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abstract. We study the evolution, under convex Hamiltonian flows on cotangent bundles of
compact manifolds, of certain distinguished subsets of the phase space. These subsets are generaliza-
tions of Lagrangian graphs, we call them pseudographs. They emerge in a natural way from Fathi’s
weak KAM theory. By this method, we find various orbits which connect prescribed regions of the
phase space. Our study is inspired by works of John Mather. As an application, we obtain the exis-
tence of diffusion in a large class of a priori unstable systems and provide a solution to the large gap
problem. We hope that our method will have applications to more examples.

Résumé. Nous étudions l’évolution, par le flot d’un Hamiltonien convexe sur une variété com-
pacte, de certains ensembles de l’espace des phases. Nous appelons pseudographes ces ensembles,
qui sont des généralisations de graphes Lagrangiens apparaissant de manière naturelle dans la théorie
KAM faible de Fathi. Par cette méthode, nous trouvons diverses orbites qui joignent des domaines
donnés de l’espace des phases. Notre étude s’inspire de travaux de John Mather. Nous obtenons
l’existence de diffusion dans une large classe de systèmes à priori instables comme application de cette
méthode, qui permet de résoudre le probleme de l’écart entre les tores invariants. Nous espérons que
la méthode s’appliquera à d’autres exemples.
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Introduction

In all this paper, M denotes a connected compact manifold without boundary, of dimension
d, and TM and T ∗M are its tangent and cotangent bundle. We shall consider the time-
dependant Hamiltonian system generated by a function H : R × T ∗M× −→ R, and denote
by φt

s the flow from time s to time t.

(0.1) In order to motivate our discussion, we begin with a precise question: Given two
Lagrangian manifolds G and G′ in the cotangent bundle, which are graphs over the base M ,
does there exist a trajectory which connects G and G′, or in other words does there exist times
s < t such that the Lagrangian manifold φt

s(G) intersects G′?

(0.2) This question formulates some well known problems. As an exemple, let us suppose
that M = T

d, and identify the cotangent bundle T ∗
T

d with T
d × R

d. Let us consider the
Hamiltonian H0 = h(p). where h : R

d −→ R is a real function. Such Hamiltonians will
be called fully integrable in the sequel. It is known that they leave invariant the tori Tp :=
T

d × {p}, for p ∈ R
d. As a consequence, the answer to the previous question is obviously

negative for G = Tp and G′ = Tp′, when p 6= p′. What happens for Hamiltonians H which
are close to H0? For example, it is known that the solar system can be described by a fully
integrable Hamiltonian H0, if the interactions between planets are neglected. In this example,
the variables p ∈ R

d encode the parameters of the elliptic trajectories of the planets. It is well
known that these parameters would not change in time if the interaction between planets did
not exist. Understanding for which values of p and p′ the question (0.1) has a positive answer
with G = Tp and G′ = Tp′ , amounts to understand to what extent the elliptic trajectories will
deform under the influence of mutual interactions. In other words, it amounts to understand
the secular dynamics, and the stability of the solar system. We will not treat these specific
examples in the present papers, although they are parts of our motivations. See [1] and [18]
for beautiful and deep examples of perturbations of fully integrable systems.

(0.3) Our main goal in the present paper is to develop abstract tools to study question (0.1).
By abstract, we mean tools involving hypotheses which may be hard to check on example. In
order to demonstrate the usefulness of these tools, we shall then present applications to more
explicit examples. First, we will easily verify that our theory is optimal for twist maps. We
will obtain that two graphs can be connected by an orbit if they belong to the same region
of instability. Then, we shall present a class of systems in higher dimension which can be
fruitfully studied from our point of view. These systems are a priori unstable according to the
terminology in use in the world of Arnold’s diffusion. Shortly, this means that they contain
an invariant submanifold which presents some kind of hyperbolicity (here, minimality). It
appears clearly in the fundamental paper of Arnold, [1] that the presence of such a hyperbolic
invariant manifold intersecting G and G′ greatly favors a positive answer to question (0.1).
A priori unstable systems have been widely studied because they appear naturally in the
perturbation of completely integrable systems, and are easier to deal with.

In the work of Arnold, it is also assumed that the restriction of the dynamics to the
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hyperbolic manifold is integrable. This means that this invariant manifold is foliated by
invariant tori which he called whiskered tori because of the presence of hyperbolicity. These
whiskered tori are the building blocks of Arnold’s construction, so that this second hypothesis
was very important. The main point in our application is that we do not make this assumption.
We only assume that the restricted dynamics is generic, in a sense which will be clearly
specified.

In the context of perturbations of fully integrable systems, the restriction of the flow to
the hyperbolic manifold is close to integrable, and KAM theory implies the existence of many
whiskered tori. However, when computing precisely the various quantities that appear in
Arnold’s construction, one observes that there does not exist enough tori in general. More
precisely, the gap between tori is too big, this is the Large Gap problem, see for example [17]
for a more precise explanation.

Overcoming this problem has long been considered as a major challenge. While the
classical approaches based on refinements on the sheme of Arnold were worked out in that
direction, new variational methods were introduced, by John Mather in [20]. It is also worth
mentionaing the work of Bessi, [5], where the results sketched by Arnold are proved using
variational methods. This paper contains one on the first relevant achievements of variational
methods in these kind of questions, and it has been very influential. However, these variational
methods were facing the same kind of difficulties as classical methods. In several special
instances, the Large Gap problem can be bypassed because for specific reasons there exist
more whiskered tori. This remark has been exploited to obtain many non-trivial results from
Arnold’s construction or variational methods. For example, orbits of unbounded speed where
built in [6] using the scheme of Arnold. A similar result had previously been obtained by
John Mather, [21], using variational methods, see also [15]. Other works exploit the same
remark in different directions, see for example [4], which elaborates on [5], and many other
texts.

Solutions to the Large Gap problem has recently been given by Delshams, de la Llave
and Seara, see the announcement in [10], and by Treschev, see announcement in [25] using
elaborations on Arnold’s method. The details in these works are far from simple. Cheng and
Yan have also proposed a solution using elaborations on the variational methods initiated by
Mather, see [7], as well as Z. Xia, see [26] and [27]. The solution we give is close to these ones
and relies on variational methods.

In the class of systems we will present, it is not assumed that the restricted dynamics is
close to integrable. This makes the method of [10] and [25] inefficient. On the other hand,
other hypotheses such as convexity are required, which are useless in [10]. The methods of
[7], and [27] are closer to ours, and could perhaps be used to study similar examples. The
method presented in [15] may also be efficient to treat these systems, and at least provides a
nice geometric picture on the situation.

The influence of John Mather’s published and unpublished works on the developpement of
these variational approaches could not be overestimated. He has announced in [22] very deep
results on the perturbation of fully integrable systems in dimension 2, and given indications
on proofs in various talks and lectures. I hope that the tools developed in the present paper
will contribute to clarify and extend these results.

(0.4) It is now clear that question (0.1) is especially interesting when the Lagrangian man-
ifolds G and G′ have different cohomologies. In this case, we have a problem of non exact
Lagrangian intersection, and it seems that the powerful tools developed to deal with exact
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intersections provide no interesting insight. In order to study this problems, we make strong
assumptions on the Hamiltonian H, namely that it is convex, super-linear, periodically time-
dependent, and complete, see details in (1.1). The method we use strongly relies on the
possibility of studying trajectories from the point of view of action minimization, that is on
the convexity of the Hamiltonian and on the fibered structure of the phase space. The major
drawback of this approach is that these construction are not natural from a symplectic point
of view. However, several of the objects we define are symplectic invariants, see for instance
[3] and [24]. This is very important because the most interesting applications will require the
use of Hamiltonian normal form theory in conjuction with the theory exposed here. In order
to keep the present paper to a reasonable lengh, we will not study these symplectic aspects,
which are to a large extent independent from the ones discussed here.

(0.5) Given a Lipschitz function u : M −→ R and a smooth form η on M , we consider the
subset Gη,u of T ∗M defined by

Gη,u =
{

(x, ηx + dux), x ∈M such that dux exists
}

.

We call the subset G ⊂ T ∗M an overlapping pseudographs if there exists a smooth form η and a
semi-concave function u such that G = Gη,u. See Appendix A for the definition of semi-concave
functions. Each pseudograph G has a well defined cohomology c(G) ∈ H1(M,R), see (2.2).
We denote by P the set of overlapping pseudographs. If M = T is a circle, then overlapping
pseudographs are graphs of functions which have only discontinuities with downward jumps,
or in other words functions which can be locally written as the sum of a continuous and a
decreasing function. Such sets were introduced in [16], where they are used in very elegant
proofs of many known properties of Twist maps.

(0.6) We define the equivalence relation ⊳⊲ on H1(M,R) as follows: We say that c⊳⊲c′ if
there exists an integer N ∈ N such that, for each pseudograph G of cohomology c (resp. c′),
there exists a pseudograph G′ of cohomology c′ (resp. c) such that

G′ ⊂
⋃

16i6N

φi(G).

If c⊳⊲c′, if G is a Lagrangian graph of cohomology c, and if G′ is a Lagrangian graph of
cohomology c′, then clearly there exists a Hamiltonian orbit which connects G and G′. This is
why our main purpose in this article will be to understand the relation ⊳⊲. We will see later
many more consequences of such an understanding.

(0.7) We shall define an operator Φ : P −→ P in (2.5), with the following fundamental
properties:

Φ(G) ⊂ φ(G),

where φ is the time-one Hamiltonian flow, and c(Φ(G)) = c(G). Fathi’s weak KAM theorem,
[12] states that, for each c ∈ H1(M,R), the operator Φ has fixed points of cohomology c. We
call Vc the set of these fixed points, see section 3 for details. The fixed points G satisfy

G ⊂ φ(G),
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and give rise to compact invariant sets

Ĩ(G) :=
⋂

i∈N

φ−i(Ḡ).

This provides a new way, due to Albert Fathi, to define various invariant sets previously
introduced by Mather in [19] and [20] using a different approach.

(0.8) More precisely, to each cohomology c ∈ H1(M,R) we associate the compact invariant
sets

M̃(c) ⊂ Ã(c) ⊂ Ñ (c),

where
Ã(c) :=

⋂

G∈Vc

Ĩ(G) and Ñ (c) :=
⋃

G∈Vc

Ĩ(G),

are respectively called the Aubry set and the Mañe set, and M̃(c), called the Mather set, is
the closure of the union of the supports of the invariant measures of the action of φ on Ã(c)
(or equivalently on Ñ (c)), see (3.5) for more details. A standing notation will be to denote
by X̃ subsets of T ∗M , and by X their projection on M .

(0.9) Proposition.

(i) If c⊳⊲c′, there exists a heteroclinic trajectory of the Hamiltonian flow between Ã(c) and
Ã(c′).

(ii) Let ci, i ∈ Z, be a sequence of cohomology classes. Assume that ci⊳⊲ci+1 for each i,
and fix for each i a neighborhood Ui of M̃(ci) in T ∗M . There exists a trajectory of
the Hamiltonian flow which visits in turn all the sets Ui. In addition, if the sequence
stabilizes to c− on the left, or to c+ on the right, the trajectory can be assumed negatively
asymptotic to A(c−) or positively asymptotic to A(c+).

(iii) Let Gi, i ∈ Z, be a sequence of Lagrangian graphs whose cohomologies c(Gi) are ⊳⊲-
equivalent. Then there exists an orbits (q(t), p(t)) which crosses the Graphs Gi in any
prescribed order.

The proof is given in section 5. Let us now state our main results.

(0.10) For each G ∈ V, we define the subspace R(G) of H1(M,R) as the set of cohomology
classes of smooth closed one-forms whose support is disjoint from I(G). For each cohomology
class c ∈ H1(M,R), we define the subspace R(c) as

R(c) =
⋂

G∈Vc

R(G) ⊂ H1(M,R).

The following Theorem reformulates and refines results of John Mather, see [20] and also [2]
and [7]. It is proved in section 7.

Theorem. For each c0 ∈ H1(M,R), there exists a positive ǫ such that the following holds:
Each class c ∈ H1(M,R) such that c− c0 ∈ R(c0) and ‖c− c0‖ 6 ǫ satisfies c0⊳⊲c.

5



(0.11) There is a natural partition of the Aubry set Ã(c) into compact invariant subsets
S̃ called the static classes, see section 4. A generalized version of the following theorem is
proved in section 8.

Theorem. Assume that there exists only finitely many static classes in Ã(c), and that the
set Ñ (c)− Ã(c) is not empty and contains finitely many orbits. Then the cohomology c is in
the interior of its class of ⊳⊲ equivalence.

(0.12) Let us now give an explicit example. Proofs and more general statements are given
in section 10. We take M = T×T

d−1, and denote by (q, p) = (q1, q2, p1, p2) the points of T ∗M ,
where q1 ∈ T, q2 ∈ T

d−1, p1 ∈ R, p2 ∈ R
d−1. We consider the time-periodic Hamiltonian

H(t, q, p) = H1(t, q1, p1) + |p2|
2 − V (q2)F (t, q)

and we assume that the conditions of convexity, superlinearity and completeness are satisfied.
In addition, we assume that F : T×T

d −→ R takes positive values, and that V : T
d−1 −→ R

takes positive values except at a single point, say 0, where its takes the value 0. The manifold
T × R := {q2 = 0, p2 = 0} is then invariant under the Hamiltonian Flow. The restricted
flow is generated by the restricted Hamiltonian H1. Under these hypotheses, it is not hard
to prove (we will do it) that each rotational invariant circle of the restricted dynamics H1

admits a homoclinic orbit. We make two additional non-degeneracy assumptions:
(H1) The Hamiltonian H1 is generic in the sense that its irrotational invariant circles

of rational rotation number are completely periodic. (We allow periodic circles in order to
include the case where H1 is integrable).

(H2) We assume a non-degeneracy hypothesis on the set of action minimizing homoclinic
orbits to the invariant circles of H1. This hypothesis is detailed in section 10, it should be seen
as analogous to the classical hypothesis of transversality of the stable and unstable manifolds.

Under these hypotheses, our abstract results imply the following.

Theorem If P and P ′ are given real numbers, there exists a Hamiltonian trajectory
(q(t), p(t)) and an integer n ∈ N such that p1(0) = P and p1(n) = P ′. In addition, if
P (i) : Z −→ R is a sequence of real numbers, there exists an orbits (q(t), p(t)) and an
increasing sequence n(i) : Z −→ Z such that p1(n(i)) = P (i). Finally, given two invariant
circles of the dynamics restricted to TT, there exists a heteroclinic orbit which connects them.

(0.13) Let us now present the content of the paper. The whole paper heavily relies on the
notion of semi-concave function and of equi-semi-concave sets of functions. These notions are
presented in Appendix A. In Appendix B, we prove some backgroud results essentially due
to Fathi, about the propeties of the Action.

Mather-Fathi Theory.
In the first part of the paper, we introduce our main objects, overlapping pseudographs. We
use them to present some salient facts on the theory of Mather, Mañe and Fathi of globally
minimizing orbits. In section 1, we present the context, detail the standing hypotheses, and
recall some known results of the calculus of variations which will be of constant use (proofs
are given in Appendix B). Pseudographs are defined and their basic properties studied in
Section2. In Section 3, we use these pseudographs to Mather’s theory of globally minimizing
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orbits from a point of view which is essentially due to Fathi. This part does not contain new
result, but recalls what will be needed, with a partly original point of view. The theory is
continued in section 4, where we explain the decomposition in static classes of the Aubry set,
and use this desomposition to construct homoclinic orbits, which will play a central role in
section 8

Abstract mechanism.
This part contains our main results. In section 5 we define the relation ⊳⊲, and gather some
technical tools which will be needed to study this relation. In section 6 we explain how various
orbits can be built once the relation ⊳⊲ is understood and prove Proposition (0.9). In section
7, we prove Theorem (0.10). In section 8 we study the case where there exist only finitely
many static classes. We generalize and prove Theorem (0.11).

Applications.
In this short part, we detail some straightforward applications of the results obtained before.
We hope that it is possible to obtain much more applications by applying our results with
Hamiltonian methods such as normal form theory, but this aspect is not discussed here.
Section 9 briefly mentions the application to twist maps. Section 10 details (0.12) above.

Mather-Fathi Theory

In this part, we introduce the main objects and present the theory of Mather and Fathi.
Our point of view is close to the one of Fathi, Most of the material exposed here is a small
deformations of results in [19], [11], [23], [9], or [8].

1 Calculus of variations

(1.1) We shall consider C2 Hamiltonian functions H : R × T ∗M −→ R. We will denote by
P = (x, p) the points of T ∗M . The Cotangent bundle is endowed with its standard symplectic
structure. We denote by X(t, P ) or X(t, x, p) the Hamiltonian vector-field of H, which is a
time-dependent vector-field on T ∗M . We fix once and for all a Riemann g metric on M ,
and use it to define norms of tangent vectors and tangent covectors of M . We will denote
this norm indifferently by |P | or by |p| when P = (x, p) ∈ T ∗

xM . We assume the following
standard set of hypotheses.

1. Periodicity. H(t+ 1, P ) = H(t, P ) for each (t, P ) ∈ R × T ∗M.

2. Completeness. The Hamiltonian vector-field X generates a complete flow of diffeo-
morphisms on T ∗M . We denote by φt

s : T ∗M −→ T ∗M the flow from time s to time t,
and by φ the flow φ1

0.

3. Convexity. For each (t, x) ∈ R×M , the function p −→ H(t, x, p) is convex on T ∗
xM ,

with positive definite Hessian. Shortly, ∂2
pH > 0.

4. Superlinearity. For each (t, x) ∈ R×M , the function p 7−→ H(t, x, p) is superlinear,
which means that lim|p|−→∞H(t, x, p)/|p| = ∞.

(1.2) We associate to the Hamiltonian H a Lagrangian function L : R ×M −→ R defined
by

L(t, x, v) = sup
p∈T ∗

x M
p(v) −H(t, x, p).
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The fiberwise differential ∂pH of H can be seen as a mapping

∂pH : R × T ∗M −→ R × TM,

this mapping is a diffeomorphism, whose inverse is given by

∂vL : R × TM −→ R × T ∗M.

We have the relations L(t, x, v) = ∂vL(t, x, v)(v) − H(t, x, ∂vL(t, x, v)) and H(t, x, p) =
∂pH(t, x, p)(p) − L(t, x, ∂pH(t, x, v)). The Lagrangian L satisfies the following properties,
which follow from the analogous properties of H:

1. Periodicity. L(t+ 1, V ) = L(t, V ) for each (t, V ) ∈ R × TM.

2. Convexity. For each (t, x) ∈ R×M , the function v 7−→ L(t, x, v) is a convex function
on TxM , with positive definite Hessian. Shortly, ∂2

vL > 0.

3. Superlinearity. For each (t, x) ∈ R×M , the function v 7−→ L(t, x, v) is superlinear
on TxM .

See Appendix B for comments related to these hypotheses. The hypotheses listed above are
very suitable to use the calculus of variations.

