten bracket [·, ·]S.

Again, if the manifold M is endowed with a metric g, the Hamiltonian vector

field on (T ∗M,ωF ) for the Hamiltonian H given by (2.3) yields the the Lorentz

equations of motions for a particle moving on (M, g) under the influence of an

external electromagnetic field F .

A symmetric tensor field P ♯ of degree k on (M, g) is now called a Killing-Maxwell

tensor if {H,P}F = 0. The Killing-Maxwell equations then read, using (2.8),

∇(iP i1...ik) = 0, & P i(i1...ik−1 F
ik)
i = 0 (2.9)
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where F j
i = gjmFmi, in accordance with previous results [11] obtained in a slightly

different standpoint.

The conditions (2.9) are of special importance for proving the classical and

quantum integrability of the equations of motion of a charged test particle in the

KNS background.

2.2.2 Standard electromagnetic coupling

A more traditional, though equivalent, means to deal with the coupling to an elec-

tromagnetic field, F = dA (locally), is to keep the canonical 1-form, α = ξidx
i,

on T ∗M unchanged, hence to work with the original Poisson bracket {·, ·}, but to

replace the Hamiltonian (2.3) by

H̃ = 1

2
gij(ξi −Ai)(ξj − Aj) (2.10)

where the tilde makes it clear that the expressions to consider are actually polyno-

mials in the variables ξi − Ai, for i = 1, . . . , n; for example

P̃ = P i1...ik(ξi1 − Ai1) . . . (ξik − Aik). (2.11)

The equations of motion given by the Hamiltonian vector field for the Hamil-

tonian (2.10) on (T ∗M, dα) are, again, the Lorentz equations of motion.

The Schouten-Maxwell brackets and Schouten brackets for the electromagnetic

coupling are related as follows via the corresponding Poisson brackets, viz

{P,Q}F = {P̃ , Q̃}.

In this framework, a Killing-Maxwell tensor, P ♯, of degree k on (M, g) is defined

by the equation {H̃, P̃} = 0. The resulting constraints are, again, given by (2.9).

From now on, and in order to simplify the notation, we will omit the ♯-superscript

and use the same symbol for symmetric contravariant tensors and the corresponding

polynomial functions on T ∗M .

2.3 General definition of classical integrability

Let us recall that a dynamical system (M, ω,H) is (Liouville) integrable if there

exist n = 1

2
dimM independent Poisson-commuting functions P1, . . . , Pn ∈ C∞(M)
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— that is dP1 ∧ · · · ∧ dPn 6= 0 and {Pk, Pℓ} = 0 for all k, ℓ = 1, . . . , n — such that

P1 = H .

We will, in the sequel, confine considerations to the case of cotangent bundles,

(M = T ∗M,ω = dθ) where θ is the canonical 1-form, and of polynomial functions,

P1, . . . , Pn, on T ∗M , that is to the case of n Schouten-commuting Killing tensors.

Moreover, all examples that we will consider will be given by polynomials of degree

two or three.

2.4 The Stäckel systems

These systems on (T ∗M,ω = dξi ∧ dxi) are governed by the Hamiltonians

H =

n∑

i=1

ai(x)
(

1

2
ξ2
i + fi(x

i)
)

(2.12)

where the i-th function fi depends on the coordinate xi only, and the functions ai

are defined as follows. Let B denote a GL(n,R)-valued function defined on M and

such that B(x) = (B1(x
1)B2(x

2) . . .Bn(xn)) where the i-th column Bi(x
i) depends

on xi only (i = 1, . . . , n); such a matrix will be called a Stäckel matrix. Then take

a(x) =



a1(x)

...
an(x)




to be the first column A1(x) of the matrix A(x) = B(x)−1.

The integrability of such a system follows from the existence of n quadratic

polynomials

Iℓ =

n∑

i=1

Ai
ℓ(x)

(
1

2
ξ2
i + fi

)
, ℓ = 1, . . . , n, H = I1. (2.13)

We call Stäckel potential every function of the form

Uℓ(x) =
n∑

i=1

Ai
ℓ(x)fi(x

i), ℓ = 1, . . . , n; (2.14)

the potential appearing in the Hamiltonian is just U1.
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One can check (see, e.g., [23], p. 101) that the n independent quantities Iℓ are

such that

{Iℓ, Im} =
n∑

s,t=1

(As
ℓ ∂sA

t
m − As

m ∂sA
t
ℓ)ξs

(
1

2
ξ2
t + ft

)
, ℓ 6= m.

The relation A = B−1, gives the useful identity 2

∂kA
i
j = −Ci

k A
k
j , Ci

k =

n∑

s=1

Ai
s

dBs
k

dxk
, (2.15)

which implies

As
ℓ ∂sA

t
m − As

m ∂sA
t
ℓ = 0, ℓ 6= m, s, t = 1, . . . , n (2.16)

and therefore the so defined Stäckel systems are classically integrable.

Although these systems constitute quite a large class of integrable systems, they

do not exhaust the full class. A simple example of a non-Stäckel integrable system

was produced by Di Pirro (see Section 2.9).

2.5 The Jacobi integrable system on the ellipsoid

Let E ⊂ Rn+1 be the n-dimensional ellipsoid defined by the equation Q0(y, y) = 1

where we define, for y, z ∈ Rn+1,

Qλ(y, z) =
n∑

α=0

yαzα

aα − λ
, (2.17)

with 0 < a0 < a1 < . . . < an; the equations Qλ(y, y) = 1 define a family of confocal

quadrics.

