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Optimal mass transportation and Mather theory

Patrick Bernard and Boris Buffoni

July 2005

Abstract: We study the Monge transportation problem when the cost is the action associated
to a Lagrangian function on a compact manifold. We show that the transportation can be
interpolated by a Lipschitz lamination. We describe several direct variational problems the
minimizers of which are these Lipschitz laminations. We prove the existence of an optimal
transport map when the transported measure is absolutely continuous. We explain the relations
with Mather’s minimal measures.

Résumé: On étudie le probléeme de transport de Monge lorsque le cout est I'action associée
a un Lagrangien sur une variété compacte. On montre que le transport peut étre interpolé
par une lamination lipschitzienne. On décrit plusieurs problemes variationnels directs dont ces
laminations sont les minimiseurs. On montre 'existence d’une application de transport opti-
male lorsque la mesure transportée est absolument continue. On explique les relations avec les
mesures minimisantes de Mather.
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Several observations have recently renewed the interest for the classical topic of optimal
mass transportation, whose primary origin is attributed to Monge a few years before French
revolution. The framework is as follows. A space M is given, which in the present paper will
be a compact manifold, as well as a continuous cost function ¢(z,y) : M x M — R. Given two
probability measures g and g1 on M, the mappings ¥ : M — M which transport ug into
and minimize the total cost [, ¢(z, ¥(x))dpo are studied. It turns out, and it was the core of
the investigations of Monge, that these mappings have very remarkable geometric properties, at
least at a formal level.

Only much more recently was the question of the existence of optimal objects rigorously
solved by Kantorovich in a famous paper of 1942. Here we speak of optimal objects, and not of
optimal mappings, because the question of existence of an optimal mapping is ill-posed, so that
the notion of optimal objects has to be relaxed, in a way that nowadays seems very natural, and
that was discovered by Kantorovich.

Our purpose here is to continue the work initiated by Monge, recently awakened by Brenier
and enriched by other authors, on the study of geometric properties of optimal objects. The
costs functions we consider are natural generalizations of the cost ¢(z,y) = d(z,y)? considered
by Brenier and many other authors. The book [BY] gives some ideas of the applications expected
from this kind of questions. More precisely, we consider a Lagrangian function L(z,v,t) :
TM x R — R which is convex in v and satisfies standard hypotheses recalled later, and define
our cost by

1
clz,y) = min /O Lix(6).4(t). t)dt

where the minimum is taken on the set of curves v : [0,1] — M satisfying v(0) = z and
~v(1) = y. Note that this class of costs does not contain the very natural cost c(z,y) = d(x,y).
Such costs are studied in a second paper [J].

Our main result is that the optimal transports can be interpolated by measured Lipschitz
laminations, or geometric currents in the sense of Ruelle and Sullivan. Interpolations of trans-
port have already been considered by Benamou, Brenier and McCann for less general cost
functions, and with different purposes. Our methods are inspired by the theory of Mather,
Mané and Fathi on Lagrangian dynamics, and we will detail rigorously the relations between
these theories. Roughly, they are exactly similar except that mass transportation is a Dirichlet
boundary value problem, while Mather theory is a periodic boundary value Problem. We will
also prove, extending works of Brenier, Gangbo, McCann, Carlier, and other authors, that the
optimal transportation can be performed by a Borel map with the additional assumption that
the transported measure is absolutely continuous.

Various connections between Mather-Fathi theory, optimal mass transportation and Hamilton-
Jacobi equations have recently been discussed, mainly at a formal level, in the literature, see for
example [BY], or [L9], where they are all presented as infinite dimensional linear programming
problems. This have motivated a lot of activity around the interface between Aubry-Mather
theory and optimal transportation, some of which overlap partly the present work. For example,
at the moment of submitting the paper, we have been informed of the existence of the recent
preprints of De Pascale, Gelli and Granieri, [[5], and of Granieri, Pf]. We had also been aware
of a manuscript by Wolansky [[(] for a few weeks, which, independently, and by somewhat
different methods, obtains results similar to ours. Note however that Lipschitz regularity, which
we consider as one of our most important results, was not obtained in this preliminary version
of [iJ]. It is worth also mentioning the papers [Bf] of Pratelli and [BI]] of Loeper.

This paper emanates from the collaboration of the Authors during the end of the stay of the
first author in EPFL for the academic year 2002-2003, granted by the Swiss National Science
Foundation.



1 Introduction

We present the context and the main results of the paper.

1.1 Lagrangian, Hamiltonian and cost

In all the present paper, the space M will be a compact and connected Riemannian manifold
without boundary. Some standing notations are gathered in the appendix. Let us fix a positive
real number 7T, and a Lagrangian function

L e C*TM x [0,T],R).

A curve v € C2([0,T], M) is called an extremal if it is a critical point of the action

/0 Lix(6).4(t). t)dt

with fixed endpoints. It is called a minimizing extremal if it is minimizing the action. We
assume:
convexity For each (z,t) € M x [0,T], the function v — L(x,v,t) is convex with positive
definite Hessian at each point.
superlinearity For each (z,t) € M x [0,T], we have L(z,v,t)/||v] — oo as [jv]| — oo.
Arguing as in [PQ] (Lemma 3.2.2), this implies that for all & > 0 there exists C' > 0 such that
L(z,v,t) > af|v]| — C for all (z,v,t) € TM x [0,T].
completeness For each (z,v,t) € TM x [0,T], there exists one and only one extremal v €
C?([0,T), M) such that (y(t),%(t)) = (z,v).

We associate to the Lagrangian L a Hamiltonian function H € C?(T*M x [0, T],R) given by

H('Iapat) = maxp(v) - L(.I,’U,t)-

We endow the cotangent bundle T*M with its canonical symplectic structure, and associate to
the Hamiltonian H the time-dependent vectorfield Y on T* M, which is given by

Y = (,H,—0,H)

in any canonical local trivialisation of T*M. The hypotheses on L can be expressed in terms of
the function H:

convexity For each (z,t) € M x [0,T], the function p — H(z,p,t) is convex with positive
definite Hessian at each point.

superlinearity For each (z,t) € M x [0,T], we have H(z,p,t)/|p|| — oo as ||p|| — oc.
completeness Each solution of the equation (&(t),p(t)) = Y (z(t),p(t),t) can be extended to
the interval [0,7]. We can then define, for all s,t € [0, 7], the flow % of Y from times s to time
t.

In addition, the mapping 9,L : TM x [0,T] — T*M x [0,T] is a C' diffeomorphism,
whose inverse is the mapping d,H. These diffeomorphisms conjugate ¥ with a time-dependent
vectorfield E on TM. We denote the flow of E by ¢! : TM — TM (s,t € [0,7]), which is
such that ¢¢ = I'd and 9, = E; o 1!, where as usual E; denotes the vectorfield E(.,t) on T'M.
The diffeomorphisms 9, L and 9,H conjugate the flows 1! and ¢!. Moreover the extremals are
the projection of the integral curves of £ and

(mout, a(mouh)) = vl M



where m : TM — M is the canonical projection. In ([l), 9;(m o ¥%) is seen as a vector in the

tangent space of M at w o ¢!, If 9y(m o L) is seen as a point in TM, ([l) becomes simply
Oy (m o) = Y.

For each 0 < s <t < T, we define the cost function

t
(o) =min [ L(2(0).4(0).0)do
S
where the minimum is taken on the set of curves v € C2([s,t], M) satisfying v(s) = = and
v(t) = y. That this minimum exists is a standard result under our hypotheses, see [BJ] or 7.

Proposition 1. Let us fiz a subinterval [s,t] C [0,T]. The set & C C?([s,t], M) of minimizing
extremals is compact for the C? topology.

Let us mention that, for each (zg,s) € M x [0,7T], the function (z,t) — ci(xg, ) is a
viscosity solution of the Hamilton-Jacobi equation

O+ H(x,0pu,t) =0

on Mx]s,T[. This remark may help the reader in understanding the key role which will be
played by this equation in the sequel.

1.2 Monge-Kantorovich theory

We recall the basics of Monge-Kantorovich duality. The proofs are available in many texts on
the subjects, for example [fl, B7, Bg. We assume that M is a compact manifold and that ¢(z,y)
is a continuous cost function on M x M, which will later be one of the costs ¢ defined above.
Given two Borel probability measures pg and pp on M, a transport plan between pg and pq is
a measure on M x M which satisfies

mog(1) = po and myy(n) = pa,

where g : M x M — M is the projection on the first factor, and 7 is the projection on the sec-
ond factor. We denote by K(uo, 1), after Kantorovich, the set of transport plans. Kantorovich
proved the existence of a minimum in the expression

C(po, 1) = min / cdn
nER (o 11) J Mx M

for each pair (i, 1) of probability measures on M. Here we will denote by

Cluo, p1) == min / ¢ (2, y)dn(z, y) 2)
nEX(po 1) J Mx M

the optimal value associated to our family of costs c. The plans which realize this minimum
are called optimal transfer plans. A pair (¢g, ¢1) of continuous functions is called an admissible
Kantorovich pair if is satisfies the relations

1() = min do(y) + (9. ) and Go(z) = max 61 (y) — ()

for all point x € M. Note that the admissible pairs are composed of Lipschitz functions if the
cost ¢ is Lipschitz, which is the case of the costs ¢! when s < t. Another discovery of Kantorovich

is that
C(po, 1) = Jnax ( /M prdur — /M ¢oduo) (3)
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where the maximum is taken on the set of admissible Kantorovich pairs (¢g, ¢1). This maxi-
mization problem is called the dual Kantorovich problem, the admissible pairs which reach this
maximum are called optimal Kantorovich pairs. The direct problem (f) and dual problem (f)
are related as follows.