(1.3) Let us fix two times s > t in R and two points x and y in M . Let Σ(t, x; s, y) be the
set of absolutely continuous curves γ : [t, s] −→M such that γ(t) = x and γ(s) = y. As usual,
we define the action of the curve γ as A(γ) =

∫ s
t L(σ, γ(σ), γ̇(σ)) dσ. It is known that, for

each C, the set of curves γ in Σ(t, x; s, y) which satisfy A(γ) 6 C is compact for the topology
of uniform convergence. As a consequence, there exist curves minimizing the action. Let us
define the value

A(t, x; s, y) = min
γ∈Σ(t,x;s,y)

∫ s

t
L(σ, γ(σ), γ̇(σ)) dσ,

and let Σm(t, x; s, y) be the set of curves in Σ reaching the above minimum. The set
Σm(t, x; s, y) is not empty, and it is compact for the topology of uniform convergence. Each
curve γ(σ) ∈ Σm is C2 and satisfies the Euler-Lagrange equation. Setting

p(σ) = ∂vL(σ, γ(σ), γ̇(σ))

these equations are

ṗ(σ) = ∂xL(σ, γ(σ), γ̇(σ)) = −∂xH(σ, γ(σ), p(σ))

Hence the curve (γ(σ), p(σ)) is a trajectory of the Hamiltonian flow.

(1.4) For each minimizing curve γ ∈ Σm(t, x; s, y), we have

−p(t) = −∂vL(t, x, γ̇(t)) ∈ ∂+
x A(t, x; s, y),

where ∂+
x A(t, x; s, y) denotes the set of proximal super-differentials of q 7−→ A(t, q; s, y) at

point q = x, see Appendix. We also have

p(s) = ∂vL(s, y, γ̇(s)) ∈ ∂+
y A(t, x; s, y).

For each t′ > t, the set of functions (x, y) 7−→ A(t, x; s, y), s > t′ is equi-semi-concave on
M ×M , hence equi-Lipschitz, see Appendix. In addition, the three following properties are
equivalent:
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(i) The set Σm(t, x; s, y) contains only one point.

(ii) The function A(t, .; s, y) is differentiable at x.

(iii) The function A(t, x; s, .) is differentiable at y.

If these equivalent properties hold, and if γ(σ) is the unique curve of Σm(t, x; s, y), then
setting p(σ) = ∂vL(σ, y, γ̇(σ)), we have

p(t) = −∂xA(t, x; s, y) and p(s) = ∂yA(t, x; s, y).

(1.5) Let η be a smooth one-form. We will see the form η sometimes as a section of
the cotangent bundle η : M −→ T ∗M and sometimes as a fiberwise linear function of the
tangent bundle η : TM −→ R in a natural way. If the form η is closed then the diffeo-
morphism φη : (x, p) 7−→ (x, p + η(x)) of T ∗M is symplectic. The Hamiltonian Hη(t, x, p) =
H ◦φη = H(t, x, p+η) satisfies our hypotheses. The associated Lagrangian is (L−η)(t, x, v) =
L(t, x, v) − η(x, v), where η is considered as a function of TM . The following diagram com-
mutes for each t.

T ∗M
H

""EEEEEEEE

TM

∂vL
;;vvvvvvvvv

∂v(L−η) ##HH
HH

HH
HH

H R

T ∗M

φη

OO

Hη

<<yyyyyyyy

(1.6) We will also consider the modified action

Aη(t, x; s, y) = inf
γ∈Σ(t,x;s,y)

∫ s

t
L(σ, γ(σ), γ̇(σ)) − ηγ(σ)(γ̇(σ)) dσ,

which of course satisfies all the properties of (1.4).

(1.7) Let Ω be the set of closed smooth forms on M . It is useful to fix once and for all a
linear section S of the projection Ω −→ H1(M,R). In other words, S is a linear mapping
from H1(M,R) to Ω such that [S(c)] = c. We shall abuse notations and denote by c the form
S(c), in such a way that the symbol c denotes either a cohomology class or a standard form
representing this cohomology class.

(1.8) The following consequence of Appendix B will be useful. See appendix A for the
definition of equi-semi-concave.

Proposition. If C is a bounded subset of H1(M,R), and ǫ is a positive number, the
functions Ac(s, .; t, .), c ∈ C, t > s+ ǫ are equi-semi-concave on M ×M .

2 Overlapping pseudographs.

We present the main objects, overlapping pseudographs, and study some basic properties.
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(2.1) Given a Lipschitz function u : M −→ R and a smooth form η on M , we define the
subset Gη,u of T ∗M by

Gη,u =
{

(x, ηx + dux), x ∈M such that dux exists
}

.

We call the subset G ⊂ T ∗M an overlapping pseudograph if there exists a smooth form η
and a semi-concave function u such that G = Gη,u. See Appendix A for the definition of
semi-concave functions. We shall denote by P the set of overlapping pseudographs. Given a
pseudograph G, we will denote by GU the set GU := G ∩ π−1(U).

(2.2) It is not hard to see that if an overlapping pseudograph G is represented in two ways
as Gη,u and Gµ,v, then the closed forms η and µ have the same cohomology in H1(M,R). As
a consequence, it is possible to associate to each pseudograph G a cohomology c(G), in such
a way that

c(Gη,u) = [η].

We will denote by Pc the set of overlapping pseudographs of cohomology c. If G is an over-
lapping pseudograph of cohomology c, then G can be represented in the form G = Gc,u, where
c is the standard form defined in (1.7). The function u is then uniquely defined up to an
additive constant. As a consequence, denoting by S the set of semi-concave functions on M ,
and by P the set of overlapping pseudographs, we have the identification

P = H1(M,R) × S/R.

This identification endows P with the structure of a real vector space. Let us endow the factor
S/R with the norm |u| = (max u−minu)/2, which is the norm induced from the uniform norm
on S. More precisely, we have |u| = minv ‖v‖∞, where the minimum is taken on functions v
which represent the class u. We put on P the norm

‖Gc,u‖ = |c| + (max u− minu)/2 6 |c| + ‖u‖∞.

The set P is now a normed vector space. It is also useful to define, for each subset U ∈ M ,
the number

‖Gc,u‖U := |c| + (max
U

u− min
U

u)/2.

We define in the same way the set P̆ of anti-overlapping pseudographs Ğ, which are the sets
Gη,−u, with η a smooth form and u ∈ S. This set is similarly a normed vector space.

(2.3) Lemma. Let G be an overlapping pseudograph, and Ğ be an anti-overlapping pseu-
dograph. If G and Ğ have the same cohomology, then they have nonempty intersection.

Proof. Let us write G = Gη,u and Ğ = Gη,−v. The continuous function u+ v has a minimum
atX. since they are semi-concave, both u and v are differentiable atX, and du(X) = −dv(X).
It follows that the point (X, η(X) + du(X)) = (X, η(X) − dv(X)) belongs both to G and to
Ğ.
It is natural to introduce the following definition.

Definition. Let G be an overlapping pseudograph, and Ğ be an anti-overlapping pseudo-
graph. If G and Ğ have the same cohomology c, write them G = Gc,u and Ğ = Gc,ŭ. We denote
by

G ∧ Ğ ⊂M
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the set of points of minimum of the difference u− ŭ, and by G∧̃Ğ ⊂ G ∩ Ğ the set

G∧̃Ğ := G ∩ π−1(G ∧ Ğ) = Ğ ∩ π−1(G ∧ Ğ) = G ∩ Ğ ∩ π−1(G ∧ Ğ) ⊂ T ∗M.

This set is compact, not empty, and it is a Lipschitz graph over its projection G ∧ Ğ.

Proof. We have proved already that the set G ∧ Ğ is not empty. Let K > 0 be such that
the functions u and −ŭ are K-semi concave. Let x be a point of minimum of u − ŭ. If f is
a function with K-Lipschitz differential such that f − ŭ has a maximum at x, then clearly,
u− f has a minimum at x. As a consequence, points of minimum of u− ŭ are points where
∂K−u(x) is not empty. The super-differential ∂K+u(x) is of course also non-empty since u is
K-semi-concave. It follows from Appendix (A.7) that u and ŭ are differentiable on the set
G ∧ Ğ, that they have the same differential, and that this differential is a Lipschitz section
of the cotangent bundle over G ∧ Ğ. This makes the definition meaningful. The set G∧̃Ğ is
compact because it is the image of the compact set G ∧ Ğ by a Lipschitz map.

(2.4) Let us fix a closed form η. We define the associated Lax-Oleinik mapping on C0(M,R)
by the expression

Tηu(x) = min
q∈M

u(q) +Aη(0, q; 1, x)

Let us recall some important properties of the Lax-Oleinik mapping, which are all direct
consequences of the properties of the function A given in (1.4). For each form η, The functions
Tηu, u ∈ C(M,R) are equi-semi-concave, see Appendix A. The mapping Tη is a contraction:

‖Tηu− Tηv‖∞ 6 ‖u− v‖∞.

To finish, the mapping Tη is non-decreasing, and it satisfies Tη(a+ u) = a+ Tη(u) for all real
a.

(2.5) There exists a unique mapping Φ : P −→ P such that

Φ(Gη,u) = Gη,Tηu

for all smooth form η and all semi-concave function u. We have

c(Φ(G)) = c(G).

The mapping Φ is continuous (see (5.4) for the proof of a more general result). For each
cohomology c, the image Φ(Pc) is a relatively compact subset of Pc, as follows directly from
the properties of the Lax-Oleinik transformation recalled above. Note that this implies the
existence of a fixed point of Φ in each Pc, this is how Fathi proved the existence of fixed
points. See (3.2) for another proof. We call Vc the set of these fixed points, and V = ∪cVc.
We also define the sets

O :=
⋂

n∈N

Φn(P) =
⋂

n∈N

Φn(P)

and Oc := O ∩ Pc. Note that O is compact and invariant under Φ, and that V ⊂ O. A
pseudograph G ∈ Pc belongs to O if and only if there exists a sequence Gn ∈ P, n ∈ Z of
pseudographs such that Φm−n(Gn) = Gm for all m > n, and such that G0 = G. Note that we
then have Gn ∈ Oc for each n ∈ Z.
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(2.6) The mapping Φ satisfies
Φ(G) ⊂ φ(G).

This inclusion is a consequence of the following Proposition, which will be central througrought
the paper.

(2.7) Proposition Let us fix a pseudograph Gη,u ∈ P, an open set U ⊂M and two times
s < t. Let us set

v(x) = min
q∈Ū

u(q) +Aη(s, q; t, x),

where Ū is the closure of U . Let V ⊂ M be an open set and let N ⊂ M be the set of points
where the minimum is reached in the definition of v(x) for some x ∈ V . If N̄ ⊂ U , then

Gη,v|V = φs,t

(

Gη,u|N̄

)

and Gη,u|N̄ is a Lipschitz graph above N̄ . In other words, the function u is differentiable at

each point of N̄ , and the mapping x 7−→ dux is Lipschitz on N̄ .

Addendum. In addition, the Hamiltonian trajectories (x(σ), p(σ)) : [s, t] −→ T ∗M which
terminate in Gη,v|V , i. e. such that (x(t), p(t)) ∈ Gη,v|V satisfy

v(x(t)) = u(x(s)) +

∫ t

s
L(σ, x(σ), ẋ(σ)) − ηx(σ)(ẋ(σ))dσ

= u(x(s)) +Aη(s, x(s); t, x(t))) = min
x∈U

u(x) +Aη(s, x; t, x(t))).

Conversely, if the curve x(σ) : [s, t] −→ T ∗M satisfies these equalities, with x(s) ∈ U and
x(t) ∈ V , then the curve (x(σ), p(σ) = ∂vL(σ, x(σ), ẋ(σ))) is a Hamiltonian trajectory termi-
nating in Gη,v,

Proof. If x ∈ V is a point of differentiability of v, then there exists a unique point
(x, η(x) + dv(x)) of Gη,v above x. Let us consider a point q ∈ N minimizing in the ex-
pression of v(x). The function Aη(s, q, t, .) is then differentiable at x because v −Aη(s, q, t, .)
has a maximum at x. As a consequence, see (1.4), the set Σm(s, q, t, x) of minimizing curves
contains one and only one curve x(σ). This curve is such that the associated Hamiltonian
trajectory

(x(σ), p(σ)) = (x(σ), ∂vL(σ, x(σ), ẋ(σ))) : [s, t] −→ T ∗M

terminates at (x, η(x)+dv(x)). It follows, still from (1.4), that the function u is differentiable
at q and satisfies

(x(s), p(s)) = (q, du(q) + η(q)) ⊂ Gη,u.

Let K > 0 be such that the functions u and Aη(s, ., t, x), x ∈ M are K-semi-concave, see
Appendix A. Then the function u has a K-super-differential and a K-sub-differential at q.
Since this holds a every point of N , it follows from Appendix (A.7) that the function u is
differentiable at each point of N̄ , and that the differential du(q) is a Lipschitz section of the
cotangent bundle over N̄ . As a consequence, we have

Gη,u|N̄ = Gη,u|N .
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We have also proved that φt,s(x, η(x)+dv(x)) ∈ Gη,u|N for all point (x, η(x)+dv(x)) of Gη,v|V ,
so that φt,s(Gη,v|V ) = Gη,u|N . Taking the closures, we get

φt,s

(

Gη,v|V

)

= Gη,u|N̄ .

(2.8) Let G = Gc,u be a fixed point of Φ. And let n < m be two relative integers. Following
Fathi, we say that a curve x(t) : [n,m] −→M is calibrated by G if

u(x(n)) +

∫ m

n
L(t, x(t), ẋ(t)) − ηx(t)(ẋ(t))dt = min

x∈M
u(x) +Ac(n, x;m,x(m)).

The curve x(t) is calibrated by G if and only if the curve (x(t), p(t) = ∂vL(t, x(t), ẋ(t))) is
a Hamiltonian trajectory and satisfies (x(k), p(k)) ∈ Ḡ for each integer k ∈ [n,m]. If x(t) is
calibrated by G then we also have (x(k), p(k)) ∈ G for each integer k ∈]n,m[.

(2.9) The following Corollary is the reason why we have called the elements of P overlapping.

Corollary All overlapping pseudographs G ∈ P satisfy π ◦ φ(G) = M.
Proof. We have Φ(G) ⊂ φ(G), and π(Φ(G)) is dense in M , so that π

(

Φ(G)
)

= M.

(2.10) It is useful to define ”dual” concepts. We define the dual Lax-Oleinik operator
associated to a closed form η by the expression

T̆ηu(x) = max
q∈M

u(q) −Aη(0, x; 1, q), u ∈ C(M,R)

and we associate to this operator a mapping Φ̆ : P̆ −→ P̆ by the expression Φ̆(Gc,−u) =

Gc,T̆c(−u) ∈ P̆. We have

Φ̆(Ğ) ⊂ φ−1(Ğ)

if Ğ ∈ P̆. We denote by V̆ the set of fixed points of Φ̆. Let Ğ = Gc,−u be a fixed point of Φ̆,
and let n < m be two relative integers. We say that a curve x(t) : [n,m] −→M is calibrated
by Ğ if

u(x(m)) −Ac(n, x(n);m,x(m)) = max
x∈M

u(x) −Ac(n, x(n);m,x).

3 Aubry-Mather sets

We use the overlapping pseudographs to recover various invariant sets introduced by
Mather, and to study their major properties. We also establish the equivalence between the
different definitions of the same sets given in the literature.

(3.1) Proposition There exists a function α : H1(M,R) −→ R such that, for each
continuous function u and each form η of cohomology c, the sequence T n

η u(x) + nα(c), n > 1
of continuous functions is equi-bounded and equi-Lipschitz. The function c 7−→ α(c) is convex
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and superlinear.

Proof. Let us fix a cohomology class c, and define the sequences

Mn(c) := max
x∈T

T n
c (0)(x) and mn(c) := min

x∈T

T n
c (0)(x),

where 0 is the zero function on M . Since the functions T n
c (0), n > 1, are equi-semi-convex,

see Appendix A, there exists a constant K such that

0 6 Mn(c) −mn(c) 6 K

for n > 1. We claim that Mn+m(c) 6 Mn(c) +Mm(c). This follows from the inequalities

Tm+n
c (0)(x) = Tm

c (T n
c (0))(x) 6 Tm

c (Mn(c))(x) 6 Mn(c) + Tm
c (0)(x).

Hence by a classical result on subadditive sequences, we have limMn(c)/n = infMn(c)/n.
We denote by −α(c) this limit. In the same way, the sequence −mn(c) is subadditive, hence
mn(c)/n −→ supmn(c)/n. This limit is also −α(c) because 0 6 Mn(c) −mn(c) 6 K. As a
consequence, we have, for all n > 1,

−K − nα(c) 6 mn(c) 6 −nα(c) 6 Mn(c) 6 K − nα(c).

Now far all u ∈ C(M,R), n ∈ N and x ∈M , we have

min
T

u−K 6 min
T

u+mn(c)+nα(c) 6 T n
c u(x)+nα(c) 6 max

T

u+Mn(c)+nα(c) 6 max
T

u+K.

we obtain the first conclusion of the Proposition. The explicit definition of the value mn(c) is

mn(c) = min
γ

∫ n

0
L(s, γ(s), γ̇(s)) − cγ(s)(γ̇(s))ds

where the minimum is taken on all absolutely continuous curves γ : [0, n] −→ M . As a
consequence, the function c 7−→ mn(c) is concave, as a minimum of linear functions. Hence
each of the functions c 7−→ mn(c)/n is concave, so that the limit −α(c) is concave, and the
function α(c) is convex. Finally, there exists a superlinear function l0 : R

+ −→ R
+ such that

L(s, x, v) > l0(|v|), and a constant C such that |cx(p)| 6 C|c||p|. As a consequence, we obtain
from the expression above the estimate

α(c) > mn(c)/n > min
p∈Rn

l0(|p|) − C|c||p|

so that the function α is superlinear.

(3.2) Proposition. Let us fix a closed form η and a continuous function u. Let us set

v := lim inf
n−→∞

T n
η (u) + nα([η]),

then v is a fixed point of Tη + α hence Gη,v is a fixed point of Φ.

Proof. The one-form η is fixed once and for all in this proof, we omit the subscript η, and
denote by α the number α([η]). Let us first prove that Tv + α 6 v. In order to do so, we
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fix x ∈ M and consider an increasing sequence nk of integers such that T nku(x) + nkα −→
v(x). Let qk be a point such that T nku(x) = T nk−1u(qk) + A(0, qk; 1, x) or equivalently,
T nku(x) + nkα = T nk−1u(qk) + (nk − 1)α + α + A(0, qk; 1, x). We can suppose that the
sequence qk has a limit q. Taking the lim inf in the equality above gives

v(x) > v(q) +A(0, q, 1, x) + α > Tv(x) + α

where we have used equi-continuity of the functions T nu, n ∈ N.
In order to prove that Tv + α > v, just notice that T nu(x) 6 T n−1u(q) +A(0, q; 1, x) for

each q and x, or equivalently that T nu(x) +nα 6 T n−1u(q) + (n− 1)α+A(0, q; 1, x) +α and
take the liminf.

(3.3) Lemma Let us fix a closed form η of cohomology c. Let M ⊂ C(M,R) be a family
of fixed points of the Lax-Oleinik operator Tη + α(c). Assume that the minimum v(x) =
minu∈M u(x) exists for each x ∈ M . Then the function v is a fixed point of Tη + α(c).

Proof. All functions u ∈ M satisfy u(x) = miny∈M u(y) + Aη(0, x; 1, y) + α(c). It follows
that

v(x) 6 min
y
v(y) +Aη(0, x; 1, y) + α(c).