It has been proved by Jacobi (in the case n = 2) that the differential equations

governing the geodetic motions on the ellipsoid, E , form an integrable system. The

same remains true if a quadratic potential is admitted (see [22]). The Hamiltonian

of the system, prior to reduction, reads

H(p, y) =
1

2

n∑

α=0

p2
α +

a

2

n∑

α=0

y2
α (2.18)

2The Einstein summation convention is not used.
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where p, y ∈ Rn+1 and a is some real parameter.

Moser has shown [21] that the following polynomial functions

Fα(p, y) = p2
α + ay2

α +
∑

β 6=α

(pαyβ − pβyα)2

aα − aβ
with α = 0, 1, . . . , n, (2.19)

are in involution on (T ∗Rn+1,
∑n

α=0 dpα ∧ dyα). Those will generate the commuting

first integrals of the Jacobi dynamical system on the cotangent bundle T ∗E of the

ellipsoid.

Our goal is to deduce from the knowledge of (2.19) the independent quantities

in involution I1, . . . , In on (T ∗E , dξi ∧ dxi) from the symplectic embedding

ι : T ∗E →֒ T ∗Rn+1

given by Z1(p, y) = Q0(y, y)− 1 = 0 and Z2(p, y) = Q0(p, y) = 0.

Proposition 2.2. The Poisson brackets of the restrictions Fα|T ∗E = Fα ◦ ι of the

functions (2.19) Poisson-commute on T ∗E .

Proof. We get, using Dirac brackets,

{Fα|T ∗E , Fβ|T ∗E} = {Fα, Fβ}|T ∗E

−
1

{Z1, Z2}
[{Z1, Fα}{Z2, Fβ} − {Z1, Fβ}{Z2, Fα}] |T ∗E

(2.20)

for second-class constraints. Now, the denominator {Z1, Z2} = −2
∑n

α=0 (yα/aα)2

doesn’t vanish while {Z1, Fα} = 4(pαyα/aα)Z1 − 4(y2
α/aα)Z2 is zero on T ∗E , for all

α = 0, ..., n. The fact that {Fα, Fβ} = 0 completes the proof.

The reduced Hamiltonian for the Jacobi system on the ellipsoid E is plainly

H =
1

2

n∑

α=0

(
p2

α + ay2
α

)∣∣∣
T ∗E

=
1

2

n∑

α=0

Fα

∣∣∣
T ∗E

. (2.21)

In order to provide explicit expressions for the function in involution I1, . . . , In,

we resort to Jacobi ellipsoidal coordinates x1, . . . , xn on E . Those are defined by

Qλ(y, y) = 1 −
λU(λ)

V (λ)
(2.22)
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where

U(λ) =
n∏

i=1

(λ− xi) and V (λ) =
n∏

α=0

(λ− aα)

and are such that a0 < x1 < a1 < x2 < . . . < xn < an. The induced metric,

g =
∑n

i,j=1 gij(x)dx
idxj , of the ellipsoid E is given by

gij(x) =
1

4

n∑

α=0

y2
α

(aα − xi)(aα − xj)

and retains the form [21]

g =
n∑

i=1

gi(x)(dx
i)2 where gi(x) = −

xi

4

U ′(xi)

V (xi)
(2.23)

which is actually Riemannian because of the previous inequalities. We put for

convenience gi(x) = 1/gi(x).

We have already found the local expressions yα(x) via the formula

y2
α = aα

n∏

i=1

(aα − xi)

∏

β 6=α

(aα − aβ)
(2.24)

and then obtain the constrained coordinate functions

pα(ξ, x) = − 1

2
yα

n∑

i=1

gi(x)ξi
(aα − xi)

(2.25)

given by the induced canonical 1-form ξi dx
i = ι∗ (pαdyα).

The Hamiltonian (2.21) on (T ∗E , dξi ∧ dxi) is found to be

H =
1

2

n∑

i=1

gi(x)ξ2
i +

a

2

[
n∑

α=0

aα −
n∑

i=1

xi

]
. (2.26)

The potential term is obtained from the large λ behaviour

Qλ(y, y) ∼
1

λ

n∑

α=0

y2
α +

1

λ2

n∑

α=0

aαy
2
α + · · ·

which can be computed using relation (2.22). One gets

Qλ(y, y) ∼
1

λ

[
n∑

α=0

aα −
n∑

i=1

xi

]
+ · · ·

One can relate the conserved quantities (2.19) to their reduced expressions

on T ∗E , by computing, using (2.25) and (2.24), the expression of Fα|T ∗E . One gets
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Proposition 2.3. The Moser system (Fα|T ∗E)α=0,...,n retains the following expres-

sion

Fα|T ∗E =
aαGaα

(ξ, x)∏

β 6=α

(aα − aβ)

where

Gλ(ξ, x) =

n∑

i=1

gi(x)
∏

j 6=i

(λ− xj)ξ2
i + a

n∏

i=1

(λ− xi). (2.27)

It is useful to introduce the notation σi
k(x) for the symmetric functions of order

k = 0, 1, . . . , n−1 of the variables (x1, . . . , xn), with the exclusion of index i, namely

∏

j 6=i

(λ− xj) =
n∑

k=1

(−1)k−1λn−kσi
k−1(x). (2.28)

We note that, from the above definition, σi
0(x) = 1.

It is also worthwhile to introduce other symmetric functions, σk(x), via

n∏

j=1

(λ− xj) =
n∑

k=0

(−1)kλn−kσk(x). (2.29)

We thus have

Gλ(ξ, x) =

n∑

i=1

(−1)i−1λn−iIi(ξ, x) + a(−λ)n (2.30)

where the independent functions Ii (i = 1, . . . , n) are in involution and can be

written as

Ii(ξ, x) =
n∑

j=1

Aj
i (x)ξ

2
j − aσi(x) with Aj

i (x) = gj(x)σj
i−1(x). (2.31)

In the case i = 1, we recover the Hamiltonian (2.26), i.e.,

H =
1

2
I1 +

a

2

n∑

α=0

aα.