Proposition 2. If n is an optimal transfer plan, and if (¢o, $1) is a Kantorovich optimal pair,
then the support of n is contained in the set

{(x,y) € M? such that ¢1(y) — do(x) = c(z,y)} € M x M.

Let us remark that the knowledge of the set of Kantorovich admissible pairs is equivalent to
the knowledge of the cost function c.

Lemma 3. We have

c(z,y) = e, o1(y) — ¢o(x)

where the maximum is taken on the set of Kantorovich admissible pairs.

PROOF. This maximum is clearly less that c¢(x,y). For the other inequality, let us fix points xg
and yo in M, and consider the functions ¢1(y) = c(zo,y) and ¢o(x) = maxyenr ¢1(y) — c(x,y).
We have ¢1(yo) — ¢o(xo) = e(x0,90) —0 = ¢(x0,y0). So it is enough to prove that the pair (¢g, ¢1)
is an admissible Kantorovich pair, and more precisely that ¢1(y) = mingeps ¢o(x) + c(x,y). We
have

¢o(z) + c(z,y) = c(wo,y) — c(x,y) + c(x,y) = c(x0,y) = ¢1(y)

2
which gives the inequality ¢ (y) <

mingens ¢o(x) + ¢(z,y). On the other hand, we have

grcreu]\r/} do(x) + c(x,y) < do(xo) + c(x0,y) = c(x0,y) = d1(y).

1.3 Interpolations

In this section, the Lagrangian L and time 7' > 0 are fixed. It is not hard to see that, if uq, po
and pgs are three probability measures on M, and if ¢; < ty < t3 € [0,7] are three times, then
we have the inequality

C8 (11, pi3) < CE2(ua, o) + CE2 (a2, 1)

The family py,t € [0,7T] of probability measures on M is called an interpolation between o and
pr if it satisfies the equality

t t t
C (pty s fres) = CFF (> pity) + Ol (1t fhts)

for all 0 < t1 <9 < t3 <T. Our main result is the following:

Theorem A. For each pair po, pr of probability measures, there exist interpolations between pig
and pp. Moreover, each interpolation (put),t € [0,T] is given by a Lipschitz measured lamination
in the following sense:

Eulerian description : There exists a bounded locally Lipschitz vectorfield X (z,t) : M x]0, T[—
TM such that, if O, (s,t) €]0,T[? is the flow of X from time s to time t, then (U!)yus = p; for
each (s,t) €]0,T[2.

Lagrangian description : There exists a family F C C?([0,T], M) of minimizing extremals
v of L, which is such that the relation %(t) = X (y(t),t) holds for each t €]0,T[ and for each
v € F. The set

T = {(v(t),5(t), 1), t €]0,T[,y € F} € TMx]0,T|



is invariant under the Euler-Lagrange flow 1. The measure py is supported on Ty = {y(t),y €
F}. In addition, there exists a continuous family my,t € [0,T] of probability measures on T M
such that my is concentrated on T = {((t),¥(t)),y € F} for each t €]0,T], such that mymy = i
for each t € [0,T], and such that

me = (L)gms

for all (s,t) € [0,T)2.
Hamilton-Jacobi equation : There exists a Lipschitz and C* function v(x,t) : M x]0,T[— R
which satisfies the inequation

O + H(x,0yv,t) <0,

with equality if and only if (z,t) € T = {(y(t),t),y € F,t €]0,T[}, and such that X (z,t) =
OpH (x,0,v(x,t),t) for each (z,t) € T.

Uniqueness : There may exist several different interpolations. However, it is possible to choose
the vectorfield X, the family F and the sub-solution v in such a way that the statements above
hold for all interpolations p; with these fized X, F and v. For each s <t €]0,T|, the measure
(Id x WL)sps is the only optimal transport plan in K(us, jue) for the cost . This implies that

[ W) dis(a) = Cllas ).
M

Let us comment a bit the preceding statement. The set 7 C TM x]0,T[ is the image by
the Lipschitz map (x,t) — (X (x,t),t) of the set 7 C TM x]0,T[. We shall not take X (x,t) =
OpH (x,0yv(x,t),t) outside of T because we do not prove that this vectorfield is Lipschitz outside
of 7. The data of the vectorfield X outside of 7 is immaterial: any Lipschitz extension of Xz
will fit. Note also that the relation

Ul = 1oyl o X (4)

holds on 7, where X;(.) = X (., s).
The vectorfield X in the statement depends on the transported measures pg and pur. The
Lipschitz constant of X, however, can be fixed independently of these measures, as we now state

(see Proposition [[3, Proposition [[J, Theorem ] and ([1])):

Addendum There exists a decreasing function K () :]0,T/2[—]0, 00|, which depends only on
the time T and on the Lagrangian L, and such that, for each pair ug, ur of probability measures,
one can choose the vectorfield X in Theorem A in such a way that X is K(e)-Lipschitz on
M x [e,T — €] for each € €]0,T/2].

Proving Theorem A is the main goal of the present paper. We will present in section P
some direct variational problems which are well-posed and of which the transport interpolations
are in some sense the solutions. We believe that these variational problems are interesting in
themselves. In order to describe the solutions of the variational problem, we will rely on a dual
approach based on the Hamilton-Jacobi equation, inspired from Fathi’s approach to Mather
theory, as detailed in section B The solutions of the problems of section B, as well as the
transport interpolations, are then described in section f], which ends the proof of Theorem A.

1.4 Case of an absolutely continuous measure

Additional conclusions concerning optimal transport can usually be obtained when the initial
measure fg is absolutely continuous. For example a standard question is whether the optimal
transport can be realized by an optimal mapping.



A transport map is a Borel map ¥ : M — M which satisfies Wy = p1. To any transport
map V¥ is naturally associated the transport plan (Id x W), called the induced transport plan.
An optimal map is a transport map ¥ : M — M such that

/ e, U (@))duo < / ez, F(x))dpo

M M

for any transport map F'. It turns out that, under the assumption that pg has no atoms, a
transport map is optimal if and only if the induced transport plan is an optimal transport plan,
see [[I], Theorem 2.1. In other words, we have

ir\if /M c(x, ¥(x))duo(x) = C(po, p1),

where the infimum is taken on the set of transport maps from pg to 1. This is a general result
which holds for any continuous cost c¢. It is a standard question, which turns out to be very
hard for certain cost functions, whether the infimum above is reached, or in other words whether
there exists an optimal transport plan which is induced from a transport map. Part of the result
below is that this holds true in the case of the cost cg. The method we use to prove this is an
elaboration on ideas due to Brenier, see [[J] and developed for instance in [P4], (see also [PJ])
and [Ld], which is certainly the closest to our needs.

Theorem B. Assume that ug is absolutely continuous with respect to the Lebesgue class on M.
Then for each final measure up, there exists one and only one interpolation ug,t € [0,T], and
each interpolating measure ug,t < T is absolutely continuous. In addition, there exists a family
Uh: M — M, t€]0,T], of Borel maps such that (Id x ¥h)suo is the only optimal transfer plan
in K(po, pe) for the cost function cy. Consequently, we have

/M (o, Wh () )dpio () = Ch(pion ue), 0 <t <T.

If ur, instead of no, is assumed absolutely continuous, then there exists one and only one inter-
polation, and each interpolating measure g, t €]0,T) is absolutely continuous.

This theorem will be proved and commented in section .

1.5 Mather theory

Let us now assume that the Lagrangian function is defined for all times, L € C*(TM x R,R)
and, in addition to the standing hypotheses, satisfies the periodicity condition

L(z,v,t+1) = L(z,v,t)

for all (xz,v,t) € TM x R. A Mather measure, see [B3], is a compactly supported probability
measure mq on T'M which is invariant in the sense that (})ymo = mo and is minimizing the
action

Ab(mg) = / L (z,v), t)dmodt.
TMx[0,1]

The major discovery of [BJ] is that Mather measures are supported on the graph of a Lipschitz
vectorfield. Let us call a the action of Mather measures —this number is the value at zero of the
« function defined by Mather in [B3]. Let us now explain how this theory of Mather is related
to, and can be recovered from, the content of our paper.



Theorem C. We have
a = min Cj (i, ),
“w

where the minimum is taken on the set of probability measures on M. The mapping mg —— Tymg
is a bijection between the set of Mather measures mg and the set of probability measures p on M
satisfying C&(,u,u) = «. There exists a Lipschitz vectorfield Xo on M such that all the Mather
measures are supported on the graph of Xg.

This theorem will be proved in section ], where the bijection between Mather measures and
measures minimizing Cg (i1, ) will be precised.

2 Direct variational problems

We state two different variational problems whose solutions are the interpolated transports.
We believe that these problems are interesting on their own. They will also be used to prove
Theorem A.

2.1 Measures

This formulation parallels Mather’s theory. It can also be related to the generalized curves of
L. C. Young. Let pp and pp be two probability Borel measures on M. Let mg € B1(TM) be a
Borel probability measure on the tangent bundle T'M. We say that mg is an initial transport
measure if the measure 1 on M x M given by

0= (mx (w o1 ))mo

is a transport plan, where 7 : TM — M is the canonical projection. We call Z(ug, pr) the set
of initial transport measures. To an initial transport measure mg, we associate the continuous
family of measures

my = (4g)zmo, t € [0, 7]

on TM, and the measure m on T'M x [0,T] given by
m=m; ®dt = ((1f)ymo) ® dt.

Note that the linear mapping mg — m = ((¥§)ymo) ®dt is continuous from B(T'M) to B(T'M x
[0,7]) endowed with the weak topology, see appendix.

Lemma 4. The measure m satisfies the relation
[ ot ot oot = [ rder = [ foduo (5)
TMx[0,T] M M

for each function f € C1(M x [0,T],R), where f; denotes the function x — f(z,t).