In order to prove the other inequality, let us take a function u ∈ M such that u(x) = v(x),
and consider a point y ∈M such that u(x) = u(y) +Aη(0, x; 1, y) + α(c). We obtain

v(x) = u(x) = u(y) +Aη(0, x; 1, y) + α(c) > v(y) +Aη(0, x; 1, y) + α(c).

(3.4) Fixed points of the Lax-Oleinik operator Tc+α(c) will be called weak KAM solutions,
following Fathi. We denote by V ⊂ P the set of fixed points of Φ, and Vc ⊂ Pc the set of fixed
points of Φ of cohomology c. Sometimes, we will also denote by VC the set of fixed points of
Φ whose cohomology belongs to the subset C ⊂ H1(M,R). The set Vc is non-empty for each
c. If G ∈ V, then it follows from (2.6) that

G ⊂ φ(G).

It is then natural to define the set

Ĩ(G) =
⋂

n∈N

φ−n(Ḡ),

which is a non-empty compact φ-invariant subset of T ∗M . We also define

I(G) = π(Ĩ(G)) ⊂M.

More generally, for each G ∈ P, we define the set

Ĩ(G) :=
⋂

n∈N

φ−n
(

Φn(G)
)

which is always compact, but may in general be empty.
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(3.5) For each G ∈ V, we define the set M̃(G) as the closure of the union of the support
of invariant measures of φ|Ĩ(G). If G ∈ V and G′ ∈ V have the same cohomology c, then it is
known that

M̃(G) ⊂ Ĩ(G′)

hence M̃(G) = M̃(G′). As a consequence, the set M̃, usually called the Mather set, depends
only on the cohomology c. It will be denoted by

M̃(c),

and as usual, we will denote by M(c) the projection π(M̃(c)). We also define the Aubry set
in a usual way by

Ã(c) =
⋂

G∈Vc

Ĩ(G)

and A(c) = π(Ã(c)). The Mañe set is defined by

Ñ (c) =
⋃

G∈Vc

Ĩ(G)

and N (c) = π(Ñ (c)). A bigger set will be useful in some occasions, defined by

B̃(c) =
⋃

G∈Oc

Ĩ(G),

where Oc is as defined in (2.5). As an intersection of Lipschitz graphs, the Aubry set Ã(c) is
a Lipschitz graph over A(c). Note however that the Mañe set is not a Graph in general. The
sets

M̃(c) ⊂ Ã(c) ⊂ Ñ (c) ⊂ B̃(c)

are compact and invariant under φ. The compactness of Ñ (c) and B̃(c) is mentioned here
for completeness, it will be proved later in this sections, in lemma (3.12) and (3.13) below.
These Lemma also prove that the Mañe set is indeed the set of orbits called c-minimizing by
Mather and semi-static by Mañe, and that the set B̃ is the set of minimizing orbits, called G̃
in [2].

(3.6) It is possible to associate to each dual fixed point Ğ ∈ V̆ the invariant set

Ĩ(Ğ) =
⋂

n∈N

φn
(

Ğ
)

and its projection I(Ğ) on M . The following is essentially due to Fathi, [13].

Proposition. Let us fix a cohomology c, and consider pseudographs G ∈ Vc and Ğ ∈ V̆c.
The set G∧̃Ğ is non-empty, compact and invariant by φ. In addition, this set intersects the
Aubry set Ã(c), and satisfies

G∧̃Ğ ⊂ Ĩ(G) ∩ Ĩ(Ğ)

so that
G ∧ Ğ ⊂ I(G) ∩ I(Ğ).
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Furthermore, for each pseudograph G ∈ Vc, there exists a pseudograph Ğ ∈ V̆c such that

G ∧ Ğ = I(G) = I(Ğ).

In a symmetric way, for each pseudograph Ğ ∈ V̆c, there exists a pseudograph G ∈ Vc such
that this relation holds. As a consequence, we have

Ã(c) =
⋂

G∈Vc

Ĩ(G) =
⋂

Ğ∈V̆c

Ĩ(Ğ)

and
Ñ (c) =

⋃

G∈Vc

Ĩ(G) =
⋃

Ğ∈V̆c

Ĩ(Ğ).

Proof. We have already proved that the set G∧̃Ğ is compact and not empty, see (2.3). Let
us prove that it is invariant. In order to do so, we consider a weak KAM solution u and a
dual weak KAM solution ŭ such that G = Gc,u and Ğ = Gc,ŭ. Let (x(t), p(t)) : R −→ T ∗M

be an orbit of the Hamiltonian flow, such that (x(0), p(0)) ∈ G∧̃Ğ. Clearly, both u and ŭ are
differentiable at x(0), and p(0) = c(x(0)) + du(x(0)). For each m 6 n in N, we have

u(x(n)) = min
x∈M

u(x) +Ac(m,x, n, x(n)) + (n−m)α(c)

6 u(x(m)) +Ac(m,x(m), n, x(n)) + (n−m)α(c).

On the other hand, we have (x(0), p(0)) ∈ Ğ hence, in view of (2.7),

ŭ(x(m)) = ŭ(x(n)) +Ac(m,x(m), n, x(n)) + (n−m)α(c).

As a consequence, the sequence n 7−→ (u − ŭ)(x(n)) is non-increasing on N. Since its initial
value (u − ŭ)(x(0)) has been chosen to be a minimum of the function u − ŭ, the sequence
must be constant, so that x(n) is a point of G ∧ Ğ for each n > 0. A symmetric argument
shows that this is also true for n 6 0. In addition, we obtain that the inequality u(x(n)) 6

u(x(m))+Ac(m,x(m), n, x(n))+ (n−m)α(c) is in fact an equality for 0 6 m 6 n. Since this
formula is true in view of (2.7) for m 6 n 6 0 in Z, we obtain that, for all m 6 n in Z,

u(x(n)) = u(x(m)) +Ac(m,x(m), n, x(n)) + (n−m)α(c).

In other words, the curve x(t) is calibrated by G and by Ğ, see (2.8). This implies that
(x(n), p(n)) ∈ G ∩ Ğ for each n ∈ Z, and, since x(n) ∈ G ∧ Ğ, we get (x(n), p(n)) ∈ G∧̃Ğ. This
proves that G∧̃Ğ is invariant by φ and contained in I(G) and in I(Ğ).

Every compact invariant set of Ĩ(G) carries an invariant measure. As a consequence, every
compact invariant set of Ĩ(G) intersects the Mather set M̃(c), see (3.5). Since M̃(c) ⊂ Ã(c),
the set G∧̃Ğ, which is a compact and invariant subset of Ĩ(G), intersects Ã(c). Let us now
fix the Pseudograph Gc,u ∈ Vc, and prove the existence of a pseudograph Ğ ∈ V̆c such that
G ∧ Ğ = I(G) = I(Ğ). In order to do so, we set

ŭ := lim inf
n−→∞

T̆ n
c u− nα(c).

We will prove that ŭ 6 u, with equality on I(G). For each x ∈ M and each n ∈ N, there
exists yn ∈M such that

T̆ n
c u(x) = u(yn) −Ac(0, x;n, yn).
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On the other hand, we have the inequality

u(yn) − u(x) 6 Ac(0, x;n, yn) + nα(c),

hence T̆ n
c u(x) 6 u(x) + nα(c), and finally ŭ 6 u.

Let (x(t), p(t)) : R −→ T ∗M be a Hamiltonian orbit satisfying (x(0), p(0)) ∈ Ĩ(G). The
orbit x(t) is then calibrated by G, see (2.8), so that the relation

u(x(n)) − u(x(m)) = Ac(m,x(m);n, x(n)) + (n−m)α(c)

holds for all m 6 n in Z. It is clear from this relation that, for each n ∈ N,

T̆ n
c u(x(0)) > u(x(n)) −Ac(0, x(0);n, x(n)) = u(x(0)) + nα(c),

So that T̆ n
c u(x(0)) − nα(c) = u(x(0)), hence ŭ = u on I(G). As a consequence, the set of

points minimizing u− ŭ contains I(G). Since we have already proved that this set is contained
in I(G), we can conclude, as desired, that

Gc,u ∧ Gc,ŭ = I(G).

Finally, we have to prove that I(Gc,ŭ) = I(Gc,u). It is enough to prove the inclusion I(Gc,ŭ) ⊂
I(Gc,u), the other inclusion follows from the fact that I(G) = Gc,u ∧ Gc,ŭ ⊂ I(Gc,ŭ). Let
(x(t), p(t)) : R −→ T ∗M be a Hamiltonian orbit in the invariant set Ĩ(Gc,ŭ). The orbit x(t)
is then calibrated by ũ, so that the relation

ŭ(x(n)) − ŭ(x(m)) = Ac(m,x(m);n, x(n)) + (n−m)α(c)

holds for all m 6 n in Z. Both the α-limit and the ω-limit of the orbit (x(t), p(t)) intersect
the Mather set M̃(c). Since the equality ŭ = u holds on the Aubry set, so it holds on the
Mather set, and we deduce the existence of two sequences nk −→ ∞ and mk −→ −∞ of
integers such that u(x(nk))− ŭ(x(nk)) −→ 0 and u(x(mk))− ŭ(x(mk)) −→ 0. It follows that

u(x(nk)) − u(x(mk)) −Ac(mk, x(mk);nk, x(nk)) − (nk −mk)α(c) −→ 0

hence the curve (x(t), p(t)) is also calibrated by u. We have proved that I(Gc,ŭ) ⊂ I(Gc,u).

(3.7) Proposition. The restriction to V of the function c : P −→ H1(M,R) is
continuous and proper.

Proof. Let us consider a compact subset C of H1(M,R). The Family of Hamiltonians
H(t, x, cx + p), c ∈ C, is clearly a uniform family of Hamiltonians, see Appendix B. As a
consequence, the associated functions Ac(0, .; 1, .), c ∈ C form an equi-semi-concave family of
functions on M ×M . As a consequence, the functions Ac(0, x; 1, .), c ∈ C, x ∈ M form an
equi-semi-concave family of functions on M , see Appendix A. It follows that the functions
u(x) + Ac(0, x; 1, .), c ∈ C, x ∈ M also form an equi-semi-concave family, hence that the
functions minx u(x)+Ac(0, x; 1, .), c ∈ C form an equi-semi-concave family. As a consequence,
the set Φ(PC) is relatively compact. Since the set VC is obviously closed, and contained in
Φ(PC), it is compact.
We have proved the following Lemma, which is interesting in itself:

Lemma. If C is a compact subset of H1(M,R), the set Φ(PC) is equi-semi-concave.
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(3.8) Following Mather, we will use the function

hc(x, y) := lim inf
n−→∞

An
c (x, y) + nα(c).

In view of (3.2), the function hc(x, .) is a fixed point of Tc + α(c). Similarly, the function
−hc(., y) is a fixed point of T̆c −α(c). Let us recall here some basic properties of the function
hc.

• For each x, y ∈M and c ∈ H1(M,R), we have hc(x, y) + hc(y, x) > 0, and hc(x, x) > 0.

• For each x, y, z ∈ M and c ∈ H1(M,R), we have the triangle inequality hc(x, y) +
hc(y, z) > hc(x, z).

• For each compact set C ∈ H1(M,R), the set of functions hc : M ×M −→ R, c ∈ C, is
equi-semi-concave.

(3.9) Proposition. If the pseudograph Gc,u is a fixed point of Φ, then we have

u(y) − u(x) 6 hc(x, y)

for each x and y. In addition,

u(x) = min
y∈M

u(y) + hc(y, x) = min
a∈A(c)

u(a) + hc(a, x).

Proof. We have, for each n, u = T n
c u+ nα(c). As a consequence, for each n,

u(x) = min
y∈M

u(y) +Ac(0, y;n, x) + nα(c).

We obtain the inequality u(x) 6 u(y) + Ac(0, y;n, x) + nα(c) and, by taking the liminf,
u(x) 6 u(y) + hc(y, x). In order to obtain the first equality, we consider a point yn ∈M such
that

u(x) = u(yn) +Ac(0, yn;n, x) + nα(c).

We consider an increasing sequence nk of integers such that the subsequence ynk
has a limit

y, and refine this subsequence in such a way that the subsequence Ac(0, y, nk, x) has a limit
l. We have

u(x) = u(y) + l > u(y) + hc(y, x).

Cumulated with the previously shown inequality, this proves the first equality in the state-
ment. In order to prove the second equality, notice that the set of points y which minimize
the function u(.) + hc(., x) is precisely the set G ∧ Gc,−hc(.,x), and that Gc,−hc(.,x) ∈ V̆c. By
(3.6), the set G ∧ Gc,−hc(.,x) intersects A(c).
Specializing the result to the case where u(y) = hc(x, y), we obtain the following refinement
of a result of Albert Fathi:

(3.10) Corollary. For each x and y in M and c ∈ H1(M,R), we have

hc(x, y) = min
z∈M

hc(x, z) + hc(z, y) = min
a∈A(c)

hc(x, a) + hc(a, y).

The following result connects our definition of the Aubry set to the one of Mather.
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(3.11) Proposition. The Aubry set A(c) is the set of points x such that hc(x, x) = 0.

Proof. Let us consider a Hamiltonian trajectory (x(t), p(t)) : R −→ T ∗M such that
(x(0), p(0)) ∈ Ã(c). This trajectory is calibrated by each fixed point of Tc + α(c), so in
particular by hc(x(0), .). Consequently, we have

hc(x(0), x(n)) − hc(x(0), x(0)) = Ac(0, x(0);n, x(n)).

Taking a subsequence such that x(n) has a limit x, and then a subsequence such that
Ac(0, x(0);n, x) is converging to a limit l > hc(x(0), x), we get, at the limit,

hc(x(0), x) − hc(x(0), x(0)) > hc(x(0), x)

thus hc(x(0), x(0)) 6 0 and then hc(x(0), x(0)) = 0. We have proved that the functions
hc(x, x) vanishes on A(c).

Conversely, let us assume that hc(x, x) = 0. Then there exists an increasing sequence nk

of integers and a sequence of trajectories (xk(t), pk(t)) : [0, nk] −→ T ∗M such that x(0) =
x(nk) = x and

∫ nk

0
L(t, xk(t), ẋk(t)) − cxk(t)(ẋk(t)) + α(c) dt = Ac(0, x;nk, 0) + nkα(c) −→ 0.

Let yk : [−nk, nk] −→ M be the curve such that yk(t) = xk(t + nk) for −nk 6 t 6 0 and
yk(t) = xk(t) for t > 0. The curves yk are equi-Lipschitz hence, by taking a subsequence,
we can suppose that the sequence yk is converging, uniformly on compact sets, to a limit
y(t) : R −→ M . Let u be a fixed point of Tc + α(c). We have, for each n ∈ N and k large
enough,

u(yk(n)) − u(x) −Ac(0, x;n, yk(n)) − nα(c)

6 u(yk(nk)) − u(x) −Ac(0, x;nk, yk(n)) − nkα(c) −→ 0

hence u(y(n)) − u(y(0)) = Ac(0, y(0);n, y(n)) + nα(c). Similarly, we prove that u(y(0)) −
u(y(−n)) = Ac(−n, y(−n); 0, y(0)) + nα(c), for all n ∈ N. Consequently, the curve y(t) is
calibrated by u. Since this holds for each weak KAM solution u, we have x ∈ A(c).

The following result connects our definition of the Mañe set with the usual one, and implies
its compactness.

(3.12) Lemma The following properties are equivalent for a continuous curve P (t) =
(x(t), p(t)) : R −→ T ∗M .

(i) The curve P (t) is a Hamiltonian trajectory and P (Z) ⊂ Ñ (c).

(ii) The curve P (t) satisfies p(t) = ∂vL(t, x(t), ẋ(t)) and there exists Gc,u ∈ Vc such that,
for each m > n in Z, we have

u(x(m)) − u(x(n)) =

∫ m

n
L(t, x(t), ẋ(t)) − cx(t)(ẋ(t))dt + (m− n)α(c).
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(iii) The curve P (t) satisfies p(t) = ∂vL(t, x(t), ẋ(t)) and for each m > n in Z, we have

∫ m

n
L(t, x(t), ẋ(t)) − cx(t)(ẋ(t))dt + (m− n)α(c) = min

l∈N,l>0
Ac(0, x(n); l, x(m)) + lα(c).

Proof. We shall prove that (iii) ⇒ (ii). The other implications are left to the reader. Let
P (t) be a curve satisfying (iii). let nk be an increasing sequence of integers such that x(−nk)
has a limit α. Then we have, for m > n,

∫ m

n
L(t, x(t), ẋ(t)) − cx(t)(ẋ(t))dt + (m− n)α(c)

=

∫ m

−nk

L(t, x(t), ẋ(t)) − cx(t)(ẋ(t)) + α(c)dt −

∫ n

−nk

L(t, x(t), ẋ(t)) − cx(t)(ẋ(t)) + α(c) dt

= Ac(−nk, x(−nk);m,x(m)) + (m+ nk)α(c) −Ac(−nk, x(−nk);n, x(n)) + (n+ nk)α(c).

By (iii), we have

Ac(−nk, x(−nk);m,x(m)) + (m+ nk)α(c) = min
l∈N,l>0

Ac(0, x(−nk); l, x(m)) + lα(c)

6 hc(x(−nk), x(m))

which implies that

Ac(−nk, x(−nk);m,x(m)) + (m+ nk)α(c) −→ hc(α, x(m))

as k −→ ∞. Similarly,

Ac(−nk, x(−nk);n, x(n)) + (n + nk)α(c) −→ hc(α, x(n)),

so that

hc(α, x(m)) − hc(α, x(n)) =

∫ m

n
L(t, x(t), ẋ(t)) − cx(t)(ẋ(t))dt + (m− n)α(c).

We have proved (ii) with u = hc(α, .).

We now give equivalent definitions for the set B̃. The following Lemma shows that the set B̃
is the set called G̃ in [2], and implies its compactness.

(3.13) Lemma The following properties are equivalent for a continuous curve P (t) =
(x(t), p(t)) : R −→ T ∗M .

(i) The curve P (t) is a Hamiltonian trajectory and P (Z) ⊂ B̃(c) .

(ii) The curve P (t) satisfies p(t) = ∂vL(t, x(t), ẋ(t)), and there exists a sequence un of
functions such that, for each m > n, we have Tm−n

c un = um and

um(x(m)) − un(x(n)) =

∫ m

n
L(t, x(t), ẋ(t)) − cx(t)(ẋ(t))dt.
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(iii) The curve P (t) satisfies p(t) = ∂vL(t, x(t), ẋ(t)), and for each m > n, we have

∫ m

n
L(t, x(t), ẋ(t)) − cx(t)(ẋ(t))dt = Ac(n, x(n);m,x(m))

Proof. (ii) ⇒ (i). Then for each pair m > n of integers, the curve x(t) : [n,m] −→ M
is minimizing the action between its endpoints. Hence the curve P (t) is a Hamiltonian
trajectory. It follows from (2.7) that, for each n > 0, we have P (n) ∈ Gc,un and since
P (n) = φn(P (0)), we have

P (0) ∈ φ−n(Φn(Gc,u0).

