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1 Introduction

Let I be a finite index set and X = (X;(t),i € I,t € [0,T]) be an Rl-valued diffusion
which is the solution of the following finite-dimensional stochastic differential equation
(s.d.e.)

AXi(t) = dBi(t) — %Vz-h(X(t))dt el te[0,T] (1)

where h is a smooth function from R’ into R and (Bi)ier is a sequence of independent,
real-valued Brownian motions. This stochastic dynamics corresponds to a perturbation
by gradient interactions in the form of drift terms of a sequence of finitely many Brownian
free dynamics.

The stationary measures for (1) are proportional to the measure

wu(dx) = exp(—h(z)) Qs dx;.

It is well known that, for h sufficiently regular, if the initial distribution v of the system
(1) is not the stationary one but absolutely continuous with respect to Lebesgue measure,
this property propagates, that is : at each time t > 0 the law v of X(¢) € R! remains
absolutely continuous (with density given by exp —h! for some function h').

When I is replaced by Z? and the dynamics (1) is generalised in a natural way (see (4)),
the question whether the global absolute continuity of the initial distribution propagates is
irrelevant since stationary measures like Gibbs measures are no more globally absolutely
continuous with respect to the infinite product of Lebesgue measure, but only locally
absolutely continuous. Now, the question which is relevant is the following :

does Gibbsianness of the initial measure propagate?

In fact, at each fixed time ¢ the law of X (¢) can behave badly in the sense that the sum
of the interactions between the (infinitely many) components can explode. So, to obtain
a positive answer to the above question, we restrict our study to two particular regimes
which can be better controlled. In Section 3, we present the propagation of Gibbsianness
for small times ¢, and in Section 4, we analyse the case of small interactions between the
coordinates - but arbitrary times.

To our knowledge, these results are new ( but see also [18]) which are related to the
propagation of Gibbsianness under a stochastic evolution like a diffusion with values in a
continuous space (here the state space is the infinite-dimensional vector space RZd) . We
were inspired by the nice work of van Enter, Fernandez, den Hollander and Redig, who
consider in [8] the question of possible loss and recovery of Gibbsianness in the context of
Interacting Particle Systems with values in {—1, +1}Zd which follow a high-temperature
Glauber dynamics. They treat several cases and can exhibit situations where the pro-
cess at time ¢ is strong Gibbsian (in a sense to be defined below), and other situations
where it is not. See also [19] for related results for Kawasaki dynamics. Unfortunately,
since our state space RZ? is unbounded, we cannot use all the criteria they have at their
disposition (in particular, the criterion of non-Gibbsianness contained in [11]) to test the
Gibbsianness/non-Gibbsianness of v*. So our present results only concern situations for
which the Gibbsianness is conserved. We hope to extend them soon to some non-Gibbsian
example.



2 Gibbs measures and infinite-dimensional gradient diffu-
sions : the framework of our study

Let us first introduce some definitions and notations.

An interaction potential - or interaction - ¢ on RZ is a collection of functions DA
from R%" into R U {+00} where A varies in the set of finite subsets of Z?. Each ¢, is
supposed to be measurable with respect to Fj, the o-algebra generated by the canonical
projection on RA; that is for any z € ]RZd,

da(x) = da(zA)

where z is the projection on R? of z.

The interaction ¢ is said to be of finite range if it satisfies :
(FR) Jr > 0, diameter A >r = ¢pp =0

The interaction ¢ is said to be regular bounded if it satisfies :
(RB) VA, ¢p is C3, bounded with bounded derivatives.

The interaction ¢ is said to be absolutely summable if it satisfies :
(AS) Vi€ Z4 30 i [dallos = Yons; 8P, cpua |64 (2)] < +o0

When an interaction ¢ is (AS) one can define the collection h? = (hi) Acza of associated
Hamiltonian functions on RZ by

=Y o 2)

AAOAAD
More generally, we note for z,y € RZ" and AACZ8

Mia@my) = D on(zayan):
AAAD
A CAUA

where zAya\x is the element in RZ* equal to z on A, y on A\A and 0 outside of A U A.

@
AZd

a function of x5. To recall this property, we will sometimes denote it by hi @(m A)-

For example, A% _,(z,x) coincides with hi(az) Furthermore, hx@(m) =Y nrca Par(zar) is

In fact, as soon as the series on the right-hand side of (2) converges pointwise, one
can define a Hamiltonian function associated to a (possibly non absolutely) summable
interaction. To simplify we will always denote by h? the function hfi} (i € Z%), by
hi’A(m) the function hKA(a;,x) (AM,AeZdxe ]RZd).

We call p a Gibbsian measure on RZ" associated to the reference measure m and to

an interaction ¢ for which the series (2) converges if it satisfies the system of Dobrushin-
Lanford-Ruelle (DLR) equations :

pldrifs,§ # i) =+ exp— (h{(x)) m(dry), i € 7.
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The set of such measures will be denoted by G(¢,m). (For general references on Gibbs
measures, see [13] and [24].)

The measure p will be called strong Gibbsian if the associated interaction is absolutely
summable, i.e. satisfies (AS).

Let ¢ be a so-called dynamical interaction on ]RZd, having a C?-regularity and
satisfying (FR). The associated hamilton function h;, denoted by h; to simplify, is also
C%. We can now consider the following infinite-dimensional system given by :

{ dX;(t) = dB;(t) — §V;hi(X(t))dt , i € Z?, t € [0,T], 3)
X(0) ~v

where v is a probability measure on RZ?. We will precise in Section 3 (resp. Section 4 ) the
exact assumptions on h and v we take to assure that the infinite-dimensional stochastic
system (3) has a unique strong Markovian solution X with values in the infinite product
of continuous trajectories Q7 = C([0, T],R)%’. Deuschel described in ([5],[6]) the Gibbsian
structure on the path space Qp of the law ¥, when the initial distribution v itself is
Gibbsian (associated to an initial interaction ¢). Later, this result was completed and
generalised in [2], by showing a bijection between the set of Gibbs measures associated
to the initial interaction ¢ on RZ" and a set of Gibbs measures on the path space Qp
describing the full dynamics. Having a Gibbs representation of Q¥ on the path level (even
a strong Gibbsian one, see [4] Corollary 2) , we would like to know if at each time ¢, the
law v! of X (), a probability measure on RZ%, remains strong Gibbsian. Clearly, v is the
projection at time t of (¥, but projections are maps which do not conserve a priori the
Gibbsianness (see the famous examples of [9], and also [10], [11] amoung others). In [2],
we remarked that, projecting at time 0 a general strong Gibbs measure on the path space,
the image measure which is obtained on the state space preserves a Gibbsian form in the
following weak sense : it is associated to a modification (cf. [13] Section 1.3, for the exact
definition), roughly speaking to a family of compatible local densities with respect to a
reference measure. But the regularity of the density and the existence of an underlying
nice interaction potential is completely unclear. In the Remarks after Proposition 2.5 in
[2], we referred the reader to the work of Kozlov to clarify this question. This is the object
of this paper, not only for the projection at time 0 but also at time ¢ > 0.

The challenge is to control the evolution of an initial absolutely summable interaction
@ under the dynamics (3). It is clear that, even if ¢ is of finite range this property imme-
diately disappears for any time ¢ > 0 since the Brownian motions carry instantaneously
information between all the coordinates. So, to assure that at time ¢, the process is still
Gibbsian and associated to a ”good” interaction, i.e. an absolutely summable one, we
are obliged to restrict our study to two cases; first for small times ¢, which implies that
the process stays close to the initial Gibbsian condition. Secondly, for small dynamical
interaction ¢ between the coordinates, which assures that the sum of the initial interaction
and the interaction induced by the dynamics does not explode.



3 Propagation of Gibbsianness during a short stochastic
diffusive evolution

Let us consider the infinite-dimensional gradient system (3) introduced in Section 2 where
the initial distribution is Gibbsian. We have the following result.

