On two-dimensional surface attractors and repellers on 3-manifolds

Viatcheslav Grines, Vladislav Medvedev, Evgeny Zhuzhoma

To cite this version:

Viatcheslav Grines, Vladislav Medvedev, Evgeny Zhuzhoma. On two-dimensional surface attractors and repellers on 3-manifolds. Mathematical Notes, 2005, 78 (6), pp.757-767. 10.1007/s11006-005-0181-1 . hal-00003595

HAL Id: hal-00003595

https://hal.science/hal-00003595

Submitted on 16 Dec 2004

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

On two-dimensional surface attractors and repellers on 3-manifolds*

V. Grines V. Medvedev E. Zhuzhoma ${ }^{\dagger}$

Abstract

We show that if $f: M^{3} \rightarrow M^{3}$ is an A-diffeomorphism with a surface two-dimensional attractor or repeller \mathcal{B} and $M_{\mathcal{B}}^{2}$ is a supporting surface for \mathcal{B}, then $\mathcal{B}=M_{\mathcal{B}}^{2}$ and there is $k \geq 1$ such that: 1) $M_{\mathcal{B}}^{2}$ is a union $M_{1}^{2} \cup \ldots \cup M_{k}^{2}$ of disjoint tame surfaces such that every M_{i}^{2} is homeomorphic to the 2 -torus T^{2}. 2) the restriction of f^{k} to $M_{i}^{2}(i \in\{1, \ldots, k\})$ is conjugate to Anosov automorphism of T^{2}.

1 Introduction

One of the important question of Dynamical Systems Theory is the relationship between a fixed class of systems under consideration and the topology of underlying manifolds. This question is closely connected with a structure of non-wandering set of a dynamic system. For example, Franks 9 and Newhouse [19] have shown that any codimension one Anosov diffeomorphism is conjugate to a hyperbolic torus automorphism (as a consequence, a manifold admitting such diffeomorphisms is homeomorphic to the torus T^{n}). A simple proof of this Franks-Newhouse theorem that uses foliation theory techniques was obtained in [12].

Recently Grines and Zhuzhoma [10] proved that if a closed n-manifold $M^{n}, n \geq 3$, admits a structurally stable diffeomorphism f with an orientable codimension one expanding attractor, then M^{n} is homotopy equivalent to

[^0]the n-torus T^{n} and is homeomorphic to T^{n} for $n \neq 4$. Moreover, there are no nontrivial basic sets different from the codimension one expanding attractor in nonwandering set of the diffeomorphism f. This allowed to them to classify, up to conjugacy, structurally stable diffeomorphisms having codimension one expanding attractors and contracting repellers on T^{n}.

A key point in the mentioned above results is the existence of so-called hyperbolic structure on a non-wandering set. More precisely, let $f: M \rightarrow M$ be a diffeomorphism of a closed m-manifold $M, m=\operatorname{dim} M \geq 2$, endowed with some Riemannian metric ρ (all definitions in this section can be found in [16] and [24, unless otherwise indicated). Recall that a point $x \in M$ is non-wandering if for any neighborhood U of $x, f^{n}(U) \cap U \neq \emptyset$ for infinitely many integers n. Then the non-wandering set $N W(f)$, defined as the set of all non-wandering points, is an f-invariant and closed set. A closed invariant set $\Lambda \subset M$ is hyperbolic if there is a continuous f-invariant splitting of the tangent bundle $T_{\Lambda} M$ into stable and unstable bundles $E_{\Lambda}^{s} \oplus E_{\Lambda}^{u}$ with

$$
\left\|d f^{n}(v)\right\| \leq C \lambda^{n}\|v\|, \quad\left\|d f^{-n}(w)\right\| \leq C \lambda^{n}\|w\|, \quad \forall v \in E_{\Lambda}^{s}, \forall w \in E_{\Lambda}^{u}, \forall n \in \mathbb{N}
$$

for some fixed $C>0$ and $\lambda<1$. For each $x \in \Lambda$, the sets $W^{s}(x)=\{y \in M$: $\left.\lim _{j \rightarrow \infty} \rho\left(f^{j}(x), f^{j}(y)\right) \rightarrow 0\right\}, W^{u}(x)=\left\{y \in M: \lim _{j \rightarrow \infty} \rho\left(f^{-j}(x), f^{-j}(y)\right) \rightarrow 0\right\}$ are smooth, injective immersions of E_{x}^{s} and E_{x}^{u} that are tangent to W_{x}^{s}, W_{x}^{u} respectively. $W^{s}(x), W^{u}(x)$ are called stable and unstable manifolds at x.

An important class of dynamical systems is made up of the diffeomorphisms satisfying Smale's Axiom A [26], the so-called A-diffeomorphisms. Given such a diffeomorphism f, its recurrent behavior is captured in its nonwandering set $N W(f)$, which can be decomposed into invariant topologically transitive pieces. To be precise, a diffeomorphism $f: M \rightarrow M$ is an A-diffeomorphism if its non-wandering set $N W(f)$ is hyperbolic and the periodic points are dense in $N W(f)$. According to Smale's Spectral Decomposition Theorem, $N W(f)$ is decomposed into finitely many disjoint so-called basic sets $\Omega_{1}, \ldots, \Omega_{k}$ such that each Ω_{i} is closed, f-invariant and contains a dense orbit [26]. Following [1], the pair (a, b) is said to be a type of basic set Ω if $a=\operatorname{dim} E_{x}^{s}$ and $b=\operatorname{dim} E_{x}^{u}$, where $x \in \Omega$.

S . Smale posed several kinds of basic sets:
(a) zero dimensional ones such as Smale's horseshoe;
(b) one-dimensional ones such as so-called Smale solenoids and its generalization Smale-Williams solenoids (see [27], the name is suggested in [20]);
(c) codimension one expanding attractors or contracting repellers of DAdiffeomorphisms;
(d) basic sets of transitive Anosov diffeomorphisms whose dimension equals to the dimension of underlying manifold because they coincide with the manifold.

It is well known that there is no restriction on the topology of underlying manifold when a basic set \mathcal{B} is zero dimensional (25).

But in the case of non zero dimensional the situation is other in general (see above mentioned examples). In addition, we would like to notice the article [5] in which was proved that a closed orientable 3-manifold M contains a knotted Smale solenoid if and only if M has a lens space $L(p, q)$, with $p \neq 0, \pm 1$, as a prime factor ${ }^{1}$. This result was repeated recently in [14].

This paper is devoted to topological classification of so-called surface basic set of A-diffeomorphisms on smooth closed orientable 3-manifolds. Let us introduce a concept of surface basic set.

Definition $1 A$ basic set \mathcal{B} of an A-diffeomorphism $f: M^{3} \rightarrow M^{3}$ is called surface basic set if \mathcal{B} belongs to an f-invariant closed surface $M_{\mathcal{B}}^{2}$ topologically embedded in the 3-manifold M^{3}.

The f-invariant surface $M_{\mathcal{B}}^{2}$ is called a supporting surface for \mathcal{B}.
By definition, a supporting surface is not necessary connected. But it is obviously that there is some power of diffeomorphism f for which every surface basic set has connected supporting surface.

Let us recall that a basic set \mathcal{B} of A-diffeomorphism $f: M \rightarrow M$ is called an attractor if there is a closed neighborhood U of \mathcal{B} such that $f(U) \subset$ int U, $\bigcap_{j \geq 0} f^{j}(U)=\mathcal{B}$.

