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QUANTUM VARIANCE AND ERGODICITY FOR THE BAKER’S MAP

M. DEGLI ESPOSTI, S. NONNENMACHER AND B. WINN

Abstract. We prove a Egorov theorem, or quantum-classical correspondence, for the
quantised baker’s map, valid up to the Ehrenfest time. This yields a logarithmic upper
bound for the decay of the quantum variance, and, as a corollary, a quantum ergodic
theorem for this map.

1. Introduction

The correspondence principle of quantum mechanics suggests that in the classical limit
the behaviour of quantum systems reproduces that of the system’s classical dynamics. It
is becoming clear that to understand this process fully represents a challenge not only to
methods of semiclassical analysis, but also the modern theory of dynamical systems.

For a broad class of smooth Hamiltonian systems it has been proved that if the system
is ergodic, then, in the classical limit, almost all eigenfunctions of the corresponding quan-
tum mechanical Hamiltonian operator become equidistributed with respect to the natural
measure (Liouville) over the energy shell. This is the content of the so-called quantum
ergodicity theorem [Schn, Zel1, CdV].

This mathematical result, even if it can be considered quite mild from the physical point
of view, still constitutes one of the few rigorous results concerning the properties of quan-
tum eigenfunctions in the classical limit, and it still leaves open the possible existence of
exceptional subsequences of eigenstates which might converge to other invariant measures.
In the last few years a certain number of works have explored this mathematically and
physically interesting issue. While exceptional subsequences can be present for some hy-
perbolic systems with extremely high quantum degeneracies [FDBN], it is believed that
they do not exist for a typical chaotic system (by chaotic, we generally mean that the
system is ergodic and mixing). The uniqueness of the classical limit for the quantum di-
agonal matrix elements is called quantum unique ergodicity (QUE) [RudSar, Sar1]. There
have been interesting recent results in this direction for Hecke eigenstates of the Laplacian
on compact arithmetic surfaces [Lin], using methods which combine rigidity properties of
semi-classical measures with purely dynamical systems theory.

The model studied in the present paper is not a Hamiltonian flow, but rather a discrete-
time symplectic map on the 2-dimensional torus phase space. In the case of quantised
hyperbolic automorphisms of the 2-torus (“quantum cat maps”), QUE has been proven
along a subsequence of Planck’s constants [DEGI, KR2], and for a certain class of eigen-
states (also called “Hecke” eigenstates) [KR1] without restricting Planck’s constant. QUE
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has also been proved in the case of some uniquely ergodic maps [BDB, MR, Ro]. Quantum
(possibly non-unique) ergodicity has been shown for some ergodic maps which are smooth
by parts, with discontinuities on a set of zero Lebesgue measure [DBDE, MO’K, DE+].
Discontinuities generally produce diffraction effects at the quantum level, which need to
be taken care of (this problem also appears in the case of Euclidean billiards with non-
smooth boundaries [GL, ZZ]). Most proofs of quantum ergodicity consist of showing that
the quantum variance defined below (equation (1.1)) vanishes in the classical limit.

To state our results we now turn to the specific dynamics considered in the present
article. We take as classical dynamical system the baker’s map on T

2, the 2-dimensional
torus [AA]. This map can be quantised into a unitary operator (propagator) B̂N acting on
an N -dimensional Hilbert space (N is the inverse of Planck’s constant h). The quantum

variance measures the average equidistribution of the eigenfunctions {ϕN,j}N−1
j=0 of B̂N :

(1.1) S2(a,N) :=
1

N

N−1
∑

j=0

∣

∣

∣
〈ϕN,j,OpW

N (a)ϕN,j〉 −
∫

T2

a(q, p) dqdp
∣

∣

∣

2

.

Here a is some smooth function (observable) on T2 and OpW
N (·) is the Weyl quantisa-

tion mapping a classical observable to a corresponding quantum operator. The quantised
baker’s map (or some variant of it) is a well-studied example in the physics literature on
quantum chaology [BV, Sa, SaVo, O’CTH, Lak, Kap, ALPŻ], which motivated our desire
to provide rigorous proofs for both the quantum-classical correspondence and quantum
ergodicity.

In this paper we prove a logarithmic upper bound on the decay of the quantum variance
(see theorem 1.1 below), which implies quantum ergodicity as a byproduct (corollary 1.2).
A similar upper bound was first obtained by Zelditch [Zel2] in the case of the geodesic
flow of a compact negatively curved Riemannian manifold (by using the central limit
theorem, he also proved similar upper bounds for higher moments of the matrix elements).
The main semiclassical ingredient needed for all proofs of quantum ergodicity is some
control on the correspondence between quantum and classical evolutions of observables,
namely some Egorov estimate. As for billiard flows [Fa], such a correspondence can only
hold for observables supported away from the set of discontinuities. We establish this
correspondence for the quantum baker’s map in section 5.2, generalizing previous results
[DBDE] for a subclass of observables (an Egorov theorem was already proven in [RubSal]
for a different quantisation of the baker’s map). Some related results can be found in [BGP,
BR] for the case of smooth Hamiltonian systems. To obtain this Egorov estimate, we study
the propagation of coherent states (Gaussian wavepackets): they provide a convenient way
to “avoid” the set of discontinuities. The correspondence will hold up to times of the order
of the Ehrenfest time

(1.2) TE(N) :=
logN

log 2

(here log 2 is the positive Lyapunov exponent of the classical baker’s map).



QUANTUM VARIANCE AND ERGODICITY FOR THE BAKER’S MAP 3

Equipped with this estimate, one could apply the general results of [MO’K] to prove
that the quantum variance semiclassically vanishes. We prefer to generalise the method of
[Schu2] to our discontinuous baker’s map. This method, inspired by some earlier heuristic
calculations [FP, Wil, EFK+], yields a logarithmic upper bound for the variance, which
is more precise than a simple decay. This method has been applied in [Schu2] to ergodic
maps or flows with fast enough decay of correlations.

Our main result is the following theorem.

Theorem 1.1. For any observable a ∈ C∞(T2), there is a constant C(a) depending only

on a, such that the quantum variance over the eigenstates of B̂N satisfies

∀N ≥ 1, S2(a,N) ≤ C(a)

logN
.

We believe that this method can be extended to any piecewise linear map satisfying a
fast mixing. We also can speculate that the method would work for non-linear piecewise-
smooth maps, although in that case the propagation of coherent states should be analysed
in more detail (see remark 4.6).

The upper bound in theorem 1.1 seems far from being sharp. The heuristic calculations
in [FP, Wil, EFK+] suggest that the quantum variance decays like V (a)N−1 where the
prefactor V (a) is the classical variance of the observable a, appearing in the central limit
theorem. This has been conjectured to be the true decay rate for a “generic” Anosov
system. The decay of quantum variance has been studied numerically in [EFK+] for the
baker’s map and [BSS] for Euclidean billiards; in both cases, the results seems to be
compatible with a decay ≍ N−1; however, a discrepancy of around 10% was noted between
the observed and conjectured prefactors. This was attributed to the low values of N (or
energy in the case of billiards) considered. A more recent numerical study of a chaotic
billiard, at higher energies, still reveals some (smaller) deviations from the conjectured law
[Bar], leaving open the possibility of a decay ≍ N−γ with γ 6= 1.

A decay of the form Ṽ (a)N−1 (with an explicit factor Ṽ (a)) could be rigorously proven
for two particular Anosov systems, using their rich arithmetic structure [KR1, LS, RuSo].
In both cases, the prefactor Ṽ (a) generally differs from the classical variance V (a), which
is attributed to the arithmetic properties of the systems, which potentially makes them
“non-generic”. Algebraic decays have also been proven for some uniquely ergodic (non-
hyperbolic) maps [MR, Ro], by pushing the Egorov property to times of order O(N).

The rigorous investigation of the quantum variance thus remains an important open
problem in quantum chaology [Sar2].

Quantum ergodicity follows from theorem 1.1 as a corollary.

Corollary 1.2. For each N there exists a subset JN ⊂ {0, . . . , N−1} satisfying #JN ∼ N
as N → ∞ such that for any a ∈ C∞(T2),

(1.3) lim
N→∞

〈ϕN,jN
,OpW

N (a)ϕN,jN
〉 =

∫

T2

a(x)dx,

where jN ∈ JN .
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This generalises a result of [DBDE] to any observable a ∈ C∞(T2) (previously only
observables of the form a = a(q) could be handled). The restriction to a subset JN is the
“almost all” clarification in quantum ergodicity.

The paper is organised as follows. In section 2 we briefly describe the classical baker’s
map on T

2. In section 3, we recall how this map can be quantised [BV] into an N × N
unitary matrix. We then describe the action of the quantised baker map on coherent
states (proposition 4.4). This is the first step towards the Egorov estimates proven in
section 5 (theorems 5.12 and 5.15, which shows the correspondence up to the Ehrenfest
time). The first part of that section (subsection 5.1) compares the Weyl and anti-Wick
quantisations, for observables which become more singular when N grows. This technical
step is necessary to obtain Egorov estimates for times ≍ logN . In the final section, we
implement the method of [Schu2] to the quantum baker’s map, using our Egorov estimates
up to logarithmic times, and prove theorem 1.1.

Acknowledgments: We thank M. Saraceno, N. Anantharaman, A. Martinez and
S. Graffi for interesting discussions.

This work has been partially supported by the European Commission under the Research
Training Network (Mathematical Aspects of Quantum Chaos) HPRN-CT-2000-00103 of
the IHP Programme.