PROOF. Setting f(z,v,t) = f(z,1), gi(z,v,t) = Of(x,t) = O f(x,v,t) and gao(z,v,t) =
Op f(x,t) - v, we have

T
/ Of(x,t) + 0pf(w,1) - vdm(z, v, 1) =/ / (91 + g2) o ¥ dmodt.
TMx[0,T] 0 JTM

Noticing that, in view of equation ([l]), we have

B (f o) = g1 ol + ga o



we obtain that

TM

/ 8tf($,t)+8$f(1‘,t)-Udm(m',v,t) :/ (J?O%T—J}V)dm()Z/ de,U'T_/ deMO
TMx[0,T] M M

as desired. 0

Definition 5. A finite Borel measure on TM x [0,T) which satisfies ([) is called a transport
measure. We denote by M(ug, pr) the set of transport measures. A transport measure which is
induced from an initial measure mq is called an invariant transport measure. The action of the
transport measure m is defined by

A(m) = / L(z,v,t)dm € RU {oo}
TMx[0,T]

The action A(mg) of an initial transport measure is defined as the action of the associated
transport measure m. We will also denote this action by AL (mg) when we want to insist on the
time interval. We have

AL (mg) = / L(b(x,v),t)dmodt.
TMx[0,T]

Notice that initial tranport measures exist:

Proposition 6. The mapping (7 x (7 o ¢OT))ﬁ : Z(po, pr) — K(po, pr) is surjective. In
addition, for each transport plan n, there exists a compactly supported initial transport measure
myg such that (7 x (1 od))ymo =n and such that

A(mg) = /MXM cg(x, y)dn.

PROOF. By Proposition [[, there exists a compact set K € TM such that if y(¢) : [0,T] — M
is a minimizing extremal, then the lifting (y(¢),%(¢)) is contained in K for each ¢ € [0,7]. We
shall prove that, for each probability measure n € B(M x M), there exists a probability measure
mo € B(K) such that (7 x (7 o1d))ymo = n and such that

A(my) = /MxMcg(w,y)dn-

Observing that

e the mappings mo — (7 x (7 o ¢f))ymo and my — A(my) are linear and continuous on
the space By (K) of probability measures supported on K,

e the set Bi(K) is compact for the weak topology, and the action A is continuous on this
set,

e the set of probability measures on M x M is the compact convex closure of the set of Dirac
probability measures (probability measures supported in one point), see e. g. [LJ], p. 73,

it is enough to prove the result when 7 is a Dirac probability measure (or equivalently when g
and pp are Dirac probability measures). Let 7 be the Dirac probability measure supported at
(xg,x1) € M x M. Let v(t) : [0,T] — M be a minimizing extremal with boundary conditions
v(0) = 29 and ¥(T') = x1. In view of the choice of K, we have (v(0),%(0)) € K. Let mg be the



Dirac probability measure supported at (v(0),7(0)). It is straightforward that m; is then the
Dirac measure supported at (y(¢),%(t)), so that

T T
A(mg) = /0 Ldmydt = /0 L(y(t),5(t), t)dt = ¢k (zg,21) = /MXMcgdn
and
(m x (7 o4 ))gmo = .
O

Although we are going to build minimizers by other means, we believe the following result
is worth being mentioned.

Lemma 7. For each real number a, the set M®(ug, pur) of transport measures m which satisfy
A(m) < a, as well as the set T%(po, pr) of initial transport measures mq which satisfy AL (mg) <
a, are compact. As a consequence, there exist optimal initial transport measures, and optimal
transport measures.

PRrROOF. This is an easy application of the Prohorov theorem, see the Appendix. 0

Now we have seen that the problem of finding optimal transport measures is well-posed, let
us describe its solutions.

Theorem 1. We have

Cl(po.pr) = _min Am)=  min  A(m).
0 (1o, i) meM (o, pT) (m) mo€Z(po,pT) (ma)

The mapping
mo — m = ((h)gmo) ® dt

between the set OL of optimal initial measures and the set OM of optimal transport measures is
a bijection. There exists a bounded and locally Lipschitz vectorfield X (x,t) : M x]0,T[— TM
such that, for each optimal initial measure mg € OZL, the measure m; = (wé)ﬁmo s supported
on the graph of X; for each t €]0,T7.

The proof will be given in section [L.J. Let us just notice now that the inequalities

o 7 > min A(mg) = min A(m
0 (Ko, pr) mo€Z(po,pT) (mo) meM(po,ur) (m)

hold in view of Proposition .

2.2 Currents

This formulation finds its roots on one hand in the works of Benamou and Brenier, see [fi], and
then Brenier, see [[J], and on the other hand in the work of Bangert [{]. Let Q°(M x [0,T]) be
the set of continuous one-forms on M x [0,7], endowed with the uniform norm. We will often
decompose forms w € Q°(M x [0,T]) as

w = w® + wldt,

where w” is a time-dependent form on M and w' is a continuous function on M x [0,T]. To
each continuous linear form y on Q°(M x [0,T7]), we associate its time component p,, which is
the measure on M x [0,T] defined by

/ Fdpy = x(fdt)
M x[0,T]

10



for each continuous function f on M x [0,7]. A Transport current between po and ur is a
continuous linear form y on QY(M x [0,T]) which satisfies the two conditions:

1. The measure p, is non negative (and bounded).

2. dx = pr ® d — o ® dg, which means that

x(df) = /M frdpr — /M fodpo

for each smooth (or equivalently C1) function f: M x [0,7] — R.

We call C(ug, pr) the set of transport currents from pg to pp. The set C(ug, pr) is a closed
convex subset of [Q°(M x [0,71)]". We will endow C(uo, i) with the weak topology obtained
as the restriction of the weak-* topology of [Q"(M x [O,T])]*. Transport currents should be
thought of as vectorfields whose components are measures, the last component being .

If Z is a bounded measurable vectorfield on M x [0,7], and if v is a finite non-negative
measure on M X [0,T], we define the current Z A v by

ZNhNv(w):= /M o T]w(Z)du.
X1Y,

Every transport current can be written in this way, see [@} or [@] As a consequence, currents
extend as linear forms on the set Qo (M x [0,7]) of bounded measurable one-forms. If I is
a Borel subset of the interval [0,77], it is therefore possible to define the restriction xj of the
current x to I by the formula x7(w) = x(1jw), where 17 is the indicatrix of .

Lemma 8. If x is a transport current, then
Tipty = dt,

where T is the projection onto [0,T], see appendix. As a consequence, there exists a measurable
familty pi,t €]0, T of probability measures on M such that p, = p; ® dt, see appendiz. There
exists a set I C|0,T[ of total measure such that the relation

/ ftdut=/ fodpo + X0, (df ) (6)
M M

holds for each C' function f : M x [0,T] — M and each t € I.

PRrROOF. Let g : [0,7] — R be a continuous function. Setting G(t) = fgg(s)ds, we observe
that

T
| gt =xtdG) = [ Graur— [ Goduo = 61) - 60) = [ gls)is.
Mx[0,T) M M 0

This implies that ryu, = dt. As a consequence, the measure p, can be desintegrated as p, =
pt®@dt. We claim that, for each C'* function f : M x[0,7] — M, the relation (§) holds for almost
every t. Since the space C1(M x [0,7T],R) is separable, the claim implies the existence of a set
I 0, T of full Lebesgue measure such that ([f) holds for all t € I and all f € C*(M x[0,T],R).
In order to prove the claim, let us fix a function f in C'(M x [0,T],R). For each function
g € CY([0,T],R), we have

x(d(gf)) = x(g' fdt) + x(gdf)

hence

T
g(T) /M frdur — g(0) /M Jodpo = /O g'(t) /M fedpedt + x(gdf).

11



By applying this relation to a sequence of C'!' functions g approximating Lio¢[, We get, at the
limit

—/ Jodpo = —/ fedpe + X0, (df )
M M

at every Lebesgue point of the function ¢ — |’ v Jrdp 0

If 1o = pr, an easy example of transport current is given by x(w) = [ M fOT whdtdpg. Here
are some more interesting examples.
Regular transport currents. The transport current yx is called regular if there exists a
bounded measurable section X of the projection TM x [0,T] — M x [0,T], and a a non-
negative measure p on M x [0, 7] such that x = (X, 1) A pu. The time component of the current
(X,1) A pis p. In addition, if (X,1) A p = (X’,1) A p for two vectorfields X and X', then X
and X’ agree p-almost everywhere.

The current x = (X, 1) Ap, with X bounded, is a reqular transport current if and only if there
exists a (unique) continuous family py € By(M),t € [0,T] (where py and pr are the transported
measures) such that p,, = py ® dt and such that the transport equation

at,ut + 61(X,ut) =0

holds in the sense of distributions on M x]0,T|[. The relation

/ Jdp —/ Jsdps = X[s,t[(df)
M M

then holds for each C* function f and each s <t in [0,T).
In order to prove that the family y; can be chosen continuous, pick a function f € C'(M,R)
and notice that the equation

/M Fpe - /M Fps = Xjaaf(df) = / t /M df - Xodpiydo

holds for all s < ¢ in a subset of total measure I C [0,7]. Note that this relation also holds if
s=0andteandifselandt=T. Since the function o — [, df - X,dp, is bounded, we
conclude that the function t — [}, fdpu is Lipschitz on TU{0,T} for each f € CY(M,R), with
a Lipschitz constant which depends only on ||df||co - || X ||co- The family p; is then Lipschitz on
TU{0,T} for the 1-Wasserstein distance on probability measures, see [BY, [[4, ] for example,
the Lipschitz constant depending only on || X||~. It suffices to remember that, on the compact
manifold M, the 1-Wasserstein distance on probabilities is topologically equivalent to the weak
topology, see for example [[]], (48.5) or [BY.
Smooth transport currents. A regular transport current is said smooth if it can be written
on the form (X,1) A A with a bounded vectorfield X smooth on M x]0,T[ and a measure A
that has a positive smooth density with respect to the Lebesgue class in any chart in M x]0, T'[.
Every transport current in C(ug, pr) can be approximated by smooth transport currents, but
we shall not use such approximations.
Lipschitz regular transport currents. A regular transport current is said Lipschitz regular
if it can be written in the form (X, 1) A p with a vectorfield X which is bounded and locally
Lipschitz on M x]0,T[. Smooth currents are Lipschitz regular. Lipschitz regular transport
currents have a remarkable structure:

If x = (X, 1) A p is a Lipschitz reqular transport current with X bounded and locally Lipschitz
on M x]0,T[, then we have

(\Iﬂ;)ﬁﬂs = Mt
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where Wi, (s,t) €]0,T[?, denotes the flow of the Lipschitz vectorfield X from time s to time t,
and py 1s the continuous family of probability measures such that p, = p; @ dt.

