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Optimal mass transportation and Mather theory

Patrick Bernard and Boris Buffoni

10 decembre 2004

Several observations have recently renewed the interest for the classical topic of optimal
mass transportation, whose primary origin is attributed to Monge a few years before French
revolution. The framework is as follows. A space M is given, which in the present paper will
be a compact manifold, as well as a continuous cost function c(x, y) : M ×M −→ R. Given two
probability measures µ0 and µ1 on M , the mappings Ψ : M −→M which transport µ0 into µ1

and minimize the total cost
∫

M
c(x,Ψ(x))dµ0 are studied. It turns out, and it was the core of

the investigations of Monge, that these mappings have very remarkable geometric properties, at
least at a formal level.

Only much more recently was the question of the existence of optimal objects rigorously
solved by Kantorovitch in a famous paper of 1942. Here we speak of optimal objects, and not of
optimal mappings, because the question of existence of an optimal mapping is ill-posed, so that
the notion of optimal objects has to be relaxed, in a way that nowadays seems very natural, and
that was discovered by Kantorovitch.

Our purpose here is to continue the work initiated by Monge, recently awakened by Brenier
and enriched by other authors, on the study of geometric properties of optimal objects. The
costs functions we consider are natural generalizations of the cost c(x, y) = d(x, y)2 considered
by Brenier and many other authors. The book [34] gives some ideas of the applications expected
from this kind of questions. More precisely, we consider a Lagrangian function L(x, v, t) :
TM ×R −→ R which is convex in v and satisfies standard hypotheses recalled later, and define
our cost by

c(x, y) = min
γ

∫ 1

0
L(γ(t), γ̇(t), t)dt

where the minimum is taken on the set of curves γ : [0, 1] −→ M satisfying γ(0) = x and
γ(1) = y. Note that this class of costs does not contain the very natural cost c(x, y) = d(x, y).
We will study such costs in a second paper, but much weaker results are expected.

Our main result is that the optimal transports can be interpolated by measured Lipschitz
laminations, or geometric currents in the sense of Ruelle and Sullivan. Interpolations of transport
have already been considered by Brenier and McCann for less general cost functions, and with
different purposes. Our methods are inspired by the theory of Mather, Mañé and Fathi on La-
grangian dynamics, and we will detail rigorously the relations between these theories. Roughly,
they are exactly similar except that mass transportation is a Dirichlet boundary value problem,
while Mather theory is a periodic boundary value Problem. We will also prove, extending works
of Brenier, Gangbo, Mc Cann, Carlier , and other authors, that the optimal transportation can
be performed by a Borel map with the additional assumption that the transported measure is
absolutely continuous.

Various connections between Mather-Fathi theory, optimal mass transportation and Hamilton-
Jacobi equations have recently been discussed, mainly at a formal level, in the literature, see for
exemple [34], or [17], where they are all presented as infinite dimensional linear programming
problems. This have motivated a lot of activity around the interface between Aubry-Mather
theory and optimal transportation, some of which overlap partly the present work. For exemple,
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at the moment of submitting the paper, we have been informed of the existence of the recent
preprints of De Pascal, Stella and Granieri, [31], and of Granieri, [22]. We had also been aware
of a preprint by Wolansky [35] for a few weeks, which, independently, and by somewhat different
methods, studies questions very similar to the ones we are interested in.

This paper emanates from the collaboration of the Authors during the end of the stay of the
first author in EPFL for the academic year 2002-2003, granted by the Swiss National Fund for
Research.

1 Introduction

We present the main context and the main results of the paper.

1.1 Lagrangian, Hamiltonian and cost

In all the present paper, the space M will be a compact manifold without boundary. Some
standing notations are gathered in the appendix. Let us fix a positive real number T , and a
Lagrangian function

L ∈ C2(TM × [0, T ],R).

A curve γ ∈ C2([0, T ],M) is called an extremal if it is a critical point of the action

∫ T

0
L(γ(t), γ̇(t), t)dt

with fixed endpoints. It is called a minimizing extremal if it is minimizing the action. We
assume:
convexity For each (x, t) ∈ M × [0, T ], the function v 7−→ L(x, v, t) is convex with positive
definite Hessian at each point.
superlinearity For each (x, t) ∈M × [0, T ], we have L(x, v, t)/‖v‖ −→ ∞ as ‖v‖ −→ ∞.
completeness For each (x, v, t) ∈ TM × [0, T ], there exists one and only one extremal γ ∈
C2([0, T ],M) such that (γ(t), γ̇(t)) = (x, v).

Under these hypotheses, there exists a time-dependent vector-field E, on TM , the Euler-
Lagrange vector-field, which is such that the extremals are the projection of the integral curves
of E. For 0 6 s 6 t 6 T there exists a well defined flow ψt

s : TM −→ TM which is such that
ψs

s = Id and ∂tψ
t
s = Et ◦ψ

t
s, where as usual Et denotes the vector-field E(., t) on TM . This flow

satisfies the relation
∂t(π ◦ ψt

s)(x, v, t) = ψt
s(x, v). (1)

We associate to the Lagrangian L a Hamiltonian function H ∈ C2(T ∗M × [0, T ],R) given by

H(x, p, t) = max
v
p(v) − L(x, v, t).

We endow the cotangent bundle T ∗M with its canonical symplectic structure, and associate to
the Hamiltonian H the time-dependent vector-field Y on T ∗M , which is given by

Y = (∂pH,−∂xH)

in any canonical local trivialisation of T ∗M . The hypotheses on L can be expressed in terms of
the function H:
convexity For each (x, t) ∈ M × [0, T ], the function p 7−→ H(x, p, t) is convex with positive
definite Hessian at each point.
superlinearity For each (x, t) ∈M × [0, T ], we have H(x, p, t)/‖p‖ −→ ∞ as ‖p‖ −→ ∞.
completeness Each solution of the equation (ẋ(t), ṗ(t)) = Y (x(t), p(t), t) can be extended to
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the interval [0, T ]. We can then define, for each 0 6 s 6 t 6 T , the flow ϕt
s of Y from times s to

time t.
In addition, the mapping ∂vL : TM × [0, T ] −→ T ∗M × [0, T ] is a C1 diffeomorphism, whose

inverse is the mapping ∂pH. These diffeomorphisms conjugate E and Y , and the flows ψt
s and

ϕt
s.

For each 0 6 s 6 t 6 T , we define the cost function

cts(x, y) = min
γ

∫ t

s

L(γ(σ), γ̇(σ), σ)dσ

where the minimum is taken on the set of curves γ ∈ C2([s, t],M) satisfying γ(s) = x and
γ(t) = y. That this minimum exists is a standard result under our hypotheses, see [28] or [18].

Proposition 1. Let us fix a subinterval [s, t] ⊂ [0, T ]. The set E ⊂ C2([s, t],M) of minimizing
extremals is compact for the C2 topology.

Let us mention that, for each (x0, s) ∈ M × [0, T ], the function (x, t) 7−→ cts(x0, x) is a
viscosity solution of the Hamilton-Jacobi equation

∂tc
t
s +H(x, ∂xc

t
s, t) = 0

on M × [s, T ]. This remark may help the reader in understanding the key role which will be
played by this equation in the sequel.

1.2 Monge-Kantorovitch theory

We recall the basics of Monge-Kantorovitch duality. The proofs are available in many texts on
the subjects, for example [1, 32, 34]. We assume that M is a compact manifold and that c(x, y)
is a continuous cost function on M ×M , which will later be one of the costs cts defined above.
Given two Borel probability measures µ0 and µ1 on M , a transport plan between µ0 and µ1 is
a measure on M ×M which satisfies

π0♯(η) = µ0 and π1♯(η) = µ1,

where π0 : M × M −→ M is the projection on the first factor, and π1 is the projection on
the second factor. We denote by K(µ0, µ1), after Kantorovitch, the set of transport plans.
Kantorovitch proved the existence of a minimum in the expression

C(µ0, µ1) = min
η∈K(µ0,µ1)

∫

M×M

cdη

for each pair (µ0, µ1) of probability measures on M . Here we will denote by

Ct
s(µ0, µ1) := min

η∈K(µ0 ,µ1)

∫

M×M

cts(x, y)dη(x, y) (2)

the optimal value associated to our family of costs cts. The plans which realize this minimum
are called optimal transfer plans. A pair (φ0, φ1) of continuous functions is called an admissible
Kantorovitch pair if is satisfies the relations

φ1(x) = min
y∈M

φ0(y) + c(y, x) and φ0(x) = max
y∈M

φ1(y) − c(x, y)

for all point x ∈ M . Note that the admissible pairs are composed of Lipschitz functions if the
cost c is Lipschitz, which is the case of the costs cts we are going to consider. Another discovery
of Kantorovitch is that

C(µ0, µ1) = max
φ0,φ1

(

∫

M

φ1dµ1 −

∫

M

φ0dµ0

)

(3)
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where the maximum is taken on the set of admissible Kantorovitch pairs (φ0, φ1). This maxi-
mization problem is called the dual Kantorovitch problem, the admissible pairs which reach this
maximum are called optimal Kantorovitch pairs. The direct problem (2) and dual problem (3)
are related as follows.

Proposition 2. If η is an optimal transfer plan, and if (φ0, φ1) is a Kantorovitch optimal pair,
then the support of η is contained in the set

{(x, y) ∈M2 such that φ1(y) − φ0(x) = c(x, y)} ⊂M ×M.

Let us remark that the knowledge of the set of Kantorovitch admissible pairs is equivalent
to the knowledge of the cost function c.

Lemma 3. We have
c(x, y) = max

(φ0,φ1)
φ1(y) − φ0(x)

where the maximum is taken on the set of Kantorovitch admissible pairs.

Proof. This maximum is clearly less that c(x, y). For the other inequality, let us fix points x0

and y0 in M , and consider the functions φ1(y) = c(x0, y) and φ0(x) = maxy∈M φ1(y) − c(x, y).
We have φ1(y0)−φ0(x0) = c(x0, y0)−0 = c(x0, y0). So it is enough to prove that the pair (φ0, φ1)
is an admissible Kantorovitch pair, and more precisely that φ1(y) = minx∈M φ0(x)+ c(x, y). We
have

φ0(x) + c(x, y) > c(x0, y) − c(x, y) + c(x, y) > c(x0, y) = φ1(x)

which gives the inequality φ1(y) 6 minx∈M φ0(x) + c(x, y). On the other hand, we have

min
x∈M

φ0(x) + c(x, y) 6 φ0(x0) + c(x0, y) = c(x0, y) = φ1(y).