2. The classical baker’s map

The baker’s map1 is the prototype model for discontinuous hyperbolic systems, and it
has been extensively studied in the literature. Standard results may be found in [AA],
while the exponential mixing property was analyzed by [Has], and also derives from the
results of [Ch]. Here, for the sake of fixing notations, we restrict ourself to recalling the
very basic definitions and properties, referring the reader to the above references for more
details concerning the ergodic properties of the map.

We identify the torus T2 with the square [0, 1)× [0, 1). The first (horizontal) coordinate
q represents the “position”, while the second (vertical) represents the “momentum”. In
our notations, x = (q, p) will always represent a phase space point, either on R

2 or on its
quotient T2.

The baker’s map is defined as the following piecewise linear bijective transformation on
T2:

(2.1) B(q, p) = (q′, p′) =

{

(2q, p/2), if q ∈ [0, 1/2),

(2q − 1, (p+ 1)/2), if q ∈ [1/2, 1).

The transformation is discontinuous on the following subset of T
2:

(2.2) S1 := {p = 0} ∪ {q = 0} ∪ {q = 1/2},
1The name refers to the cutting and stretching mechanism in the dynamics of the map which is remi-

niscent of the procedure for making bread. Hence we write the word “baker” with a lower case “b”.
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and smooth everywhere else. If we consider iterates of the map, the discontinuity set
becomes larger: for any n ∈ N, the map Bn is piecewise linear, and discontinuous on the
set

Sn := {p = 0} ∪
2n−1
⋃

j=0

{

q =
j

2n

}

,

while its inverse B−n is discontinuous on the set S−n obtained from Sn by exchanging
the q and p coordinates. Clearly, the discontinuity set becomes dense in T2 as |n| → ∞.
The map is area preserving and uniformly hyperbolic outside the discontinuity set, with
constant Lyapunov exponents ± log 2 and positive topological entropy (see below). The
stable (resp. unstable) manifold is made of vertical (resp. horizontal) segments.

A nice feature of this map lies in a simple symbolic coding for its orbits. Each real
number q ∈ [0, 1) can be associated with a binary expansion

q = · ǫ0ǫ1ǫ2 . . . (ǫi ∈ {0, 1}).
This representation is one-to-one if we forbid expansions of the form ·ǫ0ǫ1 . . . 111 . . . Using
the same representation for the p-coordinate:

p = · ǫ−1ǫ−2 . . . ,

a point x = (q, p) ∈ T2 can be represented by the doubly-infinite sequence

x = . . . ǫ−2ǫ−1 · ǫ0ǫ1 . . .
Then, one can easily check that the baker’s map acts on this representation as a symbolic
shift:

(2.3) B(. . . ǫ−2ǫ−1 · ǫ0ǫ1 . . .) = . . . ǫ−2ǫ−1ǫ0 · ǫ1 . . .
From this symbolic representation, one gets the Kolmogorov-Sinai entropy of the map,
hKS = log 2, as well as exponential mixing properties [Ch, Has]: there exists Γ > 0 and
C > 0 such that, for any smooth observables a, b on T2, the correlation function

(2.4) Kab(n) :=

∫

T2

a(x) b(B−nx) dx −
∫

T2

a(x) dx

∫

T2

b(x) dx

is bounded as

(2.5) |Kab(n)| ≤ C ‖a‖C1 ‖b‖C1 e−Γ |n| .

According to [Has], one can take for Γ any number smaller than log 2.

3. Quantised baker’s map

The quantisation of the 2-torus phase space is now well-known and we refer the reader to
[DEG], here describing only the important facts. The quantisation of an area-preserving
map on the torus is less straightforward, and in general it contains some arbitrariness.
The quantisation of linear symplectomorphisms of the 2-torus (or “generalised Arnold cat
maps”) was first considered in [HB], and the case of nonlinear perturbations of cat maps
was treated in [BdMOdA, KM]. The scheme we present below, specific for the baker’s
map, was introduced in [BV].
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We start by defining the quantum Hilbert space associated to the torus phase space. For
any ~ ∈ (0, 1], we consider the quantum translations (elements of the Heisenberg group)

T̂v = ei(v2 q̂−v1p̂)/~, v ∈ R2, acting on L2(R) and by extension on S ′(R). We then define the
space of distributions

H~ = {ψ ∈ S ′(R), T̂(1,0)ψ = T̂(0,1)ψ = ψ} .
These are distributions ψ(q) which are Z-periodic, and such that their ~-Fourier transform

(3.1) (F̂~ψ)(p) :=

∫ ∞

−∞

ψ(q) e−iqp/~
dq√
2π~

is also Z-periodic.
One easily shows that this space is nontrivial iff (2π~)−1 = N ∈ N, which we will always

assume from now on. This space can be obtained as the image of L2(R) through the
“projector”

(3.2) P̂T2 =
∑

m∈Z2

(−1)Nm1m2 T̂m =
(

∑

m2∈Z

T̂0,m2

) (

∑

m1∈Z

T̂m1,0

)

.

H~ = HN then forms an N -dimensional vector space of distributions, admitting a “position
representation”

(3.3) ψ(q) =
1√
N

N−1
∑

j=0

∑

ν∈Z

ψj δ

(

q − j

N
+ ν

)

=:

N−1
∑

j=0

ψj qj(q),

where each coefficient ψj ∈ C. Here we have denoted by {qj}N−1
j=0 the canonical (“position”)

basis for HN .
This space can be naturally equipped with the Hermitian inner product:

(3.4) 〈qj ,qk〉 = δjk =⇒ 〈ψ, ω〉 :=

N−1
∑

j=0

ψj ωj .

Since HN is the image of S(R) through the “projector” (3.2), any state ψ ∈ HN can
be constructed by projecting some Schwartz function Ψ (q). The decomposition on the
RHS of (3.2) suggests that we may first periodicise in the q-direction, obtaining a periodic
function ΨC(q); such a wavefunction describes a state living in the cylinder phase space
C = T × R. The torus state ψ(q) is finally obtained by periodicising ΨC in the Fourier
variable; equivalently, the N components of ψ in the basis {qj} are obtained by sampling
this function at the points qj = j

N
:

(3.5) ψj =
1√
N
ΨC

( j

N

)

, 0 ≤ j < N.

The ~-Fourier transform F̂~ (seen as a linear operator on S ′(R)) leaves the space HN

invariant. On the basis {qj}, it acts as an N ×N unitary matrix F̂N called the “discrete
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Fourier transform”:

(3.6) (F̂N )kj =
1√
N

e−2iπkj/N , k, j = 0, . . . , N − 1 .

F̂~ quantises the rotation by −π/2 around the origin, F (q0, p0) = (p0,−q0). As a result,

F̂N maps the “position basis” {qj} onto the “momentum basis” {pj}:

pj =
N−1
∑

k=0

(F̂−1
N )kj qk .

The quantised baker’s map B̂N was introduced by Balazs and Voros [BV]. They require
N to be an even integer, and prescribe the following matrix in the basis {qj}:

(3.7) B̂N := (F̂N)−1B̂N,mix , with B̂N,mix :=

(

F̂N/2 0

0 F̂N/2

)

.

This definition was slightly modified by Saraceno [Sa], in order to restore the parity
symmetry of the classical map. Although we will concentrate on the map (3.7), all our
results also apply to this modified setting.

3.1. Notations.

Since we will be dealing with quantities depending on Planck’s constant N (plus possibly
other parameters), all asymptotic notations will refer to the classical limit N → ∞.

The notations A = O(B) and A ≪ B both mean that there exists a constant c such
that for any N ≥ 1, |A(N)| ≤ c|B(N)|. Writing A = Or(B) and A ≪r B means that
the constant c depends on the parameter r. Similarly A = o(B) and A << B both mean

that limN→∞
A(N)
B(N)

= 0. By A ≍ B we mean that A ≪ B and B ≪ A simultaneously. We

indicate by A ∼ B the more precise asymptotics limN→∞
A(N)
B(N)

= 1.

We use the convention for number sets that N := {1, 2, 3, . . .} and N0 := N ∪ {0}. Also
R+ := [0,∞), as usual.

We will use various norms. We denote by ‖·‖HN
the norm on HN defined as ‖ψ‖2

HN
=

〈ψ, ψ〉. Unless stated otherwise, ‖·‖ will refer to the norm on bounded operators on HN ,
also denoted by ‖·‖B(HN ). The Hilbert-Schmidt scalar product of two operators A, B on
HN will be denoted by

(3.8)
〈

A,B
〉

:=
1

N
Tr(A†B) .

Other norms describe classical observables (smooth functions f on T2). The sup-norm
will be denoted by ‖f‖C0, and for any j > 0, the Cj-norm is defined as

‖f‖Cj :=
∑

0≤|γ|≤j

‖∂γf‖C0 .

