
HAL Id: hal-00003582
https://hal.science/hal-00003582

Preprint submitted on 15 Dec 2004

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Time and Games
Benjamin Leperchey

To cite this version:

Benjamin Leperchey. Time and Games. 2004. �hal-00003582�

https://hal.science/hal-00003582
https://hal.archives-ouvertes.fr

Time and Games

Benjamin Leperchey
PPS, Université Denis Diderot

Abstract

We add the notion of time to denotational models of
the lambda-calculus. The denotation is no longer con-
stant through reduction, but rather decreases with respect
to an appropriate order. Categorically, we use a monad
over a cartesian category, an order over the morphisms
of the Kleisli category, and a Galois connection to model
β-reduction. We define a generic monad (time as a re-
source), and an instance of this construction in game se-
mantics, where our timings are precise enough to simu-
late parallelism through interleaving, and finally give some
clues about communication between threads.

1. Introduction

PCF is by nature an extensional language: a context can
only see the extensional behavior of a sub-term. All it can
do is “run” it on some arguments. If one on these runs does
not terminate, then the whole program is stuck.

In an interactive setting (like sequential algorithms or
the B algebra of Van Oosten and Longley [10]), the con-
text does not give the arguments at once. It rather waits for
the sub-term to ask for information about them. It can then
answer in the normal way, or stop the computation and do
something else (catch). Still, if the sub-term loops with-
out querying information about its environment, the whole
program is stuck again.

We want the context to have an even more tighter con-
trol on its sub-terms: we want to separate strictly terms,
that is, find contexts CM,N [] such that CM,N [M] = 0 and
CM,N [N] = 1 for terms M,N . This is stronger than
the usual notion of separation, where a context such that
C[M] ⇑ and C[N] ⇓ is said to separate M and N , al-
though this information cannot be used by a program: the
non-termination information is not (for a program’s view) a
result. With this stronger notion of separation, the context
knows the term are different (they lead to different values),
thus it can react differently.

Let us take some examples in PCF (we write Ω for the

infinite loop):

A = λx.1
B = λx.if x then 1 else 1
C = λx.if x then 1 else Ω

In PCF, there is no separating context forA andB (because
A & B for the observational preorder) nor for any other
(because the context would not be monotonic). In PCF with
control operators, the context can test whether the term uses
its argument or not with catch, so one can separate A and
B. Nevertheless, it cannot separate B and C (a context can
never learn anything about Ω, because Ω never “answers”).

If we want to strictly separate B and C, we need to have
communications between a term and its context even when
the terms does not refer explicitly to its environment. We
add “dummy” communications that come periodically: we
introduce time in the model.

We use Hyland and Ong games in an informal way here:�
1 � = {ε, q1} and

�
Ω � = {ε} (Ω never answers). We add ⊥

(‘the result is not yet ready”), and > (“try some more”). ⊥
must be a player move (since it is the term which asks for
more time) and > on opponent move (the context allows
the term to run for more time). The denotation of Ω will be
{ε, q⊥, q⊥>⊥, q⊥>⊥>⊥ . . .}: Ω does not stop the com-
putation, it only takes an infinite time to answer. We can
now distinguish B and C.

We encounter a problem here: if we want Ω = fix λf.f
to use time, we must change the definition of the fixpoint.
We rather want fix λf.M to be slightly different from
M [f\fix λf.M]: it should be slower (use more time). If
one wants to be even more precise, one might also want ap-
plication to take time, so β-equivalence might no longer be
true. Thus, one could ask what would be a model in this
perspective.

It seems that, although the reduced term is not equal to
the long form, its behavior is similar: we put an order on
terms (a priori different from the observational order).

1.1. Plan of the Paper

We are left with several questions:

• How does this fit into traditional semantics?

1

• How should one measure time, that is: where should
one put the ⊥/> moves?

• What is the defining power of this extension? What is
the separating power of this extension?