1.3 Interpolations

In this section, the Lagrangian L and time T > 0 are fixed. It is not hard to see that, if µ1, µ2

and µ3 are three probability measures on M , and if t1 6 t2 6 t3 ∈ [0, T ] are three times, then
we have the inequality

Ct3
t1

(µ1, µ3) 6 Ct2
t1

(µ1, µ2) + Ct3
t2

(µ2, µ3).

The family µt, t ∈ [0, T ] of probability measures on M is called an interpolation between µ0 and
µT if it satisfies the equality

Ct3
t1

(µt1 , µt3) = Ct2
t1

(µt1 , µt2) +Ct3
t2

(µt2 , µt3)

for all 0 6 t1 6 t2 6 t3 6 T . Our main result is the following:
Theorem A. For each pair µ0, µT of probability measures, there exist interpolations between µ0

and µT . Moreover, each interpolation (µt), t ∈ [0, T ] is given by a Lipschitz measured lamination
in the following sense:
Eulerian description : There exists a locally Lipschitz vector-field X(x, t) : M×]0, T [−→ TM
such that, if Ψt

s, (s, t) ∈]0, T [2 is the flow of X from time s to time t, then (Ψt
s)♯µs = µt for each

(s, t) ∈]0, T [2.
Lagrangian description : There exists a family F ⊂ C2([0, T ],M) of minimizing extremals
γ of L, which is such that the relation γ̇(t) = X(γ(t), t) holds for each t ∈]0, T [ and for each
γ ∈ F . The set

T̃ = {(γ(t), γ̇(t), t), t ∈]0, T [, γ ∈ F} ∈ TM×]0, T [
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is invariant under the Euler-Lagrange flow ψ. The measure µt is supported on Tt = {γ(t), γ ∈
F}. In addition, there exists a continuous family mt, t ∈ [0, T ] of probability measures on TM
such that mt is concentrated on T̃t = {(γ(t), γ̇(t)), γ ∈ F} for each t ∈]0, T [, such that π♯mt = µt

for each t ∈ [0, T ], and such that
mt = (ψt

s)♯ms

for all (s, t) ∈ [0, T ]2.
Hamilton-Jacobi equation : There exists a C1 function v(x, t) : M×]0, T [−→ R which
satisfies the inequation

∂tv +H(x, ∂xv, t) 6 0,

with equality if and only if (x, t) ∈ T = {(γ(t), t), γ ∈ F , t ∈]0, T [}, and such that X(x, t) =
∂pH(x, ∂xv(x, t), t) for each (x, t) ∈ T .
Uniqueness : There may exist several different interpolations. However, it is possible to choose
the vector-field X, the family F and the sub-solution v in such a way that the statements above
hold for all interpolations µt with these fixed X, F and v. For each s < t ∈]0, T [, the measure
(Id× Ψt

s)♯µs is the only optimal transport plan in K(µs, µt) for the cost cts. This implies that

∫

M

cts(x,Ψ
t
s(x))dµs(x) = Ct

s(µs, µt).

Let us comment a bit the preceding statement. The set T̃ ⊂ TM×]0, T [ is the image
by the Lipschitz vector-field X of the set T ⊂ TM×]0, T [. We shall not take X(x, t) =
∂pH(x, ∂xu(x, t), t) outside of T because we do not prove that this vector-field is Lipschitz
outside of T . The data of the vector-field X outside of T is immaterial: any Lipschitz extension
of X|T will fit. Note also that the relation

Ψt
s = π ◦ ψt

s ◦Xs

holds on Ts, where Xs(.) = X(., s).
The vector-field X in the statement depends on the transported measures µ0 and µT . The

Lipschitz constant of X, however, can be fixed independently of these measures, as we now state:

Addendum There exists a decreasing function K(ǫ) :]0, T/2[−→]0,∞[, which depends only on
the time T and on the Lagrangian L, and such that, for each pair µ0, µT of probability measures,
one can choose the vector-field X in Theorem A in such a way that X is K(ǫ)-Lipschitz on
[ǫ, T − ǫ] for each ǫ ∈]0, T/2[.

Proving Theorem A is the main goal of the present paper. We will present in section 2
some direct variational problems which are well-posed and of which the transport interpolations
are in some sense the solutions. We believe that these variational problems are interesting in
themselves. In order to describe the solutions of the variational problem, we will rely on a dual
approach based on the Hamilton-Jacobi equation, inspired from Fathi’s approach to Mather
theory, as detailed in section 3. The solutions of the problems of section 2, as well as the
transport interpolations, are then described in section 4, which ends the proof of Theorem A.

1.4 Case of an absolutely continuous measure µ0

Additional conclusions concerning optimal transport can usually be obtained when the initial
measure µ0 is absolutely continuous. For example a standard question is whether the optimal
transport can be realized by an optimal mapping.

5



A transport map is a Borel map Ψ : M −→M which satisfies Ψ♯µ0 = µ1. To any transport
map Ψ is naturally associated the transport plan (Id×Ψ)♯µ0, called the induced transport plan.
An optimal map is a transport map Ψ : M −→M such that

∫

M

cT (x,Ψ(x))dµ0 6

∫

M

cT (x, F (x))dµ0

for any transport map F . It turns out that, under the assumption that µ0 has no atoms, a
transport map is optimal if and only if the induced transport plan is an optimal transport plan,
see [1], Theorem 2.1. In other words, we have

inf
Ψ

∫

M

c(x,Ψ(x))dµ0(x) = C(µ0, µ1),

where the minimum is taken on the set of transport maps from µ0 to µ1. This is a general
result which holds for any continuous cost c. It is a standard question, which turns out to be
very hard for certain cost functions, whether the infimum above is reached, or in other words
whether there exists an optimal transport plan which is induced from a transport map. Part of
the result below is that this holds true in the case of the cost cT0 . The method we use to prove
this is an elaboration on ideas due to Brenier, see [10] and developed for instance in [21], (see
also [20]) and [13], which is certainly the closest to our needs.

Theorem B. Assume that µ0 is absolutely continuous with respect to the Lebesgue class on M .
Then for each final measure µT , there exists one and only one interpolation µt, t ∈ [0, T ], and
each interpolating measure µt, t < T is absolutely continuous. In addition, there exists a family
Ψt

0, t ∈ [0, T ] of Borel maps such that (Id×Ψt
0)♯µ0 is the only optimal transfer plan in K(µ0, µt)

for the cost function ct0. Consequently, we have

∫

M

ct0(x,Ψ
t
0(x))dµ0(x) = Ct

0(µ0, µt).

If µT , instead of µ0, is assumed absolutely continuous, then there exists one and only one inter-
polation, and each interpolating measure µt, t ∈]0, T ] is absolutely continuous.

This theorem will be proved and commented in section 5.

1.5 Mather theory

Let us now assume that the Lagrangian function is defined for all times, L ∈ C2(TM × R,R)
and, in addition to the standing hypotheses, satisfies the periodicity condition

L(x, v, t + 1) = L(x, v, t)

for all (x, v, t) ∈ TM × R. A Mather measure, see [28], is a compactly supported probability
measure m0 on TM which is invariant in the sense that (ψ1

0)♯m0 = m0 and is minimizing the
action

A1
0(m0) =

∫

TM×[0,1]
L(ψt

0(x, v), t)dm0dt.

The major discovery of [28] is that Mather measures are supported on the graph of a Lipschitz
vector-field. Let us call α the action of Mather measures –this number is the value at zero of the
α function defined by Mather in [28]. Let us now explain how this theory of Mather is related
to, and can be recovered from, the content of our paper.
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Theorem C. We have
α = min

µ
C1

0 (µ, µ),

where the minimum is taken on the set of probability measures on M . The mapping m0 7−→
(π)♯m0 is a bijection between the set of Mather measures m0 and the set of probability measures
µ on M satisfying C1

0 (µ, µ) = α. There exists a Lipschitz vector-field X0 on M such that all the
Mather measures are supported on the graph of X0.

This theorem will be proved in section 6, where the bijection between Mather measures and
measures minimizing C1

0 (µ, µ) will be precised.

2 Direct variational problems

We state two different variational problems whose solutions are the interpolated transports.
We believe that these problems are interesting on their own. They will also be used to prove
Theorem A.

2.1 Measures

This formulation parallels Mather’s theory. Let µ0 and µT be two probability Borel measures
on M . Let m0 ∈ B1(TM) be a Borel probability measure on the tangent bundle TM . We say
that m0 is an initial transport measure if the measure η on M ×M given by

η = (π × π ◦ ψT
0 )♯m0

is a transport plan, where π : TM −→M is the canonical projection. We call I(µ0, µ1) the set
of initial transport measures. To an initial transport measure m0, we associate the continuous
family of measures

mt = (ψt
0)♯m0, t ∈ [0, T ]

on TM , and the measure m on TM × [0, T ] given by

m =

∫ T

0
mtdt =

∫ T

0
(ψt

0)♯m0 dt.

Note that the linear mapping m0 7−→ m =
∫ T

0 (ψt
0)♯m0 dt is continuous from B(TM) to B(TM ×

[0, T ]) endowed with the weak topology, see appendix.

Lemma 4. The measure m satisfies the relation

∫

TM×[0,T ]
∂tf + ∂xf(v)dm =

∫

M

fTdµT −

∫

M

f0dµ0 (4)

for each function f ∈ C1(M × [0, T ],R), where ft denotes the function x 7−→ f(x, t).

Proof. We have

∫

TM×[0,T ]
∂tf + ∂xf(v)dm =

∫ T

0

∫

TM

(∂tf + ∂xf) ◦ ψt
0dm0dt.

Noticing that, in view of equation (1), we have

∂t(f ◦ π ◦ ψt
0) = ∂tf ◦ ψt

0 + ∂xf ◦ ψt
0

7



we obtain that
∫

TM×[0,T ]
∂tf + ∂xf(v)dm =

∫

TM

(f ◦ π − f ◦ π ◦ ψT
0 )dm0 =

∫

M

fTdµT −

∫

M

f0dµ0

as desired.

Definition 5. A finite Borel measure on TM × [0, T ] which satisfies (4) is called a transport
measure. We denote by M(µ0, µ1) the set of transport measures. A transport measure which is
induced from an initial measure m0 is called an invariant transport measure. The action of the
transport measure m is defined by

A(m) =

∫

TM×[0,T ]
L(x, v, t)dm ∈ R ∪ {∞}

The action A(m0) of an initial transport measure is defined as the action of the associated
transport measure m. We will also denote this action by AT

0 (m0) when we want to insist on the
time interval. We have

AT
0 (m0) =

∫

TM×[0,T ]
L(ψt

0(x, v), t)dm0dt.