Proposition 2.4. The geodesic flow on T ⋆E defines a Stäckel system, with the

Stäckel matrix

Bi
k = (−1)i (xk)n−i

Nk

, Nk = 4
V (xk)

xk
.
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Proof. It is obvious from its definition that B is a Stäckel matrix. We just need to

prove that A = B−1. To this aim we first prove a useful identity. Let us consider

the integral in the complex plane

1

2iπ

∫

|z|=R

zn−i

(z − λ)

U(λ)

U(z)
dz.

When R → ∞ the previous integral vanishes because the integrand vanishes as 1/R2

for large R. We then compute this integral using the theorem of residues and we get

the identity
n∑

k=1

(xk)n−i

U ′(xk)

∏

j 6=k

(λ− xj) = λn−i. (2.32)

Equipped with this identity let us now prove that

n∑

k=1

Bi
k A

k
j = δi

j.

Multiplying this relation by (−1)j−1λn−j and summing over j from 1 to n, we get

the equivalent relation

n∑

k=1

Bi
k

n∑

j=1

(−1)j−1λn−jAk
j = (−1)i−1λn−i,

which becomes, using (2.31) and (2.28):

n∑

k=1

Bi
k g

k
∏

j 6=k

(λ− xj) = (−1)i−1λn−i.

Using the explicit form of gk given in (2.23) and of the matrix B, this relation

reduces to the identity (2.32) and this completes the proof.

Remark 2.5. 1. Moser’s conserved quantities were expressed in terms of uncon-

strained dynamical variables in T ∗Rn+1. Using Jacobi ellipsoidal coordinates

we have got their explicit constrained form in T ∗E . Let us observe that the

potential terms Ui(x) = −aσi(x) appearing in the conserved quantities Ii given

by (2.31), though leading to integrability, are not Stäckel potentials (see Sec-

tion 2.4 for the definition of such potentials)!
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2. Because of the previous remark it is desirable to give a direct check that the

previous functions Ii are in involution. This is most conveniently done using

their generating function (2.27). Indeed it is easy to check the relation

{Gλ(ξ, x), Gµ(ξ, x)} = 0, λ, µ ∈ R,

which implies, via (2.30), and upon expansion in powers of λ and µ, the rela-

tions {Ii, Ij} = 0 for any i, j = 1, . . . , n.

3. The proof that the geodesic flow on T ⋆E is a Stäckel system was first given

by Benenti in [3]. We have proposed here a new derivation, closer to the

techniques used by Moser.

4. Some authors [2, 18] have quantized the full set of commuting observables for

the geodesic flow of the ellipsoid E ⊂ Rn+1 in its unconstrained form, namely

on T ∗Rn+1. Notice though that in the reduction process from T ∗Rn+1 to T ∗E

quantum corrections may prove necessary in order to insure self-adjointness of

the quantized observables. Our point of view will be to perform the classical

reduction in the first place and then to quantize the observables directly on

T ∗E via a specific procedure that will be described in Section 3.

2.6 The Neumann system

The Neumann Hamiltonian on (T ∗Rn+1,
∑n

α=0 dpα ∧ dyα) is

H = 1

2

n∑

α=0

(
p2

α + aαy
2
α

)
(2.33)

with the real parameters 0 < a0 < a1 < . . . < an. Under the symplectic reduction,

with the second order constraints

Z1(p, y) =
n∑

α=0

y2
α − 1 = 0, Z2(p, y) =

n∑

α=0

pαy
α = 0, (2.34)

it becomes a dynamical system on (T ∗Sn, dξi ∧ dxi).

This system is classically integrable, with the following commuting first integrals

of the Hamiltonian flow in T ∗Rn+1:

Fα(p, y) = y2
α +

∑

β 6=α

(pαyβ − pβyα)2

aα − aβ
with α = 0, 1, . . . , n. (2.35)
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The symplectic embedding

ι : T ∗Sn →֒ T ∗Rn+1

given by Z1(p, y) = 0 and Z2(p, y) = 0 preserves the previous conservation laws.

Indeed the Poisson brackets of the restrictions Fα|T ∗E = Fα ◦ ι of the functions Fα

are still given by the Dirac brackets (2.20) of the second order constraints (2.34).

This time we have

{Z1, Z2} = −2
n∑

α=0

y2
α 6= 0, {Z1, Fα} = 0,

which gives again

{Fα|T ∗E , Fβ|T ∗E} = 0.

Let us introduce an adapted coordinate system on (T ∗Sn, dξi∧dxi) much in the

same manner as for the ellipsoid.

We start with the following definition [21] of a coordinate system (x1, . . . , xn)

on Sn:

Qλ(y, y) =
n∑

α=0

y2
α

aα − λ
= −

∏n
i=1(λ− xi)∏n
α=0(λ− aα)

.

The following inequalities hold: 0 < a0 < x1 < a1 < . . . < xn < an. We get, in the

same way as before,

y2
α =

∏n
i=1(aα − xi)∏
β 6=α(aα − aβ)

(2.36)

together with the following expression of the round metric g =
∑n

α=0 dy
2
α|Sn in terms

of the newly introduced coordinates:

g =

n∑

i=1

gi(x)(dx
i)2 with gi(x) = −

1

4

∏
j 6=i(x

i − xj)
∏n

α=0(x
i − aα)

. (2.37)

We put for convenience gi(x) = 1/gi(x).