Theorem 1 Let Q¥ be the law on Q = C(R+,R)Zd of the infinite-dimensional diffusion
solution of

dX;(t) = dB;(t) — sVih;(X (1)) dt , i € Z%, ¢t >0, A
{ X(0) ~v )

where v € G(p,dx) with support included in 1*(v), with v = (e~®");cpa, o > 0. Let us
moreover suppose that

e the initial interaction ¢ is of finite range (FR) and each @ is Lipschitz continuous
(uniformly in A)

e the dynamical interaction o is of finite range (FR), and each @y is C* with bounded
derivatives of order 1 and 2 (uniformly in A).

Then, there exists a time tg > 0 depending only on ¢ and ¢ such that, for any t < tq,
(V' =Q o X(t)™' 1 v € G(¢,dr)} C G(¢', du)

where ' is an absolutely summable (AS) interaction depending only on the initial and
dynamical interactions ¢ and .

Remark 1 One can make explicit some additional assumptions on ¢ in order to assure
that G($,dx) contains at least one measure with support included in I(vy). For example
suppose there exists a > 0,b > 0 such that for each i € 7%

(1) VereR, zV;pi(x)>alx|—0>
(i) a> > |IVigalloc.

A>i

A1
Then there exists v € G(@, dx) satisfying [ ||z|yv(dz) < 400 where [|z||y, =: >,z |zs|e—ll,
This obviously implies that v{x : ||z|, < +oo} = 1.

The Proof of Remark 1 is postponed to the end of the section.
Proof of Theorem 1 :
The proof is based on an approximation of v by a sequence of probability measures I/f\,
which are the laws at time ¢ of finite-dimensional systems. It will be relatively easy to
obtain a Gibbs representation for each I/f\. But the delicate point will be the convergence
of their associated Hamiltonian functions towards a limiting function, which will be a good
candidate as Hamiltonian function associated to v/*.

Let us first recall a representation theorem, which we will use for the initial Gibbs
measure v (Theorems 7.12 and 7.26 in [13]).



Lemma 1 The probability measure v, like every element of G(p,dx), is a mizture of
elements of ex G(p,dx), where ex G(p,dx) is the set of extremal Gibbs measures j1 which
are characterized by the following property : there exists y € RZ" such that

w= Ali/n%d LA,y @ 0y . where pp ,(dzp) = ie_h/\v/\c(x’y)dm/\. (5)
The family of a4 is in fact the family of finite volume specifications with fixed boundary
condition y.
The limit in the above Lemma is taken in the following sense: for any increasing sequence
A,, of finite subsets in Z¢ converging to Z¢ when n goes to infinity, M,y @ Oy xg COLVETges
in the local convergence topology towards p.

We first prove the theorem in the case where v € exG(@, dz).

Let (vay)acze be the approximating sequence of v defined by (5). For A C Z? fixed and
any ¢ € A, we introduce the i-decoupled infinite measure I/Ky as follows :

. 1 -
l/fw(d:z?,\) = —ZA e_hA\i»Ac(x’y)da:A\ida:i.
7y

Since ha pc(z,y) = BA\Z-,AC (z,y) + hi(zayae), we obtain
Vi y(dzn) = @) yy o (day). (6)

Let us remark that I/f'\y ® 0y,. converges in A towards a measure vt on RZ" which is
absolutely continuous with respect to v and satisfies :

Vi(dz) = M@ y(da).
In the same way, we denote by ua and ,uf\ the following measures (not necessary finite) :
pa(dzy) = e mao@a) qg ) iy (dazp) = e~ Pmvio@ani) dz p\;dz;. (7)
Then

pi(dop) = ATy (day). (8)

Let us now introduce the following finite-dimensional approximation of the dynamics (4) :
1
dX;(t) =dB;(t) — §Vihi7A(XA(t))dt, Vie At >0. 9)

Remark that we also could write the drift as —3V;hp ¢(Xa(t)). Under this form, ua is
clearly a reversible measure associated to this dynamics.

We denote by Q}* the law on C(R*,R)™ of the solution of (9) when the initial condition

is 5 € RA.

We now introduce, in the same way as above, some decoupled (infinite- and finite-dimensional)
dynamics at the site i :

dX;(t) = dBj(t) — 5V h; za;(X (#))dt, Vj e ZN\{i}, >0
{ dXZ(t) = dBZ(t), t>0.



Q%" denotes the law of the solution of (10) with deterministic initial condition x € RZ,
These dynamics are useful since they are simpler than the undecoupled ones, and we will
prove that the law v/ of the gradient system at time ¢ is absolutely continuous with respect
to the law at time ¢ of the above decoupled system.

We also consider the finite-dimensional approximation of (10) :

{ dX;(t) = dB;(t) — $Vihjai(Xay(t)dt, Vi€ A\i, t>0 1)
dX;(t) = dB;(t).

We denote by Qf\A’i the law on C(R*, R)A of the solution of (11) when the initial condition
is zp € RA, w4 is a reversible measure associated to this dynamics.

Since the solution of (4) (when it exists) is Markovian, one has : Q" = [ Q" v(dz).
More generally, for any measure p, we denote by QM (resp. QM Q' or QX’Z) the mixture
of Q% under p : Q* = [ Q% p(dzx) (vesp. [ Q"' u(dz), [ Q% p(dx) or [ QY u(dx)) .

We also define the projections at time ¢ of these measures : '
Vt = Qy (e} X(t)_l, I/t’i = Qyi’i O X(t)_l, V}\ﬂl/ = Q{V\A’y o X(t)_l, I/f\’fy = Q[I/\A’MZ o] X(t)_l

Lemma 2 For each t € [0,T] and i € 74, the following weak convergences hold :

lim v} y = V' and lim V/t\’Z =v
Az Azd Y

ti

Proof :

We only prove the first convergence. The proof of the second one is analogous.

Under the assumptions satisfied by ¢ in Theorem 1, it is simple to verify that for any
initial deterministic condition x € I*(y) = {y = (¥i);eza € RZ" . lylly < +o0}, a strong
solution of (4) exists in C(RT,1!()). It is obtained as limit of finite dimensional diffusions
solution of (9). More precisely, let A, be an increasing sequence of finite subsets in Vi
converging to Z% when n goes to infinity. To clarify the notations, instead of using the
canonical processes, for € RZ? we denote by X7 the solution of (4) with v = ¢, and by
X% the (infinite-dimensional) process with initial condition z whose restriction on A,
solves (9) with A = A, and whose coordinates outside A, are frozen in zjc. So the law
of X% is equal to Q% and the law of X (™ is equal to Qm” ® Oy AS - Following analogous
techniques as the one used in [27] Theorem 4.1 (or [7], [26] if the interaction is reduced
to a pair interaction), we now prove that, for any 7' > 0, X ()% i a Cauchy sequence in
LYC([0,7), 11 (7)))-

Let 7 the range of ¢ and k > 0 the supremum of a Lipschitz constant for V;h; (uniform
in j) and a bound for sup, |V;h;(x)|. Let m < n and let A, denote the r-interior of A,
defined by A, = {j € Ay, : VE with |k — j| <r,k € Ap} . So A, C Ay C A,

For i € A},

n),xr m),T 1 t n),x m),xr
|ﬂ*a%XW%m::;Avmma“wm—wmha“wmw|
k t n),xr m),r
< 3 X=X ds
{5:l5—il<r}



Thus,

E(sup X% () - x5 < £ 30 / E(sup [ X (u) — X (™ (u)) ds.

S 2 USNS
st Gili—il<r} s
For i € Ay \ A5,
X)) - XU ()

= —|/ Vihia, (X% (s)) = Vihia,, (X™)2(s)) ds|

k
- - (m),x
<t ox [ SMds3l [ 3 Vaw (x5
{:l7—il<r}nAm N:NZ A
N CAp
Thus,
(n),z (m),z k ! (n),z (m),z k
E(sup | X377 (s) = X; (s)]) < 5 / E(sup [ X577 (r) = X577 (r)]) ds + St
s<t 2 r<s 2

{g:li—il<r}

For i € A, \ Ay, we have

2

n),r m),x 1 t
X7 (0) = X0 = 1Bile) - 5 / Vihin, (X" (s)) dsl;
0
thus, using Doob inequality for B;,

B(sup | X% (s) = X[ () < 2V + o,

s<t

For i € A, | X" (1) — X™"(#)| = 0.