Although we are going to build minimizers by other means, we believe the following result
is worth being mentioned.

Lemma 6. For each real number a, the set Ma(µ0, µ1) of transport measures m which satisfy
A(m) 6 a, as well as the set Ia(µ0, µ1) of initial transport measures m0 which satisfy AT

0 (m0) 6

a, are compact. As a consequence, there exist optimal initial transport measures, and optimal
transport measures.

Proof. This is an easy application of the Prohorov theorem, see [8].

Now we have seen that the problem of finding optimal transport measures is well-posed, let
us describe its solutions.

Theorem 1. We have

CT
0 (µ0, µT ) = min

m∈M(µ0,µT )
A(m) = min

m0∈I(µ0,µT )
A(m0).

The mapping

m0 7−→ m =

∫ T

0
(ψT

0 )♯m0 dt

between the set OI of optimal initial measures and the set OM of optimal transport measures
is a bijection. There exists a locally Lipschitz vector-field X(x, t) : M×]0, T [−→ TM such that,
for each optimal initial measure m0 ∈ OI, the measure mt = (ψt

0)♯m0 is supported on the graph
of Xt for each t ∈]0, T [.

The proof will be given in section 4.3. Let us just notice now that the inequalities

CT
0 (µ0, µT ) > min

m0∈I(µ0,µT )
A(m0) > min

m∈M(µ0,µT )
A(m)

hold in view of:

8



Proposition 7. The mapping (π× π ◦ψT
0 )♯ : I(µ0, µ1) −→ K(µ0, µ1) is surjective. In addition,

for each transport plan η, there exists a compactly supported initial transport measure m0 such
that (π × π ◦ ψT

0 )♯m0 = η and such that

A(m0) =

∫

M×M

cT0 (x, y)dη.

Proof. There exists a compact set K ∈ TM such that if γ(t) : [0, T ] −→ M is a minimizing
extremal, then the lifting (γ(t), γ̇(t)) is contained in K for each t ∈ [0, T ]. We shall prove that,
for each probability measure η ∈ B(M×M), there exists a probability measure m0 ∈ B(K) such
that (π × π ◦ ψT

0 )♯m0 = η and such that

A(m0) =

∫

M×M

cT0 (x, y)dη.

Observing that

• the mappings m0 −→ (π × π ◦ ψT
0 )♯m0 and m0 7−→ A(m0) are linear and continuous on

the space B1(K) of probability measures supported on K,

• the set B1(K) is compact for the weak topology, and the action A is continuous on this
set,

• the set of probability measures on M×M is the compact convex closure of the set of Dirac
probability measures (probability measures supported in one point), see e. g. [8], p. 73,

it is enough to prove the result when η is a Dirac probability measure (or equivalently when µ0

and µ1 are Dirac probability measures). Let η be the Dirac probability measure supported at
(x0, x1) ∈ M ×M . Let γ(t) : [0, T ] −→M be a minimizing extremal with boundary conditions
γ(0) = x0 and γ(T ) = x1. In view of the choice of K, we have (γ(0), γ̇(0)) ∈ K. Let m0 be the
Dirac probability measure supported at (γ(0), γ̇(0)). It is straightforward that mt is then the
Dirac measure supported at (γ(t), γ̇(t)), so that

A(m0) =

∫ T

0
Ldmtdt =

∫ T

0
L(γ(t), γ̇(t), t)dt = cT0 (x0, x1) =

∫

M×M

cT0 dη

and
(π × π ◦ ψT

0 )♯m0 = η.

2.2 Currents

This formulation finds its roots on one hand in the works of Benamou and Brenier, see [4], and
then Brenier, see [11], and on the other hand in the work of Bangert [3]. Let Ω0(M × [0, T ]) be
the set of continuous one-forms on M × [0, T ], endowed with the uniform norm. We will often
decompose forms ω ∈ Ω0(M × [0, T ]) as

ω = ωx + ωtdt,

where ωx is a time-dependent form on M and ωt is a continuous function on M × [0, T ]. To
each continuous linear form χ on Ω0(M × [0, T ]), we associate its time component µχ, which is
the measure on M × [0, T ] defined by

∫

M×[0,T ]
fdµχ = χ(fdt)

9



for each continuous function f on M × [0, T ]. A Transport current between µ0 and µ1 is a
continuous linear form χ on Ω0(M × [0, T ]) which satisfies the two conditions:

1. The measure µχ is a non-negative.

2. dχ = µ1 ⊗ δT − µ0 ⊗ δ0, which means that

χ(df) =

∫

M

fTdµ1 −

∫

M

f0dµ0

for each smooth (or equivalently C1) function f : M × [0, T ] −→ R.

We call C(µ0, µ1) the set of transport currents from µ0 to µ1. The set C(µ0, µ1) is a closed affine
subspace of

[

Ω0(M × [0, 1])
]∗

. We will endow C(µ0, µ1) with the weak topology obtained as the

restriction of the weak-∗ topology of
[

Ω0(M × [0, 1])
]∗

. Transport currents should be thought of
as vector-fields whose components are measures. If Z is a bounded measurable vector-field on
M × [0, T ], and if µ is a non-negative measure on M × [0, T ], we define the current Z ∧ µ by

Z ∧ µ(ω) :=

∫

M×[0,T ]
ω(Z)dµ.

Every transport current can be written this way, but we shall neither prove nore use this fact.
Here are some examples.
Regular transport currents. If X is a bounded measurable section of the projection TM ×
[0, T ] −→ M × [0, T ], and if µ is a non-negative measure on M × [0, T ], the current (X, 1) ∧ µ
is called a regular transport current. The time component of the current (X, 1) ∧ µ is µ. In
addition, if (X, 1)∧µ = (X ′, 1)∧µ for two vector-fields X and X ′, then X and X ′ agree µ-almost
everywhere.
Smooth transport currents. A current is said smooth if it can be written on the form
(X, 1) ∧ λ with a vector-field X which is smooth on M×]0, T [ and a smooth measure λ on
M×]0, T [ equivalent to the Lebesgue measure (this means that the measure λ has a positive
smooth density in any chart). By standard regularisation arguments, we see that the set of
smooth transport currents is dense in C(µ0, µ1).
Lipschitz regular transport currents. A transport current is said Lipschitz regular if it can
be written on the form (X, 1) ∧ µ with a vector-field X which is locally Lipschitz on M×]0, T [.
Smooth currents are Lipschitz regular. Lipschitz regular transport currents have a remarkable
structure: If χ = (X, 1)∧µχ is a Lipschitz regular transport current with X locally Lipschitz on
M×]0, T [, there exists a unique continuous path µt

χ : [0, T ] 7−→ B(M) of measures on M , such

that µχ =
∫ T

0 µt
χdt, or in details

∫

M×[0,T ]
fdµχ =

∫ T

0

(
∫

M

ftdµ
t
χ

)

dt

for each continuous function f : M × [0, T ] −→ R, where ft denotes the function x 7−→ f(x, t).
In addition, If Ψt

s, (s, t) ∈]0, T [2, denotes the flow of the Lipschitz vector-field X from time s to
time t, then Ψt

s is a bi-Lipschitz homeomorphism of M , and we have

(Ψt
s)♯µ

s
χ = µt

χ

for all (s, t) ∈]0, T [2.
Transport current induced from a transport measure. To a transport measure m, we
associate the transport current χm defined by

χm(ω) =

∫

TM×[0,T ]
ωx + ωtdm

10



where the form ω is decomposed as ω = ωx+ωtdt, with ωx considered as a function on TM×[0, T ]
and ωt as a function on M × [0, T ], and then as a fiberwise constant function on TM × [0, T ].
Note that the time component of the current χm is π♯m. We will see that

A(χm) 6 A(m)

with the following definition of the action A(χ) of a current, with equality if m is concentrated
on the graph of a continuous vector-field.

Definition 8. We define the action of the transport current χ by the formulas

A(χ) = sup
ω∈Ω0

(

χ(ωx, 0) −

∫

M×[0,T ]
H(x, ωx(x, t), t)dµχ

)

= sup
ω∈Ω0

(

χ(ω) −

∫

M×[0,T ]

(

H(x, ωx(x, t), t) + ωt
)

dµχ

)

= sup
ω∈Ω0

(

χ(ω) − T sup
(x,t)M×[0,T ]

(

H(x, ωx(x, t), t) + ωt
)

)

= sup
ω∈Ω0;ωt+H(x,ωx,t)60

χ(ω)

= sup
ω∈Ω0;ωt+H(x,ωx,t)≡0

χ(ω).

Proof. Let us prove that these expressions are equal. We denote for the moment by A1,
A2, A3, A4 and A5 these a priori different actions. It is straightforward that A1 = A2, this
just amounts to simplify the term

∫

ωtdµχ. Since µχ is a non-negative measure which satisfies
∫

M×[0,T ] 1dµχ = T , we have

∫

M×[0,T ]

(

H(x, ωx(x, t), t) + ωt
)

6 T sup
(x,t)∈M×[0,T ]

(

H(x, ωx(x, t), t) + ωt
)

so that A3(χ) 6 A2(χ). In addition, we obviously have A5(χ) 6 A4(χ) 6 A3(χ). Now notice, in
A1, that the quantity

χ(ω) −

∫

M×[0,T ]

(

H(x, ωx(x, t), t) + ωt
)

dµχ

does not depend on ωt. Let us consider the form ω̃ = (ωx,−H(x, ωx, t)), which satisfies the
equality H(x, ω̃x, t) + ω̃t ≡ 0. We get, for each form ω,

χ(ωx, 0) −

∫

M×[0,T ]
H(x, ωx(x, t), t)dµχ = χ(ω̃) 6 A5(χ)

Hence A1(χ) 6 A5(χ).
Although we are going to provide explicitly a minimum of A, we believe the following Lemma
is worth being mentioned.

Lemma 9. The functional A : C(µ0, µ1) −→ R is convex, lower semi-continuous and coercive,
hence it has a minimum.

Proof. Let us define the continuous convex function H : Ω0(M × [0, T ]) −→ R by

H(ω) = T sup
(x,t)∈M×[0,T ]

H(x, ωx(x, t), t) + ωt.

Then the action is the restriction to C(µ0, µT ) of the Fenchel conjugate A = H
∗ : [Ω0(M ×

[0, T ])]∗ −→ R.