If \mathcal{B} is a two-dimensional basic set of A-diffeomorphism f on a closed 3 -manifold M^{3} then, accordingly to [22] (theorem 3), \mathcal{B} is either an attractor or repeller.

[^1]Recall that an attractor is called an expanding attractor if topological dimension $\operatorname{dim} \mathcal{B}$ of \mathcal{B} is equal to the dimension $\operatorname{dim}\left(E_{\mathcal{B}}^{u}\right)$ of the unstable bundle $E_{\mathcal{B}}^{u}$ (the name is suggested in [27], [28]). A contracting repeller of a diffeomorphism f is an expanding attractor for f^{-1}). Certainly, one can consider a contracting repeller instead of an expanding attractor, and vice versa. It is well known that a codimension one expanding attractor consists of the $(\operatorname{dim} M-1)$-dimensional unstable manifolds $W^{u}(x), x \in \mathcal{B}$, and is locally homeomorphic to the product of $(\operatorname{dim} M-1)$-dimensional Euclidean space and a Cantor set (see, for example, [22], theorem 2). The similar structure has codimension one contracting repeller. Therefore one use the notion pseudotame basic set, meaning an expanding attractor or contracting repeller.

As we know, the next Smale's question is open (see [26], p. 785): is there codimension one basic set that is not compact submanifolds and is not locally product of Euclidean space and a Cantor set.

In section 3 we shall prove (in the lemma 1) that surface two-dimensional attractor (repeller) \mathcal{B} of an A-diffeomorphism $f: M^{3} \rightarrow M^{3}$ has type $(2,1)$ $((1,2))$. It follows from there that \mathcal{B} is neither expanding attractor nor contracting repeller. Moreover, we will prove in section 3 (lemma 2) that a two-dimensional basic set \mathcal{B} coincide with its supporting surface $M_{\mathcal{B}}^{2}$.

Thus, Smale's question in the case under consideration can be formulated as follows: is there two-dimensional attractor (repeller) which has the type $(2,1)((1,2))$ and different from compact submanifold?

Let us notice that according to [15] there is an example of Adiffeomorphism of closed three-manifold such that its non-wandering set contains a two-dimensional surface basic set whose supporting surface is an essentially non-smoothly embedded two-torus.

We notice also that according to [21], [1] there is a Morse-Smale diffeomorphism $f: S^{3} \rightarrow S^{3}$ with the f-invariant attracting surface S homeomorphic to the sphere S^{2} that is wildly embedded into S^{3} (it is necessary to emphasize that S is not a basic set of f in this case).

However the first result of our paper claims that a supporting surface for surface basic set is a union of tame tori.

Let us recall the concept of a tame surface embedded in M^{3}.
Let $D_{0}:\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2} \leq 1, z=0\right\}$ be standard disk and M^{2} a surface embedded in a three-manifold M^{3}.

A surface M^{2} is called locally flat or tame if for any point $x \in M^{2}$ there is a neighborhood U_{x} of the point x in M^{3} and homeomorphism $h_{x}: \overline{U_{x}} \rightarrow \mathbb{R}^{3}$
such that $h\left(\overline{U_{x} \cap M^{2}}\right)=D_{0}$.
Theorem 1 Let $f: M^{3} \rightarrow M^{3}$ be an A-diffeomorphism with the surface two-dimensional basic set \mathcal{B} and $M_{\mathcal{B}}^{2}$ is a supporting surface for \mathcal{B}. Then $\mathcal{B}=M_{\mathcal{B}}^{2}$ and there is a number $k \geq 1$ such that $M_{\mathcal{B}}^{2}$ is a union $M_{1}^{2} \cup \ldots \cup M_{k}^{2}$ of disjoint tame surfaces such that every M_{i}^{2} is homeomorphic to the 2-torus T^{2}.

The next theorem explains the dynamics of restriction of the diffeomorphism f to a surface basic set.

Theorem 2 Let the condition of theorem 1 are fulfilled, then there is number $k \geq 1$ such that the restriction f^{k} to $M_{i}^{2}(i \in\{1, \ldots, k\})$ is conjugate to Anosov automorphism of T^{2}.

Acknowledgment. The research was partially supported by RFBR grant 02-01-00098. This work was done while the first and the third authors were visiting Nantes University and Rennes 1 University (IRMAR) respectively in March-June 2004. They thank the support CNRS which made this visits possible. They would like to thank Francois Laudenbach, Andrey Pajitnov, Vadim Kaimanovich, Anton Zorich, for their hospitality.

2 Proof of theorem $\mathbb{1}$

Proof of theorem \square follows from the next lemmas 这, 2 and 3 which will be proved below.

Lemma 1 Let \mathcal{B} be a two-dimensional surface attractor (repeller) of A diffeomorphism f of three-manifold M^{3}. Then \mathcal{B} has type $(2,1)$ (resp. $(1,2)$).

Proof. Suppose for definiteness that \mathcal{B} is a surface attractor and $M_{\mathcal{B}}^{2}$ is the supporting surface for \mathcal{B}. According to [22] (theorem 1), the unstable manifold $W^{u}(x)$ belongs to \mathcal{B} for any point $z \in \mathcal{B}$. Since the restriction of f to \mathcal{B} is transitive, $\operatorname{dim} W^{u}(z)$ does not depend on the choice of $z \in \mathcal{B}$. Let us notice that $\operatorname{dim} E_{z}^{u}=\operatorname{dim} W^{u}(z)$. Thus it is sufficiently to prove that $\operatorname{dim} W^{u}(z)=1$.

Suppose the contrary. It follows from $\operatorname{dim} W^{u}(z) \leq \operatorname{dim} \mathcal{B}$ that either $\operatorname{dim} W^{u}(z)=0$ or $\operatorname{dim} W^{u}(z)=2$.

If $\operatorname{dim} W^{u}(z)=0$ then \mathcal{B} would be an attracting orbit of the diffeomorphism f and, hence, a zero-dimensional basic set. It contradicts to supposition that $\operatorname{dim} \mathcal{B}=2$.

Suppose that $\operatorname{dim} W^{u}(z)=2$. As \mathcal{B} is nontrivial basic set, then it contains infinite set $\operatorname{Per}(f)_{\mathcal{B}}$ of periodic points which are dense in \mathcal{B}. From another hand, as \mathcal{B} is a surface basic set, then for any point $p \in \operatorname{Per}(f)_{\mathcal{B}}$ the unstable manifold $W^{u}(p)$ belongs to the surface $M_{\mathcal{B}}^{2}$ and consequently the set $W^{u}(p) \backslash$ $\{p\}$ does not contain periodic points of the diffeomorphism f. It contradicts to the fact that the set $\operatorname{Per}(f)_{\mathcal{B}}$ is dense in \mathcal{B}.