To obtain the desired Cauchy property, we apply an infinite-dimensional version of Gron-
wall’s Lemma. It is simple to verify (see for example [25] Lemmel, page 197) that, if C is
a positive constant which satisfies : for any j € Z¢, % Z{i:|j—i|<r} v < Cj, ( one can take
C = e #{k € Z% k| <r}), then,

E(sup || X((s) = XM (s) ) = E(sup Y %X (s) — X (5)])
s<t s<t iczd
k kC
< _ . -
< (2\/5—1—215)(' > ) exp 5t (12)
1€AL\AS,

Since v € I*(Z%) the right hand side of this inequality goes to 0 when n and m are large
enough - uniformly in z - we conclude that X)* converges in L*(C([0,T],1*(v))) uni-
formly in z towards X?*.

Moreover, with similar computations as above, one obtains the following Lipschitz regu-
larity of X? as a function of x :

30" >0, E(sup || X¥(s) = X¥(s) [|ly) <l & =y [l ¢

s<t



Now, the law of the solution of (4) is just a mixture under v of the laws Q*. We may
claim this since the support of v is included in ! ().
Let us now prove the local convergence of I//t\my towards v!. Let g be a A-local Lipschitz

function on RZ* with Lipschitz constant K, and fix m < n large enough to have A C A, (C
Ay). We have

| / g(za)t(dr) - / g(za)h, ,(dzn,)]
oy / (Xa ()@ (dX) - / 9(Xa(0)QL (dX,)|

= | /R » / 9(Xa () Q% (dX)v(dx) — /R N g(Xa()Qa " (X, )V, y(dza,)]
<C14+Cy+4Cs

where

G = /R |/9(XA(t))Qx(dX)—/ (Xa(1)QY ™ (dX)| v(dx)
Cy = | / / 9(XA (1) QA (dX)v(dx) — / / g(XA()QR (dX)va, y(dza,)]
Cy = /RM |/9(XA(t))Qf\fnm(dX) —/g(XA(t))Qf\ﬁLn (dX)|va, y(dza,).

With the above notations,

¢ = [, FlalXa(0) — a(x{" 0) v
Ky [, EIXE(D) - X070 v(o)
K/ B IXE () — X (1) w(da)

1EA

IN

IA

IA

K, (inf 1)~ / B wl X7 () — X (1) v(da)

[SPAN
’ 1EA

< Ky(inf )™ / E(|| X*(t) = X" () |ly) v(dx)
1EA RZ4
< Cl( Z 'Yz'),
i€(A5,)°
using (12) for the last inequality, where ¢; > 0 is a constant depending only on t, ¢, g, 7, A, 7.

In the same way, one has

Co = [ Elg(X™ (0) = g(XL @) v, udon,)

< Ky [ BIXE 0 - X070 (don,)

N

< Kyinf )™ [ B(QIX™0 - XO0) ) v, plde,)

al > )

i€(AG,)°

IA



The second term is controlled in the following way :
Co=| [ Blo(x{* @)wtde) ~ [ BT ©)n,pldon,)

But, for m fixed, X(Am)’x(t) and then E(g(X(Am)’x (t)) are Ay,-local functions in x depending
continuously on x,,, . So, thanks the local convergence of the finite-volume specifications
Vp,,y towards v when n goes to infinity, this term vanishes for m fixed and n going to
infinity.

To complete the proof of the convergence of I/A " towards ! it remains now to take m
large enough in such a way that (3;c (a0 ) 7i) (and thus C; + C3) stays as small as nec-
essary. |

To prove that v! is Gibbsian, we will use the fact that v is absolutely continuous with

respect to v%*, which itself is a consequence of the absolute continuity of I/R v with respect
. X d t

to I/f\’zy. Let us start with a nice representation of this density dZﬁ;-y.
K Ayy

Lemma 3 For eacht >0, A C Z% and any i € A,

t ) Eon [ efayXalt))—fay(@a)
—dVA’,y (z4) = e Mi(@ayac) @ (e ) , (13)
vy’ Egea (efA\i,y(XA(t))—fA\i,y(m)
where .
Tay(@) =hpp(xa) — haac(z,y).
Proof :
We have :
duvt duvt d d i
M(p) = () TR (p) A ().
d’//(,y dpp dNA dVA’,y

Using the reversibility of Q4" (resp. QM A ) the first term of the right hand side is obtained
as follows : for any regular bounded local function g,

ok don) = [ o((Xa@)@i @x)
= [ [ a0 X )@ @)
= [ [ oo P amn@r @x)
= [ oton) [ RN @)

dpa
Then a
VA,y dVA,y
nt (2a) = Ega ( e ®))).

10



Doing a similar computation for the decoupled dynamics one obtains

dv' -1
Ay (xp) = EQ;,;A <efA,y(XA(t))>e_hi,A(xA)EQzA <efA\i,y(XA(t))>

A

efA () EQIA (efA»y(XA(t))—fA,y(IA))
A

— e—hi,A(IA)-i-soi(:vi)
efaviy (@a) <efA\i,y(XA(t))_fA\i,y(xA)> ’

EQT\Al

which is the same as the expression (13). [
Let us first remark that, since ¢ is of finite range, the expression e~hi(@avke) does not
depend on y and on A for A large enough. We will now prove, using cluster expansions,
that the last ratio in (13) is a function of x indexed by A which converges uniformly in y
when A tends to Z¢.

Thanks to Girsanov theorem, the probability measures Qi’\ and QXAZ have a Gibbs
representation on the path space C(R+,R)A, that is, if one restricts them to the the
canonical filtration at any time ¢ they have both an explicit density with respect to the
Wiener measure with deterministic initial condition x5, denoted by ®;cap*'. The density
of Q" is the following :

tq 1 [t1
FA(X)) = exp%( /0 5 Vihi A(Xa(5)) dXi(s) 5 /0 L(Vihi ) (Xa()ds ).

which becomes, using Ito formula,

FA (X))
= oxp (= ghaa(Xal) + 30 (xa ) + 3 [ (FAma0 - (Tl ) (Xa()as)
1€EA
= exp ( - ‘I)A(XA))a (14)
ACA
with
4(Xa) = 50a(Xa(0) ~ 50a(Xa(0) (15)

_/O GZA]-@A(XA(S))—é > Vien(Xa(s)Vjec(Xa(s) ) ds.
JjeEA

B,CCA jeBNC

The family ® = ($4) 4z is an interaction potential on §; since ¢ is of finite range (FR),
® is of finite range too. Denoting by H the hamiltonian function associated to ®, we then
obtained that, for any A C Z% and i € A, on the events depending only on times between
0 and ¢,

QT\A (dXA) — e_HA,(ZJ(XA) ®jen p"i (de). (16)
In the same way, one proves that
QY% (dXy) = e~ Hmio(Xav) ®jeavi P (dX;) @ p™ (dX;). (17)

Let us describe some properties of the interaction potential ®.

11



Lemma 4 There exists a constant C' > 0 independent of the time t such that for any
X €Q and any A C 74

D4(X)| < C(t + sup | X;(t) — Xj(0)|).
JjEA
Proof :
It is clear, due to the equality (15) and the assumptions given on . |

We can now expend the terms EQwA (efAvy(XA(t))_fAvy(“)) and EQzA (efA\iyy(XA(t))_f/\\ivy(“)) .
A At
We give the detailed computations only for the first expansion, since the second one is
obtained in a similar way.