11



Theorem 2. We have
CT

0 (µ0, µ1) = min
χ∈C(µ0,µT )

A(χ)

where the minimum is taken on all transport currents from µ0 to µT . Every optimal transport
current is Lipschitz regular. Let χ = (X, 1) ∧ µ be an optimal transport current, with X locally
Lipschitz on M×]0, T [. The measure m = (X × τ)♯µ ∈ B+(TM×]0, T [) is an optimal transport
measure, and χ is the transport current induced from m. Here τ : TM × [0, T ] −→ [0, T ] is the
projection on the second factor, see appendix. We have

CT
0 (µ0, µ1) = A(m) = A(χ) =

∫

M×[0,T ]
L(x,X(x, t), t)dµχ.

This result will be proved in 4.1 after some essential results on the dual approach have been
established. Let us continue here with some useful related remarks.

Lemma 10. We have

A((X, 1) ∧ µ) =

∫

M×[0,T ]
L(x,X(x, t), t)dµ

for each current (X, 1) ∧ µ with X continuous. If m is a transport measure, and if χm is the
associated transport current, then A(χm) 6 A(m), with equality if m is supported on a continuous
graph. As a consequence, we have the inequalities

CT
0 (µ0, µ1) > min

m0∈I(µ0,µT )
A(m0) > min

m∈M(µ0,µT )
A(m) > min

χ∈C(µ0,µT )
A(χ).

Proof. For each continuous form ω, we have
∫

M×[0,T ]
ωx(X) −H(x, ωx(x, t), t)dµ 6

∫

M×[0,T ]
L(x,X(x, t), t)dµ,

so that

A((X, 1) ∧ µ) 6

∫

M×[0,T ]
L(x,X(x, t), t)dµ.

On the other hand, taking the form ωx
0 (x, t) = ∂vL(x,X(x, t), t) –which is continuous because

X is continuous– we obtain the pointwise equality

L(x,X(x, t), t) = ωx
0 (X) −H(x, ωx

0 (x, t), t)

and by integration
∫

M×[0,T ]
L(x,X(x, t), t)dµ =

∫

M×[0,T ]
ωx

0 (X) −H(x, ωx
0 (x, t), t)dµ 6 A((X, 1) ∧ µ).

This ends the proof of the equality of the two forms of the action ”continuous” currents. Now if
χm is the current associated to a transport measure m, then we have, for each continuous form
ω ∈ Ω0(M × [0, T ]),

χm(ω) −

∫

M×[0,T ]
H(x, ωx(x, t), t)dµ =

∫

TM×[0,T ]
ωx(v) −H(x, ωx(x, t), t)dm

by definition of m, so that

A(χm) 6

∫

M×[0,T ]
L(x, v, t)dm = A(m)

by the Legendre inequality. In addition, if there exists a vector-field X : M × [0, T ] −→ TM
such that the graph of X × τ supports m, then we can consider the form ωx

0 associated to X as
above, and we get the equality for this form.
For completeness, we state the following result, which can be proved in the line of [3].
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Proposition 11. Let χ be a transport current of finite action. Then, there exists a Borel
measure χ̄ on C0([0, T ],M), which is concentrated on the set of absolutely continuous curves,
and such that

χ(ω) =

∫

C0([0,T ],M)

(
∫ T

0
ωx

γ(t)(γ̇(t)) + ωtdt

)

dχ̄(γ)

for each ω ∈ Ω0, and

A(χ) =

∫

C0([0,T ],M)

(
∫ T

0
L(γ(t), γ̇(t), t)dt

)

dχ̄(γ).

If, in addition, the current χ is optimal, then the measure χ̄ is concentrated on the set of
minimizing extremals, and (ev0)♯χ̄ is an optimal initial measure, where ev0 is the evaluation
map γ 7−→ γ(0).

Proof. We only give a sketch, since this Proposition will not be used. By a regularisation
procedure, one can build a sequence χn of smooth transport currents such that χn −→ χ and
A(χn) −→ A(χ). For the smooth current χn, we can use the structure of Lipschitz currents above
to see that there exists a probability measure χ̄n on C0([0, T ],M), concentrated on the set of
smooth curves, such that the desired conclusion holds. Let K(a) be the subset of C0([0, T ],M)
formed by the absolutely continuous curves γ(t) which satisfy

∫ T

0
L(γ(t), γ̇(t), t)dt 6 a.

It is standard that the set K(a) is compact in C0([0, T ],M) for all a, see [28] or [18]. Since

A(χi) =

∫

C0([0,T ],M)

∫ T

0
L(γ(t), γ̇(t), t)dtdχ̄i(γ)

we conclude that
χ̄i

(

C0([0, T ],M) −K(a)
)

6 A(χi)/a 6 2A(χ)/a

when i is large enough. Hence the sequence χ̄n is a tight sequence of probability measures on
C0([0, T ],M), see [8] for the definition of tight sequences of measures. By the Prohorov theorem,
the sequence χ̄n has an accumulation point χ̄ for the weak topology. It is not hard to see that
the measure χ̄ satisfies the desired conclusions.

3 Hamilton-Jacobi equation

Most of the results stated so far can be proved by direct approaches using Mather’s shortening
Lemma, which in a sense is an improvement of the initial observation of Monge, see [28] and
[3]. We shall however base our proofs on the use of the Hamilton-Jacobi equation, in the spirit
of Fathi’s approach to Mather theory, see [18], which should be associated to Kantorovitch dual
approach of the transportation problem.

3.1 Viscosity solutions and semi-concave functions

It is certainly useful to recall the main properties of viscosity solutions in connection with semi-
concave functions. We will not give proofs, and instead refer to [18], [19], [12], as well as the
appendix in [6]. We will consider the Hamilton-Jacobi equation

∂tu+H(x, ∂xu, t) = 0 (HJ)
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as well as the backward Hamilton-Jacobi equation

− ∂tu−H(x, ∂xu, t) = 0 (H̆J)

which are different in the sense of viscosity solutions. The function u : M × [0, T ] −→ M is
called K-semi-concave if, for each chart θ ∈ Θ (see appendix), the function

(x, t) 7−→ u(θ(x), t) −K(‖x‖2 + t2)

is concave on B2 × [0, T ]. The function u is called semi-concave if it is K-semi-concave for some
K. A function u : M×]0, T [−→ M is called locally semi-concave if it is semi-concave on each
M × [s, t], for 0 < s < t < T . The following regularity result follows from Fathi’s work, see [18]
and also [6].

Proposition 12. Let u1 and u2 be two K-semi-concave functions. Let A be the set of minima
of the function u1 + u2. Then the functions u1 and u2 are differentiable on A, and du1(x, t) +
du2(x, t) = 0 at each point of (x, t) ∈ A. In addition, the mapping du1 : M × [0, T ] −→ T ∗M is
CK-Lipschitz continuous on A, where C is a universal constant.

Viscosity sub-solutions. Let u : M × [0, T ] −→ R be a continuous function. The following
properties are equivalent:

1. The function u is a viscosity sub-solution of (HJ), i.e. each smooth function f : M ×
[0, T ] −→ R satisfies the inequality ∂tf(x, t) + H(x, ∂xf(x, t), t) 6 0 at each point of
minimum (x, t) of the difference f − u.

2. The function u is a viscosity super-solution of (H̆J), i.e. each smooth function f : M ×
[0, T ] −→ R, satisfies the inequality −∂tf(x, t) − H(x, ∂xf(x, t), t) > 0 at each point of
maximum (x, t) of the difference f − u.

3. The function u is locally Lipschitz on M×]0, T [ and satisfies the equation (HJ) at almost
every point.

4. We have the inequalities u(x, t) 6 u(y, s) + cts(y, x) for all 0 6 s 6 t 6 T and all x and y
in M .

Viscosity solutions. Let u : M × [0, T ] −→ R be a continuous function. The following
properties are equivalent:

1. The function u is a viscosity solution of (HJ), i.e. it is a viscosity sub-solution of (HJ) and
it is a viscosity super-solution, which means that each smooth function f : M×[0, T ] −→ R

satisfies the inequality ∂tf +H(x, ∂xf(x, t), t) > 0 at each point of maximum (x, t) of the
difference f − u.

2. The function u is the maximum of all viscosity sub-solutions v of (HJ) which satisfy the
initial condition v0 = u0.

3. We have the relation u(x, t) = miny∈M u(y, s) + cts(y, x) for all 0 6 s 6 t 6 T .

4. The function u is locally semi-concave on M×]0, T ] and it solves (HJ) at almost every
point.

As a consequence, for each function u0 on M , there exists one and only one viscosity solution u
of (HJ) on M × [0, T ] with u0 as initial condition, it is locally semi-concave on M×]0, T ] and
given explicitly by u(x, t) = miny∈M u0(y) + ct0(y, x). There exists a decreasing function K(ǫ),
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which depends only on the Hamiltonian H (and not on the initial condition u0), such that the
function u is K(ǫ)-semi-concave on M × [ǫ, T ].

Backward viscosity solutions. Let ŭ : M × [0, T ] −→ R be a continuous function. The
following are equivalent:

1. The function ŭ is a viscosity solution of (H̆J), i.e. it is a viscosity super-solution of
(H̆J) and it is a viscosity sub-solution of (H̆J), which means that each smooth function
f : M × [0, T ] −→ R satisfies the inequality −∂tf −H(x, ∂xf(x, t), t) 6 0 at each point of
minimum (x, t) of the difference f − u.

2. The function ŭ is the minimum of all viscosity sub-solutions v of (HJ) (or equivalently all
viscosity super-solutions of (H̆J) ) which satisfy the final condition vT = uT .

3. We have the relation ŭ(x, s) = maxy∈M ŭ(y, t) − cts(x, y) for all 0 6 s 6 t 6 T .

4. The function ŭ is locally semi-convex on M × [0, T [ and it solves (HJ) (or equivalently
(H̆J)) at almost every point.

As a consequence, for each continuous function ŭT on M , there exists one and only one viscosity
solution ŭ of (H̆J) on M×[0, T ] with ŭT as final condition, it is locally semi-convex on M×[0, T [
and given explicitly by ŭ(x, t) = maxy∈M uT (y) − cTt (x, y). There exists a decreasing function
K(ǫ), which depends only on the Hamiltonian H (and not on the final condition ŭT ), such that
the function ŭ is K(ǫ)-semi-convex on M × [0, T − ǫ].

Proximal super-differentials of viscosity solutions. Let u ∈ C(M×[0, T ],R) be a viscosity
solution of (HJ). We have the expression

u(x, t) = min
γ
u0(γ(0)) +

∫ t

0
L(γ(s), γ̇(s), s)ds

where the minimum is taken on the set of curves γ ∈ C2([0, t],M) which satisfy the final
condition γ(t) = x. Let us denote by Γ(x, t) the set of minimizing curves in this expression,
which are obviously minimizing extremals of L.