This statement follows from standard representation results for solutions of the transport
equation, see for example [{] or [].
Transport current induced from a transport measure. To a transport measure m, we
associate the transport current y,, defined by

Xm(w) = / (W*(z,t) - v + W' (2, t))dm(z, v, 1)
TMx[0,T]
where the form w is decomposed as w = w® 4+ w'dt. Note that the time component of the current
Xm is mym. We will see in Lemma [L1] that
A(xm) < A(m)

with the following definition of the action A(x) of a current, with equality if m is concentrated
on the graph of any bounded vectorfield M x [0,T] — T M.

Lemma 9. For each transport current x, the numbers

Ai1(x) = sup (X(wx,()) —/ H(x,w”ﬁ(x,t),t)d,ux)
weNo M x1[0,T]

As(x) = 5;1512)0 (X(w) — /MX[O,T} (H(z,w"(z,t),t) +w )d,ux>

As(x) = sup (X(w) -T sup (H(x,wx(x,t),t) + wt))

weQO (@,t)eM x[0,T]
As(x) = sup X(w)
weNOwt+H (z,w?,t)<0
As(x) = sup x(w),

weO;wt+ H (z,w® ,t)=0

are equal. In addition the number A°(x) obtained by replacing in the above suprema the set 0o
of continuous forms by the set Qo of bounded measurable forms also have the same value.

The last remark in the statement has been added in the last version of the paper and is
inspired from [[LF].
PROOF. It is straightforward that A; = As, this just amounts to simplifying the term [ w'dp,,.
Since p,, is a non-negative measure which satisfies | MX[0T] ldp, =T, we have

/ (H(z,w"(2,t),t) + w')dp, < T sup (H(z,w"(2,t),t) + w")
M x[0,T] (z,t)eM x[0,T]

so that As(x) < As(x). In addition, we obviously have As(x) < A4(x) < As(x). Now notice, in
Ao, that the quantity

x(w) — /MX[O,T} (H(z,w"(z,t),t) + w')dpy

does not depend on w'. Let us consider the form & = (w%, —H (z,w",t)), which satisfies the

equality H(z,@%,t) + &' = 0. We get, for each form w,

X(&",0) / (e, (2, ), )djiy = x(3) < As(x)
Mx[0,T)]
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Hence A;(x) < As(x). Exactly the same proof shows that the numbers A°(x) are equal. In
order to end the proof, it is enough to check that As(x) = A (x). Writing the current x on the
form Z A v with a bounded vectorfield Z and a measure v € B, (M x [0,T]), we have

Ay(x) = sup </M><[O,T]w(Z)dV - /MX[O,T} (H(z,w"(z,t),1) +wt)d,ux>

weNo
and
AF(x) = sup </ w(Z)dv —/ (H(ﬂ:,wx(:c,t),t) +wt)d,ux>.
wEQoo ~J M x[0,T] Mx[0,T]
The desired result follows by density of continuous functions in L*(v + p). 0

Definition 10. We denote by A(x) and call action of the transport current x the common value
of the numbers A;(x).

The existence of currents of finite action follows from the following:
Lemma 11. We have

A(X) :/ L(va(x7t)7t)dM
Mx[0,T]

for each regular current x = (X, 1) Ap. If m is a transport measure, and if X, is the associated
transport current, then A(xm) < A(m), with equality if m is supported on the graph of a bounded
Borel vectorfield. As a consequence, we have the inequalities

cr , > min A(mg) = min A(m) > min A(y).
0 (1o, 1) mo €L (po,pT) (mo) meM(po,puT) (m) XEC(po,4T) %)

\

PROOF. For each bounded measurable form w, we have
| w0 - Hew @i [ L X 0. 0d
M x[0,T] Mx[0,T]

so that

A((X, 1) Ap) < /Mx[o . L(z, X (x,t),t)dpu.

On the other hand, taking the form wf(x,t) = 9, L(x, X (z,t),t) we obtain the pointwise equality
L(z, X(x,t),t) = wi(X) — H(z,wj(x,t),1)

and by integration
/ L(z, X (z,t),t)du = / wp (X) — H(z,wg (x,t),t)dp < A(X, 1) A p).
M x[0,T] Mx[0,T]

This ends the proof of the equality of the two forms of the action of regular currents. Now if
Xm 18 the current associated to a transport measure m, then we have, for each bounded form
w € QM x [0,T]),

Xm(w) - / wt(x’t) + H(x’wx(xat)at)d:ux = / wm(v) - H(x’wx(x’t)’t)dm
Mx[0,T] TMx[0,T]

by definition of x,,, so that

Ap) < [ Lo t)dm = A(m)
TMx[0,T]
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by the Legendre inequality. In addition, if there exists a bounded measurable vectorfield
X : M x [0,T] — TM such that the graph of X x 7 supports m, then we can consider
the form w{ associated to X as above, and we get the equality for this form. 0

Although we are going to provide explicitly a minimum of A, we believe the following Lemma
is worth being mentioned.

Lemma 12. The functional A : C(po, pr) — RU{+0o0} is convex and lower semi-continuous,
both for the strong and weak-* topologies on [Q°(M x [0,T])]*. Moreover it is coercive with
respect to the strong topology and hence it has a minimum.

PROOF. First note that A(y) < oo if x is the transport current corresponding to an initial
transport measure in M (pg, ) arising from a transport plan. Let us define the continuous
convex function Hyp : Q°(M x [0,T]) — R by
Hr(w)=T sup  H(z,w*(z,t),t) + o'
(z,t)eM x[0,T)

Then the action is the restriction to C(jo, pr) of the Fenchel conjugate A = H* : [Q°(M x
[0, 7)]* — RU{+o0}. In other words, A is the supremum over w of the family of affine
functionals

X = x(w) — Hp(w)
that are continuous both for the strong and weak-* topologies. Hence A is convex and lower
semi-continuous for both topologies. Since

A(x) = sup x(w) — sup Hp(w),

flwll<1 lwll<1
A is coercive. The existence of a minimizer is standard: any minimizing sequence (x;,) is bounded
(thanks to coercivity) and has a weakly-* convergent subsequence (because Q°(M x [0,77]) is a
separable Banach space). By lower semicontinuity, its weak-* limit is a minimizer. Note that
C(uo, pr) is weakly* closed. O

Theorem 2. We have

C¢ (po,pr) = min  A(x)
X€EC (ko pT)

where the minimum is taken on all transport currents from py to pwp. Every optimal transport
current is Lipschitz reqular. Let x = (X, 1) A p be an optimal transport current, with X locally
Lipschitz on M x]0,T[. The measure m = (X X 7)yu € B4 (T M x]0,T]) is an optimal transport
measure, and x is the transport current induced from m. Here T : TM x [0,T] — [0,T] is the
projection on the second factor, see appendix. We have

CE (0, ) = A(m) = A(x) = /MX[O RS CRNIS

This result will be proved in after some essential results on the dual approach have been
established.

3 Hamilton-Jacobi equation

Most of the results stated so far can be proved by direct approaches using Mather’s shortening
Lemma, which in a sense is an improvement of the initial observation of Monge, see [B3 and
[{. We shall however base our proofs on the use of the Hamilton-Jacobi equation, in the spirit
of Fathi’s approach to Mather theory, see [R(], which should be associated to Kantorovich dual
approach of the transportation problem.
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3.1 Viscosity solutions and semi-concave functions

It is certainly useful to recall the main properties of viscosity solutions in connection with semi-
concave functions. We will not give proofs, and instead refer to [Rd], [R1], [14], as well as the
appendix in [§]. We will consider the Hamilton-Jacobi equation

O+ H(x,0pu,t) = 0. (HJ)

The function v : M x [0,7] — M is called K-semi-concave if, for each chart § € © (see
appendix), the function
(,1) — u(b(x), t) — K(|lz]* + )

is concave on Bs x [0,T]. The function u is called semi-concave if it is K-semi-concave for some
K. A function u : M x]0,T[— M is called locally semi-concave if it is semi-concave on each
M x [s,t], for 0 < s <t < T. The following regularity result follows from Fathi’s work, see [R(]
and also [§].

Proposition 13. Let uy and us be two K-semi-concave functions. Let A be the set of minima
of the function uy + ug. Then the functions uy and ug are differentiable on A, and duq(z,t) +
dus(x,t) = 0 at each point of (x,t) € A. In addition, the mapping duy : M x [0,T] — T*M is
CK -Lipschitz continuous on A, where C is a universal constant.

Definition 14. We say that the function u : M X|s,t[— R is a viscosity solution of (HJ) if
the equality

u(w, o) = min u(y, () + < (v, 2)

holds for all x € M and all s < { < o < t.
We say that the function @ : M x|s,t}— R is a backward viscosity solution of (HJ) if the
equality

’EL(%’, U) = zréa]\}(a(ya C) - Cg(.%',y)

holds for all x € M and all s < 0 < ( < t.
We say that the function v : M x]s, t[— R is a viscosity sub-solution of (HJ) if the inequality

v(z,0) < v(y, () + (Y, z)

holds for all x and y in M and all s < { <o < t.