Egea (efA,y(xA(t»—fA,y(m)) = By, s (exp ( = woA( XA))> (18)
ACA

where W¥4 is the following interaction potential on C([0,T], R) :

UUA(X) = Ba(X) — a(X (1) + a(X(0)) + E (@B(XA(t)yAC) - @B(XA(O)yAC)) -(19)
Bczd
BAA=A

We also denote by ¥ the interaction potential on C([0,T7, R)Z*

WA(X) = @4(X) — pa(X(1) + pa(X(0) + (2a(X(1) — Ga(X(O))  (20)

and immediately remark that, as soon as A is large enough with respect to the index set
A, 08 =0,
As in the Lemma 4, we obtain the following estimates for the interactions U¥* and W.

Lemma 5 There exists a constant C' > 0 independent of the time t such that for any
Y E]RZd,A CZ* X €Q and any A C A,

A0 < Ot sl = X0))

JjEA
and
WA(X)] < O(t +sup | X; (1) — Xj(0)|).
JEA
Proof :
It is a direct consequence of Lemma 4 and the assumptions given on ¢ and ¢. The uni-
formity of the first upperbound with respect to y and A is then clear. |

Let us now introduce the main notations and tools we need for the cluster representa-
tion. Let IV € N large enough is such a way that for #4 > N, \I/ffl’A = 0. Such a number
N exists since \IIZ’A is of finite range uniformly in y and A. Let V a finite subset of Z%

such that for any A C Z¢ with \IIZ’A # 0 then A C Njca(V + 7).
Let us define a subclass of finite volumes in Z¢ :

D:{ACZd: 1§#A§NandACﬂjeA(V—|—j)}.
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A finite set v = {A1, Ag, ..., Ap},n > 1, of elements of D is a cluster. It is called connected
if for any A;, A; € ~, there exists a sequence i = iy, 2, ..., iy, = j such that A; NA;, # 0,
Ay, NAy, #0, ..., A; N A;, # 0. We call support of the cluster ~ the subset of Z<
equal to |J;; 4; and denote it by supp(y). The entire number |v| is the cardinality of the
support of ~.

We denote by A the set of connected clusters and Ap the subset of A which contains
the clusters whose supports are included in A. A collection of clusters 1,72, ..., is
called compatible if their associated supports are disjoint. We denote by L, the set of all
compatible collections of non empty clusters belonging to Ax.

We can now start the expansion of the expression (18).

EQZE\A <ef/\,y (XA(t))_fA,y (zA)>

Egerp® ( H (Q_W%A(XA) -l 1))

ACA
Eoyrps <1+Z > /cy*Am)(X)icyvA(w)(X).../cyvAm)(X)),
n=1{y1,..mm}eLa

where

KA (X) = T (e —1)

Aey

We then obtain the below cluster decomposition :

Egea (efA,y(xA<t>>—fA,y(wA>) =14+) > KV)EPMy). EKPMw)  (21)
n=1{~1,..n}ELA

where
K39 = By (KM (0)(X)).
In a similar way, we obtain for any i € A :

[e.e]
E’QXAZ (efA\i,y(XA(t))_fA\i7y(wA)) = 1 + Z Z K‘?EJvA(’Yl)KgJ\(’yQ) e K‘gvA(’YTL)
n=1{y1,..n}€LA\;

Let also define the coefficients related to the interaction ¥ (instead of %) by :

K =TT ("0 =), Ka() = By e (K(). (22)

Aey

In the next lemma, we provide estimates for the weight of the clusters (uniformly in z, y
and A).

Lemma 6 There exists some strictly positive constant \(t) which tends to 0 as t goes to
0 such that, for any x € ]RZd, any y € ]RZd, A CZ% and any v € A

(KL )] < AP and | K, (7)) < AP

13



Proof :

We need to commute several times integration and products. To this aim, the following
abstract integration lemma, which generalizes Holder inequalities, is very useful. It is
proved in [23] Lemma 5.2 :

Lemma 7 Let (ug)zex be a family of probability measures, each one defined on a space
E., where the elements x belong to some finite set X. Let us also define a finite family
(gx)k of functions on Ex = XzexE, such that each gy, is Xj-local for a certain X, C X,
in the sense that

gr(e) = gr(ex,), for e = (ezx)rex € Ex.

Let pr, > 1 be numbers satisfying the following conditions :

Vo € X, Z—< (23)

XkBCC
Then
o 1/pk
Hgk ®z€X dﬂ:c < H( |gk‘ K ®z€Xk dﬂ:c) . (24)
Ex " k Ex,
Let v = {A1,As,..., Ay} € A; we apply Lemma 7 with X =supp(y), X = Ag, g =
A
¢ VA — 1 and Pk = #V for all k. We get

n
gy #V
| K9 ( H Ssen ™ ( Ay — 1|Pk) .

Using the bound of Lemma 5, we obtain
n oy
| K A H Srea " ( C(H‘SUpjeAk |X5 () —=;]) _ 1)Pk) )

Now, due to the existence of exponential moment for the N-dimensional Brownian motion,
C(t+sup; X;(t)—z;
E®j€Akpzj <(e ( SUPje Ay, | X5()—=;]) _ 1)Pk> < )\(t),

where the constant A\(¢) tends to 0 as ¢ goes to 0, uniformly in x and Ax € D. So, since
n/pr = n#V > |v|, one obtains the first desired upperbound :

IKYA ()] < AP,

The second upperbound is then obvious. |
One can then deduce from Lemma 6 the following upper bound : for any cluster v € A
and for ¢ small enough,

sup  sup > |KZA ()]l < ). (25)
z,yeRZ! ACZ Y €A
supp(y)Nsupp(y')#0

14



So, following Kotecky and Preiss (cf [16] page 492), we can expand for ¢ small enough the
logarithmus of both, denominator and numerator of the ratio in (13) :

In <EQ7\A (efAyy(XA(t))—fA,y (IL’A))>

S1 (20 DU D S TCH ST CR I S ETORY

n=1{vy1,..yn}€LA

= > > a ) EY ) K (), (26)

n=1 {'Ylv---y'Yn}eMA

and
In <E p <efA\i,y(XA(t))_fA\i,y(xA)>>
Qni
(o]
— (1Y X KGR K2
n=1{y1,...n}€Lr\;
o0
= > > a(yr, ) KA () - KA (), (27)
n=1{y1,...,m}IeEMpv;
where M is the set of collections of clusters 71, ...,7v, € Aa such that their union is also

in Ay, that is the union is connected too.
The logarithmus of the ratio is equal to the difference of the logarithma (26) and (27). It
has then the following expansion for ¢ small :

[o¢]
S>> an, ) KEM ) - KM (). (28)
n=1{vy1,...,yn yEMa,:
supp(U;~;) 31
Since the inequality (25) holds uniformly in z, y and A, following [16] (see also [1] or [21]),
we conclude that the series (28) converges uniformly in z, y and A. Moreover, for any
cluster v, K%’A('y) tends to K,(7) as A goes to Z9; using Lebesgue dominated convergence
dvt ~
theorem, we conclude that d;ﬁ’ﬁ (zp) converges uniformly in z, y towards e~ hi() oGi(x)
Ay

e

where

G =% S ) Kaln) o Kalm). (20)

n=1 {717"'77"}6/\/{2(%
supp(U;;)21

We are now able to complete the proof of Theorem 1.
From Lemma 2, for each regular local bounded function g from R? into R, we have

t(d = i L (d
| taa)vttan) = tim, [ glaa)ihldey)
dv,

. Ay t,1
= lim d " (d
A - g(xA)dy/t\’Zy (za) vy, (dzn)

— /dg(:z:A)e_i”(zHGi(I)ut’i(da:).
RZ

15



Thus, on RZ’, the probability measures v (dz) and e_i”(x)JrGi(z)ut’i(da:) coincide for each

i € Z%. Furthermore, since each I/f\’zy is the law at time t of a decoupled dynamics with

decoupled initial condition, it is a product measure on RA\ x R} whose projection on
the i*"-coordinate is exactly the Lebesgue measure. It implies that their infinite volume
limit v is a product measure on RZN\ R} whose projection on the it"-coordinate is
the Lebesgue measure too. Then, v! is a Gibbs measure associated to Lebesgue measure
as reference measure and to the interaction (! given by :

ol (x) = ga(z) =) > a(Y1s -5 n) Ka(71) -+ Ka(vn)- (30)
n=1 {’Yly---y'Yn}EMA
supp(U;v;)=A