This inclusion holds for all n, so that P (0) ∈ Ĩ(Gc,u0). Now (i) follows from the fact Gc,u0 ∈ O

and that Ĩ(Gc,u0) is invariant under φ.
(i) ⇒ (ii). There exists a pseudograph Gc,u0 ∈ O such that P (0) ∈ Ĩ(Gc,u0). There exists

a sequence un, n ∈ Z of functions on M such that Tm−n
c un = um for m > n. For each m > 0,

since P (m) ∈ Gc,um, we have

um(x(m)) − u0(x(0)) =

∫ m

0
L(t, x(t), ẋ(t)) − cx(t)(ẋ(t))dt.

On the other hand, for each n 6 0, we can find by minimization a curve yn(t) : [n, 0] −→ M
such that

u0(yn(0)) − un(yn(n)) =

∫ 0

n
L(t, yn(t), ẏn(t)) − cyn(t)(ẏn(t))dt.

There exists a subsequence nk such that the curves ynk
(t) converge, uniformly on compact

sets, to a limit y(t) : (−∞, 0] −→M . By (1.3), this curve satisfies, for all n 6 0,

u0(y(0)) − un(y(n)) =

∫ 0

n
L(t, y(t), ẏ(t)) − cy(t)(ẏ(t))dt.

Hence, for n 6 0 6 m, we have

um(x(m)) − un(y(n)) =

∫ 0

n
L(t, y(t), ẏ(t)) − cy(t)(ẏ(t))dt+

∫ m

0
L(t, x(t), ẋ(t)) − cx(t)(ẋ(t))dt.

As a consequence, the curve obtained by gluing y on R
− and x on R

+ is the projection of
a Hamiltonian trajectory, which, by Cauchy-Lipschitz uniqueness, has to be P (t). In other
words, we have proved that x(t) = y(t) on R

−. The relation of calibration is now established.
(iii) ⇒ (ii). Let P (t) be a curve satisfying (iii). Then we have, for m > n > k,

∫ m

n
L(t, x(t), ẋ(t)) − cx(t)(ẋ(t))dt + (m− n)α(c)

= Ac(k, x(k);m,x(m)) + (m− k)α(c) −Ac(k, x(k);n, x(n)) + (n− k)α(c).

Let us denote by uk
n the function

uk
n(x) = Ac(k, x(k);n, x) + (n− k)α(c),

we obviously have Tm−n
c uk

n + (m − n)α(c) = uk
m for m > n > k. By diagonal extraction,

we find an increasing sequence of integers nk such that u−nk
n has a limit un for each n as
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k −→ ∞. We then have Tm−n
c un + (m− n)α(c) = um for each m > n, so that Gc,un ∈ O. In

addition, we have
∫ m

n
L(t, x(t), ẋ(t)) − cx(t)(ẋ(t))dt + (m− n)α(c) = um(x(m)) − un(x(n)).

(ii) ⇒ (iii) is clear.

(3.14) Lemma For each P ∈ B̃(c), the orbit φn(P ) is α-asymptotic and ω-asymptotic to
the Aubry set Ã(c). As a consequence, the Mather set M̃(c) is the closure of the union of the
supports of the invariant measures of the action of φ on B̃(c)

Proof. Let P (t) = (x(t), p(t)) be the Hamiltonian orbit of P . Let un, n ∈ Z be a sequence
of continuous functions such that, for m > n, we have um = Tm−n

c un + (m− n)α(c) and

um(x(m)) − un(x(n)) =

∫ m

n
L(t, x(t), ẋ(t)) − cx(t)(ẋ(t))dt + (m− n)α(c)

If v is a weak KAM solution, that is a fixed point of Tc − α(c), we have, for m > n,

um(x(m)) − un(x(n)) 6

∫ m

n
L(t, x(t), ẋ(t)) − cx(t)(ẋ(t))dt + (m− n)α(c)

It follows that the sequence n 7−→ un(x(n)) − v(x(n)) is non-decreasing. In view of (3.1),
this sequence is bounded, so that it has a limit l as n −→ −∞. Let us now consider an
increasing sequence nk of integers such that the sequence P (t− nk) converges, uniformly on
compact set, to a limit Z(t) = (y(t), z(t) which is a Hamiltonian trajectory. Extracting a
subsequence in nk, we can suppose that there exists a sequence wn of continuous functions
on M such that un−nk

−→ wn uniformly, for each n, as k −→ ∞. Then, the sequence wn

satisfies Tm−n
c wn = wm for m > n. In addition, we have wn(y(n)) − v(y(n)) = l and, for

m > n,

wm(x(m)) − wn(x(n)) =

∫ m

n
L(t, x(t), ẋ(t)) − cx(t)(ẋ(t))dt + (m− n)α(c).

It follows that, for m > n,

v(x(m)) − v(x(n)) =

∫ m

n
L(t, x(t), ẋ(t)) − cx(t)(ẋ(t))dt + (m− n)α(c)

which implies that Z(Z) ∈ Ĩ(Gc,v). Since this holds for all weak KAM solutions v, we ob-
tain that Z(Z) ∈ Ã(c). We have proved that the trajectory P (t) is α-asymptotic to Ã(c).
Similarly, one can prove that it is also ω-asymptotic to Ã(c). This implies that the invariant
measures of the action of φ on B̃(c) are supported on Ã(c).

4 Static classes and heteroclinics

In this section, we see that there is a natural partition of the Aubry set in compact
invariant subsets, which we call static classes, following the terminology of Mañe. We also
discuss the existence of heteroclinic orbits between these static classes.
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(4.1) Lemma. Let x and y be two points in M . The following properties are equivalent:

(i) The points x and y are in A(c) and the function z 7−→ hc(x, z)−hc(y, z) is constant on
A(c).

(ii) hc(x, y) + hc(y, x) = 0.

(iii) The points x and y are in A(c) and, for each pair (G, Ğ) ∈ Vc × V̆c, either the set G ∧ Ğ
contains x and y or it contains neither x nor y.

If x and y satisfy these properties, we have, for each z ∈M , hc(x, z) = hc(x, y) + hc(y, z).
Proof. i⇒ ii. Assuming i, we evaluate the constant function at x and y and get hc(x, x)−
hc(y, x) = hc(x, y) − hc(y, y), hence hc(x, y) + hc(y, x) = 0.

ii ⇒ iii. We have hc(x, x) 6 hc(x, y) + hc(y, x) = 0 hence x ∈ A(c). Similarly, y ∈ A(c).
Let us consider G = Gc,u ∈ Vc and Ğ = Gc,ŭ ∈ V̆c such that x ∈ G∧Ğ (such a pair exists because

x ∈ A(c)) We have to prove that y ∈ G ∧ Ğ. We have the inequalities u(y) 6 u(x) + hc(x, y)
and ŭ(y) > ŭ(x) − hc(y, x). We obtain the inequality

(u− ŭ)(y) 6 (u− ŭ)(x) + hc(x, y) + hc(y, x).

As a consequence, if hc(x, y)+hc(y, x) = 0, then y is also a point of minimum of u− ŭ, which
is the desired result.

iii ⇒ ii. The point x is a point of minimum of the function hc(x, .) + hc(., x). As a
consequence, the point y is also a point of minimum for this function, so that hc(x, y) +
hc(y, x) = hc(x, x) + hc(x, x) = 0.

ii⇒ i. We have the inequalities

hc(x, z) 6 hc(x, y) + hc(y, z) and hc(y, z) 6 hc(y, x) + hc(x, z).

If hc(x, y) + hc(y, x) = 0, then these inequalities sum to an equality, hence they are both
equalities.

(4.2) The equivalent properties of the Lemma define an equivalence relation on A(c). We
call static classes the classes of equivalence for this relation. In other worlds, we say that
the points x and y of A(c) belong to the same static class if they satisfy (i), (ii) or (iii) of
the lemma. We usually denote by S a static class, and by S(x) the static class containing
x. If S is a static class, we denote by S̃ the set of points of Ã(c) whose projection on M
belong to S. We will also call static classes the sets of the form S̃. The static classes S are
compact and partition A(c), the static classes S̃ are compact, invariant, and they partition
Ã(c). The invariance is a direct consequence of the caracterisation (iii) of the equivalence
relation. To each point x of the Aubry set A(c), we associate the weak KAM solution hc(x, .),
and we denote by Ec,x the associated element of Vc. The pseudographs of this form are called
elementary solutions of Vc. Two points of a same static class give rise to the same elementary
solution, we will denote by Ec,S the elementary solution induced by points of S. There is a one
to one correspondence between the set of static classes and the set of elementary solutions.
We will denote by Ec ⊂ Vc this set. We endow it with the induced metric, it is clearly a
compact set for this metric. We also denote by Ĕc,S the fixed point of Φ̆ associated to the
dual weak KAM solution −h(., x) for x ∈ S.
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(4.3) Proposition. Let G ∈ Vc be a fixed point, and let P be a point of Ḡ. The α-limit
of the orbit φn(P ) is contained in one static class S̃ ⊂ Ã(c). We then have P ∈ Ēc,S. In a

similar way, if P ∈ Ğ ∈ V̆c, then the ω-limit of the orbit of P is contained in one static class
of Ã(c).

Proof. Let α ⊂ M be the α-limit of the orbit of P ∈ Gc,u. We claim that, for each weak
KAM solution or backward weak KAM solution v, the function u−v is constant on α. Clearly,
this implies that α is contained in a static class. In order to prove the claim, we consider the
projection x(t) on M of the orbit of P . The curve x(t) is calibrated by u on (−∞, 0], hence
the equality

u(x(−m)) − u(x(−n)) = Ac(−n, x(−n),−m,x(−m))

holds for all n,m ∈ N such that m 6 n. On the other hand, if v is a weak KAM solution or
a backward weak KAM solution, we have the inequality

v(x(−m)) − v(x(−n)) 6 Ac(−n, x(−n),−m,x(−m))

for all n,m ∈ N such that m 6 n. We deduce that the sequence (u− v)(x(−n)) : N −→ R is
non-increasing. Now let y = limk→∞ x(−nk) and z = limk→∞ x(−mk) be two points of α. We
can suppose that nk 6 mk 6 nk+1 by extracting subsequences. We obtain (u− v)(x(−nk)) >

(u− v)(x(−mk)) > (u− v)(x(−nk+1)), and at the limit (u− v)(y) > (u− v)(z) > (u− v)(y).
Hence the function u− v is constant on α. This proves the first statement of the proposition.

Taking v = hc(α, .), we obtain that the sequence u(x(−n)) − hc(α, x(−n)) : N −→ R is
non-increasing. On the other hand, we have u(x(0)) − hc(α, x(0)) 6 u(α). It follows that the
sequence is in fact constant, so that the curve x(t) is calibrated by Ec,S(α) on (−∞, 0], and,
be (2.8), ((x(0), p(0)) ∈ Ēc,S(α).

Corollary. Let P ∈ Ñ (c) be a point whose α-limit is contained in S̃ and whose ω-limit
is contained in S̃ ′. We have

P ∈ Ec,S∧̃Ĕc,S′.

Proof. Let (x(t), p(t)) be the orbit of P . Let α be an α-limit point of the curve x(t),
and let ω be an ω-limit point. It follows from the proposition that (x(m), p(m)) ∈ Ēc,S

for each m ∈ Z. Applying the discussions in the proof of the proposition with the point
P = (x(m), p(m)) and the functions u = hc(α, .) and v = −hc(., ω), we get that the sequence
hc(α, x(n)) + hc(x(n), ω) is non-decreasing on n 6 m. Since we can take any m ∈ Z, this
sequence is non-decreasing on Z. Taking a sequence nk −→ −∞ such that x(−nk) −→ α we
obtain the inequality hc(α, ω) 6 hc(α, x(n))+hc(x(n), ω). Taking a sequence mk −→ ∞ such
that x(mk) −→ ω we obtain the inequality hc(α, ω) > hc(α, x(n)) + hc(x(n), ω). It follows
that, for each n,

hc(α, x(n)) + hc(x(n), ω) = hc(α, ω) = min
M

hc(α, .) + hc(., ω).

This is precisely saying that
x(n) ∈ Ec,S(α)∧̃Ĕc,S(ω).
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(4.4) Lemma. If the static class S is isolated in A(c), then there exists a neighborhood
V of S in M such that the α-limit of every point P ∈ Ec,S satisfying π(P ) ∈ V is contained
in S.
Proof. If the result did not hold true, we could find a sequence (xn, pn) ∈ Ec,S that has a
limit (x, p) ∈ S̃ and a sequence αn of α-limit points of (xn, pn) that has a limit α in Ã(c)−S̃ .
Note that the orbit (xn(t), pn(t)) : (−∞, 0] −→ T ∗M of (xn, pn) is contained in Ec,S . Hence
it is calibrated by the function hc(x, .), that is

hc(x, xn(0)) = hc(x, xn(−k)) +Ac(−k, xn(−k); 0, xn(0)) + kα(c)

for all k ∈ N. At the liminf k −→ ∞, for fixed n, we obtain the inequality hc(x, xn) >

hc(x, αn) + hc(αn, xn) hence the equality hc(x, xn) = hc(x, αn) + hc(αn, xn). At the limit
n −→ ∞ we get 0 = hc(x, x) = hc(x, α) + hc(α, x). This is in contradiction with the fact that
α and x do not belong to the same static class.

(4.5) Let S̃ and S̃ ′ be two different static classes in Ã(c). The set Ec,S∧̃Ĕc,S′ contains S̃
and S̃ ′ as well as other orbits of Ñ (c). The following result is similar to Theorem A of [8].

Proposition. The set Ec,S ∧ Ĕc,S′ − (S ∪ S ′) is not empty and contains points in every
neighborhood of S, as well as in every neighborhood of S ′. More precisely, if S and S ′ are two,
possibly equal, static classes, and if K̃ ⊂ S̃ and K̃′ ⊂ S̃ ′ are two disjoint compact invariant
sets, then the set Ec,S ∧ Ĕc,S′ − (K ∪ K′) contains points in every neighborhood of K, as well
as in every neighborhood of K′.

Proof. Let V be an open neighborhood of K in M which does not intersect S ′. Let us fix
a recurrent orbit (y(t), z(t)) : R −→ T ∗M such that (y(0), z(0)) = (y, z) ∈ K and a recurrent
orbit (y′(t), z′(t)) : R −→ T ∗M such that (y′(0), z′(0)) = (y′, z′) ∈ K′ Consider a sequence
nk ∈ N of integers and a sequence (xk(t), pk(t)) : [0, nk] −→ T ∗M of Hamiltonian trajectories
such that xk(0) = y and xk(nk) = y′ and

∫ nk

0
L(t, xk(t), ẋk(t)) − cxk(t)(ẋk(t)) + α(c) dt = Ac(0, y;nk, y

′) + nkα(c) −→ hc(y, y
′).

We extend the curve xk : [0, nk] −→ M to a curve xk : R −→ R by setting xk(t) = y(t) for
t 6 0 and xk(t) = y′(t−nk) for t > nk. Let ak and bk be two increasing sequences of integers
such that y(−ak) −→ y and y′(bk) −→ y′. The existence of such sequences follows from the
fact that the curves y(t) and y′(t) are recurrent. Since the curve y(t) is calibrated by hc(y, .),
we have, as k −→ ∞,

Ac(−ak, y(−ak); 0, y) + akα(c) = −hc(y, y(−ak)) −→ 0

and similarly
Ac(0, y

′; bk, yk(bk)) + bkα(c) = hc(y
′, y(bk)) −→ 0.

As a consequence, we have, as k −→ ∞,

Ac(−ak, xk(−ak); bk, xk(bk)) + (bk + ak)α(c) −→ hc(y, y
′).
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For each k, let Tk be the maximum of all times i ∈ N such that xk(i) ∈ V . Note that xk(Tk+1)
does not belong to V . We can assume, taking a subsequence, that the curve xk(t + Tk) is
converging, uniformly on compact sets to a limit x(t) : R −→ M . Clearly, the continuous
curve x(t) does not belong to K ∪ K′. Let us now fix m 6 n in Z. Summing the inequalities

lim inf
k−→∞

(

Ac(−ak, xk(−ak);Tk +m,xk(Tk +m)) + (Tk +m+ ak)α(c)
)

> hc(y, x(m)),

lim inf
k−→∞

(

Ac(Tk +m,xk(Tk +m);Tk + n, xk(Tk + n))
)

= Ac(m,x(m);n, x(n))

and

lim inf
k−→∞

(

Ac(Tk + n, xk(Tk + n); bk, xk(bk))) + (bk − Tk − n)α(c)
)

> hc(x(n), y′),

we get
h(y, y′) = lim inf

k−→∞
Ac(−ak, xk(−ak); bk, xk(bk)) + (bk + ak)α(c)

> hc(y, x(n)) +Ac(m,x(m);n, x(n)) + (n−m)α(c) + hc(x(n), y′).

Since the converse inequality obviously holds, we obtain the equality

hc(y, y
′) = hc(y, x(m)) +Ac(m,x(m);n, x(n)) + (m− n)α(c) + hc(x(n), y′),

for all m 6 n. It follows that all the inequalities above are in fact equalities, so that we also
have

hc(y, x(m)) +Ac(m,x(m);n, x(n)) + (m− n)α(c) = hc(y, x(n))

so that the orbit x(t) is calibrated by the weak KAM solution hc on R. Hence it is the
projection of a Hamiltonian trajectory (x(t), p(t)). Moreover, we have the equality

hc(y, y
′) = hc(y, x(n)) + hc(x(n), y′),

so that the point x(n) is a point of minimum of the function hc(y, .)+hc(., y
′). Hence it belongs

to Ec,S ∧ Ĕc,S′. We have proved that the sequence (x(n), p(n)), n ∈ Z is an orbit of φ which is

contained in the invariant graph Ec,S∧̃Ĕc,S′. Since the point x(1) is not a point of K, this orbit
does not intersect the invariant set K̃. As a consequence, the point x(0) belongs to V̄ − K.
We have proved that the set Ec,S ∧ Ĕc,S′ − (K ∪K′) contains points in each neighborhood of
K. One can prove in a similar way that this set contains points in every neighborhood of K′.

(4.6) Corollary. A static class S̃ can not be decomposed as the union of two disjoint
invariant compact subsets.

Proof. Assume, by contradiction, that there exists a static class S̃ = K̃1 ∪ K̃2, with K̃i

invariant, compact and disjoint. In view of (4.5), the set

Ec,S ∧ Ĕc,S − (K1 ∪ K2)

is not empty. On the other hand, we have Ec,S ∧ Ĕc,S = S and K1 ∪ K2 = S, so that

Ec,S ∧ Ĕc,S − ((S ∩ K1) ∪ (S ∩ K2))

is empty, which is a contradiction.
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(4.7) Let (x(t), p(t)) : R −→ T ∗M be an orbit of the Mañe set, that is an orbit satisfying
(x(0), p(0)) ∈ Ñ (c). This orbit is α-asymptotic to a static class S̃, and ω-asymptotic to a
static class S̃ ′.

Lemma. The inclusion (x(0), p(0)) ∈ Ã(c) holds if and only if S = S ′. In this case, we
have (x(0), p(0)) ∈ S̃

Proof. Let us first assume that S = S ′. In this case, we see from Corollary (4.3) that
(x(0), p(0)) ∈ Ec,S∧̃Ĕc,S . But is is clear from the definition of static classes that Ec,S∧̃Ĕc,S =
S̃. Consequently, we have (x(0), p(0)) ∈ S̃ ⊂ Ã(c). Conversely, assume that (x(0), p(0)) ∈
Ã(c). Then this point is contained in one static class S̃0. Since this static class is compact
and invariant, it contains the α and the ω-limits of the orbit (x(t), p(t)), so that we have
S̃ = S̃0 = S̃ ′.