On the other hand, let ∂+
x u(t, x) ⊂ T ∗

xM be the set of differentials ∂xf(x, t) at the point
(x, t) of smooth functions f such that (x, t) is a minimum of the difference f − u. The set
∂+

x u(t, x) ⊂ T ∗
xM is the proximal super-differential of the function ut at point x. Let us state

from [12], Theorem 6.4.12.

Proposition 13. Let us fix a point (x, t) ∈ M×]0, T ]. The set ∂+
x u(x, t) ⊂ T ∗

xM is a convex
and compact, hence it is the closed convex envelop of the set E(x, t) of its extremal points. We
have

E(x, t) = {∂vL(x, γ̇(t), t), γ ∈ Γ(x, t)}.

In particular, the function ut is differentiable at x if and only Γ(x, t) contains a single element
γ, and then ∂xu(x, t) = ∂vL(x, γ̇(t), t).

3.2 Viscosity solutions and Kantorovitch optimal pairs

Given a Kantorovitch optimal pair (φ0, φ1), we define the viscosity solution

u(t, x) := min
y∈M

φ0(x) + ct0(y, x)
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and the backward viscosity solution

ŭ(t, x) := max
y∈M

φ1(y) − cTt (x, y)

which satisfy u0 = ŭ0 = φ0, and uT = ŭT = φ1.

Proposition 14. We have

CT
0 (µ0, µ1) = max

u

(

∫

M

uTdµ1 −

∫

M

u0dµ0

)

, (5)

where the minimum is taken on the set of viscosity solutions u : M × [0, T ] −→ R of the
Hamilton-Jacobi equation (HJ). The same conclusion holds if the maximum is taken on the set
of backward viscosity solutions. The same conclusion also holds if the maximum is taken on the
set of viscosity sub-solutions of (HJ).

Proof. If u(x, t) is a viscosity sub-solution of (HJ), then it satisfies

uT (x) − u0(y) 6 cT0 (y, x)

for each x and y ∈M , and so, by Kantorovitch duality,

(

∫

M

uTdµ1 −

∫

M

u0dµ0

)

6 CT
0 (µ0, µ1).

The converse inequality is obtained by using the functions u and ŭ.

Definition 15. If (φ0, φ1) is a Kantorovitch optimal pair, then we denote by F(φ0, φ1) ⊂
C2([0, T ],M) the set of curves γ(t) such that

φ1(γ(T )) = φ0(γ(0)) +

∫ T

0
L(γ(t), γ̇(t), t)dt.

We denote by T (φ0, φ1) ⊂M×]0, T [ the set

T (φ0, φ1) = {(γ(t), t), t ∈]0, T [, γ ∈ F(φ0, φ1)}

and by T̃ (φ0, φ1) ⊂ TM×]0, T [ the set

T̃ (φ0, φ1)) = {(γ(t), γ̇(t), t), t ∈]0, T [, γ ∈ F(φ0, φ1)},

which is obviously invariant under the Euler-Lagrange flow.

Proposition 16. Let (φ0, φ1) be a Kantorovitch optimal pair, and let u and ŭ be the associated
viscosity and backward viscosity solutions.

1. We have ŭ 6 u, and

T (φ0, φ1) = {(x, t) ∈M×]0, T [ such that u(x, t) = ŭ(x, t)}.

2. At each point (x, t) ∈ T (φ0, φ1), the functions u and ŭ are differentiable, and satisfy
du(x, t) = dŭ(x, t). In addition, the mapping (x, t) 7−→ du(x, t) is locally Lipschitz on
T (φ0, φ1).
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3. If γ(t) ∈ F(φ0, φ1), then ∂xu(γ(t), t) = ∂vL(γ(t), γ̇(t), t). As a consequence, the set

T ∗(φ0, φ1) := {(x, p, t) ∈ T ∗M×]0, T [ such that (x, t) ∈ T and p = ∂xu(x, t) = ∂xŭ(x, t)}

is invariant under the Hamiltonian flow, and the restriction to T̃ (φ0, φ1) of the projection
π is a bi-locally-Lipschitz homeomorphism onto its image T (φ0, φ1).

Proof. In order to see that u > ŭ, just observe that u is the maximum of all viscosity sub-
solutions of (HJ) which satisfy u0 = φ0 and uT = φT , while ŭ is the minimum of the same family
of viscosity sub-solutions. Here is another proof. Let us fix a point (x, t) ∈ M×]0, T [. There
exist points y and z in M such that u(t, x) = φ0(y) + ct0(y, x) and ŭ(t, x) = φ1(z) − cTt (x, z), so
that

u(t, x) − ŭ(t, x) = φ0(y) − φ1(z) + ct0(y, x) + cTt (x, z)

> cT0 (y, z) − (φ1(z) − φ0(y)) > 0.

In case of equality, we must have cT0 (y, z) = ct0(y, x) + cTt (x, z). Let γ1(s) ∈ C2([0, t],M) satisfy
γ1(0) = y, γ1(t) = x and

∫ t

0 L(γ1(s), γ̇1(s), s)ds = ct0(y, x), and let γ2(s) ∈ C2([t, T ],M) satisfy

γ2(t) = x, γ2(T ) = z and
∫ t

0 L(γ2(s), γ̇2(s), s)ds = cTt (x, z). The curve γ : [0, T ] −→M obtained

by pasting γ1 and γ2 clearly satisfies
∫ T

0 L(γ(s), γ̇(s), s)ds = cT0 (y, z), it is thus a C2 minimizer,
and belongs to F(φ0, φ1). As a consequence, we have (x, t) ∈ T (φ0, φ1).

Conversely, we have:

Lemma 17. If v is a viscosity sub-solution of (HJ) satisfying v0 = φ0 and vT = φ1, and if
(x, t) ∈ T (φ0, φ1), then v(x, t) = u(x, t).

Proof. It is enough to prove that v(γ(t), t) = u(γ(t), t) for each curve γ ∈ F(φ0, φ1). If γ(s) is
such a curve, then we have

ct0(γ(0), γ(t)) + cTt (γ(t), γ(T )) = cT0 (γ(0), γ(T ))

Since v is a sub-solution, we have

v(γ(t), t) 6 v(γ(0), 0) + ct0(γ(0), γ(t)).

Adding with the inequality

u(γ(T ), T ) 6 u(γ(t), t) + cTt (γ(t), γ(T ))

we obtain
u(γ(T ), T ) 6 v(γ(0), 0) + cT0 (γ(0), γ(t))

which is an equality because γ ∈ F(φ0, φ1). Hence all the inequalities involved are equalities,
and we have v(γ(t), t) = v(γ(0), 0) + ct0(γ(0), γ(t)). The same could have been done with u
instead of v, so that u has the same value, and we have proved that

u(γ(t), t) = v(γ(t), t) = v(γ(0), 0) + ct0(γ(0), γ(t)).

The end of the proof of the proposition is straightforward. Point 2 follows from Proposition 12
applied to the locally semi-concave functions u and −ŭ. Point 3 follows from Proposition 13.
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3.3 Optimal C1 sub-solution

The following result, on which a large part of the present paper is based, is inspired from [19],
but seems new in the present context.

Proposition 18. We have

CT
0 (µ0, µ1) = max

v

(

∫

M

vTdµ1 −

∫

M

v0dµ0

)

,

where the maximum is taken on the set of continuous functions v : M × [0, T ] −→ R which are
C1 on M×]0, T [ and satisfy the inequality

∂tv(x, t) +H(t, x, ∂xv(x, t)) 6 0 (6)

at each point (x, t) ∈M×]0, T [.

Proof. First, let v(t, x) be a continuous function of M × [0, T ] which is differentiable on
M×]0, T [, where it satisfies (6). We then have, for each C1 curve γ(t) : [0, T ] −→ M , the
inequality

∫ T

0
L(γ(t), γ̇(t), t)dt >

∫ T

0
∂xv(γ(t),t)(γ̇(t)) −H(γ(t), u(γ(t),t), t)dt

=

∫ T

0
∂xv(γ(t),t)(γ̇(t)) + ∂tv(γ(t),t) = u(γ(T ), T ) − v(γ(0), 0).

As a consequence, we get v(y, T ) − v(x, 0) 6 cT (x, y) for each x and y, so that

∫

vTdµ1 −

∫

v0dµ0 6 CT
0 (µ0, µ1).

The converse follows directly from the next theorem, which is an analog in our context of the
main result of [19].

Theorem 3. For each Kantorovitch optimal pair (φ0, φ1), there exists a continuous function
v : M× [0, T ] −→ R which is C1 on M×]0, T [, which coincides with u on M×{0, T}∪T (φ0, φ1),
and which satisfies the inequality (6) strictly at each point of M×]0, T [−T (φ0, φ1).

Proof. The proof of [19] can’t be translated to our context in a straightforward way. Our
proof is different, and, we believe, simpler. It is based on:

Proposition 19. There exists a function V ∈ C2(M × [0, T ],R) which is null on T (φ0, φ1) and
which is positive on M×]0, T [−T (φ0, φ1), and such that

φ1(y) = min
γ(T )=y

φ0(γ(0)) +

∫ T

0
L(γ(t), γ̇(t), t) − V (γ(t), t)dt. (7)

Proof. Let us define the norm

‖u‖2 =
∑

θ∈Θ

‖u ◦ θ‖C2(B1×[0,T ],R)

of functions u ∈ C2(M × [0, T ],R), where Θ is the atlas of M defined in the appendix. If un ∈
C2(M×[0, T ],R) is a sequence of functions such that ‖un−u‖2 −→ 0 then u ∈ C2(M×[0, T ],R).
Let us denote by U the open set M×]0, T [−T (φ0, φ1). We need a Lemma.
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Lemma 20. Let U1 ⊂ U be an open set whose closure Ū1 is compact and contained in U , and let
ǫ > 0 be given. There exists a function V1 ∈ C2(M × [0, T [,R), which is positive on U1 and null
outside of Ū1 which is such that the equality (7) holds with V = V1, and such that ‖V1‖2 6 ǫ.