Finally we will say that the function v : M x [s,t] — R is a continuous viscosity solution
(subsolution, backward solution) of (HJ) if it is continuous on M X [s,t] and if if v|prx)sq 95 @
viscosity solution of (HJ) (subsolution, backward solution).

Notice that both viscosity solutions and backward viscosity solutions are viscosity sub-
solutions. That these definitions are equivalent in our setting to the usual ones is studied
in the references listed above, but is not useful for our discussion. The only fact which will be
used is that, for a C! function u : M x]s,t[— R, being a viscosity solution (or a backward
viscosity solution) is equivalent to being a pointwise solution of (H.J), and being a viscosity
sub-solution is equivalent to satisfy pointwise the inequality dyu + H (z, d,u,t) < 0.
Differentiability of viscosity solutions. Let u € C(M x [0,T[,R) be a viscosity solution of
(HJ) (on the interval |0,7). We have the expression

) = minu(1(0,0) + [ L(0).3(0),0)do

where the minimum is taken on the set of curves v € C?([s, ¢, M) which satisfy the final condition
v(t) = x. Let us denote by I'(z,t) the set of minimizing curves in this expression, which are
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obviously minimizing extremals of L. We say that p € TyM is a proximal super-differential of
the function w : M — R at point z if there exists a smooth function f : M — R such that
f —wu has a minimum at x and d, f = p.

Proposition 15. Let us fix a point (x,t) € M x]0,T[. The function u; is differentiable at x if
and only if the set I'(x,t) contains a single element v, and then Oyu(z,t) = 0y L(x,*(t),t).

For all (z,t) € Mx]0,T[ and v € T'(x,t), we set p(s) = O, L(v(s),5(s),s). Then p(0) is a
prozimal sub-differential of ug at v(0), and p(t) is a prozimal super-differential of uy at x.

We finish with an important property on regularity of viscosity solutions:

Proposition 16. For each continuous function ug : M — R, the viscosity solution

u(a,t) = min uo(y) + co(y, )

is locally semi-concave on 10,T). If in addition the initial condition ugy is Lipschitz, then u is
Lipschitz on [0,T].
For each continuous function ur : M — R, the viscosity solution

u(xz,t) := —cr
u(z,t) ggﬁcw(y) ¢ (z,y)

is locally semi-convex on [0,T[. If in addition the final condition ur is Lipschitz, then u is
Lipschitz on [0,T].

PROOF. The part concerning semi-concavity of u is proved in [[[4], for example. It implies that
the function w is locally Lipschitz on |0, T], hence differentiable almost everywhere. In addition,
at each point of differentiability of u, we have dyu + H(x,0yu,t) = 0 and dyu(x,t) = p(t) =
OpL(x,7(t),t), where v : [0,t] — M 1is the only curve in I'(x,t). In order to prove that the
function u is Lipschitz, it is enough to prove that there exists a uniform bound on |p(t)|. It is
known, see Proposition [[f, that p(0) := 9,L(y(0),%(0),0) is a proximal sub-differential of the
function wuy at point y(0). If ug is Lipschitz, its sub-differentials are bounded: There exists a
constant K such that |p(0)| < K. By completeness, there exists a constant K’, which depends
only on the Lipschitz constant of ug, such that |p(s)| < K’ for all s € [0,¢]. This proves that the
function w is Lipschitz. The statements concerning @ are proved in a similar way. 0

3.2 Viscosity solutions and Kantorovich optimal pairs

Given a Kantorovich optimal pair (¢g, ¢1), we define the viscosity solution
u(z,t) := min ¢o(x) + cy(y, )
yeM
and the backward viscosity solution

i, ) = max é1 (y) - f (z,y)

which satisfy ug = @y = ¢g, and upr = tur = ¢1. Note that both ¢ and —¢y are semi-concave
hence Lipschitz, that the function w is Lipschitz and locally semi-concave on ]0, 7], and that the
function @ is Lipschitz and locally semi-convex on [0, T7[.

Proposition 17. We have
Cp (po, pr) = max </ urdpr — / uodﬂo), (7)
u M M
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where the minimum is taken on the set of continuous viscosity solutions u : M x [0,T] — R of
the Hamilton-Jacobi equation (HJ). The same conclusion holds if the mazimum is taken on the
set of continuous backward viscosity solutions. The same conclusion also holds if the maximum
is taken on the set of continuous viscosity sub-solutions of (HJ).

PrROOF. If u(x,t) is a continuous viscosity sub-solution of (H.J), then it satisfies
ur () — uo(y) < ¢ (y,)

for each z and y € M, and so, by Kantorovich duality,

(/ wrdpr —/ uod,uo> < Cf (pos pr).-
M M

The converse inequality is obtained by using the functions u and . 0

Definition 18. If (¢g,¢1) is a Kantorovich optimal pair, then we denote by F(bo,d1) C
C?([0,T), M) the set of curves (t) such that

T
¢1(7(T)) = do(7(0)) +/O L(~(t),5(t), t)dt.
We denote by T (¢o, 1) C M x]0,T[ the set

T(¢07 ¢1) = {(V(t% t)7 t 6]07 T[7’Y € f(¢07 ¢1)}
and by T (¢o, ¢1) C TMx]0, T the set
Ij—(ﬁbo, ¢1) = {(V(t)a W(t)? t)?t G]Oa T[? Y E ‘7:(¢0’ ¢1)},
which is obviously invariant under the Fuler-Lagrange flow.

Proposition 19. Let (¢g, ¢1) be a Kantorovich optimal pair, and let w and U be the associated
viscosity and backward viscosity solutions.

1. We have u < u, and

T (¢o, 1) = {(z,t) € Mx]0,T[ such that u(z,t) = u(z,t)}.

2. At each point (x,t) € T(¢o,¢1), the functions u and @ are differentiable, and satisfy
du(z,t) = du(x,t). In addition, the mapping (z,t) — du(x,t) is locally Lipschitz on
T(¢07¢1)-

3. If y(t) € F(po, 1), then Ozu(y(t),t) = O, L(y(t),¥(t),t). As a consequence, the set
T*(po, ¢1) := {(z,p,t) € T*M x]0,T[ such that (z,t) € T and p = dyu(x,t) = du(x,t)}

1s invariant under the Hamiltonian flow, and the restriction to ’j’(qﬁo, ¢1) of the projection
7 1s a bi-locally-Lipschitz homeomorphism onto its image T (¢o, ¢1).

PROOF. Let us fix a point (z,t) € Mx]0,T[. There exist points y and z in M such that
u(z,t) = do(y) + cb(y, x) and u(z,t) = ¢1(2) — ¢l (,2), so that

uz,t) —(z,t) = ¢o(y) — ¢1(2) + ¢y, 2) + ¢/ (w, 2)

> ¢y (y,2) = (61(2) — do(y)) > 0.
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In case of equality, we must have Co Ly, 2) = c(y, ) + el (z,2). Let y1(s) € C%([0,], M) satisfy
v (0) =y, y1(t) = = and fo (s),91(s),8)ds = cg(y,x), and let yo(s) € C%([t,T], M) satisfy
Y2(t) =z, v2(T) = z and fo ) Yo (s ) s)ds = ¢l (z,z). The curve 7 : [0, T] — M obtained

by pasting v; and ~9 clearly satlsﬁes fo v(s),7(s), s)ds = cf (y, z), it is thus a C? minimizer,
and belongs to F(¢o, ¢1). As a Consequence we have (z,t) € 7 (¢o, P1).
Conversely, we have:

Lemma 20. If v is a viscosity sub-solution of (HJ) satisfying vo = ¢o and vr = ¢1, then
u<v<u If (x,t) € T(po, p1), then we have v(x,t) = u(x,t).

PROOF. The inequality % < v < u is easy. For example, for a given point (z,t) there exists y in
M such that u(z,t) = ¢o(y) + c(y, z), and for this value of y, we have v(z,t) < ¢o(y) + ch(y, z),
hence v(x,t) < u(z,t). The proof that @ < v is similar. In order to prove the second part of the
lemma, it is enough to prove that v(y(t),t) = u(vy(t),t) for each curve v € F(¢g, ¢1). Since v is
a sub-solution, we have

v(Y(T),T) < v(3(t),t) + i (v(t),2(T)).
On the other hand, we have
v((t),1) < u(y(t), 1) < u((0),0) + c5(v(0), (1))
As a consequence of all these inequalities, we have
$1(4(T)) = v(x(T), T) < u(7(0),0) + c5(4(0), 7(t)) + ¢ (v(t), 1 (T)) < Po(7(0)) + 5 (v(0),%(T))

which is an equality because v € F(¢o,¢1). Hence all the inequalities involved are equalities,
and we have v(y(t),t) = u(y(t),t). 0
The end of the proof of the proposition is straightforward. Point 2 follows from Proposition [[3
applied to the locally semi-concave functions u and —ii. Point 3 follows from Proposition [L. 0

3.3 Optimal C' sub-solution

The following result, on which a large part of the present paper is based, is inspired from [PT],
but seems new in the present context.

Proposition 21. We have
Cq (po, pr) = max </ vrdpr — / vodﬂo),
v M M

where the mazimum is taken on the set of Lipschitz functions v : M x [0,T] — R which are C*
on M x]0,T[ and satisfy the inequality

Oww(z,t) + H(x, Opv(x,t),t) <0 (8)
at each point (x,t) € Mx]0,T].

PrOOF. First, let v(z,t) be a continuous function of M x [0,7] which is differentiable on
M x]0,T][, where it satisfies (§). We then have, for each C! curve v(t) : [0,7] — M, the
inequality

T T
/OL(V(t)d(t),t)dD/o Fzv(y(t), 1) - () — H(y(t), v(v(8),1), t)dt
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T
> /O B0 ((8),1) - 4(t) + A1), £)dt = v(x(T), T) — v(+(0), 0).