Let \mathcal{B} be a two-dimensional attractor of A-diffeomorphism $f: M^{3} \rightarrow M^{3}$.
According to D.V. Anosov [2] and R. Bowen [6] there is number $k \geq 1$ such that the basic set \mathcal{B} can be represented as the union of disjoint closed set $\mathcal{B}_{1}, \ldots, \mathcal{B}_{k}$ such that $f\left(\mathcal{B}_{i}\right)=\mathcal{B}_{i+1}\left(\mathcal{B}_{k+1}=\mathcal{B}_{1}\right)$ and for any point $z \in \mathcal{B}_{i}$ $W^{u}(z)=\mathcal{B}_{i}$. It follows from the proof of lemma [that $\operatorname{dim} W^{u}(z)=1$ for any point $z \in \mathcal{B}_{i}$ and $W^{u}(z)$ belongs to \mathcal{B}_{i}.

Denote by F_{i}^{u} the family of unstable manifolds $W^{u}(z)$ for all points $z \in \mathcal{B}_{i}$.

Lemma 2 Let $f: M^{3} \rightarrow M^{3}$ be an A-diffeomorphism whose non-wandering set contains the surface two-dimensional attractor \mathcal{B} with the supporting surface $M_{\mathcal{B}}^{2}$. Then:

1) $\mathcal{B}=M_{\mathcal{B}}^{2}$;
2) the family F_{i}^{u} is a continuous foliation without singularities on M_{i}^{2}.
3) $M_{\mathcal{B}}^{2}$ is the union $M_{1}^{2} \cup \ldots \cup M_{k}^{2}$ of disjoint surfaces such that each of them is homeomorphic to the 2-torus T^{2} and $\mathcal{B}_{i}=M_{i}^{2}$.

Proof. Put $g=f^{k}$. It is obviously that for any $i \in\{1, \ldots, k\}$ there is a surface $M_{i}^{2} \subseteq M^{2}$ which is supporting surface for the basic set \mathcal{B}_{i} of the diffeomorphism g. Let us show that $\mathcal{B}_{i}=M_{i}^{2}$.

As by assumption $\operatorname{dim} \mathcal{B}_{i}=2$ and $\mathcal{B}_{i} \subset M_{i}^{2}$, then \mathcal{B}_{i} contains a non-empty open subset, say V, in the interior topology of M_{i}^{2} (see thm. 4.3 [13]).

Let z be any point belonging to int V. According to [26], there is $\alpha>0$ such that the point z has a closed neighborhood $U_{z} \subset V$ which is homeomorphic to the direct product $\breve{W}_{\alpha}^{s}(z) \times W_{\alpha}^{u}(z)$, where $\breve{W}_{\alpha}^{s}(z)=\mathcal{B} \cap W_{\alpha}^{s}(z)$ and $W_{\alpha}^{s}(z), W_{\alpha}^{u}(z)$ are a closed α-neighborhoods of the point z in the some initial metric in the manifold $W^{s}(z), W^{u}(z)$ respectively. It means that for any point $w \in U_{z}$ there is a unique pair of points $w^{s} \in \breve{W}_{\alpha}^{s}(z), w^{u} \in W_{\alpha}^{u}(z)$ such that $w=W^{u}\left(w^{s}\right) \cap W_{\alpha}^{s}\left(w^{u}\right)$. Let us define the projection $\pi_{z}: U_{z} \rightarrow W^{s}(z)$ as follows. For $w \in U_{z}$, put $\pi_{z}(w)=w^{s}$.

Since V is an open subset of M^{2} and M^{2} is topologically embedded in M^{3}, one can assume, without loss of generality, that U_{z} is homeomorphic to a closed 2-disk.

Put $U_{z}^{s}=\pi_{z}\left(U_{z}\right)$. Let us show that there is closed simple way $\gamma \subset U_{z}^{s}$ such that $z \in$ int γ.

It is well known (see, for example, [18]) that any simple curve is tame on a disk. Thus there is an open neighborhood $D_{z} \subset U_{z}$ of the point z such that:

1) the set $W^{u}(z) \cap D_{z}$ consists of exactly one connected component say $\lambda \subset W^{u}(z) ;$
2) the set $D \backslash \lambda$ consists of two connected components say D_{1}, D_{2}.
3) $\pi_{z}\left(D_{1}\right) \cap \pi_{z}\left(D_{2}\right)=\emptyset$.

Let us choose any points $z_{1} \in \pi_{z}\left(D_{1}\right), z_{2} \in \pi_{z}\left(D_{2}\right)$. As the sets $D_{1} \cup \lambda$, $D_{2} \cup \lambda$ are path connected subsets and π_{z} is continuous map then $\pi_{z}\left(D_{1} \cup \lambda\right)$, $\pi_{z}\left(D_{2} \cup \lambda\right)$ are also path connected subsets. Moreover as $\pi_{z}\left(D_{1} \cup \lambda\right), \pi_{z}\left(D_{2} \cup \lambda\right)$ are Hausdorff subspaces (in induced topology), then there is a simple arc $\gamma_{1} \subset \pi\left(D_{1} \cup \lambda\right)$ joining the points z_{1}, z and there is a simple arc $\gamma_{2} \subset \pi_{z}\left(D_{2} \cup \lambda\right)$ joining the points and z_{2}, z^{2}. Then the arc $\gamma=\gamma_{1} \cup \gamma_{2}$ is a simple arc joining the points z_{1} and z_{2}. By construction $z \in$ int γ.

Introduce a parameter $t \in[-1,1]$ on the arc γ such that $\gamma(-1)=z_{1}$, $\gamma(0)=z$ and $\gamma(1)=z_{2}$. For any $t \in[-1,1]$ denote $l_{t}^{u}=W_{\alpha}^{u}(\gamma(t))$ and put $F_{z}^{u}=\bigcup_{t \in[-1,1]} l_{t}^{u}$.

For any point $\gamma(t)$, the unstable manifold $W_{\alpha}^{u}(\gamma(t))$ intersects transversally the stable manifold $W_{\alpha}^{s}(z)$ at a unique point.

Let $V_{0}(z)$ be the disk consisting of the all points belonging to the union curves $l_{t}^{u}(t \in[-1,1])$. Due to the theorem on continuous dependence of unstable manifolds on initial conditions (see, for example, [26]), the family of curves F_{z}^{u} is locally homeomorphic to a family of straight lines parallel to the axis Ox on Euclidean plain by means some homeomorphism $h_{z}: V_{0}(z) \rightarrow \mathbb{R}^{2}$. Hence, F_{z}^{u} is a continuous foliation on the closed disk $V_{0}(z)$.

Let $y \in \mathcal{B}_{i}$ be any point. As $\overline{W^{u}(y)}=\mathcal{B}_{i}$, then there is a point $w \in$ int γ such that $[y, w]^{u} \subset W^{u}(y)$. Due to the theorem on continuous dependence of unstable manifolds on initial condition, there is an open neighborhood

[^2]$U_{w} \subset$ int γ of the point w and an open neighborhood $U_{y} \subset M_{i}^{2}$ of the point y such that for any point $y^{\prime} \in U_{y}$ there is the point $w^{\prime} \in U_{w}$ such that $\left[w^{\prime}, y^{\prime}\right]^{u} \subset W^{u}\left(w^{\prime}\right)$ and consequently the point y^{\prime} belongs to \mathcal{B}_{i}. It means that the set \mathcal{B}_{i} is open. As \mathcal{B}_{i} is closed then it coincides with the surface M_{i}^{2}. As $\mathcal{B}_{i} \cap \mathcal{B}_{j}=\emptyset$ for $i \neq j$ then also $M_{i}^{2} \cap M_{j}^{2}=\emptyset$.