This interaction potential is an explicit small perturbation of the initial interaction ¢. The
proof of Theorem 1 is now completed in the case v € exG(p, dx).
on the other hand, due to Lemma 1, v can be represented as a mixture v = [ vgm(df),

where vy are elements of ex G(@,dx). Therefore, vt = QJvem(d) o X (¢)~1 = i (Q”G o

X(t)_1>m(d9) = [y, m(df). Since we just proved that v} € G(¢",dz), this implies that
vt e G(¢t, dz) too. [
Proof of Remark 1 :

It is done similarly as in [26] page 71. For any n > 1 and y € RZ" we first prove that
Jran l2lly¥A, y(dz) is bounded uniformly in n and y. For i € A,, by integration by parts,

Zny = [ exp(=hn, aalw)dun, = [ 09ihn, gl exp(—ha, zolo.)don,.

Thus [ 2;Vihy, z4(2,y) VA, y(dza,) = 1. But

wiVihy, za(e,y) = @Vigi(@)+ Y @Vipa(ra,yag)
Asi
4R
> alzi| b= Y |ail [Viéalleo
ASi
s}
> (a= Y [IVidalloo)lzil = b.
ASi
#Ao1

Thus, for some o’ > 0, [(a'|z;| — b)va, y(dza,) < 1 which implies that there exists a
constant ¢ > 0 independent of n and y such that [ |x;|va, 4(dza,) < ¢ . This bound
remains valid for the integral under v, and then

/\|x||7u(da;) _ /Z|J;Z’|6_Mu(d:p) <eyeiicioo m
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4 Small dynamical interactions

Let us now consider infinite-dimensional gradient dynamics where the dynamical interac-
tion is small. Since the self-interaction does not need to be small (in the contrary) we
divide the dynamical interaction into two parts as follows U + S where U is the self-
interaction and 8 > 0 is a small parameter. We then consider the following dynamics :

{ dX;(t) = dB;(t) — U (Xi(t)) dt — BV;hi(X (t))dt , i € Z¢, ¢ >0 (31)

X(0) ~v

This dynamics is a small perturbation of a free system, which is furthermore supposed to
have nice ergodic properties, in such a way that its behavior for large times is close to the
stationary one.

The self potential U, supposed to be a C2-function, is called ultracontractive if the
semi-group associated to the one-dimensional free dynamics dz(t) = dB(t) — U’ (2(t)) dt,
where B is a real-valued Brownian motion, is ultracontractive. We denote by m the unique
initial distribution on R which makes the process x(-) stationary; one has

m(dg) = %e_U(f) e,  €eR.

Let us notice that there exists in the literature several types of conditions which imply
the ultracontractivity of U. Let us cite one set which is useful (cf. Theorem 1.4 in [15]) :
1
U'(€)

A typical example of such self-potential is given by U (&) = |£]**2 for some s > 0.

1 o0
U — 5<U,>2 is bounded from above, 0 < li_m|§|_)ooU”(§) and / d§ < +o0.

In the previous section, no particular assumption was given on the set of Gibbs mea-
sures G(@, dx), which contains the initial distribution v. Thus G($, dz) could be a singleton
or it could have more than one element (phase transition). In the contrary, in this section,
to control the evolution of the interaction at each time ¢ we use techniques involving Do-
brushin’s uniqueness condition, and therefore, we should suppose that the initial measure
v is the unique Gibbs measure associated to some interaction ¢: G(p,m) = {v}.

Let us now introduce two definitions.

We say that an interaction ¢ on RZ" satisfies the strong Dobrushin’s condition if

it is absolutely summable and if the following inequality holds :

(SDC) SUPieza D asi (FA = 1) supy yepa [P (2) — daly)] < 2.

In [8] such an interaction is called a "high temperature interaction”. It is well known
that if an interaction ¢ satisfies (SDC), then it satisfies the Dobrushin’s uniqueness con-
dition which implies that G(¢, m) contains at most one element (cf. for example [13],
Proposition (8.8)).

We can now state our result.
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Theorem 2 Let Q¥ be the law on Q of the infinite-dimensional diffusion solution of (31)
where v € G(¢,m) with support included in 1'(v), with v = (e=), .4, a > 0. Let us
moreover suppose that

e the self-potential U is ultracontractive,
e the initial interaction ¢ satisfies (SDC), and

e the dynamical interaction ¢ is of finite range (FR), reqular bounded (RB) and sat-
isfies the following assumption

sup sup sup |U'(z;).Vipa(z)] < +00. (32)
ACZ? i€EA zeRA

Then, there exists By > 0 depending only on ¢ and ¢ such that, for any B < By and for
all t >0,
V' =Q o X(8)7 € G¢',m)

where @' is an absolutely summable (AS) interaction.

Condition (32) is a balance condition between the self-potential U and the dynamical po-
tential ¢. This is satisfied for example for any potential ¢ which is constant at infinity.

Proof :

Let us first remark that for ¢ small enough, we could use similar techniques as in the
proof of Theorem 1, writing the cluster expansion now no more with respect to the time
but with respect to both small parameters ||@||oc and §. But we want to obtain more
than a perturbative result around the free stationnary case. Therefore, when ¢ is not
supposed to be close to 0, we have to develop other techniques than before. To this aim
let us introduce some more notations.

As in the last section, the infinite-dimensional dynamics (31) is obtained as limit of the
following finite dimensional dynamics : for A C Z%, A finite ,

dX;(t) = dB;(t) — %U’(Xi(t)) dt — gvihi,A(X(t)) dt ,ie A, t>0. (33)
For any z,y € de, A C Z% and I = [a,b], we use the notations :

- QY (resp. Q%) : law on © of the solution of (31) with initial distribution v (resp. dz).

- Q3"+ law on C(RT,R)™ of the solution of (33) with initial deterministic condition .
- P? : law on Q = C(R*,R)%* of the solution of the free system ((31) with 8 = 0) and
initial condition x; it is the infinite product of the one-dimensional free dynamics P,
each of one having at time ¢ p:(z;,-) as density function with respect to m.

- P{r: law on C(RT,R)™ of the solution of (33) when 8 = 0 with initial condition z,.

- PYY: law on C(I,R) of the solution of (33) when 8 = 0 conditioned by the initial and
the final values : Xa(a) = zp et Xa(b) =ya

Step 1 : Density of @3 o X (¢)~! with respect to Py o X (¢)~! on R*

Our first aim is to obtain this density as an exponential function of an uniformly
convergent sum of interactions. By Girsanov theorem, Q3" restricted to the canonical
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filtration at time t is absolutely continuous with respect to Py* with density denoted by
FA. Making similar computations as in the proof of (14), one obtains

Fu(Xa) = exp(——ﬁhA@<XA<>>+§ﬁhA@<XA )+ 30 / LBy §(XA(5))

€A

(i (X(6) + 10U X5k o (X (5) ) s

= exp (= 380 (¥al) + 5Fna(Xa0) + [ T aa(X(o)ds). (34

where for A C Z¢, g4 is the following F4-measurable function on RZ

ga(z) = —5§ ( ipa(za) + U (2:)V; @A(M)) - —52 ) > Vies(zp)Vieo(zo).
€A B,CCA ieBNC
BOC=A
BNC#D

Moreover, due to the assumptions on ¢ and (32) there exists a constant C > 0 such that
vACZY,  galle < CB. (35)
From (34), one deduces that

Qpt o X(1)~!

1
W(W — e—§,B(hA,®(yA)—ﬁhA,®($A))fA(x’y)7 (36)
with
t
fa(ey) = Bpry | e ( > aax ())ds) |. (37)
ACA

We are now looking for a cluster representation of i (z,y) for S small.