Here γ = (γ1, γ2) ∈ N2
0 denotes the multiindex of differentiation: ∂γ = ∂γ1

q ∂γ2
p , and

|γ| := γ1 + γ2.
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Because we want to consider large time evolution, namely times n ≍ logN , we need
to consider (smooth) functions which depend on Planck’s constant 1/N . Indeed, starting
from a given smooth function a, its evolution a ◦ B−n fluctuates more and more strongly
along the vertical direction, while it is smoother and smoother along the horizontal one as
n→ ∞ (assuming a is supported away from the discontinuity set Sn). For this reason, we
introduce the following spaces of functions [DS, chapter 7]:

Definition 3.1. For any α = (α1, α2) ∈ R2
+, we call Sα(T2) the space of N-dependent

smooth functions f = f(·, N) such that, for any multiindex γ ∈ N2
0, the quantity

Cα,γ(f) := sup
N∈N

‖∂γf(·, N)‖C0

Nα·γ

is finite (here α ·γ = α1γ1 +α2γ2). The seminorms Cα,γ (γ ∈ N2
0) endow Sα(T2) with the

structure of a Fréchet space.

4. Coherent states on T2

Our proof of the quantum-classical correspondence will use coherent states on T2. Below
we define them, and collect some useful properties. More comprehensive details and proofs
may be found in [Fo, Per, LV, BDB].

We define a (plane) coherent state at the origin with squeezing σ > 0 through its
wavefunction Ψ0,σ ∈ S(R) (we will always omit indicate the ~-dependence):

(4.1) Ψ0,σ(q) :=
( σ

π~

)1/4

e−
σq2

2~ .

The (plane) coherent state at the point x = (q0, p0) ∈ R2 is obtained by applying a

quantum translation T̂x to the state above, which yields:

Ψx,σ(q) :=
( σ

π~

)1/4

e−i
p0q0
2~ ei

p0q
~ e

−σ(q−q0)2

2~

= (2Nσ)1/4e−πiNq0p0+2πiNp0q−σNπ(q−q0)2 .

(In the second line, we took ~ = (2πN)−1, as is required if we want to project on the
torus). From here we obtain a coherent state on the cylinder by periodicising along the
q-axis:

(4.2) Ψx,σ,C(q) :=
∑

ν∈Z

Ψx,σ(q + ν) .

Finally, the coherent state on the torus is obtained by further periodicising in the Fourier
variable, or equivalently by sampling this cylinder wavefunction: its coefficients in the
canonical basis read

(4.3)
(

ψx,σ,T2

)

j
=

1√
N
Ψx,σ,C(j/N), j = 0, . . . , N − 1.

One can check that ψx+m,σ,T2 ∝ ψx,σ,T2 for any m ∈ Z2: up to a phase, the state ψx,σ,T2

depends on the projection on T2 of the point x.
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In the classical limit, it will often be useful to approximate a torus (or cylinder) coherent
state by the corresponding planar one:

Lemma 4.1. Let q0 ∈ (δ, 1 − δ) for some 0 < δ < 1/2. Then in the classical limit:

(4.4) ∀q ∈ [0, 1), Ψx,σ,C(q) = Ψx,σ(q) + O
(

(σN)1/4e−πNσδ2)

.

The error estimate is uniform for Nσ ≥ 1.

Proof. Extracting the ν = 0 term in (4.2), one gets

∀q ∈ [0, 1), Ψx,σ,C(q) = Ψx,σ(q) + O
(

(σN)1/4 e−σπN min{|q−q0+ν|2:ν 6=0}
)

.

Now, if q0 ∈ (δ, 1 − δ), one has |q − q0| ≤ 1 − δ, so that

∀ν 6= 0, |q − q0 − ν| ≥ |ν| − |q − q0| ≥ 1 − |q − q0| ≥ δ .

�
The next lemma describes how a torus coherent state transforms under the application

of the discrete Fourier transform.

Lemma 4.2. For any x = (q0, p0) ∈ R
2, let F x := (p0,−q0) denote its rotation by −π/2

around the origin. Then

(4.5) ∀N ≥ 1, ∀σ > 0, F̂N ψx,σ,T2 = ψFx,1/σ,T2 .

Proof. The plane coherent states, which are Gaussian wavefunctions, are obviously co-
variant through the Fourier transform F̂~: a straightforward computation shows that

∀x ∈ R
2, F̂~ψx,σ = ψFx,1/σ .

When (2π~) = N−1, we apply the projector (3.2) to both sides of this inequality, and

remember that F̂~ acts on HN as the matrix F̂N : this means P̂T2 F̂~ = F̂N P̂T2 , so the
above covariance is carried over to the torus coherent states. �

4.1. Action of B̂N on coherent states.

We assume N to be an even integer, and apply the matrix B̂N to the coherent state
ψx,σ,T2 , seen as an N -component vector in the basis {qj}. We get nice results if the point
x = (q0, p0) is “far enough” from the singularity set S1 (in this case Bx is well-defined).
More precisely, we define the following subsets of T2:

Definition 4.3. For any 0 < δ < 1/4 and 0 < γ < 1/2, let

(4.6) D1,δ,γ :=
{

(q, p) ∈ T
2, q ∈ (δ, 1/2 − δ) ∪ (1/2 + δ, 1 − δ), p ∈ (γ, 1 − γ)

}

.

The evolution of coherent states will be simple for states localised in this set.

Proposition 4.4. Assume that the point x = (q0, p0) ∈ T2 is in the set D1,δ,γ for some
δ, γ. We define the phase

(4.7) Θ =







0, if q0 ∈ (δ, 1/2 − δ),

q0 +
p0 + 1

2
, if q0 ∈ (1/2 + δ, 1 − δ),
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and the parameter

(4.8) θ := min(σδ2, γ2/σ) .

Then, in the classical limit, the coherent state ψx,σ,T2 evolves almost covariantly through
the quantum baker’s map:

(4.9) ‖B̂N ψx,σ,T2 − eiπΘ ψBx,σ/4,T2‖HN
= O(N3/4σ1/4 e−πNθ) .

The remainder is uniform with respect to δ, γ, and σ ∈ [1/N,N ] (these parameters may
depend on N).

Remark 4.5. If we extend to the full plane each of the maps given by the two lines of
equation (2.1), we get two linear symplectic transformation S0, S1, which can be quantised
on L2(R) by the metaplectic transformations

Ŝ0,~ = D̂2, Ŝ1,~ = T̂(−1,0) ◦ D̂2 ◦ T̂(0,1)

(here [D̂2 ψ](q) = 2−1/2 ψ(q/2) is the unitary dilation by a factor 2). Such metaplectic
transformations act covariantly on plane coherent states:

∀σ > 0, ∀x = (q0, p0) ∈ R
2,

{

Ŝ0,~Ψx,σ = ΨS0x,σ/4 ,

Ŝ1,~Ψx,σ = e
i

2~
(q0+

p0+1

2
) ΨS1x,σ/4 .

The approximate covariance stated in proposition 4.4 is therefore a microlocal version of
this exact global covariance.

Remark 4.6. The fact that the error is exponentially small is due to the piecewise-linear
character of the map B. Indeed, for a nonlinear area-preserving map M on T2, coher-
ent states are also transformed covariantly through M̂N , but the error term is in gen-
eral of order O(N ∆x3), where ∆x is the “maximal width” of the coherent state (here
∆x = max(σ, σ−1)N−1/2) [Schu1]. Moreover, in general the squeezing σ takes values in
the complex half-plane {Re(σ) > 0}: the reason why we can here restrict ourselves to the
positive real line is due to the orientation of the baker’s dynamics.

Proof of proposition 4.4.

Since we already know that F̂N acts covariantly on coherent states, we only need to
analyse the action of B̂N,mix (Eq. (3.7)).

We first consider a coherent state in the “left” strip (δ, 1/2− δ)× (γ, 1− γ) of D1,δ,γ. In

this case, the “relevant” coefficients of B̂N,mix ψx,σ,T2 are in the interval 0 ≤ m < N
2
:

(4.10)
(

B̂N,mix ψx,σ,T2

)

m
=

1√
N

N/2−1
∑

j=0

(F̂N/2)mj Ψx,σ,C

(

j

N

)

.

From the formula (3.6), we have for all 0 ≤ j,m < N/2:

(F̂N/2)mj =
√

2 (F̂N )2m j .



QUANTUM VARIANCE AND ERGODICITY FOR THE BAKER’S MAP 11

Since q0 ∈ (δ, 1/2− δ), for any N/2 ≤ j one has j/N − q0 ≥ δ; using lemma 4.1, we obtain

(4.11) ∀j ∈ {N/2, . . . , N − 1}, Ψx,σ,C

(

j

N

)

= O
(

(σN)1/4 e−πNσδ2)

.

We can therefore extend the range of summation in (4.10) to j ∈ {0, . . . , N − 1}, incurring
only an exponentially small error:

(

B̂N,mix ψx,σ,T2

)

m
=

√
2

N−1
∑

j=0

(F̂N)2m j

(

ψx,σ,T2

)

j
+ O((σN)1/4e−πNσδ2

)

=
√

2
(

ψFx,1/σ,T2

)

2m
+ O((σN)1/4e−πNσδ2

) .(4.12)

In the last step, we have used the covariance property of lemma 4.2.
Since p0 ∈ (γ, 1 − γ), it follows from lemma 4.1 and simple manipulations of plane

coherent states that

∀q ∈ [0, 1/2),
√

2 ΨFx,1/σ,C(2q) =
√

2 ΨFx,1/σ(2q) + O
(

(N/σ)1/4e−πNγ2/σ
)

= Ψ(p0/2,−2q0),4/σ(q) + O
(

(N/σ)1/4e−πNγ2/σ
)

= Ψ(p0/2,−2q0),4/σ,C(q) + O
(

(N/σ)1/4 e−πNγ2/σ
)

.