Thus $\mathcal{B}=M_{\mathcal{B}}^{2}$ and $M_{\mathcal{B}}^{2}$ is the union $M_{1}^{2} \cup \ldots \cup M_{k}^{2}$ of disjoint surfaces.
It follows from above arguments that for any point of $b \in \mathcal{B}_{i}$ there is a neighborhood U_{b} and homeomorphism $h_{b}: U_{b} \rightarrow \mathbb{R}^{2}$ such that h_{b} maps the intersection of curves from F_{i}^{u} with U_{b} on the family of straight lines which are parallel to the axis $O x$. Thus family F_{i}^{u} is continuous transitive foliation without singularities on M_{i}^{2}.

Consequently the surface M_{i}^{2} is homeomorphic to either the Klein bottle or the torus. According to [17] any foliation without singularities on Klein bottle must have at least one closed leaf. As a consequence the Klein bottle does not admit transitive foliation. Thus the manifold M_{i}^{2} is homeomorphic to the torus and the lemma is completely proved.

Lemma 3 The surface M_{i}^{2} is tame.
Proof. According to the proof of lemma 2, for any point $z \in M_{i}^{2}$ there exists a neighborhood $V_{0}(z) \subset M_{i}^{2}$ such that:

1) $V_{0}(z)$ is homeomorphic to the direct product $\gamma \times W_{\alpha}^{u}(z)$, where γ is simple curve belonging to $W_{\alpha}^{s}(z)$;
2) $V_{0}(z)$ is the union of the smooth curves $W_{\alpha}^{u}(\underset{\tilde{F}}{ }), w \in \gamma$, which belong to leaves of the foliation F_{i}^{u} and form the foliation \tilde{F}^{u} which is given on the neighborhood $V_{0}(z)$;
3) any curve $W_{\alpha}^{u}(w)$ intersects $W_{\alpha}^{s}(z)$ in exactly one point;
4) the curve γ is a local section (in topological sense) for the foliation $\tilde{F}^{u 3}$.

Let us show that there are a neighborhood B_{z} of the point z that is homeomorphic to 3 -disk and an embedding $h_{z}: B_{z} \rightarrow \mathbb{R}^{3}$ such that $h_{z}\left(B_{z} \cap\right.$ $\left.V_{0}(z)\right)=D_{0}$.

Without lost of generality we can suppose that there exists a neighborhood \tilde{B}_{z} (of the point z) which is homeomorphic to 3 -disk such that:

[^3]1) $W_{\alpha}^{s}(z) \subset \tilde{B}_{z}, V_{0}(z) \subset \tilde{B}_{z}$;
2) there is diffeomorphism $g: \tilde{B}_{z} \rightarrow B_{0}^{3}$ such that $g\left(W_{\alpha}^{s}(z)\right) \subset O x y$, $g(z)=O(0,0,0)$, where B_{0}^{3} is a closed unit ball in \mathbb{R}^{3}.

Put $V=g\left(V_{0}(z)\right), Q=g\left(W_{\alpha}^{s}(z)\right)$ and denote by \hat{F}^{u} the foliation (on V) which is the image of the foliation \tilde{F}^{u} under the map g. By construction the curve $\lambda=g(\gamma)$ is a local section (in topological sense) for the foliation \hat{F}^{u}. Let us choose closed simple arc $\lambda_{1} \subset$ int λ. Denote by a, b the endpoints of the arc λ_{1} and denote by $a_{0}\left(b_{0}\right)$ the point belonging to the connected component of the set $\lambda \backslash$ int λ_{1} for which the point $a(b)$ belongs to its boundary. Denote by $\gamma_{a_{0} a}$ and $\gamma_{b b_{0}}$ the closed simple ARCS belonging to λ for which a_{0}, a and b, b_{0} are the endpoints respectively.

Let us show that there exist the simple piecewise linear arcs $\tilde{\gamma}_{a_{0} a}$ and $\tilde{\gamma}_{b b_{0}}$ belonging to Q with endpoints a_{0}, a and b, b_{0} respectively and satisfying the next conditions:

1) $\tilde{\gamma}_{a_{0} a} \cap \tilde{\gamma}_{b b_{0}}=\emptyset$;
2) $\tilde{\gamma}_{a_{0} a} \cap \lambda_{1}=a, \tilde{\gamma}_{b b_{0}} \cap \lambda_{1}=b$
3) the endpoints of each linear link of the curves $\tilde{\gamma}_{a_{0} a}\left(\tilde{\gamma}_{b b_{0}}\right)$ belong to the curve $\gamma_{a_{0} a}\left(\gamma_{b b_{0}}\right)$.

Let us show the existence of the curve $\gamma_{a_{0} a}$ (the existence of the curve $\gamma_{b b_{0}}$ may be shown similarly). Put $\nu=\gamma_{a_{0} a} \backslash\{a\}$ and choose an open neighborhood $U_{\nu} \subset V$ of the set ν such that

1) $U_{\nu} \cap\left(\lambda_{1} \cup \gamma_{b b_{0}}\right)=\emptyset$;
2) U_{ν} admits a triangulation $\Sigma=\bigcup_{i \in \mathbb{Z}^{+}} \sigma_{i}$ such that for any point $x \in U_{\nu}$ any neighborhood $U_{x} \subset U_{\nu}$ of the point x intersects only finite number of simplexes from the union $\bigcup_{i \in \mathbb{Z}^{+}} \sigma_{i}$.

Introduce a parameter $t \in[0, \infty)$ on the arc ν such that $\nu(0)=a_{0}$ and $\nu(t)$ tends to a as $t \rightarrow+\infty$.

Since $\nu(t)$ tends to a as $t \in+\infty$, there is the sequence of numbers $0=$ $t_{i_{0}}<t_{i_{1}}<, \ldots,<t_{i_{k}}, \ldots$, where $t_{i_{k}} \rightarrow+\infty$ as $k \rightarrow+\infty$, such that $\nu\left(t_{i_{k}}\right) \in$ $\sigma_{i_{k}}, \sigma_{i_{j}} \cap \sigma_{i_{j+1}} \neq \emptyset$, int $\sigma_{i_{j}} \cap$ int $\sigma_{i_{j+1}}=\emptyset$ and for any $t>t_{i_{k}}, \nu(t)$ does not belong to $\bigcup_{j \leq k} \sigma_{i_{j}}$. Denote by l_{k} the piece of straight line joining the points $\nu\left(t_{i_{k}}\right)$ and $\nu\left(t_{i_{k+1}}\right), k \in \mathbb{Z}^{+}$. By construction, the sequence of the points $\left\{\nu\left(t_{i_{k}}\right)\right\}$ tends to a as $k \rightarrow+\infty$. Then the set $\tilde{\gamma}_{a_{0} a}=\bigcup_{i \in \mathbb{Z}^{+}} l_{i} \cup\{a\}$ is a desired curve.

As \hat{F}^{u} is a continuous foliation consisting of smooth curves which are
transversal to disk Q there is a number $N>0$ such that for any $c \in[-N, N]$ a plain P_{c} given by equation $z=c$ intersects any leaf of the foliation \hat{F}^{u} in exactly one point.