We first work at the space-time level as in [3] or [22] (cf. also [14] or [20]); Clusters are
then subsets of Z% x N. In Step 2 , we will project this representation at times 0 and ¢,
obtaining clusters in Z¢ x {0, 1}.

Let us introduce the notations we need. Let N € N large enough is such a way that for
#A > N,ga =0. Such a number N exists since g4 is of finite range by constrution.

Let V a finite subset of Z? such that for any A C Z% with g4 # 0 then A C Njea(V + 7).
Let us define a subclass of finite volumes in Z%¢ x N :

:{A:Ax{j,j+1}chxN: 1§#A§NandAcm€A(V+z')}.

A finite set v = {A1,Aq,..., A, },n > 1, of elements of D is a cluster. It is called
connected if for any A;, A; € v, there exists a sequence ¢ = i1,42,...,%, = j such that
A NAL A0, A, NAL#0, ..., A;  NA,;, #0. We call support of the cluster v the
subset of Z% x N equal to [ J_; A; and denote it by supp(7). The entire number || is the
cardinality of the support of ~.

We denote by A the set of connected clusters and A [, 1] the subset of A which contains
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the clusters whose supports are included in A x {0,--- ,M} C Z? x N. A collection of

clusters vq,79,...,7v, is called compatible if their associated supports are disjoint. We
denote by L [o,a the set of all compatible collections of non empty clusters belonging
to AAX[O,M]’

We can now start the expansion of the expression (37).

Let M be some integer which we will fix later, and T" = ﬁ We decompose the time
interval [0, ¢] into M subintervals I; = [jT;(j+1)T],5 =0,--- , M — 1. We obtain, taking
Irog =2,

M-1 M—2
fo(z,y) = /// 11 11 exp</ gA(X(S))dS) I1 HpT($§J)7$Z(J+1))
ACA j=0 Iy J=0 ieA
21 5 M-1)

P @x) Py @x) . PEy X)) m® M da W) L m @ de M),

- //---/(HZ 3 /cMm)(X)icMm)(X)...icMm)(X))

n=0{¥1,...;7n }EL A x [0, M]
z(D) 22 x(M—1)’y

P @x)pey e @x) . PEp T ax ) m® A (da D) Lo da M),

Kar(7y) has the following form :

Ku()(X) = H (pT (Xz' (JT), Xi((G + 1)T)) exp (/1 gz’(X(S))dS) - 1)

{i}x{j,g+1}ey J
i<M—2

JH (exp (/_QA(X(S))dS) _ 1)

Ax{jj+1}ey I
#A>2
J<M-—-2

11 <exp</ gA(X(s))ds) —1).

Ax{M—1,M}ec~y I

We denote by €(T") the fluctuation of the kernel pr around the equilibrium :

e(T) = sup |pr(a,b) — 1. (38)
a,beR

Since U is ultracontractive, one has

lim ¢(7T") = 0. (39)
T—o0
Let us choose 3y and T such that for any T > Ty and 8 < By, (1 + €(T))eT8 —1 < 1.
We consider now both cases, t < T and ¢t > Tj separately.
For t < Ty we fix the integer M equal to 1. So T' =t and we only have to control K1 (7),
which has the following simple form :

o] =| T (e ([ aa0xenas) =)< (<) .

Ax{0,1}ey
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For t > Ty we fix the integer M equal to [t\/3] + 1, which is the smallest integer strictly

larger than t/3;so T = W, which tends to +o0o when 3 vanishes. For 3 small enough,

we obtain
Kar()(X)] < ((1 T e(1)) el 1) i

< 2((1+e(—))60\/ﬁ—1>”
<A@ (40)

where \(3) tends to 0 as 3 goes to 0. Coming back to fi(x,y), we obtain

fr(z,y) =1+ > K3Y (DK (12) - K37 () (41)
n=0{y1,...;yn }E€LA [0,

where
z 2.2 2(M=1) -~
K/ (y) = / / Ky X)Pyy (dX) ... Py Y (dX) m® (daD) . om®H (deMD),

so that

sup [K(7)] < A
x’y7

As in the last section, this implies that for any cluster v € A and for 8 small enough,
sup > K <l

z,y€RZ? 0 Y EA:
supp(y)Nsupp(vy')#0

For 8 small enough, following Kotecky and Preiss, one obtains the following expansion for
the logarithmus of fi (z,y) :

m(fa@y) =Y > alne WK DK () K ().
=0 {y1,....7n }EMpx[0,]

We now leave the space-time level and go to the level of the projections at times 0 and ¢,
obtaining :

m(fa@y) =3 > > aln K ) K ),

ACA =0 {y1,..n }EMax [0, M)
Tr(V1s7n)=A

where Tr(~1,...,7,) denotes the spatial trace of the cluster v1,...,7,, that is the projec-
tion of its support on Z¢.
Thus from (36),

T o X (t) L s
%;T((t))—l(y/\) = ¢ 2aca Tal®y) (42)
A
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where

1

Pu(r.y) = 58(paly) —eal@))

- > a(yi, WK () K P (). (43)
=0 {y1,..n }EMa x [0, 0]
Tr(v1,...,7n)=4A

We note some important properties of the function ®°.

Lemma 8 The function i’i(w,y) defined on RZ" x RZ’ is indeed FA X Fa-measurable
and satisfies

lim sup » " (#A — 1)[| @3 || = 0.
F=0iend {5

Proof :

The measurability property of @i is a consequence of the following observation : K/ (7)
depend on z (resp. on %) only on supp(y) N (Z4 x {0}) C Tr(y) = A (resp. on supp(y) N
(Z% x {t}) C A, so that in fact @i(m,y) = q)i(mA,yA).

Moreover, Kotecky and Preiss proved in [16] the following exponential decrease of q)i
with respect to A: For any a € R, there exists 3, > 0 such that for all 3 < (3, one has

sup sup Ze“#AH@in <1 (44)
i€Z4 teRT ADi

This implies that, uniformly in i and ¢, the sum ), (#A — 1)||<I>g||Oo converges for [
small enough. Since limg_. ||‘I’i||oo = 0, we obtain the desired result. |

Step 2 : Study of Q” = Q¥ o (X(0), X(¢))~! on RZx{0:1} and its Gibbsian properties

In order to prove the Gibbsianness of v = Q¥ o X (t)~!, we study as intermediate step
QY = Q¥ o (X(0),X(t))"", the joint projection of Q¥ at time 0 and t on the space R,
where S is the so-called bi-space : S = Z% x {0,1}. (In the framework of Probabilistic
Cellular Automata, the idea to analyse the properties of the process on a bi-space was
already powerful, cf. [28]).

Lemma 9 For 3 sufficiently small Q" is a Gibbs measure on RS with reference measure

m and associated Hamiltonian function H which is defined as follows : if we denote by
(A, A') the subset of S equal to (A x {0}) U (A" x {1}),

Haay(@y) =hale) — > Iplesy)+ D @' (z,y). (45)
iEAUA Acze
AN(AUA")#D

Proof :

Since the initial interaction ¢ satisfies the strong Dobrushin’s condition (SDC), v is the
unique element in G(p,m); it can be approximated by the sequence of finite volume
specifications with free boundary conditions : (vp = i exp —h Ao mEM) pcza. Let QF* be
the law on C(RT,R)A of the solution of (33) with initial distribution v4. Similarly to the
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proof of Lemma 2, for any bounded regular local functional G , the sequence [ GdQXA
converges towards f G dQ¥ when A tends to Z¢. In particular,

i [ G000, x(0)dQy = [ 61X ). X(0)dQ".
which means that the joint projection of QZA at times 0 and ¢ on the space (RQ)A con-
verges towards QV, the joint projection of Q¥ at times 0 and ¢, considered as probability
measure on (RQ)Zd. Now, for 3 sufficiently small, using Girsanov formula and (42), it is
clear that the family (Q*)a is the Gibbsian specification on (RQ)Zd with free boundary
condition associated to the reference measure on R? m(d¢,d¢) = p;(&,¢)m(dé)m(d¢) and
the interaction