As a consequence, we get v(y,T) — v(z,0) < ¢} (z,y) for each z and y, so that

/deMT - /vodﬂo < Cf (pos pir).-

The converse follows directly from the next theorem, which is an analog in our context of the
main result of [21]. 0

Theorem 3. For each Kantorovich optimal pair (¢o, 1), there exists a Lipschitz function v :
M x [0,T] — R which is C* on M x]0,T], which coincides with u on M x {0, T} U7 (¢, ¢1),
and which satisfies the inequality ([§) strictly at each point of M x]0,T[—T (¢o, $1).

PrROOF. The proof of R1] can’t be translated to our context in a straightforward way. Our
proof is different, and, we believe, simpler. It is based on:

Proposition 22. There exists a function V€ C*(M x [0, T],R) which is null on T (¢o, ¢1) and
which is positive on M x]0, T[T (¢o, 1), and such that

T
¢1(y) = min ¢0(7(0))+/0 L(y(t),7(),t) = V(y(), t)dt. (9)

¥(T)=y

PROOF. Let us define the norm

lullz = llu o bllc2(s, «jo.11.8)
66

of functions u € C*(M x [0,T],R), where © is the atlas of M defined in the Appendix. Let us
denote by U the open set M x]0,T[—7 (¢, ¢1). We need a Lemma.

Lemma 23. Let Uy C U be an open set whose closure Uy is compact and contained in U, and let
€ > 0 be given. There exists a function Vi € C?(M x [0,T],R), which is positive on Uy and null
outside of Uy which is such that the equality (9) holds with V = Vi, and such that ||Vi||2 < e.

PROOF. Let us fix the open set Uy, the pair (¢g,¢1) and y € M. We claim that the minimum
in
T
min 00(2(0) + [ (0, 3(0).6) - o 0), 0
Y(T)=y 0

is reached at a path ~ the graph of which does not meet Uy, provided that the function V; is
supported in U and is sufficiently small in the C° topology. In order to prove the claim, suppose
the contrary. There exists a sequence V,! (n € N) and a sequence 7, such that

. T .
min w((0) + [ L0500 = V).

is reached at ,,, the graph of ~,, meets Uy, V,, is supported in U; (for all n € N) and V;, — 0 in
the C° topology. As a consequence each 7, is C? and the sequence 7, (n € N) is a minimizing
sequence for

f1(y) = min do(1(0)) + /O Lix(8).4(8). t)dt. (10)

Y(T)=y

Hence this sequence is compact for the C? topology and, extracting a subsequence if needed,
can be assumed to converge to some voo. Clearly 7o, is a minimizer for ([[(]) the graph of which
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meets U;. This is a contradiction with U; € U = M x]0,T[\T (¢, #1) and the fact that the
graph of . is included in 7 (¢o, ¢1) (see Definition [[§). 0

Let U, C U,n € N be a countable sequence of open sets covering U and whose closures U,
are contained in U. There exists a sequence V,, of functions of C?(M x [0,T],R) such that, for
each n e N:

e The function V,, is positive in U,, and null outside of U,,.
e We have [|[V,||2 < 27 "e.

e The equality (fl) holds for the function V" =" V.

Such a sequence can be build inductively by applying the lemma to the Lagrangian L — V!
with €, = 27" Since ||V,,|| < 27", the sequence V" is converging in C? norm to a limit
V € C?*(M x [0,T],R). This function V satisfies the desired properties. The proposition is
proved. 0

In order to finish the proof of the theorem, we shall consider the new Lagrangian L=L-V,
and the associated Hamiltonian H = H + V, as well as the associated cost functions ¢.. Let

u(x,t) := mi &t
a(a,t) = min go(y) + G (Y, 2),
be the viscosity solution of the Hamilton-Jacobi equation
Oyt 4+ H(x, 0yt t) = =V (z,t) (HJ)

emanating from ¢g. The equality (E) says that 4r = ¢1 = up. The function 4 is Lipschitz on
M x [0,T], as a viscosity solution of (H.J) emanating from a Lipschitz function. It is obviously
a viscosity sub-solution of the equation (H.J), which is strict outside of M x {0,7} U7 (¢o, ¢1)
(where V is positive). This means that the inequality (f) is strict at each point of differentia-
bility of @ outside of M x {0,T'} U7 (¢o, ¢1). We have @ < @ < wu, this relation being satisfied
by each viscosity sub-solution of (HJ) which satisfies ugp = ¢9 and ur = ¢1. As a consequence,
we have @ = 4 = u on 7 (¢g, ¢1), and the function @ is differentiable at each point of 7 (¢, ¢1).
Furthermore, we have du = du = di on this set. We then obtain the desired function v of the
theorem from the function @ by regularisation, applying Theorem 9.2 of [1]]. 0

4 Optimal objects of the direct problems

We prove Theorem A as well as the results of section fl. The following lemma generalizes a result
of Benamou and Brenier, see [f].

Lemma 24. We have the equality

CT (1o, = min  A(mg) = min A(m)= min A(x).
o (ko, w7 mo€Z (ko k) (mo) meM (po,pr) (m) X€C(1o,11) 0

Moreover x(dv) = A(x) for every optimal x, where v is given by Theorem [3

PROOF. In view of Lemma [[1, it is enough to prove that, for each transport current y €
C(po, i), we have A(x) = CF (o, pr). Let v : M x [0,T] — R be a Lipschitz sub-solution of
(HJ) which is C* on M x]0,T|, and such that (vg,vr) is a Kantorovich optimal pair. For each
current x € C(uo, ur), we have A(x) = x(dv) = CI (0, pr), which ends the proof. 0

From now on we choose and fix:
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e An optimal Kantorovich pair (¢g, ¢1).

e A Lipschitz sub-solution v : M x [0,7] — R of the Hamilton-Jacobi equation which
satisfies vg = @9 and vr = ¢1 and which is C! on M x]0, 7.

e A bounded vectorfield X (z,t) : M x]0,T[— T'M which is locally Lipschitz and satisfies
X(x’t) = 8pH($,ax’U($,t),t) on T(¢O,¢1)- (11)

4.1 Characterization of optimal currents.

Each optimal transport current x can be written

X = C¥71)/\Mx7

with a measure i, concentrated on T (¢po, $1). The current x is then Lipschitz reqular, so that
there exists a transport interpolation p,t € [0,T] such that p, = p @ dt (see Appendiz) and
such that py = (V4)yus for each s and t in ]0,T.

PROOF. Let x be an optimal transport current, that is a transport current x € C(ug, ) such
that A(x) = CZ (10, pr). Let us recall the definition of the action A(x) that will be used here:

() = sup (x(w,0) - /MX[O B 0,00,

weNo

Since H(x,0,v,t) + 0w < 0, we have

A(x) = x(dv) < x(dv) — /H(ﬂ:,(?xv(x,t),t) + Opvdp,, = x(0,v,0) — /H(x,@xv(x,t),t)dpx.

The other inequality holds by the definition of A, so that

x(dv) = x(dv) — /H(x, Ozv(x,t),t) + Opodp, = x(0,v,0) — /H(x, Oyv(x,t),t)dpty,

and we conclude that the function H(x,0,v(x,t),t) + O;v vanishes on the support of j,, or in
other words that the measure p, is concentrated on the set 7 (¢q, ¢1). In addition, for all form
w = w® + wdt, we have

X(Or-+07,0) = [ Hw 0,0+ 07, iy < x(0,,0) — [ Hiz, 000, )i = AC0).
Hence the equality
x(w*,0) = /(%H(x,amv,t)(wx)d,ux

holds for each form w. This equality can be rewritten

€)= [ O, 00.0)w7) + i
which is precisely saying that
X = (OpH(x,0,v(x,t),t),1) A pyy = (X, 1) A piy.

The last equality follows from the fact that the vectorfields X and 0,H (z, 0yv(x,t),t) are equal
on the support of u,. By the structure of Lipschitz regular transport currents, we obtain the
existence of a continuous family ¢ € [0,T] of probability measures such that p, = p; ® dt
and such that g, = (U%)sus for each s and t in ]0,T[. Since the restriction to a subinterval
[s,t] C [0,T] of an optimal transport current Y is clearly an optimal transport current for the
transportation problem between ps and y; with cost cf, we obtain that the path g is a transport
interpolation. 0
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4.2 Characterization of transport interpolations.

Each transport interpolation u; satisfies
pe = (Uo)s
for each (s,t) €]0,T[2. The mapping
pe (X, 1) A (e ® dt)

is a bijection between the set of transport interpolations and the set of optimal transport currents.

PROOF. We fix a transport interpolation p; and two times s < s’ in |0, T[. Let x; be a transport
current on M x [0, s] between the measures o and s which is optimal for the cost ¢f, let x2 be
a transport current on M X [s, s'] between the measures us and g which is optimal for the cost
cg/ and let y3 be a transport current on M x [s',T| between the measures pg and pg which is
optimal for the cost c¢/,. Then the current y on M x [0, T] which coincides with x1 on M x [0, s],
with x2 on M x [s,s'] and with x3 on [¢/,T] belongs to C(ug, pr). In addition, since p; is a
transport interpolation, we have

A(X) = C§ (o, 115) + CF (s, pisr) + CF (g, pr) = CF (0, ).

Hence x is an optimal transport current for the cost 0(7;. In view of the characterisation of

optimal currents, this implies that x = (X, 1) A u, and that

pe = (W) @ dt = (())gaer) @ dt.