Corollary We have the equality Ã(c) = Ñ (c) if and only if there is exactly one static
class in Ã(c).

(4.8) Let H̃c(S̃, S̃
′) be the set of orbits of Ñ (c) which are heteroclinic orbits between the

static classes S̃ and S̃ ′, we denote by Hc(S,S
′) its projection on M . We have

Ñ (c) = Ã(c) ∪
⋃

S,S′

H̃c(S,S
′),

where the union is taken on all pairs (S,S ′) of different static classes. Recall, from Corollary
(4.3), that

H̃c(S̃ , S̃
′) ⊂ Ec,S∧̃Ĕc,S′ .

The following result is from [14] and [8].

(4.9) proposition. If the static class S̃ is properly contained and isolated in Ã(c),
then there exists an orbit of φ in Ñ (c) − Ã(c) which is α-asymptotic to S̃. This orbit is then
ω-asymptotic to another static class S̃ ′.

Proof. Let us chose, according to (4.4), a neighborhood V of S such that every orbit
of Ec,S starting above V has its α-limit contained in S. Now let us choose any static

class S ′′ different from S. In view of (4.5), the set Ec,S ∧ Ĕc,S′′ intersects V − S. Let

P (t) = (x(t), p(t)) : R −→ T ∗M be an orbit such that P (0) ∈ Ec,S∧̃Ĕc,S′′ and x(0) ∈ V − S.
The α-limit of the orbit P (t) is contained in S̃. On the other hand, this orbits belongs to
Ñ (c), hence its ω-limit is contained in some static class S̃ ′.

(4.10) We have treated so far the case where there exist several static classes. We recall,
however that the existence of a single static class in A(c), is, for c fixed, a generic property
of the Lagrangian, see [8]. In order to treat this case, it is useful to recall here a device due
to Fathi, as well as Contreras and Paternain, see [14] and [8]. Let P : M0 −→ M be a finite
connected covering, and P ∗ : H1(M,R) −→ H1(M0,R) the induced mapping. Let us also
denote by L ◦ TP : R × TM0 −→ R the lifted Lagrangian

L ◦ TP (t, x, v) = L(t, P (x), dPx(v)),
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and by T ∗P : T ∗M0 −→ T ∗M the covering

(x, p) 7−→ (P (x), p ◦ dP−1
x ).

The lifted Hamiltonian H ◦ T ∗P is in natural duality with the Lagrangian L ◦ T ∗P . As a
consequence, the Hamiltonian flow associated to the Lagrangian L◦TP is the Hamiltonian flow
of H ◦T ∗P , which is the lifting of the Hamiltonian flow of H. Each overlapping pseudograph
G = Gc,u on M lifts to a pseudograph

P ∗G := T ∗P−1(G) = GP ∗c,u◦P

on M0. Note that c(P ∗G) = P ∗(c(G)). As a consequence, it is not hard to see that the Aubry
set ÃL◦TP (P ∗(c)) associated to L ◦ TP on M0 is precisely

ÃL◦TP (P ∗(c)) = T ∗P−1(ÃL(c)),

while we only have the inclusion

ÑL◦TP (P ∗(c)) ⊃ T ∗P−1(ÑL(c)).

Finally, if SL◦TP is a static class of AL◦TP (P ∗(c)) , then P (SL◦TP ) is a static class of AL(c).
Note however that the lifting P−1(SL) of a static class of AL(c) can contain several static
classes of AL◦TP (P ∗(c)). This is illustrated by the following result which, in conjunction with
(4.9), allows to prove the existence of heteroclinic orbits in the case where there is only one
static class, see [14] and [8]. We need first another definition. If X̃ ⊂ TM is an invariant set
of the time-one flow φ, then we denote by sX̃ ⊂M × T the set ∪t∈R,x∈X̃ (φt

0(x), t) and by sX
its projection on M × T.

Proposition. Assume that the set A(c) contains finitely many static classes, and that
there exists an open neighborhood U ⊂M ×T of the compact set sA(c) such that the mapping
h : H1(U,Z) −→ H1(M,Z) is not surjective, where h is the composition of the mappings

H1(U,Z)
i∗−→ H1(M × T,Z)

p∗
−→ H1(M,Z)

induced from the inclusion and the projection. Then there exists a finite connected Galois
covering P : M0 −→ M with k sheets, k > 2, such that, for each static class S̃ of Ã(c), the
lifting T ∗P−1(S̃) is the union of exactly k different static classes of ÃL◦TP (P ∗(c)).

Proof. Let N be the number of static classes in A(c). First, we claim that for each
static class S, the set sS is connected. This follows easily from (4.6). As a consequence,
we can suppose that the neighborhood U is a union of finitely many connected open sets
Ui, 1 6 i 6 N , each of which contains exactly one of the sets sS. Since the group H1(M,Z) is
Abelian and of finite type, and since the mapping h : H1(U,Z) −→ H1(M,Z) is not surjective,
there exists an integer k > 2 and a surjective morphism g : H1(M,Z) −→ Z/kZ whose kernel
contains the subgroup h(H1(U,Z)). There is a connected Galois covering P : M0 −→M with
k sheets associated to this morphism. This means that, if χ : π1(M) −→ H1(M,Z) is the
Hurewitz map, then the image P∗(π1(M0)) in π1(M) is precisely the kernel of g ◦ χ. As a
consequence, the image (P × Id)∗(π1(M0 × T)) in π1(M × T) is precisely the kernel of the
morphism g ◦ χ ◦ p∗ : π1(M × T) −→ Z/kZ. Hence we have the inclusion

i∗(π1(U)) ⊂ (P × Id)∗(π1(M0 × T)).
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As a consequence, the covering P × Id is trivial above U . It follows that each connected
component Ui of U has k disjoint connected preimages V j

i ⊂ M0 × T. Now it is not hard to
see that the static classes of AL◦TP (P ∗(c)) are precisely the intersections

TP−1(A(c)) ∩ V j
i = AL◦TP (P ∗(c)) ∩ V j

i , 1 6 i 6 N, 1 6 j 6 k.

Abstract mechanisms

This part contains the main new results of the paper.

5 The relation

In this section, we describe the basic tools which are necessary to understand the relation
⊳⊲.

(5.1) Let us introduce some useful notations. Given two subsets G and G′ of T ∗M , we
define the relation G ⊳N G′ as follows:

G ⊳N G′ ⇐⇒ Ḡ′ ⊂
N
⋃

n=0

φn(G),

where as usual Ḡ is the closure of G. We write G ⊳ G′ if there exists an integer N such that
G ⊳N G′. If G is a subset of T ∗M and if c ∈ H1(M,R), the relations

G ⊳ c and G ⊳N c

mean that there exists an overlapping pseudograph G′ of cohomology c′ and such that G ⊳ G′

(resp. G ⊳N G′). To finish for c and c′ two cohomology classes, the relation

c ⊳N c′

means that, for each pseudograph G ∈ Pc, we have G ⊳N c′. As the reader may have guessed,
we will then write c ⊳ c′ if there exists an integer N such that c ⊳N c′. The relation ⊳ (between
subsets as well as between cohomology classes) is obviously transitive. We will be concerned
in this paper with understanding the relation ⊳ between cohomology classes. For this purpose,
it is useful to introduce the symmetric relation

c⊳⊲c′ ⇐⇒ c ⊳ c′ and c′ ⊳ c.

Proposition The relation ⊳⊲ is an equivalence relation on H1(M,R).

(5.2) Let us give a first result of a (negative) result about this relation. If the pseudograph
G is the graph of a continuous section of T ∗M , then G ∈ V∩ V̆ is in fact an invariant Lipschitz
graph, and the relation c(G) ⊳ c holds if and only if c = c(G). Note that, if C ⊂ H1(M,R)
is bounded, it is possible to chose a uniform constant K such that all the invariant Lipschitz
Graphs G whose cohomology satisfies c ∈ C are K-Lipschitz. In other words, the elements
of VC ∩ V̆ are equi-Lipschitz graphs. Of course, we would like to be able to prove that the
relation ⊳⊲ has non-trivial classes. For this purpose, we now introduce several useful tools.
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(5.3) Given two integers N ′ > N > 1, and a cohomology c, we define the function AN,N ′

c :
M ×M −→ R by the expression

AN,N ′

c (x, y) = min
k∈N,N6k6N ′

Ac(0, x; k, y) + kα(c).

Since each of the mappings
H1(M,R) −→ C(M ×M,R)

c 7−→ Ac(0, .; k, .)

is continuous (see appendix B), it is easy to see that, for fixed N ′ > N , the mapping

H1(M,R) −→ C(M ×M,R)

c 7−→ AN,N ′

c

is continuous.

Proposition Let c be a fixed cohomology class. For each ǫ > 0, there exist integers N ′ >

N > 1 such that
‖AN,N ′

c − hc‖∞ 6 ǫ

This proposition is an obvious consequence of the following general Lemma.

Lemma Let K be a compact metric space, let hn : K −→ R be a sequence of functions which
is equi-bounded and equi-continuous. Let us set h = lim inf hn and, for each (N,N ′) ∈ N

2,
hN,N ′ = minN6n6N ′ hn. For each ǫ > 0, there exists (N,N ′) ∈ N

2 such that

‖hN,N ′ − h‖ 6 ǫ.

Proof. It is easy to see that all the functions hN,N ′ satisfy the same bound and the same
modulus of continuity as the function hn. We have h = limN−→∞ hN,∞, this limit is uniform
and the function h also satisfies the bound and the modulus of continuity. Assuming now by
contradiction that the conclusion of the Lemma does not hold, we can find an ǫ > 0 and a
family xN,N ′ of points such that

|hN,N ′(xN,N ′) − h(xN,N ′)| > ǫ.

Let us fix N and let N ′ go to infinity in such a way that the sequence xN,N ′ has a limit xN,∞.
We have

|hN,∞(xN,∞) − h(xN,∞)| > ǫ.

But this is in contradiction with the fact that the functions hN,∞ converge uniformly to h.
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(5.4) It is useful to generalize the operators ΦN : P −→ P. Given two interegers N 6 N ′,
and an open set U ⊂M , we define the operator

ΦN,N ′

U : P −→ P

by the relation ΦN,N ′

U (Gc,u) = G
c,T N,N′

c,U
u

where

TN,N ′

c,U u(x) = min
y∈Ū ,N6k6N ′

T k
c u(y) + kα(c) = min

y∈Ū
u(y) +AN,N ′

c (y, x).

For simplicity we will denote by ΦN,N ′

the operator ΦN,N ′

M . For each G ∈ P, we have

G ⊳N ′ ΦN,N ′

(G).

Lemma. For each integers 1 6 N 6 N ′ and each open set U ⊂ M , the operator

ΦN,N ′

U : P −→ P is continuous, when the source is endowed with the seminorm ‖.‖U and the
image with the norm ‖.‖, see (2.2).

Proof. Let Gn ∈ P be a sequence converging to G. It is possible to write the pseudographs
Gn and G on the form Gcn,un and Gc,u with cn −→ c and un −→ u uniformly. We then have

‖ΦN,N ′

U (Gn) − ΦN,N ′

U (G)‖ 6 |cn − c| + ‖TN,N ′

cn,U un − TN,N ′

c,U u‖.

So it is enough to prove that ‖TN,N ′

cn,U un − TN,N ′

c,U u‖ −→ 0. Let us write

TN,N ′

c,U u = u(y) +AN,N ′

c (y, x)

with y ∈ Ū . Then, we have

TN,N ′

cn,U un − TN,N ′

c,U u 6 un(y) +AN,N ′

cn
(y, x) + u(y) −AN,N ′

c (y, x)

and by symmetry

‖TN,N ′

cn,U un − TN,N ′

c,U u‖ 6 sup
y∈U

|un(y) − u(y)| + ‖AN,N ′

cn
−AN,N ′

c ‖

The conclusion follows from the continuity of the mapping c 7−→ AN,N ′

c , see (5.3)

(5.5) Similarly, we define the operator

Φ∞
U : P −→ V

by the relation Φ∞
U (Gc,u) = Gc,T∞

c,U
u where

T∞
c,Uu(x) = min

y∈Ū
u(y) + hc(y, x).

Proposition Let c be a fixed cohomology class. For each ǫ > 0 there exist integers N > N ′

such that, for each pseudograph G = Gc,u ∈ Pc and each open set U ⊂M , we have

‖ΦN,N ′

U (G) − Φ∞
U (G)‖ 6 ǫ.
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Proof. It is not hard to see that, for each continuous function u,

‖TN,N ′

c,U u− T∞
c,Uu‖ 6 ‖AN,N ′

c − hc‖.

The proposition follows from (5.3).

(5.6) Proposition Let G0 = Gc0,u0 ∈ P be a pseudograph, and let ǫ > 0 be fixed. Assume
that there exists an open sets U ⊂M and two compact sets K ⊂ U and K1 ⊂M such that, for
each x ∈ K1, the minimum in the expression T∞

c0,Uu0(x) = miny∈Ū u0(y) + hc0(y, x) is never
reached outside of K. Then there exists integers N 6 N ′, a positive number δ and an open
neighborhood U1 of K1 such that, for each pseudograph G ∈ P satisfying ‖G − G0‖U 6 δ we
have

G|U ⊳N ′ ΦN,N ′

U (G)|U1

and
‖ΦN,N ′

U (G) − Φ∞
U (G)‖ 6 ǫ.

Proof. Let us denote by ∂U the boundary of U . There exists a positive number ǫ and a
neighborhood U1 of K1 such that, for each x ∈ Ū1,

min
y∈∂U

u0(y) + hc0(y, x) > min
y∈U

u0(y) + hc0(y, x) + 7ǫ.

In view of (5.3), there exist integers N and N ′ such that

‖AN,N ′

c0 − hc0‖ 6 ǫ.

For fixed N and N ′, the function AN,N ′

c depends continuously on c ∈ H1(M,R), see (5.3). As
a consequence, if c is sufficiently close to c0, we have

‖AN,N ′

c0 −AN,N ′

c ‖ 6 ǫ.

For these values of N and N ′, if u ∈ C(M,R) is such that supU |u−u0| 6 ǫ, we have, for each
x ∈M and y ∈ Ū ,

|u0(y) + hc0(y, x) − u(y) −AN,N ′

c (y, x)| 6 3ǫ.

Hence we have the inequality

min
y∈∂U

u(y) +AN,N ′

c (y, x) > min
y∈U

u(y) +AN,N ′

c (y, x) + ǫ.

As a consequence, if ‖Gc,u−G0‖U is sufficiently small, then there exists a compact set K1 ⊂ U
such that the minimum in the expression

TN,N ′

c,U u(x) = min
y∈Ū

u(y) +AN,N ′

c (y, x)
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is reached in K1 for all x ∈ Ū1. Now let us set v = TN,N ′

c,U u(x) and consider a point

(x, p) ∈ Gc,v|U1
.

The point (x, p) is the limit of a sequence (xn, pn) ∈ Gc,v|U1
. In other words, the points

xn ∈ U1 are points of differentiability of v, and we have dvxn + cxn = pn. Let yn ∈ K1 and
kn ∈ N, N 6 kn 6 N ′, satisfy

v(xn) = u(y) +Ac(0, yn; kn, xn) + knα(c).

By extracting a subsequence, we can suppose that the sequence kn is a constant k. By
arguments similar to those of (2.7), recalling that the function u is semi-concave, we conclude
that the function u is differentiable at yn, and, setting zn = cyn + duyn , that φk

0(yn, zn) =
(xn, pn). By extracting another subsequence, we can suppose that the sequence yn has a limit
y ∈ K1. We then have

v(x) = u(y) +Ac(0, y; k, x) + kα(c),

so that the function u is differentiable at x. Since the function u is semi-concave, we then
have duy = lim duyn , see Appendix (A.7). Passing at the limit in φk

0(yn, zn) = (xn, pn), we
get φk

0(y, z) = (x, p), where z := dvy + cy. We have proved that

Gc,v|U1
⊂

N ′
⋃

k=N

φk
0(Gc,u|U).

(5.7) Proposition Assume that, for each weak KAM solution G0 ∈ Vc, there exists a
positive number ǫ > 0 and an integer N with the following property : For each pseudograph
G ∈ Pc such that ‖G − G0‖ 6 ǫ, there exists a pseudograph G′ ∈ Pc′ such that G ⊳N G′. Then
c ⊳ c′.
Proof. By compactness of Vc, there exists a neighborhood U of Vc in Pc and an integer N
such that, for all G ∈ U, we have G ⊳N c′. In view of Proposition (5.5), there exist integers
k 6 k′ such that Φk,k′

(G) ∈ U for each G ∈ Pc. We obtain, for each G ∈ Pc, the existence of a
G′ ∈ Pc′ such that

G ⊳k′ Φk,k′

(G) ⊳N G′

so that G ⊳k′+N G′.

(5.8) It will be useful to consider liftings to finite Galois coverings P : M0 −→ M , see
(4.10).

Lemma. Let c and c′ be two cohomology classes in H1(M,R). If P ∗(c) ⊳N P ∗(c′) for the
relation ⊳ associated to the Lagrangian L ◦ TP on M0, then c ⊳N c′.

Proof. Let us consider a pseudopgraph G ⊂ Pc. If P ∗(c) ⊳N P ∗(c′) then there exists a
pseudograph G′ on M0 of cohomology P ∗(c′) and such that P ∗G ⊳N G′. Let D be the group
of deck transformations of the covering P . The elements of D are the diffeomorphisms D of
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M0 such that P ◦D = P . To each element D of D we associate the fibered diffeomorphism
T ∗D of T ∗M defined by

T ∗D(x, p) = (D(x), p ◦ dD−1
x ).

This diffeomorphism is a Deck transformation of the covering T ∗P . Let us prove that there
exists a pseudograph G′′ on M0 which is invariant by deck transformations, which has co-
homology P ∗(c′), and such that P ∗G ⊳ G′′. Let η be a form on M with cohomology c′, and
let P ∗η be its lifting to M0. We write G′ on the form GP ∗η,u. Since the flow of H ◦ T ∗P
commutes with Deck transformations, and since the pseudograph P ∗G is invariant by deck
transformations, we have

P ∗G ⊳ T ∗D(G′)

for each deck transformation D. It is easy to check that T ∗D(G′) = GP ∗η,u◦D−1 . Setting

v := min
D∈D

u ◦D−1,

and G′′ = Gη,v, we have the desired properties for G′′. Since P is a Galois covering, functions
on M0 which are invariant by deck transformations are liftings of functions on M . As a
consequence, there exists a continuous function w : M −→ R such that v = w ◦P . Hence the
pseudograph G′′ is the lifting of the pseudograph Gη,w on M , which satisfies G ⊳N Gη,w, and
whose cohomology is c′. Since this construction can be done for all G, we have c ⊳N c′

6 Consequences on the dynamics.

We prove Proposition (0.9). Let us first slightly generalize the statement.