Ua(z,y) = Galz) + 5 (2,y), (x,y) € R, A c Z

(This function on (Rz)zd is indeed an interaction due to the measurability property of
@i proved in Lemma 8.) Since ¢ satisfies the strong Dobrushin’s condition (SDC) and,
by Lemma 8, > .-, (#A — 1)H<I>iHOO is as small as required for § small enough, the
interaction W satisfies also Condition (SDC) for 8 small. This implies in particular that
the set G(¥, m) of Gibbs measures on (R2)%’ contains at most one element; this element is
nothing but QV, limit of the free boundary specifications (see [13] Example (4.20) for the
relation between free boundary conditions and usual boundary conditions.) The measure
QY thus satisfies (DLR) equations with the Hamiltonian function associated to ¥ and
the reference measure m. If we now consider the natural bijection between (R2)Zd and
R, Q¥ is a measure on R satisfying (DLR) equations for any finite volume of the type
(A,A) € S, with Hamiltonian function H(a a) and reference measure m. This is enough
to deduce the desired result, since any finite volume (A, A’) C S can be included in some
symmetrical volume (A" A"”) C S. [ |

We now desintegrate the measure QY with respect to finite-dimensional projections at
time t. Let us denote by Q"¥A° the probability measure Q¥ (:|Xac(t) = yac), which is
defined for any finite subset A of Z¢, and for vf-a.a. y. The next lemma gives a Gibbsian
description of this measure. Its simple proof is omitted.

Lemma 10 The probability measure Q*"YA¢, conditional law of Q¥ o (X (0), X (t))~! given
{Xpc(t) = yac}, is a Gibbs measure on RZDAOUAIY yith, reference measure m and
Hamiltonian function HYA® defined for (A, A) C Z% x A by

H?ﬁiw)(l’a zp) = Hia an(z, 2098¢), T € RZ' 24 € RA
Q"¥2¢ can be decoupled as follows :

QYA (dx,dzy) =

1 _
Zatns) Hpt(a:i, 2i) exp ( - Z @i(:p, ZAyAc))m®A(dZA)QV,yAc (dz), (46)
AYAe) S ox Aczd
ANA#D

where QYYA is a probability measure on RZ?. Furthermore, QYA° belongs to G(®YAc, m)
where the interaction ®YA° is defined for x € RZ* by :

{ YA (z) = @i(xi) — Licae Inpy(zi, vi), i€ Z4

= 4
Y () = Gal@) + Tanacg A (2, yac), for A C 20 #A > 2. (47)
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In the next lemma we show that uniformly (with respect to A and y) the local specifications
of Q¥¥A¢ converge to this Gibbs measure.

Lemma 11 For G sufficiently small and t > 0, fo_r A C Z¢ and for all y € de, the set
G(DYre,m) contains a unique element denoted by Q*Yr°. Moreover, for any A C Z4,

lim sup sup sup sup |QVYA°(A)— QVYA°(A|zar)| = 0. (48)
A 78 AeFa ACZa yERZd zeRZ4

Proof: Considering the form of the interaction potential ®¥A° given in (47), it is obvious,
as in the proof of Lemma 9, that for 3 sufficiently small, ®¥A¢ satisfies (SDC). Therefore
the set G(®YA°,m) contains at most one element. The strong convergence of the local
specifications to the limiting Gibbs measure is a classical result, which is proved for ex-
ample in [13], Theorem 8.23. The uniformity in A and y in (48) comes from the same
uniformity obtained in the (SDC). [

Remark 2 Since Q¥YA° is well defined for anyy € de, Q¥¥r¢ s also defined by (46) not
only for vt-a.a. y but for all y. This is a regular version of the conditional probabilities

QY (dx dyl|ype).

We now observe that, for a.a. yae € R, v4(-|yac) is the marginal on RZ* of Q¥Yac. This
means that, for any regular bounded function g on R,

/ g(zn ) (dzn yne) = / 9(20) QU (di, dzy ).

From Lemma 10 and Lemma 11, we obtain the existence of a regular density fa for the
conditional probabilities v/!(-|yac) :

vi(dealyac) = fa(zayae) m®*(dzy),

with
— 1 g _ B IiYae
faly) = /demgmz,yz)exp( Py B (2.)) Q" (da).  (49)
ANAF#D

Let us remark that fa is well defined on the full space RZ?.

Step 3 : Use of Kozlov representation theorem

To complete the proof of Theorem 2, it is enough to show that the local densities fx
- expressed in (49) - of the family of conditional probabilities v!(-|Fac) are built on an
absolutely summable interaction potential. Unfortunately, in this context, we cannot write
explicitely the interaction as we did in the section 3. We will only prove its existence and
regularity, using the pioneering work of Kozlov. In [17], Theorem 1, he proved the existence
of an absolutely summable interaction under the assumption that for any A C Z¢, fa
satisfies the following properties :

(boundedness) 3C4, Ce > 0 such that C; < infd faly) < sup fa(y) < Co,

yGRZ yERZd
uastlocalit lim su — y)| = 0.
(g y) iy pzd\fA(y) fa(9)]
y,g€R
YA=YA
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The first condition is equivalent to the uniform boundedness of In(fj) and the second one
is the uniform quasilocality.

Proof of the boundedness of fa : Since, from Lemma 10, Q*¥A¢ is a Gibbs measure with
associated interaction ®YA°, one can desintegrate it on F, and obtains

faly) = / Fa(ae. y) QU (dr) (50)
where
Fazac,y) = / ! [Tpe(aiv)exp (=ha@)— > @(w,y))m® (dza),
rA Za(yac)Za(@ae) sy et
ANAFD
with

Sa(aae) = / exp(—ha () m®A (dzy),

and Za(yae) = /Hpt(azi,yi)exp(— > i’ﬁ(ib,y)) m®Ndys) Q" (da).

i€A Aczé

By assumption, the initial Hamiltonian & is uniformly bounded; then there exists ¢; > 0
and co > 0 such that

d
Vz € R%, c <

— e
ZA (.Z’Ac)
On the other hand, from Lemma 8, it is clear that for § small enough, there exists c3 > 0
and ¢4 > 0 such that

d
Yo,y € RE c3 < exp(— Z i’i(az,y))) < cy.

ACzZ®
ANA#D

Then, for any yre € R,

es [ TLmConsm® (dn) Q0 (do) < Zalone) < er [ T muCorsn)n® () Q0 ().
€A (IS
Since, for any i € Z% and z; € R, [ py(x;,y;) m(dy;) = 1, we obtain c3 < Zp(yac) < cq.
This bound implies that, for all y € RZd,
C1C3 CoCy

Z < faly) < ?

Proof of the quasilocality of fa : B
Above, we have shown that the function f, defined on RA® x RZ is uniformly bounded.
Furthermore, it satisfies

limd sup  sup |fa(zac,y) — fa(zae,§)| = 0.

A7 y,geRZd ERZ?

YA=gA

Using the integral representation (50) and (48), one obtains that fa itself is quasilocal.
[ |
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Remark 3 If we remove the ultracontractivity assumption on the self potential U, the
result of Theorem 2 remains valid, that is for any fized t, vt is strong Gibbsian for 3 < f3,
but now the critical value By depends on t.

5 Corollaries and additional remarks

We proved in the previous sections results on propagation of Gibbsianness. In this last
section, we are interested by the propagation of other properties. Does the Strong Do-
brushin condition, or the uniqueness of Gibbs measures, or the phase transition property
propagate between time 0 and time ¢?7

We begin with a direct corollary of Theorem 1.

Corollary 3 Let us consider the system (4) under the assumptions of Theorem 1. If the
initial interaction @ satisfies (SDC), then for t small enough, the interaction ¢ at time t
satisfies (SDC) too.