The identity (p0/2,−2q0) = FBx (valid for x in the left strip) inserted in (4.12) yields:

(4.13) ∀m ∈ {0, . . . , N/2 − 1},
(

B̂N,mix ψx,σ,T2

)

m
=

(

ψFBx,4/σ,T2

)

m
+ O((σN)1/4e−πNθ)

(θ is defined in (4.8), and we used the assumption σN > 1 to simplify the remainder).
The remaining coefficients N/2 ≤ m < N are bounded using (4.11):

(4.14)
(

B̂N,mix ψx,σ,T2

)

m
=

1√
N

N−1
∑

j=N/2

(F̂N/2)m j Ψx,σ,C

(

j

N

)

= O((σN)1/4e−πσNδ2

) .

On the other hand, lemma 4.1 shows that the coefficients
(

ψFBx,4/σ,T2

)

m
for N/2 ≤ m < N

are bounded from above by the same RHS. Hence, equation (4.13) holds for all m =
0, . . . , N − 1. A norm estimate is obtained by multiplying this component-wise estimate
by a factor

√
N .

We now apply the inverse Fourier transform and lemma 4.2, to obtain the part of the
theorem dealing with coherent states in the left strip of D1,δ,γ.

A similar computation treats the case of coherent states in the right strip of D1,δ,γ. The

large components of ψx,σ,T2 are in the interval j ≥ N/2, so the second block of B̂N,mix is
relevant. The analogue to (4.13) reads, for m ∈ {N/2, . . . , N − 1}:

(4.15)
(

B̂N,mix ψx,σ,T2

)

m
=

√

2

N
ΨFx,1/σ

(

2m

N
− 1

)

+ O((σN)1/4e−πNθ) .
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Proceeding as before, we identify

∀q ∈ [1/2, 1),
√

2 ΨFx,1/σ(2q − 1) = eπiN(q0+
p0+1

2
) Ψ((p0+1)/2,−(2q0−1)),4/σ(q)

= eπiN(q0+
p0+1

2
) ΨFBx,4/σ,C(q) + O((N/σ)1/4 e−πNγ2/σ) .(4.16)

Applying the inverse Fourier transform we obtain the second part of the theorem. �

5. Egorov property

Our objective in this section is to control the evolution of quantum observables through
B̂N , in terms of the corresponding classical evolution. Namely, we want to prove a Egorov
theorem of the type

(5.1) ‖B̂n
N OpN(a) B̂−n

N − OpN(a ◦B−n)‖ N→∞−−−→ 0.

Here OpN (a) is some quantisation of an observable a ∈ C∞(T2). As explained in the
introduction, to avoid the diffraction problems due to the discontinuities of B, we will
require the function a to be supported away from the set Sn of discontinuities of Bn.
Otherwise, a◦B−n may be discontinuous, and already its quantisation poses some problems.

A Egorov theorem has been proven in [RubSal] for a different quantisation of the baker’s
map, also using coherent states. In [DBDE, corollary 17] a Egorov theorem was obtained

for B̂N , but valid only for observables of the form a(q) (or a(p), depending on the direction
of time) and restricting the observables to a “good” subspace of HN of dimension N−o(N).

Since we control the evolution of coherent states through B̂N (proposition 4.4), it is
natural to use a quantisation defined in terms of coherent states, namely the anti-Wick
quantisation [Per] (see definition 5.2 below). However, because the quasi-covariance (4.9)
connects a squeezing σ to a squeezing σ/4, it will be necessary to relate the corresponding

quantisations OpAW,σ
N and Op

AW,σ/4
N to one another. This will be done in the next subsection,

by using the Weyl quantisation as a reference.
Besides, we want to control the correspondence (5.1) uniformly with respect to the time

n. We already noticed that for n >> 1, an observable a supported away from Sn needs to
fluctuate quite strongly along the q-direction, while its dependence in the p variable may
remain mild. Likewise, a ◦ B−n, supported away from S−n, will strongly fluctuate along
the p-direction.

All results in this section will be stated for two classes of observables:-

• general functions f ∈ C∞(T2), without any precision on possible dependence on N
or anisotropy. This yields a Egorov theorem valid for time |n| ≤ c TE with c < 1

6
,

which will suffice to prove theorem 1.1 (TE = TE(N) is the Ehrenfest time (1.2)).
• functions f ∈ Sα(T2) for some α ∈ R2

+ with |α| < 1 (see the definition 3.1). Here
we use more sophisticated methods in order to push the Egorov theorem up to the
times |n| ≤ (1 − ǫ)TE (ǫ > 0 is fixed).
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5.1. Weyl vs. anti-Wick quantizations on T2.

In this subsection, we define and compare the Weyl and anti-Wick quantisations on
the torus. The main result is proposition 5.5, which precisely estimates the discrepancies
between these quantisations, in the classical limit. We start by recalling the definition of
the Weyl quantisation on the torus [BDB, DEG].

Definition 5.1. Any function f ∈ C∞(T2) can be Fourier expanded as follows:

f =
∑

k∈Z2

f̃(k) ek , where ek(x) := e2πix∧k = e2πi(qk2−pk1) .

The Weyl quantisation of this function is the following operator:

(5.2) OpW
N (f) :=

∑

k∈Z2

f̃(k) T (k) , where T (k) := T̂hk .

We use the same notations for translation operators T (k) acting on either HN or L2(R);

in the latter case, the Weyl-quantised operator will be denoted by OpW,R2

N (f).

The operators {T (k) ; k ∈ Z
2} acting on L2(R) form an independent set of of unitary

operators. On the other hand, on HN these operators satisfy T (k+Nm) = (−1)k∧mT (k).
Hence, defining ZN := {−N/2, . . . , N/2− 1}, the set {T (k), k ∈ Z2

N} forms a basis of the
space of operators on HN . This basis is orthonormal with respect to the Hilbert-Schmidt
scalar product (3.8).

The Weyl quantisations on L2(R) and HN satisfy the following inequality [BDB, lemma 3.9]:

(5.3) ∀f ∈ C∞(T2), ∀N ∈ N, ‖OpW
N (f)‖B(HN ) ≤ ‖OpW,R2

N (f)‖B(L2(R)) .

This will allow us to use results pertaining to the Weyl quantisation of bounded functions
on the plane (see the proof of lemma 5.7).

We now define a family of anti-Wick quantisations.

Definition 5.2. For any squeezing σ > 0, the anti-Wick quantisation of a function f ∈
L1(T2) is the operator OpAW,σ

N (f) on HN defined as:

(5.4) ∀φ, φ′ ∈ HN , 〈φ,OpAW,σ
N (f)φ′〉 := N

∫

T2

f(x) 〈φ, ψx,σ,T2〉 〈ψx,σ,T2 , φ′〉 dx.

Both Weyl and anti-Wick quantisations map a real observable onto a Hermitian operator.
As opposed to the Weyl quantisation, the anti-Wick quantisation enjoys the important
property of positivity. Namely, if the function a is nonnegative, then for any N, σ, the
operator OpAW,σ

N (a) is positive.
These quantisations will be easy to compare once we have expressed the anti-Wick

quantisation in terms of the Weyl one.

Lemma 5.3. Using the quadratic form Qσ(k) := σ k2
1 + σ−1 k2

2, one has the following
expression for the anti-Wick quantisation:

(5.5) ∀f ∈ L1(T2), OpAW,σ
N (f) =

∑

k∈Z2

f̃(k) e−
π

2N
Qσ(k) T (k) .
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Equivalently, OpAW,σ
N (f) = OpW

N (f ♯), where the function f ♯ is obtained by convolution of f
(on R2) with the Gaussian kernel

(5.6) KN,σ(x) := 2N e−2πNQσ(x) .

Proof. To prove this lemma, it is sufficient to show that for any k0 ∈ Z2, the anti-Wick
quantisation on HN of the Fourier mode ek0(x) reads:

(5.7) OpAW,σ
N (ek0) = e−

π
2N

Qσ(k0) T (k0) .

To show this, we decompose OpAW,σ
N (ek0) in the basis {T (k), k ∈ Z2

N}, using the Hilbert-
Schmidt scalar product (3.8). That is, we need to compute

(5.8)
〈

T (k),OpAW,σ
N (ek0)

〉

=

∫

T2

ek0(x) 〈ψx,σ,T2 , T (k)† ψx,σ,T2〉 dx.

The overlaps between torus coherent states derive from the overlaps between plane coherent
states, which are simple Gaussian integrals:

∀x,y ∈ R
2, 〈Ψy,σ, Ψx,σ〉R2 = ei y∧x

2~ 〈Ψ0,σ, T̂x−y Ψ0,σ〉R2 = ei y∧x

2~ e−
Qσ(x−y)

4~ ,

Using the projector (3.2), we get

〈ψx,σ,T2 , T̂k/N ψx,σ,T2〉 =
∑

m∈Z2

(−1)Nm1m2 〈Ψx,σ, T̂k/N T̂mΨx,σ〉R2

=
∑

m∈Z2

(−1)Nm1m2+m∧k e2iπ(x∧(k+Nm)) e−
πN
2

Qσ(m+k/N) .

We insert this expression in the RHS of (5.8) (and remember that N is even):
〈

T (k),OpAW,σ
N (ek0)

〉

=
∑

m∈Z2

δk0,k+Nm (−1)m∧k e−
πN
2

Qσ(m+k/N) .