Proof. Let us fix the open set U1 and the pair (φ0, φ1). We claim that the conclusion of the
Lemma holds for all fuctions V1 which are supported in Ū1 and are sufficiently small in the C0

topology. In order to prove the claim, let us denote by F(V1) the set of curves γ ∈ C2([0, T ],M)
which minimize

φ0(γ(0)) +

∫ T

0
L(γ(t), γ̇(t), t) − V1(γ(t), t)dt

for fixed endpoint γ(T ). It is not hard to see that the set F(V1) depends semi-continuously of
the function V1 in the following sense: For each fixed open set U in C0([0, T ],M) which contains
F(0), we have F(V1) ⊂ U when ‖V1‖0 is sufficiently small. Let us choose the open set U in such
a way that, for each γ ∈ U and for each t ∈ [0, T ], the point (γ(t), t) does not belong to Ū1. Now
if V1 is so small that F(V1) ⊂ U , we obtain

min
γ∈C2([0,T ],M),γ(T )=x

φ0(γ(0)) +

∫ T

0
L(γ(t), γ̇(t), t) − V1(γ(t), t)dt

= min
γ∈U∩C2,γ(T )=x

φ0(γ(0)) +

∫ T

0
L(γ(t), γ̇(t), t) − V1(γ(t), t)dt

= min
γ∈U∩C2,γ(T )=x

φ0(γ(0)) +

∫ T

0
L(γ(t), γ̇(t), t)dt = φ1(x)

Let Un ⊂ U, n ∈ N be a countable sequence of open sets covering U and whose closures Ūn are
contained in U . There exists a sequence Vn of functions of C2(M × [0, T ],R) such that, for each
n ∈ N :

• The function Vn is positive in Un and null outside of Ūn.

• We have ‖Vn‖2 6 2−n.

• The equality (7) holds for the function V n =
∑n

i=1 Vn.

Such a sequence can be build inductively by applying the lemma to the Lagrangian L− V n−1

with ǫ = 2−n. Since ‖Vn‖ 6 2−n, the sequence V n is converging in C2 norm to a limit
V ∈ C2(M × [0, T ],R). This function V satisfies the desired properties. The proposition is
proved.

In order to finish the proof of the theorem, we shall consider the new Lagrangian L̃ = L−V ,
and the associated Hamiltonian H̃ = H + V , as well as the associated cost functions c̃ts. Let

ũ(x, t) := min
y∈M

φ0(y) + c̃t0(y, x),

be the viscosity solution of the Hamilton-Jacobi equation

∂tũ+H(x, ∂xũ, t) = −V (x, t) (H̃J)

emanating from φ0. The equality (7) says that ũT = φ1 = uT .
The function ũ is semi-concave as a viscosity solution of (H̃J). It is obviously a viscosity

sub-solution of the equation (HJ), which is strict outside of M ×{0, T}∪ T (φ0, φ1) (where V is
positive). We have ŭ 6 ũ 6 u, this relation being satisfied by each viscosity sub-solution of (HJ)
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which satisfies u0 = φ0 and uT = φ1. As a consequence, we have ŭ = ũ = u on T (φ0, φ1), and
the function ũ is differentiable at each point of T (φ0, φ1). Furthermore, we have du = dũ = dŭ
on this set.

We then obtain the desired function v of the theorem from the function ũ by regularisation,
applying Theorem 9.2 of [19].

4 Optimal objects of the direct problems

We prove Theorem A as well as the results of section 2. The following lemma generalizes a result
of Benamou and Brenier, see [4].

Lemma 21. We have the equality

CT
0 (µ0, µ1) = min

m0∈I(µ0,µT )
A(m0) = min

m∈M(µ0,µT )
A(m) = min

χ∈C(µ0,µT )
A(χ).

Proof. In view of Lemma 10, it is enough to prove that, for each transport current χ ∈
C(µ0, µT ), we have A(χ) > CT

0 (µ0, µ1). Let v be a sub-solution of (HJ) which is C1 on M×]0, T [,
and such that (v0, vT ) is a Kantorovitch optimal pair. For each current χ ∈ C(µ0, µT ), we have
A(χ) > χ(dv) = CT

0 (µ0, µ1), which ends the proof.

Let us choose an optimal pair (φ0, φ1) of the Kantorovitch dual problem, and fix it for
then end of this section. Let us choose a sub-solution v : M × [0, T ] −→ R of the Hamilton-
Jacobi equation which satisfies v0 = φ0 and vT = φ1 and which is C1 on M×]0, T [, and fix it.
Let us choose a vector-field X(x, t) : M×]0, T [−→ TM which is locally Lipschitz and satisfies
X(x, t) = ∂pH(x, ∂xv(x, t), t) on T (φ0, φ1). The existence of such a vector-field follows from the
fact that the vector-field ∂pH(x, ∂xv(x, t), t) is locally Lipschitz on T (φ0, φ1) and for standard
extension results, see appendix. We denote by Ψt

s the flow of X. All these objects are fixed once
and for all in this section.

4.1 Characterization of optimal currents.

Each optimal transport current χ can be written

χ = (X, 1) ∧ µχ,

with a measure µχ concentrated on T (φ0, φ1). The current χ is then Lipschitz regular, so that

there exists a transport interpolation µt, t ∈ [0, T ] such that µχ =
∫ T

0 µtdt and such that µt =
(Ψt

s)♯µs for each s and t in ]0, T [.
Proof. Let χ be an optimal transport current, that is a transport current χ ∈ C(µ0, µT ) such
that A(χ) = CT

0 (µ0, µT ). Let us recall the definition of the action A(χ) that will be used here:

A(χ) = sup
ω∈Ω0

(

χ(ωx, 0) −

∫

M×[0,T ]
H(x, ωx(x, t), t)dµχ

)

.

Since H(x, ∂xv, t) + ∂tv 6 0, we have

A(χ) = χ(dv) 6 χ(dv) −

∫

H(x, ∂xv(x, t), t) + ∂tvdµχ = χ(∂xv, 0) −

∫

H(x, ∂xv(x, t), t)dµχ.

The other inequality holds by the definition of A, so that

A(χ) = χ(dv) −

∫

H(x, ∂xv(x, t), t) + ∂tvdµχ = χ(∂xv, 0) −

∫

H(x, ∂xv(x, t), t)dµχ,
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and we conclude that the function H(x, ∂xv(x, t), t) + ∂tv vanishes on the support of µχ, or in
other words that the measure µχ is concentrated on the set T (φ0, φ1). In addition, for all form
ω = ωx + ωtdt, we have

χ(∂xv + ωx, 0) −

∫

H(x, ∂xv + ωx, t)dµχ 6 χ(∂xv, 0) −

∫

H(x, ∂xv, t)dµχ = A(χ).

Hence the equality

χ(ωx, 0) =

∫

∂pH(x, ∂xv, t)(ω
x)dµχ

holds for each form ω. This equality can be rewritten

χ(ω) =

∫

∂pH(x, ∂xv, t)(ω
x) + ωtdµχ

which is precisely saying that

χ = (∂pH(x, ∂xv(x, t), t), 1) ∧ µχ = (X, 1) ∧ µχ.

The last equality following from the fact that the vector-fields X and ∂pH(x, ∂xv(x, t), t) are
equal on the support of µχ. By the structure of Lipschitz regular transport currents, we obtain

the existence of a continuous family µt, t ∈ [0, T ] of probability measures such that µχ =
∫ T

0 µtdt
and such that µt = (Ψt

s)♯µs for each s and t in ]0, T [. Since the restriction to a subinterval
[s, t] ⊂ [0, T ] of an optimal transport current χ is clearly an optimal transport current for the
transportation problem between µs and µt with cost cts, we obtain that the path µt is a transport
interpolation.

4.2 Characterization of transport interpolations.

Each transport interpolation µt satisfies

µt = (Ψt
s)♯µs

for each (s, t) ∈]0, T [2. The mapping

µt 7−→ (X, 1) ∧

∫ T

0
µtdt

is a bijection between the set of transport interpolations and the set of optimal transport currents.

Proof. We fix a transport interpolation µt and two time s < s′ in ]0, T [. Let χ1 be a transport
current on M × [0, s] between the measures µ0 and µs which is optimal for the cost cs0, let χ2 be
a transport current on M × [s, s′] between the measures µs and µs′ which is optimal for the cost
cs

′

s and let χ3 be a transport current on M × [s′, T ] between the measures µs′ and µT which is
optimal for the cost cTs′ . Then the current χ on M × [0, T ] which coincides with χ1 on M × [0, s],
with χ2 on M × [s, s′] and with χ3 on [s′, T ] belongs to C(µ0, µT ). In addition, since µt is a
transport interpolation, we have

A(χ) = Cs
0(µ0, µs) + Cs′

s (µs, µs′) + CT
s′(µs′ , µT ) = CT

0 (µ0, µT ).

Hence χ is an optimal transport current for the cost cT0 . In view of the characterisation of
optimal currents, this implies that χ = (X, 1) ∧ µχ, and that

µχ =

∫ T

0
(Ψt

s)♯µsdt =

∫ T

0
(Ψt

s′)♯µs′dt.
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By uniqueness of the continuous desintegration of µχ, we obtain that, for each t ∈]0, T [,
(Ψt

s)♯µs = (Ψt
s′)♯µs′ , and since this holds for all s and s′, that (Ψt

s)♯µs = µt for all (s, t) ∈]0, T [2.

It follows that χ = (X, 1) ∧
∫ T

0 µtdt. We have proved that the mapping

µt 7−→ (X, 1) ∧

∫ T

0
µtdt

associates an optimal transport current to each transport interpolation. This mapping is obvi-
ously injective, and it is surjective in view of the characterization of optimal currents.

4.3 Characterization of optimal measures.

The mapping
χ 7−→ (X × τ)♯µχ

is a bijection between the set of optimal transport currents and the set of optimal transport
measures. Each optimal transport measure is thus invariant. The mapping

m0 7−→ µt = (π ◦ ψt
0)♯m0

is a bijection between the set of optimal initial measures m0 and the set of interpolations. An
invariant measure m is optimal if and only if it is supported on the set T̃ (φ0, φ1).