Proof :
The representation (30) shows that ¢! is a perturbation of ¢. Similarly as in Lemma 8,
we obtain that for ¢ small enough ¢! satisfies (SDC). [

In the case of free systems, we can even say something for times ¢ not necessarily small.
Let us define the following decoupled dynamics :

{ dX;(t) = dB;(t) — LU (X;(t))dt ,i € Z%, t >0

X(0) ~v (51)

where v is a Gibbs measure in G(,m); U is supposed to be C? and the measure e Vde
can be normalised into m(d¢) = %e‘U(f)dﬁ.

Proposition 4 If we consider the free system (51) where the initial interaction ¢ satisfies
(SDC), then for any time t > 0, the set G(¢',m) is reduced to the unique Gibbs measure
equal to the law of X (t).

Moreover, if the dynamical self interaction U 1is ultracontractive, then for t large enough,
the interaction at time t @' satisfies Dobrushin uniqueness criterium.

Proof:

Let 1 be a Gibbs measure in G(p!,m). Suppose that p is extremal; then, as recalled in
Lemma 1, p is the weak limit of its local specifications, that is : there exists y in RZ? such
that u = limy sza fa(yae)m®r @4§,,., with fa defined in (49). But the expression (49) is
now much simpler than in Section 4 since the system is free (5 = 0). In this special case,
the local specification fj of v* in A has the following simple expression :

faw) = [ T putons )@ (da), (52)
€A

So, for all A € Z¢ and all bounded regular Fa-measurable function g , we have

/g(zA),u(dz) = lim g(zA)/Hpt(xi,zi)Q”’yAc(dw) m®A(dzA)

A7

1€EA
= i i»2i) mP2(d )" (da),
] e Tty e o
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since for every i € A\A, [ pi(z;, z;)m(dz;) = 1.

On the other hand, Lemma 11, which holds for A = Z% too, shows the weak con-
vergence of Q"¥A° against QY. which is equal to v when 3 = 0. Since the function
z— [ g(za) [Liea pe(zi, 21)m™(dya) is bounded and local, we then get

[ otea — [ [ atea) [ rto ™ dzsvtae).

1EA

The preceeding equality shows that locally, @ is nothing but the measure v transported by
the free dynamics. Thus, 1 does not depend on the boundary condition y. This proves the
uniqueness of the extremal Gibbs measures in G(!,m). Thus the set of Gibbs measures
is reduced to one element too. The first part of the proposition is proved.

We now prove the second assertion. For fixed ¢ > 0, one can define as usually Dobrushin’s
coefficients (CZ-(Z-))Z'JEzd associated to the interaction ¢! by :

Cl) = sup{||v( dyzwyzd\» VM (dyil Gz )ivar < 95 € R yga; = G0}
= _SUP{/|fz )| m(dy;) : y, 5 € R ,yzd\j = Yza\; }
with, as in (52), fi(y) = friy(¥) = [ pe(@i, y:)Q" %"\ (dx). To simplify, the Dobrushin’s

coefficients of ¢ (time 0) are denoted by (Ci ;)i jezd-
The potentiel ¢ satisfies the Dobrushin Uniqueness Criterium if

(DUC) C®) = sup; > jezd C’Z(tj) <1

Since ¢ satisfies (SDC), it’s well known (see for example Proposition 8.8 in [13]) that
¢ satisfies (DUC) too, that is C' := supjeza ) ;ez4 Cij < 1. Let us prove that ¢! also

satisfies (DUC) for ¢ large enough. From Lemma 10, Q"”Y2%\i and Qy’gzd\i are Gibbs mea-
sures. Using the comparison Theorem 8.20 in [13] which gives bounds for the integral of
a function under different Gibbs measures, one obtains

[fily) = fi@)] < 26('5)Dz',j/HQV’yZd\i(dmg’\%d\j)—Qu’gzd\l(dm]\mzd\y)\\m Q"YxNi(dx)

< 2Dy [ [

where €(t) is defined in (38), D; ; is the (4, j)-coefficient of the infinite-dimensional matrix
D =} ,cnC" (Cis the matrix (C; ;); jeza) and

)| P m],y]) pe(5,75) SV
- —= | m(dxj) Q7N (dx),
Z] x y]) zj(x,yj) I

zi(2,y;) = /e_hj(x)pt(wj,yj)m(dwj)-

If we denote by z;(z) = [ e~ m(dx;) we then obtain following inequalities :
(1 —e(t)zj(z) < 2z(x,y;) < (1+€(t))z;(2), (53)

2j(z,y5) — 2j(2, )| < 26(t)z; (). (54)
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Thus,
fi(y) = fi(@)] < e(t)Ds (A + B),
with

and

/ / ) i) = ) ) @ ),
1 —_

// "ol 1) zj(z,y;)  z(2,95)

Using inequalities (53) and (54) we obtain

—hj(x)
A < // m(dz;)Q"Y2Ni (dx
) QA )

m(dx;) Q"2 (dz).

< ZE(t () m(da;) Q"2\i(dx)
—¢(
26(t
<
— 1—e(t)

(For ¢ large enough, 1 — €(t) is greater than 0.)
On the other hand,

—hi(@) |2j(, 55) — 2z (2, ;)| .
< ) ? . y’yZd\i
B < // (@, ) (=5 ) zj(x,y5) m{de;) Q ()

—h (z € —
/ / Z L xj,y])%m(da:j)Q i)

IN

IN

1—e<>

Finally, we obtain the uniform bound |f;(y) — fi(9)| < fiet):)

D; ;. Thus, for all 7 € N,

2 2

PR G S
—1—e(t) YTl —e(t)1-C

JjeN

Since €(t) vanishes when ¢ goes to infinity, C (t) is strictly lower than 1 for ¢ large enough.
|

Let us go back to the general system (31), with a true interaction in the dynamics.
We know that for small times the set G(¢!,m) contains a unique Gibbs measure. But
it is not clear whether this property remains true for any time. What we prove in the
following proposition, is that it is at least true for ¢ large enough. Unfortunately, unlike
the preceding Proposition, we do not know if the potentiel ! satisfies the uniqueness
criteria (DUC) or (SDC).

Proposition 5 Under the assumptions of Theorem 2, for 3 small enough and t large
enough, the set G(¢t, m) contains a unique Gibbs measure, the law at time t of the solution

of (31).
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Proof :

For 3 small enough, the interaction potential on R® associated to the Hamiltonian func-
tion H defined in (45) is the sum of the initial potential plus a two-body potential induced
by p: and a dynamical potential defined by the cluster expansion. By assumption, the
first one satifies (SDC); the second one vanishes when ¢ goes to infinity, since U is ultra-
contractive and the third one is small in the sense of Lemma 8. So, for § small enough
and t large enough, the potential associated to H satisfies (SDC) on the bi-space S. Thus,
the specifications of H are global in the sense defined in [11] (see also [12] and [13]). This
means that (DLR)-equations hold also true for unbounded subsets of S. Similarly to
the beginning of the proof of Proposition 4, we can show that each extremal measure in
G(¢',m) is the limit of the projections on RZXA1} of the global specifications associated
to H for a fixed boundary condition y. The uniqueness of such extremal Gibbs measures
is then a consequence of the globality property. We conclude that G(¢?, m) is reduced to
the measure 1. [

Let us finish this section with a result about propagation of non-uniqueness.

Proposition 6 Let us consider the system (4) under the assumptions of Theorem 1. If
#G(p,dx) > 1 (phase transition occurs at time 0) then, fort small enough #G (', dz) > 1
too, that is the phase transition propagates.

Proof :

Suppose #G(p,dx) > 1; let 11 and v, be two distinct measures in G(p, dx). Thanks to
Theorem 1 , for ¢ small enough, v} and ¥4 are in the same set of Gibbs measures G(¢', dz).
It is clear that v} (respectively v4) converges weakly to vy (respectively to v5) when ¢ goes
to 0. Thus, for ¢ small enough v/} and v are different measures. [
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