In section 2, we show that time can be described as a monad
over a cartesian closed category together with an order, such
that the curry/uncurry operators make a Galois connection.
We give a generic construction to build a model with time
out of a Cartesian closed category.

In section 3, we apply this construction to the games
model, define real-time strategies and give the Galois con-
nection that make all the denotations of λ-terms real-time.

In section 4, we investigate the third question in our
model: we show that unless we use non-functional fea-
tures, the model is essentially the same. References allow
the separation of many terms (β-equivalence is lost), and
control operators allow precise slicing and therefore inter-
leaving of several computations. Combining both construc-
tions, one can even synchronize threads and communicate
values between them, all of this in a manner transparent for
the threads.

1.2. Related Work

Escardo [5] introduced PCF+timeout, a language in
which a context could let a term run for some time and
stop it. Time is defined as a number related to the reduc-
tion path of the term (the number of steps of reduction, or
the number of recursion unfoldings, etc.) Our description
is different in that time is defined within the model, rather
than from the operational semantics of a precise language.
Longley conjectured that Kleene’s model K1 was fully ab-
stract for PCF+timeout+catch. In our example in games
semantics, we would rather try to exploit the factorization
theorem (PCF+state, PCF+control...).

The part about interleaving of computations is a refor-
mulation of the trampolined style of Ganz, Friedman and
Wand [6]: our Kleisli-construction provide a natural setting
for the “bounce” operation, no program transformation is
needed here. The communications between threads is very
similar to the modeling of references by Abramsky, Honda
and McCusker [1].

2. Categorical description

2.1. Requirements

The behavior of our programs can be divided in two
parts: the value of the program, and the time taken by the
computation. Therefore we embed values into computa-
tions via a monad, as in [12]. We need a cartesian category
G with:

• a triple (T, η, ∗) or equivalently a monad (T, η, µ),

• a tensorial strength tA,B : (TA) × B → T (A × B)
(we write t̄A,B : A × (TB) → T (A × B) for the
corresponding morphism),

• a bifunctor ⇒ covariant on the right, contravariant
on the left.

In [12], the categories are cartesian closed. Here, we
do not want closure (as it would collapse the β-equivalent
terms), but only an ordering property. This is reminiscent
of the categorical description of rewriting of λ-terms by
Hilken in [8]: β-reduction makes the term smaller, and η-
expansion leaves it unchanged. For the sake of simplicity,
we do not give here the definitions in the 2-category. We
need:

• an order � on G(A, TB) compatible with (·)∗ and
tA,B in the following sense: ∀a, a′, b,

a � a′ =⇒ a∗ � (a′)∗

a � a′ =⇒ b∗ ◦ a � b∗ ◦ a′

a � a′ =⇒ tA,B ◦ 〈a, b〉 � tA,B ◦ 〈a′, b〉

(1)

• two monotonic transformations ϕ : G(A×B, TC) →
G(B, T (A ⇒ C)) and ψ : G(B, T (A ⇒ C)) →
G(A × B, TC) inducing a Galois connection, natural
in the following sense: for all f : A × B → TC,
σ : B → T (A⇒ C) and b : B′ → B, c : C → C′:

ϕ(Tc ◦ f ◦ (A× b)) = T (A⇒ c) ◦ ϕf ◦ b

ψ(T (A⇒ c) ◦ σ ◦ b) = Tc ◦ ψσ ◦ (A× b)
(2)

We also add the following commutation properties:

(ϕf)∗ = ϕ(f∗ ◦ t̄A,B)
ψ(f∗) = (ψf)∗ ◦ t̄A,B

For a definition of a Galois connection, see [11].

Lemma 1 If η is epi, the naturality of ψ and ϕ imply the
last two conditions.

2.2. Interpretation of the simply-typed lambda-
calculus

We define our category C as the Kleisli category over G:
the objects are those of G, C(A,B) = G(A, TB), g • f =
g∗ ◦ f = µ ◦ Tg ◦ f , and the identity on A is ηA.