Our goal is to deduce from the knowledge of (2.35) the independent quantities in

involution I1, . . . , In on (T ∗Sn, dξi∧dxi). The formula (2.25) relating unconstrained

and constrained momenta still holds and yields the

14



Proposition 2.6. The Neumann system (Fα|T ∗Sn)α=0,...,n retains the following ex-

pression

Fα|T ∗Sn = −
Gaα

(ξ, x)∏

β 6=α

(aα − aβ)

where

Gλ(ξ, x) =

n∑

i=1

gi(x)
∏

j 6=i

(λ− xj)ξ2
i +

n∏

j=1

(λ− xj).

Let us, again, posit

Gλ(ξ, x) =
n∑

i=1

(−1)i−1λn−iIi(ξ, x) + λn

where the independent functions Ii (i = 1, . . . , n) are in involution and can be

written as

Ii(ξ, x) =
n∑

j=1

Aj
i (x)ξ

2
j − σi(x) with Aj

i (x) = gj(x)σj
i−1(x), (2.38)

where the symmetric functions σi(x) are as in (2.29).

Using the relations

σ1(x) = −
n∑

i=1

xi, and
n∑

α=0

aαy
2
α =

n∑

α=0

aα −
n∑

i=1

xi,

one can check that the Hamiltonian (2.33) is H = 1

2
I1.

Proposition 2.7. The Neumann flow on (T ∗Sn, H) defines a Stäckel system, with

the Stäckel matrix

Bi
k = (−1)i (xk)n−i

4
∏

j 6=k(x
k − xj)

.

Proof. To check that A = B−1, it is enough to use the identity (2.32).

Remark 2.8. The involution property {Ii, Ij} = 0 for i, j = 1, . . . , n, similarly to

the case of the ellipsoid, is seen to follow from the relation {Gλ(ξ, x), Gµ(ξ, x)} = 0.

Remark 2.9. The Neumann potential is not a Stäckel potential.
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2.7 Test particles in Kerr-Newmann-de Sitter background

The Kerr-Newmann-de Sitter (KNS) metric is given, in the special coordinate system

(x1, x2, x3, x4) = (p, q, σ, τ) used by Plebanski and Demianski [24], by

g =
X

p2 + q2
(dτ + q2dσ)2 −

Y

p2 + q2
(dτ − p2dσ)2 +

p2 + q2

X
dp2 +

p2 + q2

Y
dq2 (2.39)

with

X = γ − g2 + 2np− ǫp2 −
Λ

3
p4, & Y = γ + e2 − 2mq + ǫq2 −

Λ

3
q4, (2.40)

where m,n, e, g,Λ are dynamical parameters and γ, ǫ kinematical quantities (that

can be eliminated by a suitable change of coordinates).

This metric, g, together with the electromagnetic field, locally given by F = dA

where

A =
1

p2 + q2

[
(eq + gp)dτ + pq(gq − ep)dσ

]
, (2.41)

provide an exact solution of the Einstein-Maxwell equations with cosmological con-

stant Λ. Let us notice for further use that

∇iA
i = 0. (2.42)

Upon defining the 1-forms

K =

√
Y

2(p2 + q2)
(dτ − p2 dσ) +

√
p2 + q2

2Y
dq,

L =

√
Y

2(p2 + q2)
(dτ − p2 dσ) −

√
p2 + q2

2Y
dq,

M1 =

√
p2 + q2

X
dp,

M2 =

√
X

p2 + q2
(dτ + q2dσ),

one constructs the 2-form

Y = pK ∧ L− qM1 ∧M2. (2.43)
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One can check that the twice-symmetric tensor P = −Y2, namely Pij = −YikYℓjg
kℓ,

is a Killing-Maxwell tensor (see (2.9)), given by

P = p2(K ⊗ L+ L⊗K) + q2(M1 ⊗M1 +M2 ⊗M2). (2.44)

We thus recover Carter’s result [11] about the integrability of the Hamiltonian flow

for a test particle in the KNS background in a different manner.

Remark 2.10. The 2-form Y in (2.43) defines what is usually called a Killing-Yano

tensor [17, 8].

The four conserved quantities in involution for the KNS system are, respectively,

H̃ = 1

2
gij(ξi − Ai)(ξj − Aj), P̃ = P ij(ξi − Ai)(ξj − Aj) (2.45)

where P is as in (2.44), and

S̃ = ξ3 − A3, T̃ = ξ4 − A4. (2.46)

2.8 The Multi-Centre geodesic flow

The class of Multi-Centre Euclidean metrics in 4 dimensions retain, in a local coor-

dinate system (xi) = (t, (ya)) ∈ R× R3, the form

g =
1

V (y)
(dt+ Aa(y)dy

a)2 + V (y)γ (2.47)

with γ = δab dy
adyb is the flat Euclidean metric in 3-space, and dV = ± ⋆ (dA)

where ⋆ is the Hodge star for γ. These conditions insure that the metric (2.47) is

Ricci-flat.

For some special potentials V (y), the geodesic flow is integrable as shown in

[16, 28]. The four conserved quantities in involution are given by

H = 1

2
gijξiξj, K = Kiξi, L = Liξi, P = P ijξiξj, (2.48)

where K and L are two commuting Killing vectors and P a Killing 2-tensor whose

expressions can be found in the previous References.
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2.9 The Di Pirro system

Di Pirro has proved (see, e.g., [23], p. 113) that the Hamiltonian on T ∗R3

H =
1

2(γ(x1, x2) + c(x3))

[
a(x1, x2)ξ2

1 + b(x1, x2)ξ2
2 + ξ2

3

]
(2.49)

admits one and only one additional first integral given by

P =
1

(γ(x1, x2) + c(x3))

[
c(x3)

(
a(x1, x2)ξ2

1 + b(x1, x2)ξ2
2

)
− γ(x1, x2)ξ2

3

]
. (2.50)

In the case where the metric defined by H in (2.49) possesses a Killing vector,

the system becomes integrable though not of Stäckel type. This happens, e.g., if (i)

c(x3) = const., or (ii) a = b and γ depend on r =
√

(x1)2 + (x2)2 only.