(6.1) Proposition

(i) If c ⊳ c′, there exists a heteroclinic trajectory of the Hamiltonian flow between Ã(c) and
Ã(c′). Other kind of trajectories can be built: For any closed forms η of cohomology c
and η′ of cohomology c′, there exists a positive integer N and a trajectory (q(t), p(t)) :
[0, N ] −→ T ∗M of the Hamiltonian flow such that p(0) = η(q(0)) and p(N) = η′(q(N)).

(ii) Let ci, i ∈ Z, be a sequence of cohomology classes. Assume that ci ⊳ ci+1 for each i,
and fix for each i a neighborhood Ui of M̃(ci) in T ∗M . There exists a trajectory of
the Hamiltonian flow which visits in turn all the sets Ui. In addition, if the sequence
stabilizes to c− on the left, or to c+ on the right, the trajectory can be assumed negatively
asymptotic to A(c−) or positively asymptotic to A(c+). If Gi ∈ Pci

∩ P̆ci
is a sequence

of Lagrangian graphs, then there exists an orbit P (t) and an increasing sequence ti :
Z −→ Z such that P (ti) ∈ Gi.

Proof. Let us first assume that c ⊳ c′. Take a fixed point Gc ∈ Vc. There exists a graph
G ∈ Pc′ such that Gc ⊳G. Now, consider a pseudograph Ğc′ ∈ V̆c′ . It follows form Lemma (2.3)
that G intersects Ğc′ . The points of intersection are α-asymptotic to Ã(c) and ω-asymptotic
to Ã(c′). In the same way, we can take for Gc the graph of the closed form η, choose G ∈ Pc′

such that Gc ⊳ G, and take for Ğc′ the graph of η′. The points of the intersection G ∩ Ğc′ have
trajectories from Gc to Ğc′ . This proves (i).
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(6.2) Lemma Let us fix a cohomology c.

(i) For each neighborhood U of B̃(c), there exists N ∈ N such that, for all l > N and all
G ∈ P, we have

φ−l
(

Φ2l(G)
)

⊂ U.

(ii) If V is an open neighborhood of M̃(c) in T ∗M , there exists N ∈ N such that, for each
G ∈ Pc and each P ∈ ΦN (G), one of the points φ−i(P ), 1 6 i 6 N − 1 belongs to V .

Proof. In order to prove (i), it is sufficient to prove that, if Gn ∈ ΦPc is a sequence of
pseudographs, if mn is an increasing sequence of integers, and if (xn(t), pn(t)) : [0,mn] −→
T ∗M is a Hamiltonian trajectory which satisfies

(xn(mn), pn(mn)) ∈ Φ2mn(Gn)

and which converges uniformly on compact sets to a limit (x(t), p(t)) : R
+ −→ T ∗M , then

(x(0), p(0)) ∈ B̃(c).
Let us write the pseudographs Φmn(Gn) on the form Gc,un . For each k, n ∈ N, we have

T k
c un(xn(k)) = un(xn(0)) +

∫ k

0
L(t, xn(t), ẋn(t)) + cxn(t)(ẋn(t))dt

Since the functions un lie in the image of the operator Tmn
c , they are equi-Lipschitz, and there

exists a real sequence λn such that the sequence of functions λn +Tmn
c un has an accumulation

points in C(M,R). As a consequence, we can assume, taking a subsequence if necessary, that
the functions λn +Tmn

c un converge uniformly to a limit u. We have Gc,u = lim Φmn(Gn) ∈ Oc.
For each fixed k ∈ Z, taking the limit as n −→ ∞, we get

T k
c u(x(k)) = u(x(−k)) +

∫ k

0
L(t, xn(t), ẋn(t)) + cxn(t)(ẋn(t))dt.

Hence we have P (0) ∈ φ−k(Φk(Gc,u)), and, since this holds for all k ∈ N, we conclude that

P (0) ∈ Ĩ(Gc,u) ⊂ B̃(c).

In order to prove (ii), it is useful to recall that B̃(c) is a compact set, invariant under
the time-one flow φ, and that the Mather set M̃(c) is the closure of the union of the sup-
ports of the invariant measures of the action of φ on B̃(c). The claim below follows from
general facts about topological dynamics on compact spaces: For each neighborhood W of
M̃(c) in B̃(c), there exists an integer k such that, for each point P of B̃(c), one of the points
φi(P ), 1 6 i 6 k, belongs to W . As a consequence, if V is a neighborhood of M̃(c) in T ∗M ,
there exists a neighborhood U of B̃(c) in T ∗M such that, for each P ∈ U , one of the points
φi(P ), 1 6 i 6 k, belongs to V . Now let us take l > k such that (i) holds for this neighborhood
U , and set N = 2l. For each G ∈ Pc and each P ∈ ΦN (G), we have φ−l(P ) ∈ U . Hence one
of the points φl−i(P ), 1 6 i 6 k is in V , which proves (ii).
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(6.3) Let us now prove (ii). Let Mi ∈ N, i ∈ Z be a sequence of integers such that ci⊳Mi
ci+1,

and let Wi ⊂ Vi be closed neighborhoods of M̃(ci). In view of lemma (6.2), there exists a
sequence Ni of integers such that, for each G ∈ Pci

and each

P ∈ φ−Ni(ΦNi(G)),

one of the points φl(P ), 0 6 l < Ni belongs to Wi. We denote by Ki the compact set Φ(Pci
).

Let us first fix an integer k ∈ Z, and choose a pseudograph Gk
−k ∈ K−k. Since c−k⊳M−k

c1−k,

there exists a pseudograph Gk
1−k ∈ Pc1−k

such that ΦNk(Gk
−k) ⊳M−k

Gk
1−k. We set Gk

1−k :=

Φ(Gk
1−k), and build, by induction, a sequence Gk

i ∈ Ki, i > k of pseudographs such that

Gk
i ⊳(Mi+1) G

k
i+1

for each i > k.
Let us now take a point P k

k ∈ Gk
k . There exists a positive integer lkk−1 6 1+Mk−1 such that

φ−lk
k(P k

k ) ∈ ΦNk−1(Gk
k−1). We then set P k

k−1 = φ−(lk
k−1+Nk−1)(P k

k ). We can build a sequence

P k
i ,−k 6 i 6 k of points of Gk

i and a sequence lki ,−k 6 i 6 k − 1 of integers satisfying
0 6 lki 6 Mi + 1 and such that

φNi+lki (P k
i ) = P k

i+1

for each i. In addition, one of the points φj(P k
i ), 0 6 j < Ni belongs to Wi.

There exists an increasing sequence kn of integers such that each of the sequences n 7−→ lkn

i ,
for fixed i, is the constant li after a certain rank, and each of the sequences n 7−→ P kn

i , for
fixed i, is converging to Pi. Clearly, we have φli+Ni(Pi) = Pi+1 for each i ∈ Z, and one of the
points φj(Pi), 0 6 j < Ni belongs to Wi. This proves the main part of the statement.

If the sequence ci stabilizes to c− on the right, then it is possible to build a sequence
Gi ∈ Pci

as above which stabilizes to G− ∈ Vc− on the right, and we obtain by the above
method an orbit which is α-asymptotic to Ã(c−) and then visits in turn all the sets Wi. If
the sequence ci stabilizes to c+ on the right, say for i > I, then it is possible to impose that
PI ∈ Ğ+ ∈ V̆c+ in the construction above, and we then obtain an orbit which is ω-asymptotic
to Ã(c+).

7 Mather mechanism

We comment and prove Theorem (0.10) in this section. Let us first give a useful property
of the subspace R(c).

(7.1) Lemma. The space R(c) ⊂ H1(M,R) depends semi-continuously of c in the
following sense: For each c0 ∈ H1(M,R), there exists a neighborhood V of c0 in H1(M,R)
such that, for each c ∈ V , we have R(c0) ⊂ R(c).

Proof. Let cn −→ c0 be a sequence of cohomology classes, and let Gn ∈ Vcn be a sequence
of pseudographs. In view of (3.7), we can assume, taking a subsequence, that the sequence Gn

is converging to a limit G ∈ Vc0. Now let U ⊂ M be an open neighborhood of I(G) which is
such that each cohomology class of R(G) can be represented by a closed form which vanishes
on U . Now for n large enough, we have I(Gn) ⊂ U , hence each cohomology class of R(G) can
be represented by a class whose support is disjoint from I(Gn), so that R(G) ⊂ R(Gn).
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The following proposition is the main step in the proof of Theorem (0.10). We denote by
BE(r) the open ball of radius r centered at the origin in the normed vector space E.

(7.2) Proposition. For each G0 ∈ Vc0, there exists a positive number ǫ0, and an integer
N such that the following holds: For each pseudograph G ∈ P satisfying ‖G − G0‖ < ǫ0 and
c(G) − c0 ∈ R(c0), for each cohomology class c satisfying c − c0 ∈ BR(c0)(ǫ0) ⊂ R(c0), there
exists a pseudograph G1 such that

G ⊳N G1.

(7.3) Proof of Theorem (0.10). We assume the proposition. For Each G0 ∈ Vc0, we
consider the number ǫ0 given by the proposition, and the open ball BP(G0, ǫ0) of center G0 and
radius ǫ0 in P. Since Vc0 is compact, it can be covered by a finite number of these balls, we
denote Gi and ǫi, 1 6 i 6 N the associated centers and radii. Since the function c restricted
to V is proper, (3.7), there exists a positive number δ such that Vc ⊂ UiBP(Gi, ǫi) when
|c− c0| 6 δ. Consider two cohomology classes c and c′ in c0 +BR(c0)(ǫ), with ǫ = min{δ, ǫi}.
It follows from (5.7) that the relation c ⊳ c′ holds. The theorem clearly follows. theorem

(7.4) Proof of the Proposition. Let us fix a G0 ∈ Vc0 and choose a neighborhood U
of I(G0) in such a way that R(G0) is the set of cohomology classes of smooth closed one-forms
vanishing on U .

Lemma There exist δ > 0 and N ∈ N such that, for all overlapping pseudographs G satisfying
‖G − G0‖ 6 δ, we have

G|U ⊳N ΦN,N
U (G)

Proof. Let us write the pseudograph G0 on the form Gc0,u0. We have seen in (3.9) that

u0(x) = min
y∈M

u0(y) + hc0(y, x) = min
y∈A(c0)

u0(y) + hc0(x, y).

As a consequence, we have T∞
U u0 = T∞

M u0 = u0, and the minimum in the definition of
T∞

U u0(x) is not reached outside of I(G), which is a compact set contained in U . The lemma
now follows from proposition (5.6).

(7.5) Lemma. Let us fix a δ > 0. There exists ǫ0 > 0 such that, if we take :
One one hand a cohomology class c satisfying c− c0 ∈ R(G0) and ‖c− c0‖ 6 ǫ0;
On the other hand a pseudograph G ∈ P satisfying ‖G − G0‖ 6 ǫ0 and c(G) ∈ c0 +R(G0);
Then there exists a pseudograph G′ ∈ Pc with the following properties: ‖G′ − G0‖ 6 δ and
G|U = G′

|U .

Proof. Let us write G0 = Gη0,u0. In view of the definition of R(G0), it is possible to associate
to each cohomology class d ∈ R(G0) a closed one-form µd which is null on U . In addition, we
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can impose that the correspondence d 7−→ µd is linear. Given a pseudograph G ∈ P and a
cohomology c satisfying the hypotheses of the Lemma, we consider the pseudograph

G′ = G + Gµ(c−c(G)),0 ∈ Pc.

It is clear that G′
|U = G|U , and that ‖G′ − G0‖ 6 δ if ǫ0 is small enough.

(7.6) We are now in a position to end the proof of the proposition. Let us consider δ
given by Lemma (7.4), and the associated ǫ0 as given by Lemma (7.5). If G and c satisfy
the hypotheses of the Proposition with this value of ǫ0, then, by Lemma (7.5), there exists
a pseudograph G′ such that c(G′) = c and G′

|U = G|U and ‖G′ − G0‖ 6 δ. In view of Lemma

(7.4), we have G|U ⊳N ΦN,N
U (G′), so that G ⊳N ΦN,N

U (G′). proposition

8 Systems with finitely many static classes

We prove and generalize Theorem (0.11).

(8.1) Let H̃c(S̃, S̃
′) be the set of orbits of the Mañe set Ñ (c) which are heteroclinic orbits

between the static classes S̃ and S̃ ′, we denote by Hc(S,S
′) its projection on M . We have,

from section 4,

Ñ (c) = Ã(c) ∪
⋃

S,S′

H̃c(S,S
′),

where the union is taken on all pairs (S,S ′) of different static classes. In addition, it is useful
to recall that

H̃c(S̃ , S̃
′) ⊂ Ec,S∧̃Ĕc,S′ .

We say that the set H̃c(S,S
′) is neat if it admits a compact subset K̃ which contains one and

only one point in each orbit of φ|H̃c(S,S′) and whose projection K on M is acyclic. This means

that K has a neighborhood U whose inclusion i into M induces the null map i∗ : H1(U,R) −→
H1(M,R).

(8.2) Theorem Let c0 be a cohomology class such that the number of static classes in
A(c0) is finite and greater than one. Assume in addition that all the sets H̃c0(S,S

′) are neat.
Then the class c0 is in the interior of its class of ⊳⊲-equivalence.

Let us gather some preliminary consequences of the hypotheses.

(8.3) Lemma We assume the hypotheses of the theorem. Let S0 be a static class and V0

be a neighborhood of S0.

(i) There exists an open neighborhood V of S0, contained in V0, such that the boundary of
V does not intersect I(Ec0,S0).

(ii) There exists an acyclic open set U ⊂ V0 − S0 and a static class S1 such that the inter-
section U ∩ I(Ec0,S0) is not empty, compact, and contained in H(S0,S1).
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Proof. Let V0 be a neighborhood of S0, sufficiently small for lemma (4.4) to apply, so that
we have

V0 ∩ I(Ec0,S0) = S0 ∪
⋃

S∈E(c0)−S0

(

H(S0,S) ∩ V0

)

,

where the union is taken on all static classes S 6= S0. We shall also assume that V̄0 ∩A(c0) =
S0.

For each static class S, let us consider an acyclic compact set K̃(S0,S) which contains
one and only one point in every orbit of H̃(S0,S), and denote by K(S0,S) its projection
on the base. Clearly, the sets K̃(S0,S),S ∈ E(c0) − S0, are pairwise disjoint and they all
belong to the Lipschitz graph Ĩ(Ec0,S0), so that their projections K(S0,S) on the base are
also pairwise disjoint. Let us consider a static class S 6= S0. For n large enough, we have
π ◦ φ−n(K̃(S0,S)) ⊂ V0. In addition, since K(S0,S) is acyclic in M , the compact K̃(S0,S) is
acyclic in T ∗M . As a consequence, the compact set φ−n(K̃(S0,S)) is acyclic in T ∗M , so that
π ◦ φ−n(K̃(S0,S)) is acyclic in M . Consequently, there is no loss of generality in supposing
that the sets K(S0,S),S ∈ E(c0) − S0, are all contained in V0.

Let us prove that each of the sets K̃(S0,S) is isolated in Ĩ(Ec0,S0). Let F be a compact
neighborhood of S0 which does not intersect any of the sets K(S0,S),S ∈ E(c0) − S0. Since
the points of K̃(S0,S) are α-asymptotic to S̃0 and ω asymptotic to S̃, there exists an integer N
such that all the sets π ◦φn(K̃(S0,S)), n ∈ N,S ∈ E(c0)−S0, are contained in F for n 6 −N ,
and do not intersect V̄0 for n > N . The set (V0 − F ) ∩ I(Ec0,S0) is thus covered by finitely
many pairwise disjoint compact sets of the form π ◦ φn(K̃(S0,S)), n ∈ N,S ∈ E(c0) − S0. As
a consequence, each of the sets K(S0,S) is isolated in (V0 − F ) ∩ I(Ec0,S0), and then also in
I(Ec0,S0). Let us fix a static class S1 6= S0 such that K(S0,S1) is not empty. Such a static
class exists by (4.9). Then, we can find an open neighborhood U ∈ V0 of K(S0,S1) such that
U is acyclic and such that U ∩ I(Ec0,S0) = K(S0,S1) is a non-empty compact set contained
in H(S0,S1). We have proved (ii).

Let us consider again the finite family of pairwise disjoint compact sets π◦φn(K̃(S0,S)), n ∈
N, |n| 6 N,S ∈ E(c0) − S0. There exists a finite family of pairwise disjoint compact
sets K′

n(S0,S), n ∈ N, |n| 6 N,S ∈ E(c0) − S0 such that K′
n(S0,S) is a neighborhood of

π ◦ φn(K̃(S0,S)). We can clearly assume in addition that the sets K′
n(S0,S) do not intersect

S0. The set
V = V0 −

⋃

n∈N,|n|6N,S∈E(c0)−S0

K′
n(S0,S)

is an open neighborhood of S0 which is contained in V0, and its boundary does not intersect
I(Ec0,S0). We have proved (i).

The following proposition is the main step in the proof of the theorem.

(8.4) Proposition Let c0 satisfy the hypotheses of Theorem (8.2). For each weak KAM
solution G0 ∈ Vc0, there exists a number ǫ > 0 and an integer N such that, if G ∈ P and
c ∈ H1(M,R) satisfy

‖G − G0‖ 6 ǫ and |c− c0| 6 ǫ

then G ⊳N c.
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(8.5) Proof of the Theorem. We assume the Proposition. Let us cover the compact
set Vc0 by a finite number of balls B(Gi, ǫi), where ǫi is given by the Proposition applied to
Gi. Since the function c restricted to V is proper, the union of these finite balls covers the
sets Vc for c sufficiently close to c0. The Theorem holds by Proposition (5.7). theorem

We now prove the Proposition in three steps.

(8.6) Step 1. Let G ∈ Vc0 be a fixed point. If there exist only finitely many static
classes in A(c0), then there exists an elementary solution E0 and a neighborhood U0 of the
corresponding static class S0 such that G|U0

= E0|U0
.

Proof. Let us fix the solution G = Gc0,u. We define a partial order on the set of static classes
by saying that S 6 S ′ if, for each x ∈ S and x′ ∈ S ′, we have hc0(x, x

′) = u(x′) − u(x). It is
easy to check that this relation satisfies the following three axioms of order relations:

• S 6 S,

• S 6 S ′ and S ′ 6 S ′′ =⇒ S 6 S ′′,

• S 6 S ′ and S ′ 6 S =⇒ S = S ′.

As a consequence, there exists an initial element S0, that is an element which is not greater
than any other element. Let us write

u(x) = min
y∈M

u(y) + hc0(y, x),

and consider, for each point x, the set Gc,u ∧ Ĕc,x of points y where the minimum is reached.
For each x this set contains a static class. It is equivalent to say that the class S0 is initial
for the order above, and to say that

A(c0) ∩ Gc,u ∧ Ĕc,x = S0

In other words, for x ∈ S0, the compact set Gc,u ∧ Ĕc,x does not intersect other static classes
than S0. Since the set Gc,u ∧ Ĕc,x has to contain a static class for all x, it contains S0 when
x is close to S0. As a consequence, we have, if x is sufficiently close to S0,

u(x) = u(y) + hc0(y, x),

for each y ∈ S0. In other words, the difference x 7−→ hc0(y, x) − u(x) is the constant u(y) in
a neighborhood of S0. step 1

(8.7) step 2. Let S0 be a static class of A(c0) and let U0 be a neighborhood of S0

satisfying (ii) of (8.3). There exists a static class S1, an open neighborhood U1 of S1, an
integer N and, for each δ > 0, a number ǫ > 0 with the following property : If G ∈ P satisfies
‖G − Ec0,S0‖U0 6 ǫ and c ∈ H1(M,R) satisfies |c − c0| 6 ǫ, then there exists a pseudograph
G′ ∈ Pc such that ‖G′ − Ec0,S1‖U1 6 δ and

G|U0
⊳N G′

|U1
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Proof. There exists a static class S1 and an acyclic open set U ⊂ U0 −A(c0) such that

I(Ec0,S0) ∩ Ū = I(Ec0,S0) ∩ U

is a compact set K ⊂ H(S,S1). Let us fix a point x0 ∈ S0, and denote by u0 the function
hc0(x0, .).