This expression vanishes unless k = k1, the unique element of Z2
N s.t. k1 = k0 +Nm1 for

some m1 ∈ Z2. From the orthonormality of the basis {T (k) : k ∈ Z2
N}, this shows that

OpAW,σ
N (ek0) = (−1)m1∧k1 e−

πN
2

Qσ(k0) T (k1) = e−
πN
2

Qσ(k0) T (k0). �
A simple property of these quantisations is the semi-classical behaviour of the traces of

quantized observables:

Lemma 5.4. For any integer M ≥ 3,

(5.9) ∀f ∈ C∞(T2),
1

N
Tr(OpW

N (f)) =

∫

T2

f(x) dx + OM

(‖f‖CM

NM

)

.

For the anti-Wick quantisation, we have:

(5.10) ∀f ∈ L1(T2),
1

N
Tr(OpAW,σ

N (f)) =

∫

T2

f(x) dx + O(‖f‖L1 e−
πN
2

min(σ,1/σ)) .
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Proof. The first identity uses the fact that on the space HN ,

1

N
TrT (k) =

{

1 if k = Nm for some m ∈ Z2,

0 otherwise.

The error term in (5.9) is bounded above by
∑

m∈Z2\{0} |f̃(Nm)|. Now, the Fourier coef-
ficients of a smooth function satisfy

(5.11) ∀M ≥ 1, ∀k ∈ Z
2, |f̃(k)| ≪M

‖f‖CM

(1 + |k|)M
.

Using this upper bound (with M ≥ 3) in the above sum yields (5.9).

In the anti-Wick case, each term |f̃(Nm)| ≤ ‖f‖L1 of the sum is multiplied by e−
πN
2

Qσ(m) ≤
e−

πN
2

min(σ,1/σ)|m|2, which yields (5.10). �

We will now compare the Weyl and anti-Wick quantisations in the operator norm. We
give two estimates, corresponding to the two classes of functions described in the introduc-
tion of this section.

Proposition 5.5.

I) For any f ∈ C∞(T2) and σ > 0,

(5.12) ‖OpW
N (f) − OpAW,σ

N (f)‖ ≪ ‖f‖C5

max{σ, σ−1}
N

.

Here σ may depend arbitrarily on N .
II) Let α ∈ R

2
+, |α| < 1 and assume that σ > 0 may depend on N such that the quantity

(5.13) ~α(N, σ) := max
(N2α1−1

σ
,Nα1+α2−1, σ N2α2−1

)

goes to zero as N → ∞. Then there exists a seminorm Nα on the space Sα(T2) such that,
for any f = f(·, N) ∈ Sα(T2), one has:

(5.14) ∀N ≥ 1, ‖OpAW,σ
N (f(·, N)) − OpW

N (f(·, N)‖ ≪ Nα(f) ~α(N, σ) .

Remark 5.6. The effective “small parameter” ~α(N, σ) will be small as N → ∞ only if
three conditions are simultaneously satisfied:-

• |α| = α1 + α2 < 1,
• N2α1 << Nσ,
• N2α2 << N/σ.

These conditions mean that the horizontal and vertical widths of the kernel (5.6) must be
small compared to the typical scale of fluctuations of f in the respective directions. The
conditions Nσ ≥ 1, N/σ ≥ 1 assumed in section 4 are therefore automatically satisfied.

Proof of proposition 5.5.
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We start with the first (simple) part. Our main ingredient is lemma 5.3. By Taylor’s
theorem,

(5.15) ∀k ∈ Z
2, e−

π
2N

Qσ(k) = 1 + O
(

Qσ(k)

N

)

= 1 + O
(

max{σ, σ−1}
N

|k|2
)

,

where the implied constant is independent of k. Substituting (5.15) into (5.5), the first
term gives the Weyl quantisation of f . Using the bounds (5.11) with M = 5, we obtain
the first part of the proposition:

‖OpAW,σ
N (f) − OpW

N (f)‖ ≪ max{σ, σ−1}
N

∑

k∈Z2

|f̃(k)| |k|2

≪ max{σ, σ−1}
N

∑

k∈Z2

‖f‖C5

(1 + |k|)5
|k|2

≪ max{σ, σ−1}
N

‖f‖C5 .

The second part of the proposition requires more care. We first need to control the norm
of the Weyl operator.

Lemma 5.7. Take any α, β ∈ R
2
+ such that |β| = 1 and β ≥ α (i.e. βi ≥ αi, i = 1, 2).

Then, for any function f = f(·, N) ∈ Sα(T2), we have

(5.16) ‖OpW
N (f(·, N))‖ ≪

1
∑

γ1, γ2=0

Cα,γ(f) N−γ·(β−α) ,

and the implied constant is independent of α,β.

Proof. This lemma is a simple consequence of the Calderón-Vaillancourt theorem, a sharp
form of which was obtained in [Boul]. Assume f is a smooth function on R2 such that ∂γf
is uniformly bounded for all γ with γ1, γ2 ∈ {0, 1}. Then, its Weyl quantisation on L2(R)
for ~ = 1 is a bounded operator, and:

(5.17) ‖OpW,R2

~=1 (f)‖ ≤ C

1
∑

γ1,γ2=0

‖∂γf‖C0(R2) .

Here ‖·‖ is the norm of bounded operators on L2(R), and C is independent of f .
Now, we use the scaling properties of the Weyl quantisation2. For any β ∈ [0, 1] and

~ > 0 we define

f~,β(q, p) := f(~βq, ~1−βp) .

Then, if U~,β is the dilation operator U~,βψ(q) = ~
β/2ψ(~βq), we have [Ma, page 60]

(5.18) U~,β OpW,R2

~
(f)U−1

~,β = OpW,R2

~=1 (f~,β) .

2We thank N. Anantharaman for pointing to us this scaling argument.



QUANTUM VARIANCE AND ERGODICITY FOR THE BAKER’S MAP 17

Applying (5.17) to f~,β, we obtain

∀~ > 0, ‖OpW,R2

~
(f)‖ ≤ C

1
∑

γ1,γ2=0

‖∂γf‖C0(R2) ~
βγ1+(1−β)γ2 .

In the case ~ = (2πN)−1 we apply this bound to a function f ∈ Sα(T2), selecting β =

(β, 1−β) such that β ≥ α: we then obtain the upper bound of (5.16) for OpW,R2

N (f). The
inequality (5.3) shows that this bound applies as well to the Weyl operator on HN . �

Equipped with this lemma, we can now prove the second part of proposition 5.5. From
the Taylor expansion

|f(x + y) − f(x) − (y · ∇)f(x)| ≤ 1

2
max
0≤t≤1

{
∣

∣(y · ∇)2f(z)
∣

∣ , z = x + ty
}

and lemma 5.3, one easily checks that for any f ∈ C∞(T2),

‖f ♯ − f‖C0 ≤ 1

8πN

(1

σ
‖∂2

qf‖C0 + 2‖∂q∂pf‖C0 + σ ‖∂2
pf‖C0

)

.

Since differentiation commutes with convolution, one controls all derivatives:
(5.19)

∀γ ∈ N
2
0, ‖∂γ(f ♯−f)‖C0 ≤ 1

8πN

( 1

σ
‖∂γ+(2,0)f‖C0 +2‖∂γ+(1,1)f‖C0 +σ ‖∂γ+(0,2)f‖C0

)

.

For f = f(·, N) ∈ Sα(T2), this estimate implies:

‖∂γ(f ♯ − f)‖C0 ≤ Nα·γ
(N2α1−1

σ
Cα,γ+(2,0)(f)

+Nα1+α2−1Cα,γ+(1,1)(f) + σ N2α2−1Cα,γ+(0,2)(f)
)

≤ Nα·γ
~α(N, σ)

(

Cα,γ+(2,0)(f) + Cα,γ+(1,1)(f) + Cα,γ+(0,2)(f)
)

.(5.20)

Here we used the parameter ~α(N, σ) defined in (5.13). This shows that the function
f ♯,rem(·, N) := 1

~α(N,σ)

(

f ♯(·, N) − f(·, N)
)

is also an element of Sα(T2), with seminorms

dominated by seminorms of f . Applying lemma 5.7 to that function and taking any β ≥ α,
|β| = 1, we get

‖OpAW,σ
N (f(·, N)) − OpW

N (f(·, N))‖ ≪ ~α(N, σ)
∑

|γ′|≤2

1
∑

γ1,γ2=0

Cα,γ+γ′(f) .

The seminorm stated in the theorem can therefore be defined as

(5.21) Nα(f) :=
∑

|γ′|≤2

1
∑

γ1,γ2=0

Cα,γ+γ′(f) .

�
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5.2. Egorov estimates for the baker’s map.

We now turn to the proof of the Egorov property (5.1). Let us start with the case n = 1.
We assume that a is supported in the set D1,δ,γ defined in equation (4.6), away from the
discontinuity set S1 of B.

Proposition 5.8. Let 0 < δ < 1/4 and 0 < γ < 1/2. Assume that the support of
a ∈ C∞(T2) is contained in D1,δ,γ. Then, in the classical limit,

‖B̂N OpAW,σ
N (a) B̂−1

N − Op
AW,σ/4
N (a ◦B−1)‖ ≪ ‖a‖C0 N5/4 σ1/4 e−πNθ ,

uniformly for N ≥ σ ≥ 1/N . Here we took as before θ = min(σδ2, γ2/σ).

Proof. For any normalised state φ ∈ HN , we consider the matrix element

(5.22) 〈φ, B̂NOpAW,σ
N (a)B̂−1

N φ〉 = N

∫

T2

a(x) 〈φ, B̂Nψx,σ,T2〉 〈B̂Nψx,σ,T2 , φ〉 dx .