2

t ::= x, y... Variable
λx.t Abstraction
(t)u Application
0, 1... Constants
succ t Successor
pred t Predecessor
if t then u else v Conditional
fix t Fixpoint

Figure 1. PCF terms

Definition 2 We interpret the sequents x1 : A1 . . . xn :
An `M : A of the simply typed lambda-calculus as:

�
A1 � × (

�
A2 � × · · · × (

�
An � × 1) . . .) � M � xn...x1

−−−−−−−→
�
A �

where

•
�
xi � xn . . . x1 = η ◦ π1 ◦ (π2)

i−1,

•
�
(M)N � ρ = (ψ

�
M � ρ)∗ ◦ tA,B ◦ 〈

�
N � ρ,B〉

•
�
λx.M � ρ = ϕ(

�
M � ρx).

Lemma 3
�
M [x\N] � ρ = (

�
M � ρx)∗ ◦ tA,B ◦ 〈

�
N � ρ,B〉

The proof is very technical. All the required properties of
ϕ, φ are needed except the fact that is is a Galois connection,
which will be used in the following corollary.

Now, we can state the main result of this translation: the
above requirements on the monad ensure that the interpre-
tation is compatible with β-reduction, up to the order �:

Proposition 4
�
(λx.M)N � ρ �

�
M [x\N] � ρ

Proof: Applying the above lemma, we have:

�
(λx.M)N � ρ = (ψ

�
λx.M � ρ)∗ ◦ t ◦ 〈 �

N � ρ,B〉
= (ψϕ

�
M � ρx)∗ ◦ t ◦ 〈 �

N � ρ,B〉
� (

�
M � ρx)∗ ◦ t ◦ 〈 �

N � ρ,B〉
=

�
M [x\N] � ρ

2

Proposition 5 Application and abstraction are monotonic
for �.

2.3. PCF

We recall the definition of PCF in figures 1 and 2. In
order to be have model for full PCF, we need the following
arrows in the Kleisli category:

• an object N with arrows n : 1 → N ,

(λx.M)N M [x\N]
if 0 then M else N M
if n+ 1 then M else N N
succ n (n+ 1)
pred (n+ 1) n
fix M (M)fix M
M M ′ =⇒ (M)N (M ′)N
M M ′ =⇒ succ M succ M ′

M M ′ =⇒ pred M pred M ′

M M ′ =⇒ if M then N else P if M ′ then N else P

Figure 2. Call by name PCF reduction rules

• arrows succ : 1 → N ⇒ N (resp. pred) such that
succ ◦ n � n+ 1 (resp. n+ 1, n),

• an arrow if : N × (N × N) → N such that if ◦
〈0, 〈p, q〉〉 � p and if ◦ 〈n+ 1, 〈p, q〉〉 � q,

• a transformation Y that maps arrows of C(Γ, A ⇒ A)
to arrows of C(Γ, A), such that Y f � ψf ◦ 〈Y f,Γ〉.

and we define the denotation of a term in the obvious way.
These conditions are needed to have the following property:

Proposition 6 If M ∗ N and the free variables of M,N
are in ρ, then

�
M � ρ �

�
N � ρ.: a reduced term runs faster

than a long form.

2.4. The Canonical Time Monad

In this section, we define a monad on any CCC. The def-
inition of the order and the Galois connection are left (as
they seem to depend on the nature of the CCC). Neverthe-
less, we can prove general, interesting results about these
models.

We suppose in the following that we have a CCC G: the
cartesian product is written ×, curryficationC and uncurry-
fication U .

If we think of time as a resource given by the context to
the term, it is natural to turn terms of type A into terms of
type T ⇒ A, that is functions that take time (of type T) and
give a value of type A.