(8.8) Lemma. There exists a neighborhood U1 of S1 such that the equality

T∞
c0,Uu0(y) = hc0(x0, x1) + hc0(x1, y) = hc0(x0, x) + hc0(x, x1) + hc0(x1, y)

holds for all x ∈ K, y ∈ U1, and x1 ∈ S1. As a consequence, we have

Φ∞
U

(

Ec0,S0

)

|U1
= Ec0,S1|U1

,

and the minimum in the definition of T∞
c0,Uu0(y) is not reached outside of K when y ∈ U1.

Proof. Let us set v = T∞
c0,Uu0 for simplicity. Recall, from (3.9), that all weak KAM solutions

v ∈ Vc0 satisfy v(y) = mina∈A(c0) v(a) + hc0(a, y). Here, we obtain

v(y) = min
x∈Ū,a∈A(c0)

hc0(x0, x) + hc0(x, a) + hc0(a, y). (⋄)

We claim that, for y ∈ S1, the set of minimizing pairs (x, a) is K×S1. Indeed, if (x, a) ∈ K×S1,
then x ∈ Ec0,x0 ∧ Ĕc0,a, so that hc0(x0, x) + hc0(x, a) = hc0(x0, a), and

hc0(x0, x) + hc0(x, a) + hc0(a, y) = hc0(x0, y) = min
(z,z′)∈M×M

hc0(x0, z) + hc0(z, z
′) + hc0(z

′, y).

Hence we have

hc0(x0, x) + hc0(x, a) + hc0(a, y) = min
(z,z′)∈Ū×A(c)

hc0(x0, z) + hc0(z, z
′) + hc0(z

′, y).

We have proved that the pairs of K×S1 are minimizing in the equation (⋄) for y ∈ S1. Let us
now prove that they are the only minimizing pairs. A pair (x, a) is minimizing if and only if
hc0(x0, a) + hc0(a, y) = hc0(x0, y) and hc0(x0, x) + hc0(x, a) = hc0(x0, a). The second equality
implies

x ∈ Ec0,S0 ∧ Ĕc0,S(a) ⊂ I(Ec0,S0).

Since I(Ec0,S0) ∩ Ū = K, this implies x ∈ K.
If x ∈ K and a ∈ A(c0), then the equality hc0(x, a) = hc0(x, y) + hc0(y, a) holds for all

y ∈ S1. Indeed, let xn be the projection of the orbit of Ñ (c0) such that x0 = x. We have, for
each n ∈ N, the equality of calibration by −hc0(., a):

Ac0(0, x, n, xn) + nα(c0) = hc0(x, a) − hc0(xn, a).

Let nk be an increasing sequence of integers such that the subsequence xnk
has a limit ω ∈ S1.

Taking the liminf as k −→ ∞, we get hc0(x, ω) 6 hc0(x, a)−hc0(ω, a), which implies the desired
equality for ω, and then for all points of S1.
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Since (x, a) is a minimizing pair for v(y), we get, by decomposing hc0(x, a) in the expression
of v,

v(y) = hc0(x0, x) + hc0(x, y) + hc0(y, a) + hc0(a, y)

and, since v(y) 6 hc0(x0, x) + hc0(x, y), we finally obtain that hc0(x1, a) + hc0(a, x1) 6 0 so
that a ∈ S1. We have proved the claim. In addition, we have proved, for x1 ∈ S1 and x ∈ K,
the equality

v(x1) = hc0(x0, x) + hc0(x, x1) = hc0(x0, x1).

As a consequence, for y ∈ S1, each point a ∈ A(c) which is minimizing in the equation

v(y) = min
a∈A(c0)

v(a) + hc0(a, y)

belong to S1. Since S1 is isolated in A(c), the conclusion holds also for y sufficiently close to
S1. We then have the equality

v(y) = v(x1) + hc0(x1, y) = hc0(x0, x) + hc0(x, x1) + hc0(x1, y)

for all x1 ∈ S1 and x ∈ K (and no other x in Ū).

(8.9) Applying (5.6), we get the existence of a positive ǫ′ and of integers N 6 N ′ such that
each G ∈ P which satisfies ‖G − Ec0,S0‖U 6 ǫ′ also satisfies

G|U ⊳N ′ ΦN,N ′

U (G)|U1

and
‖ΦN,N ′

U (G) − Φ∞
U (G)‖ 6 δ/2.

Note as a consequence, since Φ∞
U

(

Ec0,S0

)

|U1
= Ec0,S1|U1

in view of the lemma, that

‖ΦN,N ′

U (Ec0,S0) − Ec0,S1‖U1 6 δ/2.

By continuity of ΦN,N ′

U , we can assume in addition that ǫ′ is sufficiently small for the following
inequality to hold when ‖G − Ec0,S0‖U 6 ǫ′:

‖ΦN,N ′

U (G) − ΦN,N ′

U (Ec0,S0)‖ 6 δ/2.

As a consequence, we also have

‖ΦN,N ′

U (G) − Ec0,S1‖U1 6 δ.

Since U is acyclic, for each cohomology c and each pseudograph G, there exists a pseudograph
G(c) which has cohomology c and such that G|U = G(c)|U . There exists a positive ǫ such that,
if |c− c0| 6 ǫ and if ‖G − Ec0,S0‖U 6 ǫ, then we have

‖G(c) − Ec0,S0‖U 6 ǫ′.

Note that this norm does not depend on the choice of G(c). As a consequence, setting

G′ = ΦN,N ′

U (G(c)), we have c(G′) = c,

G|U = G(c)|U ⊳N ′ G′
|U1

and
‖G′ − Ec0,S1‖U1 6 δ.

step 2
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(8.10) Step 3. Let S1 be a static class in A(c0) satisfying (i) of (8.3), and let U1 be a
fixed neighborhood of S1. There exists a number δ > 0 and an integer N such that, if G′ ∈ P

satisfies ‖G′ − Ec0,S1‖U1 6 δ, then G′
|U1

⊳N c(G′)

Proof. There exists an open neighborhood V1 ⊂ U1 of S1 such that I(Ec0,S1) ∩ V1 =
I(Ec0,S1)∩ V̄1. Let x1 be a point of S1 and set u1 = hc0(x1, .) (this is (i) of (8.3)). Recall that

T∞
c0,V1

u1(x) = min
y∈V̄1

hc0(x1, y) + hc0(y, x).

By taking y = x1 in this expression, we obtain the inequality T∞
c0,V1

u1(x) 6 u1(x). On the
other hand, we have the triangle inegality u(x) 6 hc0(x1, y) + hc0(y, x) for each y, so that
T∞

c0,V1
u1(x) = u1(x), and

min
y∈V̄1

hc0(x1, y) + hc0(y, x) = hc0(x1, x) = min
y∈M

hc0(x1, y) + hc0(y, x).

Now the points y where this last minimum is reached belong to I(Ec0,S1). As a consequence,
for each x ∈ M , the points where the minimum is reached in the definition of T∞

c0,V1
u1(x)

belong to I(Ec0,S1)∩ V1, which is a compact set contained in V1. In view of (5.6), there exist
integers N and N ′ and a positive real number δ such that, if G ∈ P satisfies ‖G−Ec0,S1‖V1 6 δ,
then

G|V1
⊳N ΦN,N ′

V1
(G).

step 3

The proposition obviously follows from the three steps above. Proposition

Applications

9 Twist Maps

The case where M = T is well known and have been studied many times. The resulting
time-one flow is then a finite composition of right twist maps of the biinfinite annulus T ∗

T.
In view of (0.9), much of what is known on the existence of orbits with prescribed behavior
is summed up in the following discussion.

(9.1) Let G ∈ H1(T,R) be the set of cohomology classes of invariant curves which are Lips-
chitz graphs. The set G is closed, and every point c ∈ G is alone in its class of ⊳⊲-equivalence,
as follows from (5.2). It follows easily from (0.10) that the classes of ⊳⊲-equivalence are the
points of G and the connected components of the complement of G.

(9.2) For completeness, we recall without proof some of the special properties of Aubry sets
in dimension one. The function α is differentiable, and its differential α′(c) is the rotation
number of every orbit of Ñ (c). If α′(c) is irrational, then there is only one element in Vc. If
α′(c) is rational, then the Mather set M̃(c) is made of periodic orbits.

10 Generalized Arnold Example

(10.1) In this application, we take

M = T ×N,
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where N is a compact manifold of dimension d−1, and denote by q = (q1, q2) the points of M .
We assume that the homology group H1(N,Z) is not trivial. We denote the points of TM by
(q, v) = (q1, q2, v1, v2), where (q1, v1) ∈ TT and (q2, v2) ∈ TN . In the same way, we denote by
(q, p) = (q1, q2, p1, p2) the points of T ∗M . We will consider the projection π1 : T × N −→ T

and the induced mapping

π∗1 : H1(T,R) −→ H1(T ×N,R).

(10.2) Let us fix a point 0 in N . We will consider Lagrangian systems which satisfy

L(t, q1, q2, v1, v2) > L(t, q1, 0, v1, 0)

for all (q2, v2) 6= (0, 0), all t ∈ R and all (q1, v1) ∈ TT. Let ∂vL : TM −→ T
∗M be the

Legendre transform associated to L. We denote by T1 the submanifold T × {0} of M , by
T ∗T1 the submanifold {q2 = 0, p2 = 0} of T ∗M , and TT1 the submanifold {q2 = 0, v2 = 0} of
TM . We have

∂vL(TT1) = T ∗
T1,

and this manifold is invariant under the Hamiltonian flow. Moreover, the restriction of the
flow to T ∗

T1 is the Hamiltonian flow of the restriction H1(t, q1, p1) := H(t, q1, p1, 0, 0) of H.
Setting L1(t, q1, v1) = L(t, q1, 0, v1, 0), we see that L1 is the Lagrangian associated to H1. We
denote by φ1 the restriction of φ to T ∗

T.

(10.3) Theorem Under the non-degeneracy conditions (10.4) and (10.5) to be specified
below, the image of π∗1 is contained in one class of ⊳⊲-equivalence.

(10.4) Genericity property for φ1. We assume that every rotational invariant circle of
φ1 which contains a periodic orbit is completely periodic (every orbit of this circle is periodic).
We could, more simply, require that the map φ1 does not have any invariant circle containing
a periodic orbit. This property is known to be generic in any reasonable sense of the term.
However, allowing periodic circles includes the important case where φ1 is integrable, as in
the original Arnold’s example.

(10.5) nondegeneracy of external homoclinics. We assume that, for each c ∈
π∗1(H

1(T,R)), there exists a finite Galois covering P : M0 −→M such that the set

ÑL◦TP (P ∗(c)) − T ∗P−1(T ∗
T1)

is not empty and contains finitely many orbits. Note that, since H1(N,Z) is not zero, it
follows from (4.10), (4.5), and lemma (10.6) below, that there exists a finite Galois covering
P : M0 −→ M such that the set under consideration is not empty. So the important point
of our assumption is finiteness. As the reader will see it in the proof, this assumption could
easily be weakened.

(10.6) Lemma For each cohomology c = π∗1(c1), with c1 ∈ H1(T,R), we have N (c) ⊂ T1.
As a consequence, the restriction to T1 gives a bijection between the set Vc and the set Vc1

associated to the Lagrangian L1 on TT1.

Proof. Let us fix a cohomology c1 ∈ H1(T,R) and its image c := π∗1(c1). Let µ be a form
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on T which represents c1, and η be its pull back on M = T × N . Consider a pseudograph
G ∈ Vc, and write it G = Gη,u. We want to prove that Ĩ(G) ⊂ T ∗

T1. Let (q(t), p(t)) be the
trajectory of the Hamiltonaina flow starting in Ĩ(G). We have, for k < l in Z,

u(q(l)) − u(q(k)) =

∫ l

k
L(σ, q(σ), q̇(σ)) − µq1(σ)(q̇1(σ)) + α(c) dσ

and

u(q1(t), 0) − u(q1(s), 0) 6

∫ l

k
L(σ, (q1(σ), 0, q̇1(σ), 0) − µq1(σ)(q̇1(σ)) + α(c) dσ.

It follows that
∫ l

k
L(σ, q(σ), q̇(σ)) − L(σ, (q1(σ), 0), (q̇1(σ), 0)) dσ 6 2(max u− minu)

Let us denote by L̃ the function

L̃(t, q, v) = L(t, q, v) − L(t, (q1, 0), (v1, 0))

which is positive except on TT1. Since the integral
∫

R
L̃(σ, q(σ), q̇(σ)) is finite, we have

lim inf
|σ|−→∞

L̃(σ, q(σ), q̇(σ)) = 0,

and consequently lim inf |σ|−→∞(q2(t), v2(t)) = 0. We now return to the inequality

∫ l

k
L̃(σ, q(σ), q̇(σ))dσ 6 u(q(t)) − u(q1(t), 0) − u(q(s)) + u(q1(s), 0),

from which we get
∫ ∞

−∞
L̃(σ, q(σ), q̇(σ))dσ = 0,

which implies that (q2, v2) ≡ 0. We have proved that Ĩ(G) ⊂ T ∗
T1.

(10.7) Let us fix cohomologies c = π∗1(c1), c1 ∈ H1(T,R), such that there exists an invariant
Lipschitz Graph G in Vc1. If the rotation number of φ1|G is irrational, then Vc1 contains only

one element. As a consequence, Vc also contains only one element, so that Ñ (c) = Ã(c) = G,
and there is only one static class in Ã(c). If the rotation number is rational, then in view of
(10.4) the graph G is a union of periodic orbits, so that G = M̃(c). As a consequence, we
have A(c) = T1, and there is only one static class.

In view of (10.5), there exists a finite Galois covering P : M0 −→ M such that the
Lagrangian L ◦ TP satisfies the hypotheses of (8.2). As a consequence, the cohomology
P ∗(c) is in the interior of its ⊳⊲-equivalence class for L ◦ TP . It follows from (5.8) that the
cohomology c is in the interior of its class of ⊳⊲ -equivalence for L.

(10.8) Let c = π∗1(c1) be such that each set I(G),G ∈ Vc is properly contained in T1.
Applying (0.10), we observe that R(c) = H1(M,R), and c is in the interior of its class of
⊳⊲-equivalence.
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(10.9) We have proved that each c ∈ π∗1(T,R) is in the interior of its class of ⊳⊲-equivalence.
Since the subspace π∗1(H

1(T,R)) is obviously connected, it is contained in one class of ⊳⊲-
equivalence.

Appendix

A semi-concave functions

We review some standard facts on semi-concave functions. In this section, the compact
manifold M , of dimension d, is endowed with a Riemannian metric. The cotangent bundle
is then in a natural way endowed with a metric. A function f : M −→ R will be called
differentiable with K-Lipschitz differential if the differential df is K-Lipschitz as a section
M −→ T ∗M for the distances associated to these metrics.

(A.1) Let u : M −→ R be a continuous function. We say that p ∈ T ∗
xM is a proximal

super-differential of u at x if there exists a smooth function f : M −→ R such that df(x) = p
and such that f − u has a minimum at x. Proximal sub-differentials are defined in the same
way. The set of proximal super-differential of the function u at x is denoted ∂+u(x). The set
of proximal sub-differential is denoted ∂−u(x). It is useful to give a more quantitative version
of this definition. We say that p is a K-super-differential of u at x if there exists a function
f : M −→ R with K-Lipschitz differential such that f −u has a minimum at x and df(x) = p.
It is known that K-super-differentials are proximal super-differentials, see for instance [11],
Lemma 7.3.5. We denote by ∂K+u(x) the set of K-super-differentials. It is not hard to see
that ∂+u(x) = ∪K>0∂

K+u(x).

(A.2) We say that a function u is K-semi-concave if, for each x, the set ∂K+(x) is not
empty. A function u is called semi-concave if it is K-semi-concave for some K > 0. A set
of functions is called equi-semi-concave if there exists a positive constant K such that each
function of the set is K-semi-concave. The semi-concave functions and the equi-semi-concave
sets of functions do not depend on the choice of the metrics used to define them.

A function u is semi-concave if and only if there exists a compact set K ⊂ C1(M) with
equi-Lipschitz differentials and such that

u(x) = inf
f∈K

f(x).

Proof. Note first that we then have

u(x) = min
f∈K

f(x).

If this holds, we can choose, for each point x, a function f in K such that f(x) = u(x). If K is
such that all the differentials of functions of K are K-Lipschitz, then df(x) ∈ ∂K+u(x), hence
the set ∂K+u(x) is non-empty for each x, hence the function u is K-semi-concave. Conversely,
Assume that the function u is K-semi-concave. Let K be the set formed by functions f with
K-Lipschitz differential and such that u 6 f 6 Kdiam2(M) + max u, where diam2(M) is the
square of the diameter diam(M) of M . Clearly, the set K is compact for the C1 topology.
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In addition, we have u(x) = minf∈K f(x). Indeed, the inequality u(x) 6 minf∈K f(x) always
holds by definition of K. On the other hand, for each point x ∈M , there exists a function f
with K-Lipschitz differential which satisfies f > u and f(x) = u(x). Since the differential of f
vanishes at one point (the minimum of f) and is K-Lipschitz, we have ‖df‖∞ 6 Kdiam(M),
hence ‖f‖∞ 6 u(x) + Kdiam2(M), so that f ∈ K. Recalling that f(x) = u(x), we obtain
that u(x) > minf∈K f(x).
Consequently, we have the following property:

(A.3) An equi-semi-concave set of functions is equi-Lipschitz.

(A.4) If U is a set of K-semi-concave functions on M , and if the infimum infu∈U u(x0) is
finite for some x0 ∈M , then the function v(x) = infu∈U u(x) is finite and K-semi-concave.

Proof. Since the functions in U are equi-Lipschitz, it is not hard to see that the infimum
is finite at each point if it is finite at one point. In this case, we can choose, for each point
x1 ∈ M , a sequence un of functions of U such that un(x1) −→ v(x1), and then a sequence
fn of C1 functions with K-Lipschitz differential such that fn > un and fn(x1) = un(x1).
Taking a subsequence, we can assume that fn converges to a limit f for the C1 topology.
This limit clearly satisfies f > v and f(x1) = v(x1), and it has a K-Lipschitz differential.
We have proved that the set ∂K+v(x1) is not empty, hence the function v isK-semi-concave.

(A.5) Let U be an equi-semi-concave set of functions on N×M , where N is another compact
manifold. Then the functions u(x, .) : M −→ R, x ∈ N,u ∈ U form an equi-semi-concave set.