For any point $x \in \lambda$, denote by \tilde{L}_{x}^{u} the closed arc such that:

1) $\tilde{L}_{x} \subset L_{x}^{u}$, where L_{x}^{u} is the leaf of the foliation \hat{F}^{u} passing through the point x;
2) \tilde{L}_{x} lyes between the plains $P_{-N}: z=-N, P_{N}: z=N$.

Then the $\operatorname{arc} \tilde{L}_{\nu\left(t_{i_{k}}\right)}^{u}$ can be represented by equations:

$$
x=x_{k}(z), y=y_{k}(z), z=z, z \in[-N, N] .
$$

Let us notice that by construction, the point $\nu\left(t_{i_{k}}\right)$ has the coordinates $\left(x_{k}(0), y_{k}(0), 0\right)$.

Denote by S_{k} the disk represented by the next equations:
$x=x_{k}(z)+s_{k}\left(x_{k+1}(z)-x_{k}(z)\right), y=y_{k}(z)+s_{k}\left(y_{k+1}(z)-y_{k}(z)\right), z=z$, $z \in[-N, N], s_{k} \in[0,1]$.

Put $S_{a_{0} a}=\bigcup_{k \in \mathbb{Z}^{+}} S_{k} \cup \tilde{L}_{a}^{u}$.
By construction, $S_{a_{0} a}$ is a piecewise smooth disk. Using the piecewise linear curve $\tilde{\gamma}_{b b_{0}}$ we can construct a piecewise smooth disk $S_{b b_{0}}$ which is similar to $S_{a_{0} a}$.

Put $S_{a b}=\bigcup_{x \in \lambda_{1}} \tilde{L}_{x}^{u}, S=S_{a_{0} a} \cup S_{b b_{0}} \cup S_{a b}, \nu_{-N}=S \cap P_{-N}, \nu_{N}=S \cap P_{N}$.
It is not difficult to found the smoothly embedded closed disks S_{1}, S_{2} such that:

1) S_{1}, S_{2} transversely intersect any plain $P_{c}, c \in[-N, N]$;
2) int $S_{i} \cap$ int $S=\emptyset, i=1,2$;
$S_{i} \cap S=\tilde{L}_{a_{0}}^{u} \cup \tilde{L}_{b_{0}}^{u}$
3) int $S_{1} \cap$ int $S_{2}=\emptyset$,
$S_{1} \cap S_{2}=\tilde{L}_{a_{0}}^{u} \cup \tilde{L}_{b_{0}}^{u}$;
4) the boundary of the disk S_{i} consists of the curves $\tilde{L}_{a_{0}}^{u}, \tilde{L}_{b_{0}}^{u}$ and the curves $\nu_{-N}^{i}=S_{i} \cap P_{-N}, \nu_{N}^{i}=S_{i} \cap P_{N}, i=1,2$.
5) the curves $\nu_{-N}^{1}, \nu_{-N}^{2}\left(\nu_{N}^{1}, \nu_{N}^{2}\right)$ form the boundary of the closed disk $D_{-N} \subset P_{-N}\left(D_{N} \subset P_{N}\right)$ which contains the curve $\nu_{-N}\left(\nu_{N}\right)$ dividing the disk $D_{-N}\left(D_{N}\right)$ on two disks: D_{-N}^{1} bounded by the curves ν_{-N}, ν_{-N}^{1} and D_{-N}^{2} bounded by the curves $\nu_{-N} \nu_{-N}^{2}\left(D_{N}^{1}\right.$ bounded by the curves ν_{N}, ν_{N}^{1} and D_{N}^{2} bounded by the curves $\nu_{N} \nu_{N}^{2}$).

Denote by $B_{i}(i=1,2)$ the closed set bounded by the union $S \cup S_{i} \cup$ $D_{-N}^{i} \cup D_{N}^{i}$.

As intersection of the set $B_{i} \cap P_{c}$ is homeomorphic to the standard disk D_{0}, then B_{i} is homeomorphic to $D_{0} \times[-N, N]$ and consequently B_{i} is homeomorphic to the standard ball $B_{0}:\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2} \leq 1\right\}$.

Then there is a neighborhood U_{S} of the disk S such that $U_{S} \cap B_{1}\left(U_{S} \cap B_{2}\right)$ is homeomorphic to $D_{0} \times[-1,0]\left(D_{0} \times[0,1]\right)$. Thus there are a neighborhood U_{O} of the point O and homeomorphism $h_{O}: \overline{U_{O}} \rightarrow \mathbb{R}^{3}$ such that $h_{O}\left(U_{O} \cap \hat{D}\right)$ is the standard closed disk D_{0}.

The set $B_{z}=g^{-1}\left(U_{O}\right)$ is a neighborhood of the point z in M^{3} and the $\operatorname{map} h_{z}=h_{O} \circ g: B_{z} \rightarrow \mathbb{R}^{3}$ satisfies to the following condition: $h_{z}\left(B_{z} \cap V_{0}(z)\right)$ is the standard closed disk D_{0}. It means that the surface M_{i}^{2} is tame. The lemma is proved.

3 Proof of theorem [2]

Proof of theorem follows from lemmas 4 and 5 which will be proved below. For any point $x \in M_{i}^{2}$ put $L_{i}^{s}(x)=W^{s}(x) \cap M_{i}^{2}$ and denote $F_{i}^{s}=$ $\bigcup_{x \in M_{i}^{2}} L_{i}^{s}(x)$. It follows from the local structure of direct product and the
proof of lemma 2 that there is $\alpha>0$ such that for any point $z \in M_{i}^{2}$ there is the neighborhood $V_{0}(z)$ such that:

1) $W_{\alpha}^{u}(z) \subset V_{0}(z)$ and for any point $y \in W_{\alpha}^{u}(z)$ the intersection $W_{\alpha}^{s}(y) \cap$ $V_{0}(z)$ consists of a simple curve γ_{y}^{s};
2) the family of curves $\bigcup_{y \in W_{\alpha}^{u}(z)} \gamma_{y}^{s}$ is a continuous foliation on the neighborhood $V_{0}(z)$, that is there is a homeomorphism $q_{z}: V_{0}(z) \rightarrow \mathbb{R}^{2}$ mapping the family $\bigcup_{y \in W_{\alpha}^{u}(z)} \gamma_{y}^{s}$ to the set of straight lines parallel to the axes $O x$ on the plain \mathbb{R}^{2}.
3) any curve γ_{y}^{s} is locally section (in topological sense) to the foliation F_{i}^{u}.

As $\mathcal{B}_{i}=M_{i}^{2}$ and for any point $x \in \mathcal{B}_{i}$ the intersection $W^{s}(x) \cap \mathcal{B}_{i}$ is dense in \mathcal{B}_{i}, then any leaf of the foliation F_{i}^{s} is dense in M_{i}^{2}. Thus the foliation F_{i}^{s} is a transitive foliation without singularities on the torus M_{i}^{2}.