3 A quantization scheme for quadratic and cubic

observables

We wish to deal now with the quantum version of the preceding examples. Let us

start with some preliminary reflections:

1. There is no universally accepted procedure of quantization, i.e., of a linear

identification, Q, of a space of classical observables with some space of linear

operators on a Hilbert space. One of the pathways to construct such a quanti-

zation mapping has been to demand that the mapping Q be equivariant with

respect to some Lie group of symplectomorphisms of classical phase space.

2. Similarly, there is no universally accepted notion of quantum integrability.

However, given a classical integrable system P1, . . . Pn on a symplectic manifold

(M, ω), and a quantization mapping Q : Pi 7→ P̂i, we will say that such a

system is integrable in the quantum sense if [P̂i, P̂j ] = 0 for all i, j = 1, . . . , n.

3. A large number of integrable systems involve quadratic observables. We will

thus choose to concentrate on this important — yet very special — case, both

from the classical and quantum viewpoint.

4. Among all possible quantization procedures, the integrability-preserving ones

(if any) should play a prominent role and would be of fundamental importance.
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The quantization of quadratic observables we will present below might serve

as a starting point for such a programme.

3.1 Quantizing quadratic observables

Let us recall that the space Fλ(M) of λ-densities on M is defined as the space of

sections of the complex line bundle |ΛnT ∗M |λ ⊗C. In the case where the configura-

tion manifold is orientable, (M, vol), such a λ-density can be, locally, cast into the

form φ = f |vol|λ with f ∈ C∞(M) which means that φ transforms under the action

of a ∈ Diff(M) according to f 7→ a∗f |(a∗vol)/vol|λ.

The completion H(M) of the space of compactly supported half-densities, λ = 1

2
,

is a Hilbert space canonically attached toM that will be used throughout this article.

The scalar product of two half-densities reads

〈φ, ψ〉 =

∫

M

φψ.

We will assume that configuration space is endowed with a (pseudo-)Riemannian

structure, (M, g); and denote by |volg| the corresponding density and by Γk
ij the

associated Christoffel symbols.

The quantization now introduced is a linear invertible mapping from the space

of quadratic observables P = P jk
2 (x)ξjξk + P j

1 (x)ξj + P0(x) to the space of second-

order differential operators on H(M), viz A = P̂ = Ajk
2 (x)∇j∇k +Aj

1(x)∇j +A0(x)1

where the covariant derivative of half-densities ∇jφ = ∂jφ− 1

2
Γk

jkφ (or, locally, ∇jφ =

(∂jf)|volg|
1

2 ) has been used. We furthermore require that the principal symbol be

preserved (see (3.1)), and that P̂ be formally self-adjoint, i.e., 〈φ, P̂ψ〉 = 〈P̂φ, ψ〉

for all compactly supported φ, ψ ∈ F 1

2

(M).

The quantization reads

Ajk
2 = −P jk

2 (3.1)

Aj
1 = iP j

1 −∇kP
jk
2 (3.2)

A0 = P0 +
i

2
∇jP

j
1 (3.3)

and admits the alternative form

P̂ = −∇j◦P
jk
2 ◦∇k +

i

2

(
P j

1 ◦∇j + ∇j◦P
j
1

)
+ P01 (3.4)
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which makes clear the symmetry of the quantum operators.

Remark 3.1. The formula (3.4) was originally used by Carter [11] for proving the

quantum integrability of the geodesic flow of the Kerr-Newmann metric.

Remark 3.2. It is worth mentioning that formula (3.4) actually corresponds at the

same time to the projectively equivariant quantization [19, 13] and to the conformally

equivariant quantization [14, 12] Q0,1(P ) : F0(M) → F1(M) restricted to quadratic

polynomials.

One can check the relations:

[P̂0, Q̂1] = i[P0, Q1]S = i ̂{P0, Q1} (3.5)

[P̂0, Q̂2] = − 1

2

(
∇j◦[P0, Q2]

j
S + [P0, Q2]

j
S◦∇j

)
= i ̂{P0, Q2} (3.6)

[P̂1, Q̂1] = − 1

2

(
∇j◦[P1, Q1]

j
S + [P1, Q1]

j
S◦∇j

)
= i ̂{P1, Q1} (3.7)

Quantum corrections appear explicitly whenever k+ ℓ > 2, as can be seen from

the next commutators:

[P̂1, Q̂2] = i ̂{P1, Q2} + iÂP1,Q2
(3.8)

where

AP1,Q2
=

1

2
∇j◦Q

jk
2 ◦∇k(∇ℓP

ℓ
1 ) (3.9)

is a scalar quantum correction that may vanish in some special instances, namely if

the vector-field P1 is divergence-free (in particular if it is a Killing vector-field).

The previous formulæ can be found in, e.g. [11]. Here, we will go one step

further and compute the commutators [P̂2, Q̂2] which involve third-order differential

operators. To that end, we propose to quantize homogeneous cubic polynomials

according to

P̂3 = −
i

2

(
∇j◦P

jkℓ
3 ◦∇k◦∇ℓ + ∇j◦∇k◦P

jkℓ
3 ◦∇ℓ

)
(3.10)

as a “minimal” choice to insure the symmetry of the resulting operator.