By uniqueness of the continuous desintegration of p,, we obtain that, for each t €]0,T7,
(Uh)spus = (P))311s, and since this holds for all s and s', that (U)yus = p for all (s,t) €]0, T2
It follows that x = (X, 1) A (i ® dt). We have proved that the mapping

p — (X, 1) A (e @ dt)

associates an optimal transport current to each transport interpolation. This mapping is obvi-
ously injective, and it is surjective in view of the characterization of optimal currents. 0

4.3 Characterization of optimal measures.

The mapping
X — (X X T)ﬁﬂx

is a bijection between the set of optimal transport currents and the set of optimal transport
measures (T : M x [0,T] — [0,T] is the projection on the second factor; see Appendiz). Each
optimal transport measure is thus invariant (see () and Definition [§). The mapping

mo — iz = (7 0 195)ymo

is a bijection between the set of optimal initial measures mgy and the set of interpolations. An
invariant measure m is optimal if and only if it is supported on the set T (¢g, ¢1).

ProOF. If m is an optimal transport measure, then the associated current y,, is an optimal
transport current, and A(m) = A(xm). Let i, be the time component of x,,, which is also the
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measure (7 x7)ym. In view of the characterization of optimal currents, we have x,, = (X, 1)Apip,.
We claim that the equality A(x,,) = A(m) implies that m is supported on the graph of X.
Indeed, we have the pointwise inequality

Opv(x,t) -V — H(x,0,v(x,t),t) < L(z, V,t) (12)

for each (z,V,t) € TM x]0,T[. Integrating with respect to m, we get the equality

A(xm) = xom(do) = / Dev(,t) - V + Oy (a, )dm(, V, 1)
TMx[0,T]

= / Opv(z,t) -V — H(x,0pv(x,t), t)dm(z, V,t) = / L(z,V,t)dm(z,V,t) = A(m),
TMx[0,T] Mx[0,T]

which means that m is concentrated on the set where the inequality ([[J) is an equality, that is
on the graph of the vectorfield 9,H (z, 0,v(x,t),t). Since pi,, is supported on 7, the measure m
is supported on 7 and satisfies m = (X X T)gptm. Let p; be the transport interpolation such
that i, = p ® dt. Setting my = (X;)e, we have m = my ® dt. Observing that the relation

Xy oW =yloX,
holds on 75, we conclude, since us is supported on 75, that
(¢Z)ﬁms = Ty,

which means that the measure m is invariant.
Conversely, let m = m; ® dt be an invariant measure supported on 7 (¢g, ¢1). We have

:/OT /TM L(x,v,t)dmt(x,v)dt:/oT /TM L((¥ (2, v), t)dmg (z, v)dt,

and by Fubini,

/ / (b (x,v), t)dtdmg(z,v) = d1(m ot (x,0)) — do(z)dmg(z,v),
T™ T™
and since my is an initial transport measure, we get
A(m) - ¢1dMT - / ¢0dﬂ0 = Cg(,uo,,uT).
T™ T™

5 Absolute continuity

In this section, we make the additional assumption that the initial measure pg is absolutely
continuous, and prove Theorem B. The following lemma answers a question asked to us by

Cedric Villani.

Lemma 25. If ug or pur is absolutely continuous with respect to the Lebesgque class, then each
interpolating measure p,t €]0,T[, is absolutely continuous.

24



PrOOF. If p,t € [0,7] is a transport interpolation, we have proved that

pe = (0 1pt o Xg)pps

for each s €]0,T[, and ¢ € [0,T]. Since the function 7o ¢y o X; is Lipschitz, it maps Lebesgue
zero measure sets into Lebesgue zero measure sets, and so it transport singular measures into
singular measures. It follows that if, for some s €]0, T, the measure u; is not absolutely con-
tinuous, then none of the measures y¢,t € [0, 7] are absolutely continuous. 0

In order to continue the investigation of the specific properties satisfied when g is absolutely
continuous, we first need some more general results. Let (¢g,¢1) be an optimal Kantorovich
pair for the measures pg and pr and for the cost cg. Recall that we have defined F (¢, 1) C
C?([0,T], M) as the the set of curves ~(t) such that

T
51 (4(T)) = do(4(0)) + /0 L(v(8), (1), t)dr.

Let Fo(¢o, ¢1) be the set of initial velocities (z,v) € TM such that the curve t — 7 o ¢f(z,v)
belongs to F(¢o, ¢1). Note that there is a natural bijection between Fy (o, ¢1) and F (o, ¢1).

Lemma 26. The set Fo(¢o, ¢1) is compact. The maps © and mo L : Fo(go, ¢1) — M are
surjective. If x is a point of differentiability of ¢o, then the set 71 (x) N Fo(do, $1) contains one
and only one point. There exists a Borel measurable set X C M of full measure, whose points
are points of differentiability of ¢g, and such that the map

x+— S(z) =7 (z) N Fo(do, b1)
1s Borel measurable on 3.

PROOF. The compactness of Fy(¢g, ¢1) follows from the fact, already mentioned, that the set
of minimizing extremals v : [0,7] — M is compact for the C?- topology.

It is equivalent to say that the projection 7 restricted to Fo(¢o, ¢1) is surjective, and to say
that, for each point € M, there exists a curve emanating from x in F(¢g,$1). In order to
build such curves, recall that

T
() = maxon(0(T)) — [ La(t. (0, 0
0
where the maximum is taken on the set of curves which satisfy v(0) = 2. Any maximizing curve
is then a curve of F(¢o, 1) which satisfies 7(0) = x. In order to prove that the map 7 o )l

restricted to Fo(¢o, 1) is surjective, it is sufficient to build, for each point z € M, a curve in
F (o, ¢1) which ends at x. Such a curve is obtained as a minimizer in the expression

T
$1(x) =rrgn¢o(v(0))+ /0 L(y(t,4(t), t)dt.

Now let us consider a point = of differentiability of ¢¢. Applying the general result on the
differentiability of viscosity solutions to the Backward viscosity solution @, we get that there
exists a unique maximizer to the problem

T
@) = mx 1 (0(T) = [ L2t 30
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and that this maximizer is the extremal with initial condition (x,0,H (x,d¢o(x),0)). As a
consequence, there exists one and only one point S(z) in Fy(¢o, 1) above z, and in addition we
have the explicit expression

S(x) = 0pH (z,d¢o(x),0).

Since the set of points of differentiability of ¢y has total Lebesgue measure —because ¢q is
Lipschitz— there exists a sequence K, of compact sets such that ¢ is differentiable at each point
of K, and such that the Lebesgue measure of M — K,, is converging to zero. For each n, the
set 7 1(K,,) N Fo(¢o, ¢1) is compact, and the restriction to this set of the canonical projection
7 is injective and continuous. It follows that the inverse function S is continuous on K,. As a
consequence, the map S is Borel measurable on ¥ := U, K,,. 0

Lemma 27. The initial transport measure mg is optimal if and only if it is an initial transport
measure supported on Fo(do, P1).

PROOF. This statement is a reformulation of the result in [.3 stating that the optimal transport
measures are the invariant measures supported on 7 (¢g, ¢1). 0

Proposition 28. If ug is absolutely continuous, then there exists a unique optimal initial
measure mg. There exists a Borel section S : M — TM of the canonical projection such
that mo = Sypo, this section is unique po-almost everywhere. For each t € [0,T], the map
moboS: M — M is then an optimal transport map between g and ;.

PROOF. Let S : ¥ — T'M be the Borel map constructed in Lemma Pf. For convenience, we
shall also denote by S the same map extended by zero outside of 3, which is a Borel section
S : M — TM. Since the set X is of full Lebesgue measure, and since the measure pg is ab-
solutely continuous, we have pi9(¥) = 1. Let us consider the measure mg = Sy(pg|s;). This is a
probability measure on 7'M, which is concentrated on Fo(¢o, ¢1), and which satisfies mymg = po.
We claim that it is the only measure with these properties. Indeed, if mg is a measure with
these properties, then mymg = po, hence the measure my is concentrated on 7 ()N Fo(do, p1)-
But then, since 7 induces a Borel isomorphism from 7=(X) N Fo(¢g, ¢1) onto its image X, of
inverse S, we must have mg = Syuo. As a consequence, the measure mg = Sy is the only can-
didate to be an optimal initial transport measure. Since we have already proved the existence
of an optimal initial transport measure, it implies that mg is the only optimal initial transport
measure. Of course, we could prove directly that mg is an initial transport measure, but as we
have seen, it is not necessary. 0

5.1 Remark

That there exists an optimal transport map if ug is absolutely continuous could be proved
directly as a consequence of the following properties of the cost function.

Lemma 29. The cost function ¢l (x,y) is semi-concave on M x M. In addition, we have the
following injectivity property for each x € M: If the differentials dycl (z,y) and dpcl (z,y') exist
and are equal, then y =1v'.

In view of these properties of the cost function, it is not hard to prove the following lemma
using a Kantorovich optimal pair in the spirit of works of Brenier [12] and Carlier [L6].

Lemma 30. There exists a compact subset K € M x M, such that the fiber K, = K N 7T0_1(1')
contains one and only one point for Lebesque almost every x, and which contains the support of
all optimal plans.
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The proof of the existence of an optimal map for an absolutely continuous measure g can
then be terminated using the following result, see [, Proposition 2.1.

Proposition 31. A transport plan n is induced from a transport map if and only if it is con-
centrated on a n-measurable graph.

5.2 Remark

Assuming only that po vanishes on countably (d — 1)-rectifiable sets, we can conclude that the
same property holds for all interpolating measures ¢, t < T, and that Proposition R§ hold. This
is proved almost identically. The only refinement needed is that the set of singular points of the
semi-convex function ¢q is a countably (d — 1)-rectifiable, see [14].

6 Aubry-Mather theory

We explain the relations between the results obtained so far and Mather theory, and prove
Theorem C. Up to now, we have worked with fixed measures o and pur. Let us study the
optimal value C{ (o, ) as a function of the measures o and pir.