Proof. If m is an optimal transport measure, then the associated current χm is an optimal
transport current, and A(m) = A(χm). Let µm be the times component of χm, which is also the
measure π♯m. In view of the characterization of optimal currents, we have χm = (X, 1) ∧ µm.
We claim that the equality A(χm) = A(m) implies that m is supported on the graph of X.
Indeed, we have the pointwise inequality

∂xv(x, t) · V −H(x, ∂xv(x, t), t) 6 L(x, V, t) (8)

for each (x, V, t) ∈ TM×]0, T [. Integrating with respect to m, we get the equality

A(χm) =

∫

TM×[0,T ]
∂xv(V )−H(x, ∂x(x, t), t)dm(x, V, t) =

∫

M×[0,T ]
L(x, V, t)dm(x, V, t) = A(m),

which means that m is concentrated on the set where the inequality (8) is an equality, that is
on the graph of the vectorfield ∂pH(x, ∂xv(x, t), t). Since µm is supported on T , the measure m
is supported on T̃ and satisfies m = (X × τ)♯µm. Let µt be the transport interpolation such

that µm =
∫ T

0 µtdt. Setting mt = (Xt)♯µt, we have m =
∫ T

0 mtdt. Observing that the relation

Xt ◦ Ψt
s = ψt

s ◦Xs

holds on Ts, we conclude, since µs is supported on Ts, that

(ψt
s)♯ms = mt,

which means that the measure m is invariant.
Conversely, let m =

∫ T

0 mtdt be an invariant measure supported on T̃ (φ0, φ1). We have

A(m) =

∫ T

0

∫

TM

L(x, v, t)dmt(x, v)dt =

∫ T

0

∫

TM

L((ψt
0(x, v), t)dm0(x, v)dt,
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and by Fubini,

A(m) =

∫

TM

∫ T

0
L((ψt

0(x, v), t)dtdm0(x, v) =

∫

TM

φ1(π ◦ ψT
0 (x, v)) − φ0(x)dm0(x, v),

and since m0 is an initial transport measure, we get

A(m) =

∫

TM

φ1dµT −

∫

TM

φ0dµ0 = CT
0 (µ0, µT ).

5 Absolute continuity

In this section, we make the additional assumption that the initial measure µ0 is absolutely
continuous, and prove Theorem B. The following lemma answers a question asked to us by
Cedric Villani.

Lemma 22. If µ0 or µT is absolutely continuous with respect to the Lebesgue class, then each
interpolating measure µt, t ∈]0, T [, is absolutely continuous.

Proof. If µt, t ∈ [0, T ] is a transport interpolation, we have proved that

µt = (π ◦ ψt
s ◦Xs)♯µs

for each s ∈]0, T [, and t ∈ [0, T ]. Since the function π ◦ ψs
t ◦Xt is Lipschitz, it maps Lebesgue

zero measure sets into Lebesgue zero measure sets, and so it transport singular measures into
singular measures. It follows that if, for some s ∈]0, T [, the measure µs is not absolutely con-
tinuous, then none of the measures µt, t ∈ [0, T ] are absolutely continuous.

In order to continue the investigation of the specific properties satisfied when µ0 is absolutely
continuous, we first need some more general results. Let (φ0, φ1) be an optimal Kantorovitch
pair for the measures µ0 and µT and for the cost cT0 . Recall that we have defined F(φ0, φ1) ⊂
C2([0, T ],M) as the the set of curves γ(t) such that

φ1(γ(T )) = φ0(γ(0)) +

∫ T

0
L(γ(t), γ̇(t), t)dt.

Let F0(φ0, φ1) be the set of initial velocities (x, v) ∈ TM such that the curve t 7−→ π ◦ ψt
0(x, v)

belongs to F(φ0, φ1). Note that there is a natural bijection between F0(φ0, φ1) and F(φ0, φ1).

Lemma 23. The set F0(φ0, φ1) is compact. The maps π and π ◦ ψT
0 : F0(φ0, φ1) −→ M are

surjective. If x is a point of differentiability of φ0, then the set π−1(x)∩F0(φ0, φ1) contains one
and only one point. There exists a Borel measurable set Σ ⊂ M of full measure, whose points
are points of differentiability of φ0, and such that the map

x 7−→ S(x) = π−1(x) ∩ F0(φ0, φ1)

is Borel measurable on Σ.

Proof. The compactness of F0(φ0, φ1) follows from the fact, already mentioned, that the set
of minimizing extremals γ : [0, T ] −→M is compact for the C2- topology.
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It is equivalent to say that the projection π restricted to F0(φ0, φ1) is surjective, and to say
that, for each point x ∈ M , there exists a curve emanating from x in F(φ0, φ1). In order to
build such curves, recall that

φ0(x) = max
γ

φ1(γ(T )) −

∫ T

0
L(γ(t, γ̇(t), t)dt

where the maximum is taken on the set of curves which satisfy γ(0) = x. Any maximizing curve
is then a curve of F(φ0, φ1) which satisfies γ(0) = x. In order to prove that the map π ◦ ψT

0

restricted to F0(φ0, φ1) is surjective, it is sufficient to build, for each point x ∈ M , a curve in
F(φ0, φ1) which ends at x. Such a curve is obtained as a minimizer in the expression

φ1(x) = min
γ
φ0(γ(0)) +

∫ T

0
L(γ(t, γ̇(t), t)dt.

Now let us consider a point x of differentiability of φ0. Applying the general result on the
differentiability of viscosity solutions to the Backward viscosity solution ŭ, we get thet there
exists a unique maximizer to the problem

φ0(x) = max
γ

φ1(γ(T )) −

∫ T

0
L(γ(t, γ̇(t), t)dt

and that this maximizer is the extremal with initial condition (x, ∂pH(x, dφ0(x), 0)). As a
consequence, there exists one and only one point S(x) in F0(φ0, φ1) above x, and in addition we
have the explicit expression

S(x) = ∂pH(x, dφ0(x), 0).

Since the set of points of differentiability of φ0 has total Lebesgue measure –because φ0 is
Lipschitz– there exists a sequence Kn of compact sets such that φ0 is differentiable at each point
of Kn and such that the Lebesgue measure of M −Kn is converging to zero. For each n, the
set π−1(Kn) ∩ F0(φ0, φ1) is compact, and the restriction to this set of the canonical projection
π is injective and continuous. It follows that the inverse function S is continuous on Kn. As a
consequence, the map S is Borel measurable on Σ := ∪nKn.

Lemma 24. The initial transport measure m0 is optimal if and only if it is an initial transport
measure supported on F0(φ0, φ1).

Proof. This statement is a reformulation of the result in 4.3 stating that the optimal transport
measures are the invariant measures supported on T̃ (φ0, φ1).

Proposition 25. If µ0 is absolutely continuous, then there exists a unique optimal initial
measure m0. There exists a Borel section S : M −→ TM of the canonical projection such
that m0 = S♯µ0, this section is unique µ0-almost everywhere. For each t ∈ [0, T ], the map
π ◦ ψt

0 ◦ S : M −→M is then an optimal transport map between µ0 and µt.

Proof. Let S : Σ −→ TM be the Borel map constructed in Lemma 23. For convenience, we
shall also denote by S the same map extended by zero outside of Σ, which is a Borel section
S : M −→ TM . Since the set Σ is of full Lebesgue measure, and since the measure µ0 is ab-
solutely continuous, we have µ0(Σ) = 1. Let us consider the measure m0 = S♯(µ0|Σ). This is a
probability measure on TM , which is concentrated on F0(φ0, φ1), and which satisfies π♯m0 = µ0.
We claim that it is the only measure with these properties. Indeed, if m̃0 is a measure with
these properties, then π♯m̃0 = µ0, hence the measure m̃0 is concentrated on π−1(Σ)∩F0(φ0, φ1).
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But then, since π induces a Borel isomorphism from π−1(Σ) ∩ F0(φ0, φ1) onto its image Σ, of
inverse S, we must have m̃0 = S♯µ0. As a consequence, the measure m0 = S♯µ0 is the only can-
didate to be an optimal initial transport measure. Since we have already proved the existence
of an optimal initial transport measure, it implies that m0 is the only optimal initial transport
measure. Of course, we could prove directly that m0 is an initial transport measure, but as we
have seen, it is not necessary.

5.1 Remark

That there exists an optimal transport map if µ0 is continuous could be proved directly as a
consequence of the following properties of the cost function.

Lemma 26. The cost function cT0 (x, y) is semi-concave on M ×M . In addition, we have the
following injectivity property for each x ∈M : If the differentials ∂xc

T
0 (x, y) and ∂xc

T
0 (x, y′) exist

and are equal, then y = y′.

In view of these properties of the cost function, it is not hard to prove the following lemma
using a Kantorovitch optimal pair in the spirit of works of Brenier[10] and Carlier [13].

Lemma 27. There exists a compact subset K ∈ M ×M , such that the fiber Kx = K ∩ π−1
0 (x)

contains one and only one point for Lebesgue almost every x, and which contains the support of
all optimal plans.

The proof of the existence of an optimal map for an absolutely continuous measure µ0 can
then be terminated using the following result, see [1], Proposition 2.1.

Proposition 28. A transport plan η is induced from a transport map if and only if it is con-
centrated on a η-measurable graph.

5.2 Remark

Assuming only that µ0 vanishes on (d−1)-rectifiable sets, we can conclude that the same property
holds for all interpolating measures µt, t < T , and that Proposition 25 hold. This is proved
almost identically. The first refinement needed is that the set of singular points of the semi-
convex function φ0 is a (d− 1)-rectifiable, see [12]. The second refinement needed is that there
exists a Borel section S : M −→ TM of the canonical projection such that S(x) ∈ F0(φ0, φ1)
for each x ∈ M . This follows from general statements of set-valued analysis, see for example
[14] or the appendix in [12].

6 Aubry-Mather theory

We explain the relations between the results obtained so far and Mather theory, and prove
Theorem C. Up to now, we have worked with fixed measures µ0 and µT . Let us study the
optimal value CT

0 (µ0, µT ) as a function of the measures µ0 and µT .

Lemma 29. The function
(µ0, µT ) 7−→ CT

0 (µ0, µT )

is convex and lower semi-continuous on the set of pairs of probability measures on M .

Proof. It follows directly from the expression

CT
0 (µ0, µT ) = max

(φ0,φ1)

∫

M

φ1dµT −

∫

M

φ0dµ0
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as a maximum of continuous linear functions.

From now on, we consider that the Lagrangian L is defined for all times, L ∈ C2(TM×R,R),
and satisfies

L(x, v, t + 1) = L(x, v, t)

in addition to the standing hypotheses. Let us restate Theorem C with more details.

Theorem C’. There exists a Lipschitz vector-field X0 on M such that all the Mather measures
are supported on the graph of X0. We have

α = min
µ
C1

0 (µ, µ),

where the minimum is taken on the set of probability measures on M . The mapping m0 7−→
(π)♯m0 is a bijection between the set of Mather measures m0 and the set of probability measures
µ on M satisfying C1

0 (µ, µ) = α. More precisely, if µ is such a probability measure, then there
exists one and only one initial transport measure m0 for the transport problem between µ0 = µ
and µ1 = µ with cost c10, this measure is m0 = (X0)♯µ, and it is a Mather measure.

The proof, and related digressions, occupy the end of the section.

Lemma 30. The following minima

αT := min
µ∈B1(M)

1

T
CT

0 (µ, µ), T ∈ N

exist and are all equal.