Remark 3.3. The formula (3.10) precisely coincides with the projectively equi-

variant quantization [7] Q0,1(P ) : F0(M) → F1(M) restricted to cubic polynomials.
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The previous commutator is given by

[P̂2, Q̂2] = [P2, Q2]
jkℓ
S ∇j◦∇k◦∇ℓ

+
3

2

(
∇j[P2, Q2]

jkℓ
S

)
∇k◦∇ℓ (3.11)

+

[
1

2

(
∇j∇k[P2, Q2]

jkℓ
S

)
+

2

3

(
∇kB

kℓ
P2,Q2

)]
∇ℓ

with the definition of the skew-symmetric tensor

Bjk
P,Q = P ℓ[j∇ℓ∇mQ

k]m + P ℓ[jR
k]
m,nℓQ

mn − (P ↔ Q)

−∇ℓP
m[j∇mQ

k]ℓ − P ℓ[jRℓmQ
k]m (3.12)

satisfying, in addition, BP,Q = −BQ,P (we have used the following convention for

the Riemann and Ricci tensors, viz Rℓ
i,jk = ∂jΓ

ℓ
ik − (j ↔ k)+ . . ., and Rij = Rk

i,kj).

We can rewrite the commutator (3.11) with the help of the quantization pre-

scription (3.4) and (3.10) as

[P̂2, Q̂2] = i ̂{P2, Q2} + iÂP2,Q2
(3.13)

where

AP2,Q2
= −

2

3

(
∇kB

kℓ
P2,Q2

)
ξℓ (3.14)

is a divergence-free vector-field associated with the tensor (3.12) and providing

the potential quantum correction for quadratic polynomials; recall that, according

to (3.4), one has ÂP2,Q2
= (i/2)(Aℓ

P2,Q2
◦∇ℓ + ∇ℓ◦A

ℓ
P2,Q2

).

We have thus the

Proposition 3.4. The commutator of the quantum operators P̂ and Q̂ associated

with two general quadratic polynomials P = P2 + P1 + P0 and Q = Q2 + Q1 + Q0

reads
1

i
[P̂ , Q̂] = {̂P,Q} + ÂP2,Q2

+ ÂP1,Q2
− ÂQ1,P2

(3.15)

where the third-order differential operator {̂P,Q} is given by (3.10).

Proof. The formula (3.15) results trivially from the previously computed commuta-

tors and from collecting the anomalous terms appearing in (3.8) and (3.13) only.
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Remark 3.5. In the special case where Q2 = H as given by (2.3), the anomalous

tensor (3.12) takes the form

Bjk
P,H = − 1

2
∇[j∇ℓP

k]ℓ − P ℓ[jR
k]
ℓ

and reduces to

Bjk
P,H = −P ℓ[jR

k]
ℓ (3.16)

if P is a Killing tensor [11].

Remark 3.6. Let us observe that the formulæ (3.5), (3.7), (3.8) readily imply that

for any Killing vector field X♯ = X i ∂i of a (pseudo-)Riemannian manifold (M, g),

one has, putting X = X iξ, and for any polynomial P = P ij
2 ξiξj + P i

1ξi + P0 the

quantum commutator [P̂ , X̂] = i{̂P,X}.

Remark 3.7. In the particular case whereH = 1

2
gjk(ξj−eAj)(ξk−eAk) is the Hamil-

tonian of the electromagnetic coupling, our quantum commutator (3.15) should re-

duce to Carter’s formula (6.16) in [11].

The purpose of our article is, indeed, to study how classical integrability behaves

under the “minimal” quantization rules proposed in [11] and somewhat extended

here. The next section will be devoted to the computation of the quantum correc-

tions in (3.8) and (3.13) in several examples that have been previously introduced.

3.2 The quantum Stäckel system

The quantization of the general Stäckel system (see Section 2.4) has first been under-

taken by Benenti, Chanu and Rastelli in [4, 5]. We will derive, here, the covariant

expression of the quantum correction associated to the “minimal” quantization, with

the help of the results obtained in Section 3.

Denote by Ii = I2,i + I0,i the i-th Stäckel conserved quantity, i = 1, . . . , n,

in (2.13) where the indices 0 and 2 refer to the degree of homogeneity with respect

to the coordinates ξ. Applying (3.15) with P1 = Q1 = 0, P2 = I2,i and Q2 = I2,j

one gets

[Îi, Îj] = [Î2,i, Î2,j] = iÂI2,i,I2,j
=

2

3

(
∇kB

kℓ
I2,i,I2,j

)
∇ℓ.
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Remark 3.8. This result shows that there are no quantum corrections produced

by the potential term. If one starts with the hamiltonian H = 1

2
gijξiξj which is

integrable at the classical and quantum levels, and if H + U remains classically

integrable (when adding some potential term U), then H+U will remain integrable

at the quantum level.

We are now in position to prove the following

Proposition 3.9. The quantum correction (3.12) of a general Stäckel system, with

commuting conserved quantities I1, . . . , In defined by (2.13), retains the form

Bkℓ
I2,i,I2,j

= −2I
s[k
2,i RstI

ℓ]t
2,j (3.17)

for i, j = 1, . . . , n, where Rst denotes the components of the Ricci tensor of the

metric associated with the hamiltonian I1.

Proof. As a preliminary remark, let us observe that the Stäckel metric, given by

(2.12), has no need to be Riemannian. So we will write it

g =

n∑

i=1

(dxi)2

Ai
1(x)

=

n∑

a=1

ηa(θ
a)2 (3.18)

where (θa = dxa/
√
|Aa

1|)a=1,...,n is the orthonormal moving coframe and the signa-

ture is ηa = sign(Aa
1). We will denote by (ea =

√
|Aa

1|∂a)a=1,...,n the associated

orthonormal frame with respect to the metric ηab = ηaδab used to raise and lower

frame indices.