Using the quasi-covariance of coherent states localised in D1,δ,γ (proposition 4.4) and ap-
plying the Cauchy-Schwarz inequality, the RHS reads

(5.23) N

∫

T2

a(x) 〈φ, ψBx,σ/4,T2〉 〈ψBx,σ/4,T2 , φ〉 dx + O(‖a‖C0N5/4σ1/4e−πNθ) .

The remainder is uniform with respect to the state φ. Through the variable substitution
x = B−1(y), this gives

(5.24) 〈φ, B̂NOpAW,σ
N (a)B̂−1

N φ〉 = 〈φ,Op
AW,σ/4
N (a ◦B−1)φ〉 + O(‖a‖C0N5/4σ1/4e−πNθ).

Since the operators on both sides are self-adjoint, this identity implies the norm estimate
of the proposition. �

Remark 5.9. Here we used the property that the linear local dynamics is the same at each
point x ∈ T2\S1 (expansion by a factor 2 along the horizontal, contraction by 1/2 along the

vertical). Were this not the case, the state B̂Nψx,σ,T2 would be close to a coherent state at
the point Bx, but with a squeezing depending on the point x. Integrating over x, we would
get an anti-Wick quantisation of a◦B−1 with x-dependent squeezing, the analysis of which
would be more complicated (see [Schu1, Chap. 4] for a discussion on such quantisations).

We now generalise to n > 1. We assume that a is supported away from the set Sn of
discontinuities of Bn. More precisely, for some δ ∈ (0, 2−n−1) and γ ∈ (0, 1/2), we define
the following open set, generalizing (4.6):

Dn,δ,γ :=

{

(q, p) ∈ T
2, ∀k ∈ Z ,

∣

∣

∣
q − k

2n

∣

∣

∣
> δ, p ∈ (γ, 1 − γ)

}

.

The evolution of the sets Dn,δ,γ through B satisfies:

(5.25) ∀j ∈ {0, . . . , n− 1}, BjDn,δ,γ ⊂ Dn−j,2jδ,γ/2j .

This is illustrated for n = 2, j = 1 in figure 5.1. If a is supported in Dn,δ,γ, then the
support of a ◦B−j is contained in Dn−j,2jδ,γ/2j ⊂ D1,2jδ,γ/2j . So for each 0 ≤ j < n, we can
apply proposition 5.8 to the observable a ◦ B−j, replacing the parameters δ, γ, σ by their
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B

δ

γ

2δ

γ

2

Figure 5.1. The action of the map B. On the left we show the set D2,δ,γ

(shaded) and on the right is its image under the action of B.

corresponding values at time j; we find that the parameter θ is independent of j. The
triangle inequality then yields:

Corollary 5.10. Let n > 0 and for some δ ∈ (0, 2−n−1), γ ∈ (0, 1/2), let a ∈ C∞(T2) have
support in Dn,δ,γ. Then, as N → ∞,

(5.26) ‖B̂n
N OpAW,σ

N (a) B̂−n
N − Op

AW,σ/4n

N (a ◦B−n)‖ ≪ ‖a‖C0 N5/4 σ1/4e−πNθ .

This estimate is uniform with respect to n and the squeezing parameter σ ∈ [4
n

N
, N ].

Remark 5.11. The requirement σ ∈ [4
n

N
, N ] imposes the restriction n ≤ TE, where TE is

the Ehrenfest time (1.2). To reach times n ∼ TE(1 − ǫ) we must take a squeezing σ in
the interval N ≥ σ ≥ N1−2ǫ, while the parameter δ must be in the interval (0, N−1+ǫ); the
argument of the exponential in the RHS of equation (5.26) then satisfies πNθ ≤ N2ǫ, which
still leaves some room for the RHS to decay in the classical limit.

We wish to obtain Egorov theorems where both terms correspond to a quantisation with
the same parameter σ, or the Weyl quantisation. To do so, we will use proposition 5.5 to
replace the anti-Wick quantisations by the Weyl quantisation. Using the first statement
of that proposition, we easily obtain the following Egorov theorem:

Theorem 5.12. Let n > 0 and for some δ ∈ (0, 2−n−1), γ ∈ (0, 1/2), let a ∈ C∞(T2) have
support in Dn,δ,γ. Then, in the limit N → ∞, and for any squeezing parameter σ ∈ [4

n

N
, N ],
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we have

(5.27) ‖B̂n
N OpW

N (a) B̂−n
N − OpW

N (a ◦B−n)‖ ≪ ‖a‖C0 N5/4 σ1/4 e−πNθ

+
1

N

(

max(σ, σ−1) ‖a‖C5 + max

(

σ

4n
,
4n

σ

)

‖a ◦B−n‖C5

)

.

The implied constants are uniform in n, σ, δ, γ.

If n, δ, γ and the observable a supported on Dn,δ,γ are independent of N , the RHS semi-
classically converges to zero if we simply take σ = 1. This is the “finite-time” Egorov
theorem.

On the other hand, if we let n grow with N , the function a needs to change with N as
well (at least because its support needs to change). In the next subsection we construct a
specific family of functions {an}n≥1, each one supported away from Sn, and compute the
estimate (5.27) for this family.

Remark 5.13. The same estimate holds if we replace n by −n on the LHS of (5.27), and
replace σ by σ−1 on the RHS, including the definition of θ. Now, the function a must be
supported in the set D−n,δ,γ obtained from Dn,δ,γ by exchanging the roles of q and p.

Indeed, using the unitarity of B̂N , we may interpret the estimate (4.9) as the quasi-
covariant evolution of the coherent state ψy,σ′,T2 (where y = Bx, σ′ = σ/4) into the state
ψB−1y,4σ′,T2, and the rest of the proof identically follows.

5.3. Egorov estimates for truncated observables.

5.3.1. A family of admissible functions.
For future purposes, and in order to better understand the bound (5.27), we explicitly

construct a sequence of functions {an}n≥0, each function being supported away from Sn.
This sequence is simply obtained by taking the products of a fixed observable a ∈ C∞(T2)
with cutoff functions χδ,n, which we now describe.

Definition 5.14. For some 0 < δ < 1/4, we consider a Z-periodic function χ̃δ ∈ C∞(R)
which vanishes for x ∈ [−δ, δ] mod Z and takes value 1 for x ∈ [2δ, 1 − 2δ] mod Z.

For any n ≥ 0, we then define the following cutoff functions on T2:

χδ,n(x) := χ̃δ(2
n q) χ̃δ(p) ,

χδ,−n(x) := χ̃δ(2
n p) χ̃δ(q) .

For any n ∈ Z, we split the observable a ∈ C∞(T2) into its “good part” an(x) :=
a(x)χδ,n(x) and its “bad part” abad

n (x) = a(x) (1 − χδ,n(x)).

One easily checks that an is supported on Dn,δ/2n,δ, while abad
n is supported on a neigh-

bourhood of Sn of area O(δ).
In light of remark 5.13 we can, without loss of generality, consider only times n > 0. For

any multiindex γ ∈ N2
0, we have

(5.28) ‖∂γan‖C0 ≪γ ‖a‖C|γ | 2nγ1 δ−|γ| .
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When evolving an through the map B, the derivatives grow along p and decrease along q;
after n iterations, an ◦B−n is still smooth, and

(5.29) ‖∂γ(an ◦B−n)‖C0 ≪γ ‖a‖C|γ | 2nγ2 δ−|γ| .

These estimates show that the C5-norms of an and an ◦ B−n (appearing on the RHS of
equation (5.27)) are both of order 25n/δ5. With our conventions, the parameter θ appearing

in the RHS of (5.26) reads θ = δ2

max(σ,4n/σ)
. We maximise it by selecting σ = 2n. With this

choice, the upper bound (5.27) reads

(5.30) ‖B̂n
N OpW

N (an) B̂−n
N − OpW

N (an ◦B−n)‖ ≪ ‖a‖C0 N5/4 2n/4 e−πNδ2/2n

+
26n ‖a‖C5

N δ5
.

Using remark 5.13, the same estimate holds if we replace n by −n on the LHS.
The last term of the RHS in (5.30) can semiclassically vanish only if |n| < TE

6
. This time

window, although not optimal (see the following subsection), will be sufficient to prove
theorem 1.1 in section 6.

Before that, in the last part of this section we will sharpen this estimate by using the
second part of proposition 5.5: this will allow us to prove a Egorov property up to times
|n| ≤ (1 − ǫ)TE, for any ǫ > 0.

5.3.2. Optimised Egorov estimates.
In this subsection we prove the following “optimal” Egorov theorem.

Theorem 5.15. Choose ǫ > 0 arbitrarily small, and consider any observable a ∈ C∞(T2).
For any N ≥ 1 and n ∈ Z, construct the “good part” an of that observable using defini-
tion 5.14 with a width δ(N) ≥ min(N−ǫ/4, 1/10).

Then, the following Egorov estimate holds: there exists C > 0 (independent of a, ǫ) and
N(ǫ) > 0 such that for any N ≥ N(ǫ) and any time |n| ≤ (1 − ǫ)TE,

(5.31) ‖B̂n
N OpW

N (an) B̂−n
N − OpW

N (an ◦B−n)‖ ≤ C
(

‖a‖C0 N3/2 e−πNǫ/2

+
‖a‖C4

N ǫ/2

)

.