Proof. Let us assume that the manifold N is endowed with a Riemannian metric, end that
the functions of U are K-semi-concave for the product metric on N × N . We shall prove
that the functions u(x, .) are K-semi-concave. Let f : N ×M −→ R be a function with K-
Lipschitz differential such that f−u has a minimum at (x, y). The function f(x, .)−u(x, .) has
a minimum at y, so that it is enough to prove that the function g = f(x, .) has a K-Lipschitz
differential. Let us identify the tangent bundle T ∗(N ×M) with the product T ∗N × T ∗M ,
the metric is the product metric. We have df(x,z) =

(

d1f(x,z), d2f(x,z)

)

, and d2f(x,z) = dgz. As
a consequence,

dist
(

dgz1 , dgz2

)

6 dist
(

df(x,z1), df(x,z2)

)

6 Kdist
(

(x, z1), (x, z2)
)

= Kdist
(

z1, z2
)

.

(A.6) The set of K-semi-concave functions is closed for the topology of uniform conver-
gence. In addition, if un is a sequence of K-semi-concave functions converging uniformly
to a limit u, then we have the following additional convergence property: If xn is a se-
quence of points of differentiability of un, converging to a point of differentiability x of u,
then dun(xn) −→ du(x).

Let un be a sequence of K-semi-concave functions, and let xn −→ x be a sequence of points
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of M . Consider a sequence fn of functions with K-Lipschitz differential such that fn − un

has a minimum at xn and fn(xn) = 0. If f is any accumulation point of the sequence fn in
the C1 topology, then df(x) is a K-super-differential of u at x. So in particular if xn and x
are points of differentiability of u, we get dun(xn) = dfn(xn) −→ df(x) = du(x).

(A.7) Let u be a continuous function on M , and let Let A be the compact subset of M
formed by points x ∈ M such that ∂K+u(x) and ∂K−(x) are both non-empty. Then the
function u is differentiable at each point of A, and the mapping x 7−→ du(x) is Lipschitz on
A, with a Lipschitz constant that depends only on K.

This follows from Proposition 4.5.3 in Fathi’s book [11].

(A.8) Let Φ be a finite atlas of M composed of charts ϕ : B3 −→M , where Br is the open
ball of radius r centered at zero in R

d. Assume that the sets ϕ(B1), ϕ ∈ Φ cover M .

Let U be a set of functions on M . The following statements are equivalent:

(i) The set U is equi-semi-concave.

(ii) There exists a constant K > 0 such that the function x 7−→ u ◦ ϕ −K‖x‖2 is concave
on B2 for each function u ∈ U and each chart ϕ ∈ Φ.

(iii) There exists a constant K > 0 such that, for each function u ∈ U, each chart ϕ ∈ Φ,
and each point x ∈ B2, there exists a linear form lx on R

d such that

u ◦ ϕ(y) − u ◦ ϕ(x) 6 lx(y − x) +K‖y − x‖2

for each y ∈ B2.

We leave as an easy exercise for the reader to prove the equivalence between (ii) and (iii).
It is not hard either to see that (i) ⇒ (iii). We shall prove that (iii) ⇒ (i). Let U be the set
of functions satisfying both (iii) and (ii). We shall prove that the set U is equi-semi-concave.

Let us first prove that there exists a constant L, which depends only on K, and such that
each linear form l satisfying (iii) for some chart ϕ ∈ Φ, some function u ∈ U and some point
x ∈ B1 satisfies ‖l‖ 6 L, where ‖l‖ is the standard Euclidean norm of l. Note that this result
easily implies that the functions of U are equi-Lipschitz. We need a lemma.

Lemma. Let us consider a chart ϕ ∈ Φ, a point x0 ∈ B1, and a linear form l satisfying
(iii) at x0. If ‖l‖ > 11K, then there exists a point y ∈ B2 which is a point of differentiability
of u ◦ ϕ and satisfies

‖d(u ◦ ϕ)y‖ > (‖l‖ − 11K)/3.

and
u ◦ ϕ(y) < inf

B1

u ◦ ϕ.

Proof of the lemma. Let us prove first that the infimum of u◦ϕ in B2 is not reached in B̄1.
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Assume, by contradiction, that there exists a point m ∈ B̄1 such that u ◦ϕ(m) = infB2 u ◦ϕ.
Then clearly the function u◦ϕ is differentiable at m, its differential is zero, and the inequality

u ◦ ϕ(x0) 6 u ◦ ϕ(m) +K‖x0 −m‖2

holds. On the other hand, we have

u ◦ ϕ(m) 6 u ◦ ϕ(x) 6 u ◦ ϕ(x0) + l(x− x0) +K‖x− x0‖
2

for all x ∈ B2. Combining these inequalities gives

l(x0 − x) 6 K‖x− x0‖
2 +K‖x0 −m‖2

for all x ∈ B̄2. Hence ‖l‖ 6 5K, which is in contradiction with the hypothesis.
Let us now consider a vector v ∈ R

d of norm 1 and such that l(v) = −‖l‖. We get

u ◦ ϕ(x0 + v) − u ◦ ϕ(x0) 6 l(v) +K‖v‖2 = K − ‖l‖.

Hence the infimum of u ◦ϕ on B2 is not greater than u ◦ϕ(x0) +K −‖l‖. It is then possible
to choose a point y in B2 such that

u ◦ ϕ(y) < min
(

inf
B1

u ◦ ϕ, u ◦ ϕ(x0) + 2K − ‖l‖
)

.

In addition, since the function u ◦ ϕ is differentiable almost everywhere, we can assume that
the function u ◦ ϕ is differentiable at y. We have the inequality

u ◦ ϕ(x0) 6 u ◦ ϕ(y) + d(u ◦ ϕ)y(y − x0) +K‖y − x0‖
2

from which follow

d(u ◦ ϕ)y(x0 − y) 6 u ◦ ϕ(y) − u ◦ ϕ(x0) +K‖y − x0‖
2

6 11K − ‖l‖.

Hence ‖d(u ◦ ϕ)x1‖ > (‖l‖ − 11K)/3. This ends the proof of the lemma.

Let us consider a function u ∈ U, a chart ϕ0 ∈ Φ, a point x0 ∈ B1, and a linear form l0
satisfying (iii) for these data. Let y0 ∈ B2 be the point given by the lemma. Let us consider
a chart ϕ1 ∈ Φ such that y1 ∈ ϕ1(B1), and the point x1 ∈ B1 such that ϕ1(x1) = ϕ0(y0).
Note that u ◦ ϕ1 is differentiable at x1, and define

l1 := d(u ◦ ϕ1)x1 = d(u ◦ ϕ0)x0 ◦ d(ϕ
−1
0 ◦ ϕ1)x1 .

In view of the lemma, there exists a constant C > 1, which depends only on the atlas Φ, and
such that

‖l1‖ > (‖l0‖ − 11K)/C.

If l0 is large enough, then we have ‖l1‖ > 11K, hence we can apply the lemma again, and
find a chart φ2, a point x2 and a linear form l2. In addition, we have

u ◦ ϕ2(x2) < inf
ϕ0(B1)∪ϕ1(B1)

u,

so that the charts ϕ0, ϕ1 and ϕ2 are different. Now if ‖l0‖ is sufficiently large, the process
can be continued further and we can build inductively, for 0 6 i 6 N , a sequence xi ∈ B1
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of points, a sequence ϕi ∈ Φ of different charts, and a sequence li of linear forms such that
‖li+1‖ > (‖li‖−11K)/C. The process can be continued as long as ‖li‖ > 11K. Recall that the
cardinal of Φ is finite, and denote it by |Φ|. Since all the charts involved in the construction
above are different, at most |Φ| steps can be performed. Hence there exists an integer N 6 |Φ|
such that ‖li‖ > 11K for i < N , and ‖lN‖ 6 11K. This gives a bound to ‖l0‖.

We have proved the existence of a bound L, which depends only on the atlas Φ and the
number K, such that all linear forms l satisfying (iii) at some point x ∈ B1, for some chart
ϕ ∈ Φ, and for some function u ∈ U satisfies ‖l‖ 6 L. Clearly, it follows that the set U is
equi-Lipschitz, and that there exists a constant ∆ such that

maxu− minu 6 ∆

for all u ∈ U.
Now we have obtained the desired uniform bounds, let us consider a smooth function

g : R
d −→ R such that 0 6 g 6 1, and such that g = 0 outside of B2 and g = 1 inside B1.

Let us associate, to each chart ϕ ∈ Φ, each point x ∈ B1, and each linear form l on R
d, the

function fl,x,ϕ : M −→ R defined by

fl,x,ϕ ◦ ϕ(y) := g(y)
(

l(y − x) +K‖y − x‖2
)

+ (1 − g(y))∆

for y ∈ B2, and fx,ϕ = ∆ outside of ϕ(B2). The functions fl,x,ϕ have equi-Lipschitz differen-
tials. On the other hand, if u ∈ U and z ∈ M are given, let us consider a chart ϕ ∈ Φ and a
point x ∈ B1 such that ϕ(x) = z, and let l be an associated linear form given by (iii). We
claim that fl,x,ϕ − u has a minimum at z. Indeed, we have the inequalities

u ◦ ϕ(y) 6 u(z) + l(y − x) +K‖y − x‖2

for y ∈ B2 and u 6 u(z)+ ∆. Hence we have fl,x,ϕ −u > −u(z), with equality at point z. We
have proved that the set U is equi-semi-concave.

B Uniform families of Hamiltonians

Let us fix once and for all a Riemann metric on the compact manifold M . We use this
metric to define a norm |v| for tangent vectors, and a norm |p| for tangent covectors.

(B.1) A family of pairs (H,L) of dual Hamiltonians and Lagrangians satisfying the hy-
potheses (1.1) and (1.2) is called uniform if:

(i) There exist two superlinear functions h0 and h1 : R
+ −→ R

+ such that each Hamiltonian
H of the family satisfies h0(p) 6 H(t, x, p) 6 h1(p).

(ii) There exists an increasing function K(k) : R
+ −→ R

+ such that, if φ is the flow of a
Hamiltonian of the family and if the times t and s satisfy t− 1 6 s 6 t+ 1, then

φs
t

(

{|p| 6 k}
)

⊂ {|p| 6 K(k)} ⊂ T ∗M.

(iii) There exists a finite atlas Ψ of M such that, for each chart ψ ∈ Ψ and each Lagrangian
L of the family, we have ‖d2(L ◦ Tψ)(t,x,v)‖ 6 K(k) for |v| 6 k.

Note that condition (i) could have equivalently been replaced by the following:

(i′) There exist two superlinear functions l0 and l1 : R
+ −→ R

+ such that each Lagrangian
L of the family satisfies l0(v) 6 L(t, x, v) 6 l1(v).
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(B.2) The Uniform families of highest use in the present paper are the following ones. Let
Ω be the set of smooth closed one-forms on M . Let Ω1 ⊂ Ω be a finite dimensional vector
subspace, and let Ω2 ⊂ Ω1 be a bounded part of Ω1. Then it is easy to check that, for a
fixed H satisfying (1.1), the Hamiltonians H(t, x, p + ωx), ω ∈ Ω2 form a uniform family.
Equivalently, the Lagrangians L(t, x, v) − ωx(v) form a uniform family.

(B.3) In a uniform family, we have

|∂pH(t, x, p)| >
h0(|p|) − h1(0)

|p|

and

|∂vL(t, x, v)| >
l0(|v|) − l1(0)

|v|
.

In other words, the Legendre transforms are uniformly proper.

Proof. In view of the convexity of H, we have

|∂pH(t,x,p)| >
H(t, x, p) −H(t, x, 0)

|p|
.

(B.4) Given a Lagrangian L satisfying the hypotheses of (1.2), we define the function
AL(t, x; s, y) : R ×M × R ×M −→ R by

AL(t, x; s, y) = inf
γ∈Σ(t,x;s,y)

∫ s

t
L(σ, γ(σ), γ̇(σ)) dσ,

Where Σ(t, x; s, y) is the set of absolutely continuous curves γ : [s, t] −→M satisfying γ(t) = x
and γ(s) = y. We denote by ΣL

m(t, x; s, y) the set of curves of Σ(t, x; s, y) which realize the
minimum.

(B.5) For each uniform family of Lagrangians, there exists a decreasing function K1(ǫ) :
]0,∞) −→ R

+ such that, If L is a Lagrangian of the family and if t and s are two real times
satisfying t > s + ǫ, then each curve γ ∈ ΣL

m(t, x; s, y) is C2 and satisfies |γ̇(σ)| 6 K(ǫ) for
each σ ∈ [s, t].

Proof. By comparing the action of γ with that of a geodesic with the same endpoints, we
get

∫ t

s
l0(|γ̇(σ)|)dσ 6

∫ t

s
L(σ, γ(σ), γ̇(σ))dσ 6 (t− s)l1

(

diam(M)

t− s

)

The right hand side is clearly bounded by a constant which depends only of the parameters
of the uniform family and of ǫ. We obtain

(t− s)min l0(|γ̇(σ)|) 6 C,
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from which follows, with another constant C, that min |γ̇(σ)| 6 C. But then in view of (B.3),
we have

min
σ∈[s,t]

|∂vL(σ, γ(σ), γ̇(σ))| 6 C,

then in view of (ii),
max
σ∈[s,t]

|∂vL(σ, γ(σ), γ̇(σ))| 6 C,

so that finally, using (B.3) again, we get max |γ̇| 6 C. We have used the symbol C for different
constants which depend only of ǫ and of the parameters of the family.

(B.6) For each times s < t, the mapping which, to a Lagrangian L, associates the function

(x, y) 7−→ AL(s, x, t, y)

of C(M × M,R), is continuous on each uniform family of Lagrangians endowed with the
topology of uniform convergence on compact sets.

Proof. Let L0 and L1 be two Lagrangians of the family. Let γ(σ) : [s, t] −→ M be such
that

AL0(s, γ(s); t, γ(t)) =

∫ t

s
L0(σ, γ(σ), γ̇(σ)) dσ.

We have

AL1(s, γ(s); t, γ(t)) 6

∫ t

s
L1(σ, γ(σ), γ̇(σ)) dσ,

so that
AL1(s, γ(s); t, γ(t)) −AL0(s, γ(s); t, γ(t)) 6 (t− s) max

|v|6K1(t−s)
L1 − L0,

where K1 is defined in (B.5). By symmetry, we get that

‖AL0(s, .; t, .) −AL1(s, .; t, .)‖∞ 6 (t− s) max
|v|6K1(t−s)

|L1 − L0|.

(B.7) Theorem. For each uniform family of Lagrangians and each ǫ > 0, consider the
set Uǫ of continuous functions M ×M −→ R given by

(x, y) 7−→ AL(s, x, t, y)

where t > s + ǫ and L is a Lagrangian of the family. This set is equi-semi-concave, hence
equi-Lipschitz on M ×M . In addition, for each curve γ ∈ ΣL

m(t, x; s, y), the covector

(

− ∂vL(s, γ(s), γ̇(s)), ∂vL(t, γ(t), γ̇(t))
)

is a proximal super-differential.

Proof. Let us consider a finite atlas Ψ of M formed by charts ψ : Bd
6 −→ M , where Bd

r is
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the Euclidean ball of radius r in R
d. Assume that the open sets ψ(Bd

1/2), ψ ∈ Ψ, cover M . Let

Φ be the atlas of M×M composed of products ψ×ψ′, with ψ ∈ Ψ and ψ′ ∈ Ψ′. The charts ϕ
of Φ are defined on B2d

3 , and the images ϕ(B2d
1 ), ϕ ∈ Φ, cover M ×M . So this atlas satisfies

the conditions of (A.8). In order to prove that the set Uǫ is equi-semi-concave, we shall prove
that (iii) of (A.8) holds. So from now on we shall work in a fixed chart ϕ = ψ0 × ψ1.

Let (x0, x1) be a point in ψ0(B2) × ψ1(B2), and let y0 and y1 be the preimages in B2.
Let γ(t) : [s, t] −→ M be a curve in Σm(s, x0; t, x1). In view of (B.5), we have |γ̇| 6 K1(ǫ).
As a consequence, there exists a constant a > 0, which depends only on the atlas, on the
parameters of the family, and of ǫ, such that the curve ψ−1

0 ◦ γ : [s, s + 1/a] −→ Bd
4 is well

defined and a-Lipschitz, as well as the curve ψ−1
1 ◦γ : [t−1/a, t] −→ Bd

4 . Let us call y0(σ) and
y1(σ) these curves, note that y0(s) = y0 and y1(t) = y1. Let us now define, for each points z0
and z1 in B4, the curves

y0(σ, z0) := y0(σ) + (1 + a(s − σ))(z0 − y0)

and
y1(σ, z1) := y1(σ) + (1 + a(σ − t))(z1 − y1).

For simplicity we define the Lagrangians L0 and L1 on R × Bd
4 × R

d by the expression
Li(σ, x, v) = L(σ, ψi(x), dψix(v)), shortly, Li = L ◦ Tψi. We have

A(s, ψ0(z0); t, ψ1(z1))

6 A(s, x0; t, x1) +

∫ s+1/a

s
L0(σ, y0(σ, z0), ẏ0(σ, z0)) − L0(σ, y0(σ), ẏ0(σ)) dσ

+

∫ t

t−1/a
L1(σ, y1(σ, z1), ẏ1(σ, z1)) − L1(σ, y1(σ), ẏ1(σ)) dσ.

There exists a constant C > 0, which depends only on the atlas, on the parameters of the
family, of ǫ, and of a, such that, for (t, x, v) ∈ R×Bd

4 ×B
d
a and (y,w) ∈ R×Bd

4 ×B
d
a, we have

Li(σ, y,w) − Li(σ, x, v) 6 ∂xLi(σ,x,v)(y − x) + ∂vLi(σ,x,v)(w − v) + C(‖y − x‖2 + ‖w − v‖2).

We get
A(s, ψ0(z0); t, ψ1(z1)) 6 A(s, x0; t, x1)

+

∫ s+1/a

s
∂xL0(σ,y0(σ),ẏ0(σ))(y0(σ, z0) − y0(σ)) + ∂vL0(σ,y0(σ),ẏ0(σ))(ẏ0(σ, z0) − ẏ0(σ)) dσ

+

∫ t

t−1/a
∂xL0(σ,y0(σ),ẏ0(σ))(y0(σ, z0) − y0(σ)) + ∂vL0(σ,y0(σ),ẏ0(σ))(ẏ0(σ, z0) − ẏ0(σ)) dσ

+C

∫ s+1/a

s
‖y0(σ) − y0(σ, z0)‖

2 + ‖ẏ0(σ) − ẏ0(σ, z0)‖
2 dσ

+C

∫ t

t−1/a
‖y1(σ) − y1(σ, z1)‖

2 + ‖ẏ1(σ) − ẏ1(σ, z1)‖
2 dσ.

Taking advantage of the Euler-Lagrange equations, this simplifies to

A(s, ψ0(z0); t, ψ1(z1)) 6 A(s, x0; t, x1) − ∂vL0(σ,y0,ẏ0(s))(z0 − y0) + ∂vL1(σ,y1,ẏ1(t))(z1 − y1)

+C(1 + a2)(‖y0 − z0‖
2 + ‖y1 − z1‖

2).
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