Let us recall, in order to fix the notation, that the connection form ω satisfies

the structure equation dθa + ωa
b ∧ θb = 0 and the associated curvature form, Ω,

given by Ωa
b = dωa

b + ωa
c ∧ ωc

b, is expressed in terms of the Riemann tensor by

Ωa
b = 1

2
Ra

b,cd θ
c ∧ θd. The indices a, . . . , d run from 1 to n and the Einstein sum-

mation convention is used when no ambiguity arises. Denoting by Rℓ
i,jk the local

components of the Riemann tensor, we have Ra
b,cd = θa

ℓ R
ℓ
i,jk e

i
be

j
ce

k
d.

We start off with the calculation of the connection form, ω, and of some com-

ponents of the curvature form, Ω. Straightforward calculation, using relation (2.15),

then yields for the non-vanishing components of the connection

ωab,a = 1

2
ηbC

a
b

∣∣Ab
1

∣∣3/2

|Aa
1|

, a 6= b, ωab,c = ωab(ec),
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the other nontrivial components ωab,b are obtained accordingly. For the curvature,

a lengthy computation gives the special components

Rac,cb = 3 (−ηaωca,c ωab,a − ηbωcb,c ωba,b + ηcωca,c ωcb,c) , a 6= b, (3.19)

which will be needed in the sequel.

Two last ingredients are the introduction of the frame components of various

objects. We will denote the Killing tensor I2,i (resp. I2,j) as P (resp. Q). Their

frame components P = P bc eb ⊗ ec, and similarly for Q, will be

P bc = pbδbc, pb =
Ab

i

2|Ab
1|
, Qbc = qbδbc, qb =

Ab
j

2|Ab
1|
. (3.20)

The covariant derivative will have the frame components

DcPab = ec(Pab) − ωs
a,cPsb − ωs

b,cPas.

The equations which express that P ab is a Killing tensor are now

eb(pa) = 2ωab,a(ηapa − ηbpb), a 6= b,

ea(pa) = 0,
(3.21)

where the repeated indices are not summed over. One can check that they hold true

using the explicit form of pa given in (3.20) and the identity (2.15).

Using all of the previous information one can compute the frame components

of the various pieces appearing in the tensor Bij
P,Q. We have successively

P s[i∇s∇tQ
j]t − (P ↔ Q) =

∑

l 6=i,j

(4ωli,lωlj,l − 3ηlηiωli,lωij,i − 3ηlηjωlj,lωji,j)
[
piqj − ηlplηiqj + ηlqlηipj − (i↔ j)

]

and

∇sP
t[i∇tQ

j]s = 1

2

∑

l

ωli,lωlj,l

[
piqj − ηlplηiqj + ηlqlηipj − (i ↔ j)

]
.

Combining these relations, and using (3.19), we get

P s[i∇s∇tQ
j]t − (P ↔ Q) −∇sP

t[i∇tQ
j]s =

1

2

∑

l

ηlRil,lj

[
piqj − ηlplηiqj + ηlqlηipj − (i ↔ j)

]
.
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Let us then compute

P s[iRj]
u,vsQ

uv − (P ↔ Q) = 1

2

∑

l

ηlRil,lj

[
ηlplηiqj − ηlqlηipj − (i ↔ j)

]
.

Collecting all the pieces leaves us with

P s[i∇s∇tQ
j]t + P s[iR

j]
u,vsQuv − (P ↔ Q) −∇sP

t[i∇tQ
j]s =

1

2

∑
l ηlRil,lj(piqj − pjqi).

(3.22)

The last sum is nothing but the frame components of the tensor −P s[iRstQ
j]t, so

that we have obtained the tensorial relation

P s[i∇s∇tQ
j]t + P s[iRj]

u,vsQ
uv − (P ↔ Q) −∇sP

t[i∇tQ
j]s = −P s[iRstQ

j]t, (3.23)

which implies

Bij
P,Q = −2P s[iRstQ

j]t, (3.24)

in agreement with [5], and this ends the proof of Proposition 3.9.

Now we can come to the central point of our analysis: is a Stäckel system

integrable at the quantum level? The answer is positive if the quantum correc-

tion (3.24) does vanish. In the special coordinates which define a Stäckel system

where the Killing tensors are diagonal, the quantum correction vanishes iff

Rij = 0 for i 6= j.

These are nothing but the Robertson conditions [25], as interpreted by Eisen-

hart [15], and refined quite recently by Benenti et al [4]. For Stäckel systems these

conditions are necessary and sufficient for the separability of the Schrödinger equa-

tion. The situation for these systems is quite satisfactory from a conceptual point

of view and can be summarized by the following diagram:

Classical integrability ⇐⇒ separable Hamilton-Jacobi

⇓ provided Rij = 0 (i 6= j)

Quantum integrability ⇐⇒ separable Schrödinger
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3.3 The quantum ellipsoid and Neumann systems

It is now easy to prove that the ellipsoid geodesic flow (see section 2.5), including the

potential given in (2.18), is integrable at the quantum level. Using the coordinates

(xi) and the (Riemannian) metric given by (2.23), one can check that, using the

obvious frame, the Ricci tensor has components

Rij =
N

xi

∑

s 6=i

1

xs
δij , N =

a0a1 · · ·an

x1 · · ·xn
,

and therefore satisfies the Robertson conditions. As already emphasized, the occur-

rence of an additional potential (be it of the Stäckel form or not) is irrelevant for the

quantum analysis since the potential terms do not generate quantum corrections.

Similarly we get the quantum integrability for the Neumann system (see Sec-

tion 2.6) using the metric on Sn given by (2.37). Using the obvious frame we get

for the Ricci tensor

Rij = (n− 1)δij,

as it should since the metric is Einstein. Therefore Robertson conditions are again

satisfied.