Let us represent the torus M_{i}^{2} as the factor space \mathbb{R}^{2} / Γ, where Γ is a discrete group of motions $\gamma_{m, n}$ of the plain \mathbb{R}^{2} given by the formulas $\gamma_{m, n}$: $\bar{x}=x+m, \bar{y}=y+n, m, n \in \mathbb{Z}$. Denote by $\pi: \mathbb{R}^{2} \rightarrow M_{i}^{2}$ the natural projection and g_{*} automorphism of the group Γ induced by diffeomorphism $g\left(g=f^{k}\right)$. Let us notice that automorphism g_{*} can be given by the following
way. Let $\bar{g}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the covering homeomorphism for $g: M_{i}^{2} \rightarrow M_{i}^{2}$, that is $\pi \circ \bar{g}=g \circ \pi$, and suppose that \bar{g} is given by the formulas: $\bar{g}: \bar{x}=$ $g_{1}(x, y), \bar{y}=g_{2}(x, y)$. Then for any $\gamma_{m, n} \in \Gamma$, one can put $g_{*}\left(\gamma_{m, n}\right)=\gamma_{m^{\prime}, n^{\prime}}$, where $m^{\prime}=g_{1}(m, n)-g_{1}(0,0), n^{\prime}=g_{2}(m, n)-g_{2}(0,0)$.

Lemma 4 The automorphism g_{*} is hyperbolic, that is the eigenvalues λ_{1}, λ_{2} of the matrix $\mathbf{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L(2, \mathbb{Z})$ which induces automorphism g_{*} satisfies to the condition $\left|\lambda_{1}\right|<1,\left|\lambda_{2}\right|>1$.

Proof. As F_{i}^{u} and F_{i}^{s} are transitive and transversal foliations on the torus M_{i}^{2} they form transitive 2-web on M_{i}^{2}. According to [3] (theorem 1), there are different irrational numbers μ^{u}, μ^{s} (which are Poincare rotation numbers of the foliation F_{i}^{u} and F_{i}^{s} respectively) and homeomorphism $\varphi: M_{i}^{2} \rightarrow M_{i}^{2}$ such that φ maps the foliations F_{i}^{u} and F_{i}^{s} to the linear foliation $L_{\mu^{u}}$ and $L_{\mu^{s}}$ respectively ($L_{\mu^{\sigma}}$ is the image under the projection π of the foliation $\bar{L}_{\mu^{\sigma}}$ any leaf of whose is given by the equation $\left.y=\mu^{\sigma} x+c, \sigma \in\{u, s\}, c \in \mathbb{R}^{1}\right)$.

Denote by \bar{F}_{i}^{σ} the foliation on \mathbb{R}^{2} which is covering for the foliation F_{i}^{σ} $(\sigma \in\{s, u\})$. Then there is a homeomorphism $\bar{\varphi}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ covering for the homeomorphism φ mapping the foliations \bar{F}_{i}^{u} and \bar{F}_{i}^{s} to the linear foliation $\bar{L}_{\mu^{u}}$ and $\bar{L}_{\mu^{s}}$ respectively. It follows from there that any leaf l^{u} of the foliation \bar{F}_{i}^{u} intersects any leaf l^{s} of the foliation \bar{F}_{i}^{s} at exactly one point.

Let us show now that the automorphism g_{*} is hyperbolic. Suppose the contrary. Let $p \in \operatorname{Per}(g)$ be a periodic points of a period $m \geq 1$. Without lost of generality, we can suppose that $p=\pi(O)$ (where O is origin of the coordinate system on Euclidean plain). Denote by \bar{g}_{m} a covering homeomorphism for g^{m} such that $\bar{g}_{m}(O)=O$. The set $\mathcal{O}=\bigcup_{\gamma \in \Gamma} \gamma(O)$ is a lattice on the plain \mathbb{R}^{2}. The matrix \mathbf{A}^{m} defines the automorphism g_{*}^{m}. Denote by $\mathcal{A}_{m}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ the linear map determined by the matrix \mathbf{A}^{m}. It follows from the definition of g_{*} that $\left.\bar{g}_{m}\right|_{\mathcal{O}}=\left.\mathcal{A}_{m}\right|_{\mathcal{O}}$. As a module of the eigenvalues of the matrix A^{m} is equal to 1 then there is a periodic point $O_{1} \in \mathcal{O}\left(O_{1} \neq O\right)$ of some period $l \geq 1$ of the map $\left.\mathcal{A}_{m}\right|_{\mathcal{O}}$. Consequently O_{1} is a periodic points of the diffeomorphism \bar{g}_{m}. Then the points O, O_{1} are fixed points of the diffeomorphism \bar{g}_{m}^{l}.

Denote by $l_{O}^{u}\left(l_{O_{1}}^{s}\right)$ the leaf of the foliation $\bar{F}_{i}^{u}\left(\bar{F}_{i}^{s}\right)$ passing through the point $O\left(O_{1}\right)$. As $l_{O}^{u} \cap l_{O_{1}}^{s} \neq \emptyset$ and $l_{O}^{u}, l_{O_{1}}^{s}$ are invariant unstable and stable manifold of the fixed saddle (in topological sense) points O, O_{1} respectively then there are infinitely many heteroclinic points of the diffeomorphisms \bar{g}_{m}^{l}
belonging to the intersection $l_{O}^{u} \cap l_{O_{1}}^{s}$. We get contradicts with the fact that $l_{O}^{u} \cap l_{O_{1}}^{s}$ consists of exactly one point. The lemma is proved.

Denote by \mathcal{G} the linear automorphism of the torus M_{i}^{2} such that $\mathcal{G}_{*}=g_{*}$. According to [9] (proposition 2.1), there is a continuous homotopic to identity map $h: M_{i}^{2} \rightarrow M_{i}^{2}$ such that $\mathcal{G} h=h g$.

Lemma 5 The map h is a homeomorphism.
Proof. Let $\bar{h}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a covering map for h. Let us divide the proof of lemma into three steps.

Step 1. Let us show that if points $\bar{x}, \bar{y} \in \mathbb{R}^{2}(\bar{x} \neq \bar{y})$ belong to the same leaf l^{σ} of the foliation \bar{F}_{i}^{σ}, then $\bar{h}(\bar{x}) \neq \bar{h}(\bar{y}), \sigma \in\{s, u\}$.

Consider for definiteness the case $\sigma=u$ (for $\sigma=s$, the proof is similar) and suppose the contrary, that is there are a leaf l^{u} of the foliation \bar{F}_{i}^{u} and points $\bar{x}, \bar{y} \in l^{u}$ such that $\bar{h}(\bar{x})=\bar{h}(\bar{y})$. Put $x=\pi(\bar{x}), y=\pi(\bar{y}), L^{u}=\pi\left(l^{u}\right)$ and $[x, y]^{u} \subset L^{u}$ is the closed arc with endpoints x, y. Let p be any periodic point of some period $l \geq 1$ of the restriction of diffeomorphism g to M_{i}^{2}. Denote by L_{p}^{s} a leaf of the foliation F_{i}^{s} passing through the point p. We have two possibilities:
a) the point p belongs to $[x, y]^{u}$;
b) the point p does not belong to $[x, y]^{u}$.

As the leaf L_{p}^{s} is dense on the surface M_{i}^{2}, then in the case b) there is a point $v \in L_{p}^{s} \cap(x, y)^{u}$.

Consequently there are two cases:
$\bar{a})$ There is a point $\bar{p} \in \pi^{-1}(p)$ belonging to the $\operatorname{arc}[\bar{x}, \bar{y}]^{u} \subset l^{u}$;
$\bar{b})$ There are a point $\bar{p} \in \pi^{-1}(p)$ and a point $\bar{v} \in \pi^{-1}(v)$ such that \bar{p} and \bar{v} belong to the same leaf of the foliation \bar{F}^{s} and the point \bar{v} belong to the $\operatorname{arc}(\bar{x}, \bar{y})^{u} \subset l^{u}$.