Proof. We only treat the case n ≥ 0, finally invoking the time-reversal symmetry as in
remark 5.13.

We consider ǫ > 0 fixed, and define N(ǫ) through the equation N(ǫ)−ǫ/4 = 1/10. We
then take N ≥ N(ǫ) and consider any positive time n ≤ (1 − ǫ)TE.

The improvement over theorem 5.12 will be a sharper bound for the norms ‖OpAW,σ
N (an)−

OpW
N (an)‖ and ‖Op

AW,σ/4n

N (a ◦B−n)−OpW
N (a ◦B−n)‖. Using the rescaled time t = n

TE
and

the property δ(N) ≥ N−ǫ/4, the bound (5.28) on derivatives of an reads:

‖∂γan‖C0 ≪γ ‖a‖C|γ | 2nγ1 N
ǫ
4
|γ| = ‖a‖C|γ | N tγ1 N

ǫ
4
|γ| .

Thus, the derivatives of an scale as those of an N -dependent function in the space Sαt(T
2),

where αt := (t + ǫ/4, ǫ/4). As in the former subsection, we must take σ = 2n = N t

to minimise the remainder. The second part of proposition 5.5 applied to a function in
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Sαt(T
2) yields a “small parameter” ~αt(N, 2

n) = N t+ǫ/2−1, so that the difference between
the two quantisations of an is bounded as

‖OpW
N (an) − OpAW,2n

N (an)‖ ≪ ‖a‖C4 N t+ǫ/2−1 .

Similar considerations using (5.29) show that ‖OpW
N (a ◦ B−n) − OpAW,2−n

N (a ◦ B−n)‖ is
bounded by the same quantity. The argument of the exponential in equation (5.26) takes
the value Nθ = Nδ2/2n ≥ N1−t−ǫ/2, so that the full estimate reads:

‖B̂n
N OpW

N (an) B̂−n
N − OpW

N (an ◦B−n)‖ ≪ ‖a‖C0 N3/2 e−πN1−t−ǫ/2

+
‖a‖C4

N1−t−ǫ/2
.

We obtain the bound (5.31) uniform in n by noticing that for the time window we consider,
N1−t−ǫ/2 ≥ N ǫ/2. �

Our reason for believing that this estimate is “optimal” lies in remark 5.11: we evolve
states which stay away from the discontinuity set S1 along their evolution. Since any state
satisfies ∆q∆p & 1

2
~ due to Heisenberg’s uncertainty principle, and ∆q doubles at each

time step, it is impossible for such a state to remain away from S1 during a time window
larger than TE.

Besides, at the time TE the “good part” an oscillates on a scale ≈ ~ in the q direction,
so it behaves more like a Fourier integral operator than an observable (pseudo-differential
operator).

6. Quantum Ergodicity

For any even N , we denote by {ϕN,j} the eigenvectors of B̂N (if some eigenvalues happen
to be degenerate, which seems to be ruled out by numerical simulations, take an arbitrary
orthonormal eigenbasis). Let us consider a fixed real-valued observable a ∈ C∞(T2) satis-
fying

∫

T2 a(x) dx = 0. Quantum ergodicity follows if we prove that the quantum variance

(6.1) S2(a,N) =
1

N

N
∑

j=1

|〈ϕN,j,OpW
N (a)ϕN,j〉|2 N→∞−−−→ 0.

One method to prove this limit for our quantised baker’s map would be to apply the
methods of [MO’K]: one only needs the Egorov property (theorem 5.12) for finite times n,
and the classical ergodicity of B. However, this method seems unable to give information
about the rate of decay of the variance.

In order to prove the upper bound stated in theorem 1.1, we will rather adapt the method
used in [Zel2, Schu2] to our discontinuous map. This method requires the correlation
functions of the classical map to decay sufficiently fast, which is the case here (equation 2.5).

Proof of Theorem 1.1.

To begin with, we consider the function

(6.2) g(x) := 2

(

1 − cosx

x2

)
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and its Fourier transform

ĝ(k) =

∫ ∞

−∞

g(x) e−2πikx dx =

{

2π(1 − |k|), for −1 ≤ k ≤ 1,

0, elsewhere.

For any T ≥ 1, we use it to construct the following periodic function:

fT (θ) :=
∑

m∈Z

g(T (θ +m)).

fT admits the Fourier decomposition fT (θ) =
∑

k∈Z
f̂T (k) e2πikθ, where

f̂T (k) =

{

2π
T

(

1 − |k|
T

)

for −T ≤ k ≤ T ,

0 for |k| > T .

Using this function, one may easily prove the following lemma [Schu2].

Lemma 6.1. With notations described above, for any even N ≥ 2 and T ≥ 1 one has

S2(a,N) ≤
∑

n∈Z

f̂T (n)
1

N
Tr

(

OpW
N (a) B̂n

N OpW
N (a) B̂−n

N

)

.

Notice that the terms in the sum on the RHS vanish for |n| > T .

Proof. Let {ϕj} be the eigenbasis of B̂N , with B̂Nϕj = e2πiθj ϕj . Then one has

Tr
(

OpW
N (a) B̂n

N OpW
N (a) B̂−n

N

)

=

N−1
∑

j,k=0

e2πin(θk−θj) |〈OpW
N (a)ϕj , ϕk〉|2 .

Multiplying by f̂T (n) and summing over n, we get,

∑

n∈Z

f̂T (n) Tr
(

OpW
N (a) B̂n

N OpW
N (a) B̂−n

N

)

=

N−1
∑

j,k=0

fT (θk − θj) |〈OpW
N (a)ϕj, ϕk〉|2

=

N−1
∑

j=0

fT (0) |〈OpW
N (a)ϕj , ϕj〉|2

+
∑

j 6=k

fT (θk − θj) |〈OpW
N (a)ϕj, ϕk〉|2

≥ N S2(a,N) .

The final inequality follows from the positivity of fT and the property fT (0) ≥ 1. �

To prove the theorem we will estimate the traces appearing in lemma 6.1. Due to the
support properties of f̂T , only the terms with n ∈ [−T, T ] will be needed. We take the
time T depending on N , precisely as

T = T (N) :=
TE

11
,
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where TE is the Ehrenfest time (1.2). For each n ∈ Z ∩ [−T, T ], we will apply the Egorov
theorem 5.12. We first decompose a into a “good” part an and “bad” part abad

n , as described
in definition 5.14:

(6.3) a = an + abad
n , an := a.χδ,n ,

We let the width δ > 0 depend on N as δ ≍ (logN)−1. Therefore, for any n ∈ [−T, T ] we

will have 2|n|

δ
≪ N1/10. As a result, the bounds (5.28) for the derivatives of an read:

(6.4) ∀n ∈ Z ∩ [−T, T ], ‖∂γan‖C0 ≪γ ‖a‖C|γ | N
|γ |
10 .

Furthermore, the same bounds are satisfied by the derivatives of abad
n and an ◦B−n.

We decompose the traces of lemma 6.1 according to the splitting (6.3):

Tr
(

OpW
N (a) B̂n

N OpW
N (a) B̂−n

N

)

= Tr
(

OpW
N (a) B̂n

N OpW
N (an) B̂−n

N

)

(6.5)

+ Tr
(

OpW
N (a) B̂n

N OpW
N (abad

n ) B̂−n
N

)

.

The second term in the RHS will be controlled by replacing OpW
N (abad

n ) by its anti-Wick
quantisation:

(6.6) Tr
(

OpW
N (a) B̂n

N OpW
N (abad

n ) B̂−n
N

)

= Tr
(

OpW
N (a) B̂n

N OpAW,1
N (abad

n ) B̂−n
N + RN (n)

)

.

The remainder RN(n) is dealt with using part I of proposition 5.5, together with the
bounds (6.4) applied to abad

n :

‖RN(n)‖ ≤ ‖OpW
N (a)‖ ‖OpW

N (abad
n ) − OpAW,1

N (abad
n )‖

≪ ‖OpW
N (a)‖ ‖abad

n ‖C5

N
≪ ‖OpW

N (a)‖ ‖a‖C5

N1/2
.(6.7)

In order to compute Tr
(

OpW
N (a) B̂n

N OpAW,1
N (abad

n ) B̂−n
N

)

, we split the function abad
n into

its positive and negative parts, abad
n = abad

n,+ − abad
n,−, where abad

n,± ≥ 0. We then use the
following (standard) linear algebra lemma to estimate the trace:

Lemma 6.2. Let A, B be self-adjoint operators on HN , and assume B is positive. Then

(6.8) |Tr(AB)| ≤ ‖A‖Tr(B).

Since the anti-Wick operator OpAW,1
N (abad

n,+) is positive, this lemma yields:
∣

∣

∣
Tr

(

OpW
N (a) B̂n

N OpAW,1
N (abad

n,+) B̂−n
N

)
∣

∣

∣
≤ ‖OpW

N (a)‖ Tr
(

OpAW,1
N (abad

n,+)
)

,

and similarly by replacing abad
n,+ by abad

n,−. By linearity and abad
n,+ + abad

n,− = |abad
n |, we get

∣

∣

∣
Tr

(

OpW
N (a) B̂n

N OpAW,1
N (abad

n ) B̂−n
N

)
∣

∣

∣
≤ ‖OpW

N (a)‖ Tr
(

OpAW,1
N (|abad

n |)
)

From equation (5.10), the trace on the RHS is equal to ‖abad
n ‖L1(T2)

(

1 +O(e−πN/2)
)

. Since

abad
n is supported on a neighbourhood of Sn of area O(δ), its L1 norm is of order O(δ ‖a‖C0).
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Using the Calderón-Vaillancourt estimate ‖OpW
N (a)‖ ≤ C ‖a‖C2 , we have thus proven the

following bound for the second term in (6.5):

(6.9)
1

N
Tr

(

OpW
N (a) B̂n

N OpW
N (abad

n ) B̂−n
N

)

≪ ‖a‖C2

(

δ ‖a‖C0 +
‖a‖C5

N1/2

)

.