Proof. The existence of the minima follows from the compactness of the set of probability
measures and from the semi-continuity of the function CT

0 .
Let µ1 be a minimizing measure for α1. We have CT

0 (µ1, µ1) 6
∑T

i=1 C
i
i−1(µ

1, µ1) = Tα1,
which implies the inequality

αT 6 α1.

Let us now prove that αT > α1. In order to do so, we consider an optimal measure µT

for αT , and consider a transport interpolation µt, t ∈ [0, T ] between the measures µ0 = µT and
µT = µT . Let us then consider, for t ∈ [0, 1], the measure

µ̃T
t :=

1

T

T−1
∑

i=0

µT
t+i,

and note that T µ̃T
0 = µT

0 +
∑T−1

i=1 µT
i = µT

T +
∑T−1

i=1 µT
i = T µ̃T

1 . In view of the convexity of the
function C1

0 , we have

C1
0(µ̃T

0 , µ̃
T
1 ) 6

1

T

T−1
∑

i=0

Ci+1
i (µi, µi+1) =

1

T
CT

0 (µT , µT ) = αT .

Since µ̃T
0 = µ̃T

1 , this implies that α1 6 αT , as desired.

Lemma 31. We have α1 6 α.
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Proof. If m0 is a Mather measure, then it is an initial measure for the transport prob-
lem between µ0 = (π)♯m0 and µ1 = (π)♯m0 for the cost c10. As a consequence, we have
α = A1

0(m0) > C1
0 (µ0, µ0) > α1.

Lemma 32. Let µ1 be a probability measure on M such that C1
0 (µ1, µ1) = α1. Then there

exists a unique initial transport measure m0 for the transportation problem between µ0 = µ1 and
µ1 = µ1 for the cost c10. This measure satisfies (ψ1

0)♯m0 = m0. We have α1 = A1
0(m0) > α, so

that α = α1 and m0 is a Mather measure. There exists a constant K, which depends only on L,
such that the measure m0 is supported on the Graph of a K-Lipschitz vector-field.

Proof. Let µ1 be a probability measure on M such that C1
0 (µ1, µ1) = α1, and let m0 be an

optimal initial transport measure for the transportation problem between µ0 = µ1 and µ1 = µ1

for the cost c10. Let µt = (π ◦ ψt
0)♯m0, t ∈ [0, 1] be the associated transport interpolation. Let

us define the 1-periodic continuous path µ̃t : R −→ B1(M) by µ̃t = µt mod 1. We claim that the
relation

Cs3

s1
(µ̃s1

, µ̃s3
) = Cs2

s1
(µ̃s1

, µ̃s2
) + Cs3

s2
(µ̃s2

, µ̃s3
)

holds for all s1 < s2 < s3 in R. Observe that the claim obviously follows from the fact that
µt, t ∈ [0, 1] is a transport interpolation if the three times s1, s2 and s3 lie in a same interval of
the form [n, n+ 1] with n ∈ Z. The claim also obviously holds if si ∈ Z, since then

Cs3

s1
(µ̃s1

, µ̃s3
) = (s3 − s1)α1 = (s2 − s1)α1 + (s3 − s2)α1 = Cs2

s1
(µ̃s1

, µ̃s2
) + Cs3

s2
(µ̃s2

, µ̃s3
).

Let us assume that there exists an integer between s1 and s2 and an integer between s2 and s3,
so that

[s1] 6 s1 6 [s1] + 1 6 [s2] 6 s2 6 [s2] + 1 6 [s3] 6 s3 6 [s3] + 1.

In order to shorten the expressions, we shall denote by Ct
s the quantity Ct

s(µ̃s, µ̃t). We have the
equalities

C
[s3]+1
[s1]

= C
[s1]+1
[s1]

+ C
[s2]
[s1]+1 + C

[s2]+1
[s2]

+ C
[s3]
[s2]+1 + C

[s3]+1
[s3]

.

and then

C
[s3]+1
[s1]

= Cs1

[s1]
+ C [s1]+1

s1
+ C

[s2]
[s1]+1 + Cs2

[s2]
+ C [s2]+1

s2
+ C

[s3]
[s2]+1 + Cs3

[s3]
+ C [s3]+1

s3
.

This implies, on the one hand that

C
[s3]+1
[s1]

= Cs1

[s1]
+ Cs3

s1
+ C [s3]+1

s3

and on the other hand that

C
[s3]+1
[s1]

= Cs1

[s1]
+ Cs2

s1
+ Cs3

s2
+ C [s3]+1

s3
.

The claim follows. The cases where there does not exist any integer between s1 and s2 or
between s2 and s3 are treated similarly.

As a consequence of the claim, the restriction to the interval [−2, 3] of the path µ̃t is a
transport interpolation. It follows from our main results that there exists a constant K which
depends only on L, and a K-Lipschitz vector-field X : M × [−1, 2] −→ TM whose flow Ψt

s

satisfies (Ψt
s)♯µs = µt for all (s, t) ∈ [−1, 2]2. In view of the bijection between the optimal initial

measures and the interpolations, there exists one and only one optimal initial measure m0 for
the transport problem between µ1 and itself on the time interval [0, 1], this initial transport
measure is given by m0 = (X0)♯µ

1. We have, for this measure,

A1
0(m0) = C1

0 (µ1, µ1) = α1 6 α.
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Let us now consider the measure m1 = (ψ1
0)♯m0. We have (π ◦ ψ1

0)♯m1 = (π ◦ ψ2
0)♯m0 = µ1,

so that m1 is an initial transport measure for the transportation problem between µ0 = µ1

and µ1 = µ1 for the cost c10. Since m0 is also an optimal initial transport measure for the
transportation problem on the time interval [0, 2] between µ0 = µ1 and µ2 = µ1 for the cost c20,
we get A2

0(m0) = 2α1. But then we have

A1
0(m1) = A2

1(m0) = A2
0(m0) −A1

0(m0) = α1

so that the initial measure m1 is optimal for the transport problem between µ0 = µ1 and µ1 = µ1

for the cost c10. By uniqueness of such an optimal initial measure, we must have m1 = m0. As
a consequence, A1

0(m0) > α. Since we have already obtained the other inequality, we have
A1

0(m0) = α, so that m0 is a Mather measure.

Proof of the theorem. Let m0 be a Mather measure, and let µ0 = π♯m0. Note that we also
have µ0 = (π ◦ ψ1

0)♯m0. As a consequence, m0 is an initial transport measure for the transport
between µ0 and µ0 for the cost c10, and we have

α = A1
0(m0) > C1

0 (µ0, µ0) > α1.

Since α1 = α, all these inequalities are equalities, so that m0 is an optimal initial transport, and
C1

0 (µ0, µ0) = α1. It follows from Lemma 32 that m0 is supported on the graph of a K-Lipschitz
vector-field.

Up to now, we have proved that each Mather measure is supported on the graph of a K-
Lipschitz vector-field. There remains to prove that all Mather measures are supported on a
single K-Lipschitz graph. In order to prove this, let us denote by M̃ ⊂ TM the union of the
supports of Mather measures. If (x, v) and (x′, v′) are two points of M̃, then there exists a
Mather measure m0 whose support contains (x, v) and a measure m′

0 whose support contains
(x′, v′). But then the measure (m0 +m′

0)/2 is clearly a Mather measure whose support contains
both (x, v) and (x′, v′). Since the support of the Mather measure (m0 +m′

0)/2 is contained on
the graph of a K-Lipschitz vector-field. Assuming that x and x′ lie in the image θ(B1) of a
common chart, see appendix, so that (x, v) = dθ(X,V ) and (x′, v′) = dθ(X ′, V ′), we obtain

‖V − V ′‖ 6 K‖x− x′‖.

It follows that the restriction to M̃ of the canonical projection TM −→ M is a bi-Lipschitz
homeomorphism, or equivalently that the set M̃ is contained in the graph of a Lipschitz vector-
field.

A Notations and standing conventions

• M is a compact manifold of dimension d, and π : TM −→M is the canonical projection.

• We denote by τ : TM × [0, T ] −→ [0, T ] or M × [0, T ] −→ [0, T ] the projection on the
second factor.

• If N is any manifold (for exemple M ,M × [0, T ], TM or TM × [0, T ])) the sets B(N) ⊂
B+(N) ⊂ B1(N) are respectively the set of finite Borel signed measures, non-negative
Borel finite measures, and Borel probability measures. If Cc(N) is the set of continuous
compactly supported functions on N , endowed with the topology of uniform convergence,
then the space B(N) is identified with the set of continuous linear forms on Cc(M) by the
Rietz theorem. We will always endow the space B(N) with the weak-∗ topology, which
will sometimes be called weak topology. Note that the set B1(N) is compact if N is.
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• Given two manifolds N and N ′, a Borel application F : N −→ N ′, and a measure µ ∈
B(N), we define the push-forward F♯µ of µ by F as the unique measure on N ′ which
satisfies

F♯µ(B) = µ(F−1(B))

for all Borel set B ∈ N , or equivalently

∫

N ′

fd(F♯µ) =

∫

N

f ◦ Fdµ

for all continuous function f : N ′ −→ R.

• The set K(µ0, µT ) of transport plans is defined in section 1.2.

• The set I(µ0, µT ) of initial transport measures is defined in section 2.1.

• The set M(µ0, µT ) of transport measures is defined in section 2.1.

• The set C(µ0, µT ) of transport currents is defined in section 2.2.

• We fix, once and for all, a finite atlas Θ of M , formed by charts θ : B3 −→ M , where Br

is the open ball of radius r centered at zero in R
d. We assume in addition that the sets

θ(B1), θ ∈ Θ cover M .

• We say that a vector-field X : M −→ TM is K-Lipschitz if, for each chart θ ∈ Θ, the
mapping Π ◦ (dθ)−1 ◦X ◦ θ : B3 −→ R

d is K-Lipschitz on B1, where Π is the projection
B3 × R

d −→ R
d.

• We mention the following results which are used through the paper : There exists a
universal constant C such that, if A is a subset of M , and XA : A −→ TM is a K-Lipschitz
vector-field, then there exists a CK-Lipschitz vector-field X on M which extends XA. In
addition, if A is a subset of M × [0, T ] and XA : A −→ TM is a K-Lipschitz vector-field,
then there exists a CK-Lipschitz vector-field X on M × [0, T ] which extends XA. If A
is a compact subset of M × [0, T ] and XA : A ∩M×]0, T [−→ TM is a locallyLipschitz
vector-field (which is K(ǫ)-Lipschitz on A ∩ M × [ǫ, T − ǫ]), then there exists a locally
Lipschitz (which is CK(ǫ)-Lipschitz on M × [ǫ, T − ǫ]) vector-field X on M×]0, T [ which
extends XA,
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