Let us consider a covering diffeomorphism \bar{g}_{l} for the diffeomorphism g^{l} such that $\bar{g}_{l}(\bar{p})=\bar{p}$. Then in the both cases \bar{a}) and \bar{b}) we have $\rho\left(\bar{g}_{l}^{n}(\bar{x}), \bar{g}_{l}^{n}(\bar{y})\right) \rightarrow+\infty$ as $n \rightarrow+\infty$.

Let us notice that according to [9] (lemma 3.4), the map \bar{h} is proper ${ }^{4}$. Consequently, according to [8], there is a number $r>0$ such that for any points $\bar{x}_{1}, \bar{x}_{2} \in \mathbb{R}^{2}$ satisfying a condition $\bar{h}\left(\bar{x}_{1}\right)=\bar{h}\left(\bar{x}_{2}\right)$ an inequality $\rho\left(\bar{x}_{1}, \bar{x}_{2}\right)<r$ is fulfilled ${ }^{5}$. As $\mathcal{G}^{l} \circ h=h \circ g^{l}$ and h is homotopic to identity then there is a covering map $\overline{\mathcal{G}}_{l}$ for the linear diffeomorphism \mathcal{G}^{l} such that $\overline{\mathcal{G}}_{l} \circ \bar{h}=\bar{h} \circ g_{l}$. Then

[^4]for any $n \in \mathbb{Z}$ we have $\bar{h}\left(\bar{g}^{n}(\bar{x})\right)=\overline{\mathcal{G}}_{l}^{n}(\bar{h}(\bar{x}))=\overline{\mathcal{G}}_{l}^{n}(\bar{h}(\bar{y}))=\bar{h}\left(\bar{g}^{n}(\bar{y})\right)$. Consequently, $\rho\left(\bar{g}^{n}(\bar{x}), \bar{g}^{n}(\bar{y})\right)<r$. But it is impossible as $\rho\left(\bar{g}_{l}^{n}(\bar{x}), \bar{g}_{l}^{n}(\bar{y}) \rightarrow+\infty\right.$ as $n \rightarrow+\infty$.

Step 2. Let us show that for any point $\bar{x} \in \mathbb{R}^{2}$ the properties $\bar{h}\left(l_{\bar{x}}^{\sigma}\right)=$ $w^{\sigma}(\bar{h}(\bar{x}))$ is fulfilled, where $l_{\bar{x}}^{\sigma}$ is the leaf of the foliation \bar{F}_{i}^{σ} and $w^{\sigma}(\bar{x})$ is the straight line (passing through the point \bar{x}) which is a pre-image of invariant manifold $W^{\sigma}(\pi(\bar{x}))$ of the linear hyperbolic automorphism \mathcal{G}.

Consider for definiteness a case $\sigma=s$ (in the case $\sigma=u$ the proof is similar). First let us show that $\bar{h}\left(l_{\bar{x}}^{\sigma}\right) \subset w^{\sigma}(\bar{h}(\bar{x}))$. Let \bar{y} be any point belonging to $l_{\bar{x}}^{\sigma}(\bar{y} \neq \bar{x})$. Put $x=\pi(\bar{x}), y=\pi(\bar{y})$. As $\lim _{n \rightarrow+\infty} d\left(g^{n}(x), g^{n}(y)\right) \rightarrow$ 0 (d is a metric on the torus M_{i}^{2}) then by continuity of the map h we have $\lim _{n \rightarrow+\infty} d\left(h\left(g^{n}(x)\right), h\left(g^{n}(y)\right)\right)=\lim _{n \rightarrow+\infty} d\left(\mathcal{G}^{n}(h(x)), \mathcal{G}^{n}(h(y))\right)=0$. It follows from there that $h(y) \subset W^{s}(h(x))$. As \bar{h} is a covering map for h then $\bar{h}\left(l_{\bar{x}}^{s}\right) \subset$ $w^{s}(\bar{h}(\bar{x}))$.

Let us show now that $\bar{h}\left(l_{\bar{x}}^{s}\right)=w^{s}(\bar{h}(\bar{x}))$. Suppose the contrary. As $\bar{h}\left(w^{s}(\bar{x})\right)$ is a connected set which contains the point $\bar{h}(\bar{x})$ and belongs to the straight line $w^{s}(\bar{h}(\bar{x}))$, then the image under the map \bar{h} of (at least) one component of the set $l_{\bar{x}}^{s} \backslash \bar{x}$ is a bounded set on the straight line $w^{s}(\bar{h}(\bar{x}))$. It contradicts to the fact that the map \bar{h} is proper.

Step 3. Let us show that the map h is a homeomorphism. It follows from above arguments:

1) any point \bar{x} of the plain \mathbb{R}^{2} is a unique point of the intersections $l_{\bar{x}}^{s} \cap l_{\bar{x}}^{u}$ and $w^{s}(\bar{x}) \cap w^{u}(\bar{x})$;
2) the restriction of the map \bar{h} to each curve $l_{\bar{x}}^{s}, l_{\bar{x}}^{u}$ is a one-to-one map on $w^{s}(\bar{h}(\bar{x})), w^{u}(\bar{h}(\bar{x}))$ respectively.

It follows from 1) and 2) that the map $\bar{h}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is one-to-one. Then the map $h: M_{i}^{2} \rightarrow M_{i}^{2}$ is a continuous one-to-one map and consequently is a homeomorphism.

The lemma is completely proved.
to the open disk $D_{\frac{r}{2}}=\left\{(x, y) \in \mathbb{R} \left\lvert\, x^{2}+y^{2}<\frac{r^{2}}{4}\right.\right\}$. Let $\gamma \in \Gamma$ such that $\gamma\left(\bar{h}\left(\bar{x}_{1}\right)\right) \in \Pi$. Then as the map h is homotopic to identity and $\bar{h}\left(\bar{x}_{1}\right)=\bar{h}\left(\bar{x}_{2}\right)$ we get $\gamma\left(\bar{h}\left(\bar{x}_{1}\right)\right)=\gamma\left(\bar{h}\left(\bar{x}_{2}\right)\right)$, $\bar{h}\left(\gamma\left(\bar{x}_{1}\right)\right)=\bar{h}\left(\gamma\left(\bar{x}_{2}\right)\right)$. It follows from there that $\rho\left(\gamma\left(\bar{x}_{1}\right), \gamma\left(\bar{x}_{2}\right)\right)<r$. As the map γ is an isometry of \mathbb{R}^{2} then $\rho\left(\bar{x}_{1}, \bar{x}_{2}\right)<r$.