Lemma 32. The function
(10, o) — € (p0, )

is convexr and lower semi-continuous on the set of pairs of probability measures on M.

PrOOF. It follows directly from the expression
C (po, pr) = max / Prdpr — / Podpio
(¢0,91) J M M
as a maximum of continuous linear functions. 0
From now on, we consider that the Lagrangian L is defined for all times, L € C*(TM xR, R),

and satisfies
L(z,v,t+1) = L(z,v,t)
in addition to the standing hypotheses. Let us restate Theorem C with more details. Recall

that « is the action of Mather measures, as defined in the introduction.

Theorem C’. There exists a Lipschitz vectorfield Xy on M such that all the Mather measures
are supported on the graph of Xq. We have

o = min C§ (1, ),
n

where the minimum is taken on the set of probability measures on M. The mapping mg —
(m)ymyo is a bijection between the set of Mather measures mq and the set of probability measures
woon M satisfying C& (1, ) = ae. More precisely, if u is such a probability measure, then there
exists one and only one initial transport measure mg for the transport problem between py = p
and py = p with cost ¢, this measure is mo = (Xo)sp, and it is a Mather measure.

The proof, and related digressions, occupy the end of the section.
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Lemma 33. The following minima

L 7
ar:= min —=Cj(u,pu), T €N
T peB () T o (1, 10)
exist and are all equal. In addition, any measure p' € By (M) which is minimizing Cg (i, p) is
also minimizing CE (u, p) for all T € N.

PRrROOF. The existence of the minima follows from the compactness of the set of probability
measures and from the semi-continuity of the function Cg . Let p' be a minimizing measure
for oy and let m' be an optimal transport measure for the transportation problem C&(ul, uh).
Let m” be the measure on TM x [0, 7] obtained by concatenating 7" translated versions of m!.
It means that m” is the only measure on TM x [0,7T] whose restriction to TM x [i,i + 1] is
obtained by translation from m, for each integer i. It is easy to check that m” is indeed a
transport measure between the pg = pu' and pr = p' on the times interval [0,7], and that
AT(mT) = TA}(m'). As a consequence, we have

Tar < Cg (4, p') S AF(m") = TCo(u', pt) = Tan,

which implies the inequality ar < aj.

Let us now prove that ar > ;. In order to do so, we consider an optimal measure p” for
ar, and consider a transport interpolation utT,t € [0,T] between the measures py = ul and
pr = pT. Let us then consider, for ¢ € [0, 1], the measure

=

~T T

He == Z Htpis
i=0

T-1 T

and note that Tl = pd + >, pF = puh + ZZ 1 pl = TpT. In view of the convexity of the
function C’é

T—1 T-1
1 1 A
~T ~T T T 1 T T
C&(MOMU'I) = C& <f Z(Mz 7Mi+1)> < T ZC;JF (15 7Mz+1) C'o (1w p") =ar.
=0 i=0
Since /il = fif, this implies that a1 < ar, as desired. 0

Lemma 34. We have a1 < «

ProoF. If mg is a Mather measure, then it is an initial measure for the transport prob-
lem between pg = (m)ymo and pu; = (m)ymo for the cost cé. As a consequence, we have

a = Af(mo) = C§(po, po) = ax. O

Lemma 35. Let u! be a probability measure on M such that C}(u',u') = ay. Then there
exists a unique initial transport measure mg for the transportation problem between jig = p' and
p1 = pt for the cost ¢f. This measure satisfies (¥§)ymo = mo. We have o = A}(mg) = a, so
that o = a1 and mq 1s a Mather measure. There exists a constant K, which depends only on L,
such that the measure mg is supported on the graph of a K-Lipschitz vectorfield.

PROOF. Let us fix a probability measure u' on M such that C}(ut,p!) = a1. Let X :
M x [0,2] — T'M be a vectorfield associated to the transport problem C3(u', u') by Theorem
A. Note that X is Lipschitz on M with a Lipschitz constant K which does not depend on pq.
We choose X once and for all and then fix it.
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To each optimal transport measure m! for the transport problem C& (ut, ut), we associate
the transport measure m? on TM x [0, 2] obtained by concatenation of two translated versions
of m', as in the proof of Lemma 3. We have

Aj(m?) = 245(m") = 201 = 202 = C§ (', ).

The measure m? is thus an optimal transport measure for the transportation problem Cg(ul, uh).
Let my, t € [0,2] be the continuous family of probability measures on TM such that m? = m;®dt.
Note that m; = (¢!)ymy for all s and ¢ in [0,2], and that mg is the initial transport measure for
the transportation problem C}(u!, u!) associated to m!. Since the measure m?
by concatenation of two translated versions of the same measure m!, we must have Mpp1 = My
for almost all ¢ €]0, 1[, and, by continuity, mo = m; = mgo. This implies that my = (¢6)ﬁm0.
Finally, the characterization of optimal measures implies that mg = my = (Xl)wl. We have
proved that the measure (Xl)ﬁ,ul is the only optimal initial transport measure for the trans-
portation problem Cg(u!, ut). O

was obtained

PROOF OF THE THEOREM. Let mg be a Mather measure, and let g = mymg. Note that we also
have py = (7o w(l])ﬁmo. As a consequence, my is an initial transport measure for the transport
between pg and g for the cost ¢}, and we have

a = Ag(mo) = Cq(pos o) > 1.

Since a1 = a, all these inequalities are equalities, so that mg is an optimal initial transport, and
C’&(,uo, po) = ai. It follows from Lemma BH that mg is supported on the graph of a K-Lipschitz
vectorfield.

Up to now, we have proved that each Mather measure is supported on the graph of a K-
Lipschitz vectorfield. There remains to prove that all Mather measures are supported on a
single K-Lipschitz graph. In order to prove this, let us denote by M C T'M the union of the
supports of Mather measures. If (z,v) and (2/,v') are two points of M, then there exists a
Mather measure mg whose support contains (z,v) and a measure m, whose support contains
(2',v"). But then the measure (mg +my)/2 is clearly a Mather measure whose support contains
{(x,v), (2',v")} and is itself included in the graph of a K-Lipschitz vectorfield. Assuming that
x and 2’ lie in the image 6(Bj) of a common chart, see appendix, so that (z,v) = df(X,V) and
(2',v") = di(X', V"), we obtain

IV =V < K|z — |

It follows that the restriction to M of the canonical projection T'M — M is a bi-Lipschitz home-
omorphism, or equivalently that the set M is contained in the graph of a Lipschitz vectorfield.

A Notations and standing conventions

e M is a compact manifold of dimension d, and 7 : TM — M is the canonical projection.

e We denote by 7 : TM x [0,T] — [0,T] or M x [0,T] — [0,T] the projection on the
second factor.

e If N is any separable, complete, locally compact metric space (for example M, M x [0, 7],
TM or TM % [0,T))) the sets B1(N) C BL(N) C B(N) are respectively the set of Borel
probability measures, non-negative Borel finite measures, and finite Borel signed measures.
If C.(N) is the set of continuous compactly supported functions on N, endowed with
the topology of uniform convergence, then the space B(IN) is identified with the set of
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continuous linear forms on C,(N) by the Riesz theorem. We will always endow the space
B(N) with the weak-* topology that we will also call the weak topology. Note that the
set By(N) is compact if N is. Prohorov’s theorem states that a sequence of probability
measures P, € B1(NN) has a subsequence converging in By (V) for the weak-* topology if
for all € > 0 there exists a compact set K. such that P,(N — K,) < e for all n € N. See

e.g. B9, 17, 1T.

Given two manifolds N and N’, a Borel application F' : N — N’, and a measure u €
B(N), we define the push-forward Fyu of p by F as the unique measure on N’ which
satisfies

Fu(B) = p(F~(B))
for all Borel set B € N, or equivalently

| satBu = [ 5o

for all continuous function f: N/ — R.

A family i, ¢ € [0,T] of measures in B(N) is called measurable if the map ¢ — [ fedp is
Borel measurable for each f € C.(N x [0,T]). We define the measure p; ® dt on N x [0, T

by
T
/ fd(pe @ dt) :/ / Jdp dt
Nx[0,T] 0o JN

for each f € C.(N x [0,T]). The well-known desintegration theorem states that, if p is a
measure on N x [0, 7] such that the projected measure on [0, 7] is the Lebesgue measure
dt, then there exists a measurable family of measures y; on N such that p = u; ® dt.

The set K(uo, pr) of transport plans is defined in section [1.2.

The set Z (o, i) of initial transport measures is defined in section P.1].
The set M (pg, pir) of transport measures is defined in section R.1.

The set C(uo, ur) of transport currents is defined in section 2.32.

We fix, once and for all, a finite atlas © of M, formed by charts 6 : Bs — M, where B,
is the open ball of radius r centered at zero in R%. We assume in addition that the sets
0(B1),0 € © cover M.

We say that a vectorfield X : M — TM is K-Lipschitz if, for each chart 8 € ©, the
mapping ITo (df)™' o X 0§ : Bs — R? is K-Lipschitz on By, where II is the projection
Bs x RT — R4,

We mention the following results which are used through the paper : There exists a
constant C' such that, if A is a subset of M, and X4 : A — TM is a K-Lipschitz
vectorfield, then there exists a C' K-Lipschitz vectorfield X on M which extends X 4. In
addition, if A is a subset of M x [0,7] and X4 : A — TM is a K-Lipschitz vectorfield,
then there exists a C'K-Lipschitz vectorfield X on M x [0,T] which extends X4. If A
is a compact subset of M x [0,T] and X4 : AN Mx]0,T[— TM is a locally Lipschitz
vectorfield (which is K (e)-Lipschitz on A N M x [e,T — €]), then there exists a locally
Lipschitz (which is C K (¢)-Lipschitz on M X [¢, T — €]) vectorfield X on M x]0,T[ which
extends X4,
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