We now estimate the first term in (6.5). We write

(6.10) Tr
(

OpW
N (a) B̂n

NOpW
N (an)B̂−n

N

)

= Tr
(

OpW
N (a)OpW

N (an ◦B−n) + R′
N (n)

)

,

and control the remainder R′
N (n) with the Egorov estimate (5.30), remembering that

n ≤ TE/11:

‖R′
N (n)‖ ≪ ‖OpW

N (a)‖
(

‖a‖C0 N5/4 2n/4 e−πNδ2/2n

+
26n ‖a‖C5

N δ5

)

≪ ‖a‖2
C5

N2/5
.(6.11)

The following lemma (proved in [MO’K, lemma 3.1]) will allow us to replace the quantum
product by a classical one.

Lemma 6.3. There exists C > 0 such that, for any pair a, b ∈ C∞(T2),

(6.12) ∀N ≥ 1, ‖OpW
N (a) OpW

N (b) − OpW
N (ab)‖ ≤ C

‖a‖C4 ‖b‖C4

N
.

Using this lemma and the bounds (6.4), we get

Tr
(

OpW
N (a) OpW

N (an ◦B−n)
)

= Tr
(

OpW
N

(

a(an ◦B−n)
)

+ R′′
N (n)

)

,

with ‖R′′
N (n)‖ ≪ ‖an‖C4 ‖an ◦B−n‖C4

N
≪ ‖a‖2

C4

N1/5
.(6.13)

To finally estimate the trace of OpW
N

(

a(an ◦B−n)
)

, we use equation (5.9) together with the
estimates (6.4):

1

N
Tr

(

OpW
N

(

a(an ◦B−n)
))

=

∫

T2

a(an ◦B−n)(x) dx + O
(‖a‖2

C3

N2

)

.

It remains to compute the integral on the RHS. We split it in two integrals, according to
an = a− abad

n . The second integral can be bounded by

(6.14)

∣

∣

∣

∣

∫

T2

a(x) abad
n (B−nx) dx

∣

∣

∣

∣

≤ ‖a‖C0 ‖abad
n ‖L1 ≪ ‖a‖2

C0 δ ,

while the first one reads

(6.15)

∫

T2

a(x) a(B−nx) dx = Ka a(n),
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which is the classical autocorrelation function for the observable a(x), a purely classical
quantity. The mixing properties of B (see the end of section 2), imply that it decays as:

Ka a(n) ≪ ‖a‖2
C1 e−Γ |n| ,

for some Γ < log 2
Collecting all terms and using the properties of the function f̂T , the lemma 6.1 finally

yields the following upper bound:

S2(a,N) ≪ ‖a‖2
C5

∑

n∈[−T,T ]

|f̂T (n)|
(

e−Γ |n| + δ +
1

N1/5

)

≪ ‖a‖2
C5

( 1

T
+ δ

)

.

Since we took T ≍ logN and δ ≍ (logN)−1, this concludes the proof of theorem 1.1. �

Proof of corollary 1.2. Without loss of generality, we still assume
∫

a(x)dx = 0.

By Chebichev’s inequality, we can bound the number of eigenvectors of B̂N for which
〈ϕN,j,OpW

N (a)ϕN,j〉 does not converge to zero as follows: for any ǫ > 0,

#{j : |〈ϕN,j,OpW
N (a)ϕN,j〉| > ǫ}
N

≤ S2(a,N)

ǫ2
.(6.16)

By theorem 1.1, this fraction converges to zero as N → ∞. �

References
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[GL] P. Gérard and É. Leichtnam (1993) “Ergodic properties of eigenfunctions for the Dirichlet prob-
lem” Duke Math. J. 71 559–607.

[HB] J. H. Hannay and M. V. Berry (1980) “Quantisation of linear maps on the torus—Fresnel diffrac-
tion by a periodic grating” Physica D 1 267–290.

[Has] H.H. Hasegawa and W.C. Saphir (1992) “Unitarity and irreversibility in chaotic systems”, Phys.
Rev. A 46 7401–7423.

[Kap] L. Kaplan and E.J. Heller (1998) “Linear and nonlinear theory of eigenfunction scars” Ann. Phys.
(NY) 264 171–206.

[KM] J.P. Keating and F. Mezzadri (2000) “Pseudo-symmetries of Anosov maps and spectral statistics”
Nonlinearity 13 747–775.

[KR1] P. Kurlberg and Z. Rudnick (2001) “Hecke theory and equidistribution for the quantization of
linear maps of the torus” Duke Math. J. 103 47–77.

[KR2] P. Kurlberg and Z. Rudnick (2001) “On quantum ergodicity for linear maps of the torus” Comm.
Math. Phys. 222 201–227.

[KR3] P. Kurlberg and Z. Rudnick (2004) “On the distribution of matrix elements for the quantum cat
map” To appear in Ann. Math.

[Lak] A. Lakshminarayan (1995) “On the quantum baker’s map and its unusual traces” Ann. Phys.
(NY) 239 272–295.

[LV] P. Lebœuf and A. Voros (1990) “Chaos revealing multiplicative representation of quantum eigen-
states” J. Phys. A 23 1765–1774.

[Lin] E. Lindenstrauss (2004) “Invariant measures and arithmetic quantum unique ergodicity” To
appear in Ann. Math.

[LS] W. Luo and P. Sarnak “Quantum variance for Hecke eigenforms”, Preprint (2004)
[MO’K] J. Marklof and S. O’Keefe (2005) “Weyl’s law and quantum ergodicity for maps with divided

phase space”; appendix by S. Zelditch “Converse quantum ergodicity” Nonlinearity 18 277–304.
[MR] J. Marklof and Z. Rudnick (2000) “Quantum unique ergodicity for parabolic maps” Geom. Func.

Anal. 10 1554–1578.



28 M. DEGLI ESPOSTI, S. NONNENMACHER AND B. WINN

[Ma] A. Martinez An introduction to semiclassical and microlocal analysis Springer-Verlag, 2002.
[O’CTH] P.W. O’Connor, S. Tomsovic and E.J. Heller (1992) “Accuracy of semiclassical dynamics in the

presence of chaos” J. Stat. Phys. 68 131–152.
[Per] A.M. Perelomov (1986) “Generalized coherent states and their applications” Springer Verlag

(Heidelberg).
[Ro] L. Rosenzweig (2004) Quantum unique ergodicity for maps on T2. M.Sc. Thesis, Tel Aviv Uni-

versity.
[RubSal] R. Rubin and N. Salwen (1998) “A Canonical Quantization of the Baker’s Map”, Ann. Phys.

(NY) 269 159–181.
[RudSar] Z. Rudnick and P. Sarnak (1994) “The behaviour of eigenstates of arithmetic hyperbolic mani-

folds” Comm. Math. Phys. 161 195–213.
[RuSo] Z. Rudnick and K. Soundararajan, in preparation (2004)
[Sa] M. Saraceno (1990) “Classical structures in the quantized baker transformation” Ann. Phys.

(NY) 199 37–60.
[SaVo] M. Saraceno and A. Voros (1994) “Towards a semiclassical theory of the quantum baker’s map”

Physica D 79 206–268.
[Sar1] P. Sarnak (2003), “Spectra of Hyperbolic Surfaces” Bull. Amer. Math. Soc. 40, no.4, 441-478.
[Sar2] P. Sarnak Quantum vesus classical fluctuations on the modular surface. Talk given at the meeting:

“Random Matrix Theory and Arithmetic Aspects of Quantum Chaos” at the Isaac Newton
Institute, Cambridge, June 2004.
Audio file available at http://www.newton.cam.ac.uk/webseminars/

[Schn] A. I. Schnirelmann (1974) “Ergodic properties of eigenfunctions” Uspekhi Mat. Nauk. 29 181–182.
[Schu1] R. Schubert (2001) Semiclassical localization in phase space. Ph.D. Thesis, Universität Ulm.

Available at http://vts.uni-ulm.de
[Schu2] R. Schubert “An upper bound on the rate of quantum ergodicity.” Preprint. (April 2004)
[Wil] M. Wilkinson (1987) “A semiclassical sum rule for matrix elements of classically chaotic systems”

J. Phys. A 9 2415–2423.
[Zel1] S. Zelditch (1987) “Uniform distribution of eigenfunctions on compact hyperbolic surfaces” Duke

Math. J. 55 919–941.
[Zel2] S. Zelditch (1990) “Quantum transition amplitudes for ergodic and for completely integrable

systems” J. Funct. Anal. 94 415–436.
[ZZ] S. Zelditch and M. Zworski (1996) “Ergodicity of eigenfunctions for ergodic billiards” Comm.

Math. Phys. 175 673–682.

Department of Mathematics, University of Bologna Piazza di Porta S. Donato, 5 40127
Bologna, Italy (desposti@dm.unibo.it, winn@dm.unibo.it)
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