3.4 The quantum Kerr-Newmann-de Sitter system

The quantization of the four commuting observables (2.45) and (2.46) is straight-

forward.

In view of the relations given in Section 3 all quantum commutators vanish

except for [
̂̃
H,

̂̃
P ]; this is due to the fact that S and T are Killing-Maxwell vector

fields.

The anomalous terms in the previous commutator are AP2,H2
, AP1,H2

and AP2,H1

where P2 = P ijξiξj, H2 = 1

2
gijξiξj, P1 = −2P ijξiAj and H1 = −gijξiAj.

The vector field AP2,H2
given by (3.14) actually vanishes because, cf. (3.16),

Bjk
P2,H2

= −P ℓ[jR
k]
ℓ = 0 as a consequence of (2.9); indeed the tensor P anti-commutes

with the electromagnetic field strength F , implying that it commutes with the stress-

energy electromagnetic tensor, hence with the Ricci tensor in view of the Einstein-

Maxwell equations [11].

The two other anomalous terms (3.9) also vanish as it turns out that ∇jA
j = 0

and ∇j(P
jkAk) = 0.
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This derivation reproduces Carter’s results for the Kerr-Newmann solution, in

a somewhat shorter manner.

3.5 The quantum Multi-Centre system

For this example too, the quantization is straightforward. The single point to be

checked for quantum integrability is just the commutator [Ĥ, P̂ ], with the possible

quantum correction (3.16) given by −P ℓ[jR
k]
ℓ . Here it vanishes trivially since these

metrics are Ricci-flat.

3.6 The quantum Di Pirro system

As seen in Section 2.9, the classical integrability of this system is provided by three

commuting observables: on the one hand H , P respectively given by (2.49) and

(2.50), and T = ξ3 if c(x3) = const., and on the other hand H , P and J = ξ1x
2−ξ2x

1

if a = b, γ depend on r only.

At the quantum level, the Killing vectors T̂ and Ĵ do commute with Ĥ according

to (3.8) and (3.9). As for the commutator [P̂ , Ĥ] of the quantized Killing tensors,

it is given by (3.16), namely BP,H = −1
2
P ℓ[jR

k]
ℓ ∂j ∧ ∂k, and one finds

BP,H = −
3

16

c′(x3)

(γ(x1, x2) + c(x3))3
(a(x1, x2)∂1γ(x

1, x2) ∂1 ∧ ∂3

+ b(x1, x2)∂2γ(x
1, x2) ∂2 ∧ ∂3).

For the system (H,P, T ), this quantum correction vanishes since c′(x3) = 0,

implying quantum integrability. However, for the system (H,P, J), in the generic

case γ 6= const., we get BP,H 6= 0, showing that the minimal quantization rules may

produce quantum corrections.

4 Discussion and outlook

It would be worthwhile to get insight into the status of our “minimal” quantization

rules and to their relationship with other bona fide quantization procedures. Among

the latter, let us mention those obtained by geometric means, and more specifically

by imposing equivariance of the quantization mapping, Q, with respect to some
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symmetry group, G, e.g., a group of automorphisms of a certain geometric structure

on configuration space, M . We refer to the articles [19, 12, 13, 14, 6] for a detailed

account on equivariant quantization. The two main examples are respectively the

projectively, G = SL(n + 1,R), and conformally, G = O(p + 1, q + 1), equivariant

quantizations which have been shown to be uniquely determined [19, 14, 12, 13].

For instance, the conformally equivariant quantization Q 1

2

: F 1

2

(M) → F 1

2

(M) has

been explicitly computed for quadratic [12] and cubic [20] observables; for example,

if P = P ijξiξj we then have

Q 1

2

(P ) = P̂ + β3 ∇i∇j(P
ij) + β4 gijgkℓ∇i∇j(P

kℓ) + β5 RijP
ij + β6 RgijP

ij (4.1)

where the “minimal” quantum operator

P̂ = −∇i◦P
ij
◦∇j (4.2)

is given by (3.4), together with β3 = −n/(4(n + 1)), β4 = −n/(4(n + 1)(n + 2)),

β5 = n2/(4(n−2)(n+1)), β6 = −n2/(2(n2−4)(n2−1)), assuming n = dim(M) > 2.

In (4.1) we denote by Rij the components of the Ricci tensor and by R the scalar

curvature. The formula (4.1) provides a justification of the term “minimal” for the

mapping P 7→ P̂ given by (3.4) and (3.10).

We have checked that, in the special instance of the geodesic flow of the ellipsoid

discussed in Section 2.5, the quantum commutators of the observables Ii defined

in (2.31), namely [Q 1

2

(Ii),Q 1

2

(Ij)], fail to vanish for i 6= j = 1, . . . , n. Had we started

from the expression (4.1) with adjustable coefficients β3, . . . , β6, the requirement that

the latter commutator be vanishing imposes β3 = . . . = β6 = 0, leading us back to

the minimal quantization rule (4.2).

Despite their nice property of preserving, to a large extent, integrability (from

classical to quantum), the “minimal” quantization rules remain an ad hoc procedure,

defined for observables at most cubic in momenta, and do not follow from any sound

constructive principle, be it of a geometric or an algebraic nature. The quest for

a construct leading unambiguously to a genuine “minimal” quantization procedure

remains a major challenge.

A new perspective for future work will be to generalise the previous computation

of quantum corrections to the case of classical integrability in the presence of an

electromagnetic field in a purely gauge invariant manner. In particular the approach
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presented in Section 2.2 should be further extended at the quantum level via the

quantization of the Schouten-Maxwell brackets.
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