References

[1] Abraham R., Smale S. Nongenericity of Ω-stability. Global Analysis. Proc. of Symposia in Pure Math., AMS, Providence, XIV(1970), 5-8.
[2] Anosov D.V. On a class of invariant sets of smooth dynamical systems. Teor. Nelin. Kolreb 2, Tr. 5 Konf. 1969, 39-45.
[3] Aranson S., V. Grines, Kaimanovich V. Classification of supertransitive 2-webs on surfaces. J. of Dynamical and Control Systems, 9 (2003), No 4, 455-468.
[4] C.Bonatti, V. Grines Knots as topological invariants for gradient-like diffeomorphisms of the sphere S^{3}. J. of Dynamical and Control Systems.2000, Vol. 6, No 4, pp. 579-602.
[5] Bothe H. The ambient structure of 1-dimensional hyperbolic structure in 3-manifolds. it Akad. Der Wissensch. der DDR, Inst. Math., 81(1981), p. 89 .
[6] Bowen R. Perioodic points and mesures for axiom A-diffeomorphisms. Trans. Am. Math. Soc. 154, 377-397.
[7] Engelking R. General Topology. Helderman Verlag Berlin. 1989.
[8] Franks J. Anosov diffeomorphisms on tori, Transactions of the American mathematical siciety, 145(1969), 117-124.
[9] Franks J. Anosov diffeomorphisms. Global Analisys. Proc. Symp. in Pure Math. Global Analysis, AMS 14(1970), 61-94.
[10] Grines V., Zhuzhoma E. On structurally stable diffeomorphisms with codimension one expanding attractors. Trans. Amer. Math. Soc. 357 (2005), 617-667.
[11] Hempel J. 3-manifolds, Ann. of Math. Studies, vol. 86, = Princeton University Press, 1976.
[12] Hiraide K. A simple proof of the Franks-Newhouse theorem on = codimension one Anosov diffeomorphisms. Ergod. Th. and Dynam. Sys., $=$ 21(2001), 801-806.
[13] Hurewicz W., Wallman H. Dimension Theory, Princeton $=$ University Press, Princewton, NJ, 1984.
[14] Jiang B., Ni Y., Wang S. 3-manifolds that admit knotted solenoids. (accepted for publ. in Trans. of the Amer. Math. Soc.; electronically = published on 27.02 .2004)
[15] Kaplan J., Mallet-Paret J. Yorke J. The Lapunov dimension of nonwhere diffferntiable attracting torus. Ergodic theory and Dynam. Systems 4 (1984), No 2, 261-281.
[16] Katok A., Hassenblatt B. Introduction to the Modern Theory of Dynamical Systems. Encyclopedia of Math. and its Appl., Cambridge University Press, (1994).
[17] Knezer H. Regulare Kurvenscharen auf Ringflachen. Math. Ann. 91 (1924), 135-154.
[18] Ed.E. Moise Geometric Topology in Dimensions 2 and 3. SpringerVerlag (1977).
[19] Newhouse S. On codimension one Anosov diffeomorphisms. Amer. J. Math. 92(1970), no 3, 761-770.
[20] Pesin Y. Dimension theory in dynamical systems, Contemporary views and applications, University of Chicago Press, (1997).
[21] D. Pixton. Wild unstable manifolds. Topology, 16(1977), 167-172.
[22] Plykin R.V. The topology of basic sets of Smale diffeomorphisms. $=$ Mat. Sb., 34(1971), 301-312 (Russian). Transl.: Mathem. = in USSR, Sbornik, 23(1974), 233-253, MR 0356137 ($50 \sharp=8608$).
[23] Plykin R.V. Sources and sinks of A-diffeomorphisms of surfaces. Mat. Sb., = 94(1974), 243-264 (Russian). Transl.: Mathem. in USSR, Sbornik, 13(1971), 297-307, MR = $0286134(44 \sharp 3348)$.
[24] Robinson C. Dynamical Systems, Stability, Symbolic Dynamics, $=$ and Chaos, second edition. CRC Press, 1999.
[25] Shub M., Sullivan D. Homology theory and dynamical systems. = Topology, 14(1975), 109-132.
[26] Smale S. Differentiable dynamical systems. Bull. Amer. Math. $=$ Soc., 1967, 73, 1, 741-817.
[27] Williams R.F. One-dimensional non-wandering sets. Topology, $=$ 6(1967), 473-487.
[28] Williams R.F. Expanding attractors. Publ. Math., IHES, $=\mathbf{4 3}(1974)$, 169-203.

Dept. of Mathematics, Agriculture Academy of Nizhny Novgorod, Nizhny Novgorod, 603107 Russia

E-mail address: grines@vmk.unn.ru
Current e-mail address: grines@math.univ-nantes.fr
Dept. of Diff. Equat., Inst. of Appl. Math. and Cyber., Nizhny Novgorod, State University, Nizhny Novgorod, Russia

E-mail address: medvedev@uic.nnov.ru
Dept. of Appl. Math., Nizhny Novgorod State Technical University, Nizhny Novgorod, Russia

E-mail address: zhuzhoma@mail.ru
Current e-mail address: zhuzhoma@maths.univ-rennes1.fr

[^0]: *2000 Mathematics Subject Classification. Primary 37D20; Secondary 37C70, 37C15
 ${ }^{\dagger}$ Keywords: basic sets, attractors, repellers,A-diffeomorphisms, tame manifold

[^1]: ${ }^{1}$ Let M, M_{1}, M_{2} are connected 3-manifolds. We recall that M is a connected sum of M_{1} and M_{2} and denote this $M=M_{1} \sharp M_{2}$ if there are 3-cells $B_{i} \subset M_{i}$ and embeddings h_{i} : $M_{i}-\operatorname{Int} B_{i} \rightarrow M(i=1,2)$ with $h_{1}\left(M_{1}-\operatorname{Int} B_{1}\right) \cap h_{2}\left(M_{2}-\operatorname{Int} B_{2}\right)=h_{1}\left(\partial B_{1}\right)=h_{2}\left(\partial B_{2}\right)$ and $M=h_{1}\left(M_{1}-\operatorname{Int} B_{1}\right) \cup h_{2}\left(M_{2}-\operatorname{Int} B_{2}\right) . M_{1}, M_{2}$ are called factors. A connected 3manifold M is called prime manifold if from condition $M=M_{1} \sharp M_{2}$ it follows that exactly one manifold from M_{1} and M_{2} must be prime. It is well known (see, for example, 11], theorem 3.15) that each compact 3-manifold can be expressed as a connected sum of finite number of prime factors. Let us recall that a lens space is prime (see 11], ex. 3.12).

[^2]: ${ }^{2}$ See for example [7, proposition 6.3 .12 (a) which claims that a Hausdorff space X is pathwise connected if and only if for every pair $x_{1}, x_{2}\left(x_{1} \neq x_{2}\right)$ there exists a homeomorphic embedding $h: I \rightarrow X$ of the closed unit interval in the space X satisfying $h(0)=x_{1}, h(1)=x_{2}$ (e.i., X is arcwise connected).

[^3]: ${ }^{3}$ We speak that γ is a local section (in topological sense) for the foliation \tilde{F}^{u} if for any point $d \in \gamma$ there is neighborhood $V_{d} \subset V_{0}(z)$ such that for any leaf $l \subset \tilde{F}^{u}$ with $\left(l \cap V_{d}\right) \neq \emptyset$ the intersection $\left(l \cap V_{d}\right) \cap \gamma$ consists of exactly one point x_{l} and $V_{d} \backslash \gamma$ consists of two component each of which contains exactly one component of the set $l \backslash\left\{x_{l}\right\}$

[^4]: ${ }^{4}$ a map \bar{h} is called proper if pre-image of a compact set is a bounded set.
 ${ }^{5}$ For convenience we repeat here arguments from [8]. Indeed, as the map \bar{h} is proper, then there is $r>0$ such that pre-image of a fundamental domain Π of the group Γ belongs