The diagonal arrow δT : T → T × T gives µ:

T × T × (T ⇒ T ⇒ A)

UU idT⇒T⇒A

(T × T) × (T ⇒ T ⇒ A)

α

A

T ⇒ T ⇒ A
C(UU id◦α)

µ

(T × T) ⇒ A

δ⇒A

T ⇒ A

3

We choose η = Cπ2 (the constant function). It is easy to
check that the following is a tensorial strength:

tA,B = C(U(T ⇒ A) ×B)

All that is left to define to have a model of PCF is what
time is (the object T), what “faster” means (the order � on
T ⇒) and what uses time:

• the Galois connection (time taken by application),

• the fixpoint transformation (time taken by recursion
unfoldings),

• the arrows for the constants and primitives (time taken
by primitives).

We add some conditions on T and � (remember that C
is the Kleisli category built over G):

• for all A, there exists an arrow tick : 1 → T in G (time
can be “created” in G),

• we define, for f ∈ C[A,B], πf = ψf ◦ 〈tick, A〉, and
require that f � g if and only if πf = πg.

The second condition means that� is only about the time
part of f, g. It implies that ifM reduces toN , then π

�
M � =

π
�
N � , so the image by π of the model in C is a model in G.

More precisely:

Theorem 7 Contextual separation is essentially the same
as in G: for all closed PCF terms M,N : A, if π

�
M � =

π
�
N � , then for all contexts C, π

�
C[M] � = π

�
C[N] � .

Proof: It is a consequence of the Kleisli construction. We
make an induction on C, the only interesting case being
the application. Since a context applied to a term sees only
the “extensional” part of the term A, it cannot see the time
requests TM , it can only forward it:

Γ

t◦〈 � M � ,Γ〉
� (P)M �

TM,P ⇒ C

TM ⇒ (A× Γ)
TM⇒ � P �

TM ⇒ TP ⇒ C

µ

2

Theorem 7 shows that we need to introduce a specific
construction for time inside the language in order to use
time:

timing M (λτ.N)

means that we executeM , replacing the times ticks by calls
to N . N takes the “normal” tick (from the context) and
gives a tick back. We use a separate type for ticks, with no

constructor, so that the only value that N can return is τ 1.
Of course, it might do something before returning τ : raise
an exception, update a reference, etc.

We add the typing rules:

Γ `M : A Γ ` N : T ⇒ T
Γ ` timing M N : A

Γ `M : T Γ ` N : A
Γ `M ;N : A

and define
�
timing M N � ρ as the composition (in the λ-

calculus sense) in the original CCC: we have Γ � M �
−−−→ T ⇒

A and Γ � N �
−−→ T ⇒ T , so

T × Γ
〈U � N � ,π2〉
−−−−−−−→ T × Γ

U � M �
−−−−→ A

We set
�
timing M N � = C(U

�
M � ◦ 〈U

�
N � , π2〉). We

require the model to provide a morphism seq : T ×A→ A
to implement the semicolon.

How the terms of PCF+timing will behave is tightly
linked to the precise usage of T . We need to complete our
model to give precise semantics to PCF+timing. Although
some elements are missing, we can give the generic intu-
ition behind the monad and the timing operator: we trans-
late the terms of PCF+timing into terms of PCF with a spe-
cial type T :

• a term M : A is turned into M̃ = λτ.M ′ : T ⇒ A,

• x̃ = λτ.x,

• timing M N becomes λτ.(M)(N)τ ,

• λx.M becomes “something like” λτλx.M̃τx and
(M)N something like λτ.((M̃)τ)(Ñ)τ (this depends
on the exact Galois connection)

For example, if we put occurrences of τ on the β-redexes,
(λx.x)(λy.y)0 becomes λτ.(λx.τ ;x).(λy.τ ; y)0. We re-
duce it by β-reduction, and we get λτ.τ ; τ ; 0: this is the
value 0, computed in two steps.

In this light, the projection π only amounts to apply-
ing the translated term to () : T . For our example
(λτ.τ ; τ ; 0)() = (); (); 0 = 0.

A natural choice for T would be the unit type of ML:
we count ticks, which carry no intrinsic value. We would
still want T to be a special type: in a language with a unit
type, there should be no confusion between commands (of
type unit) and time ticks (of type T). Nevertheless, one
could imagine T to be more complex, For example, with
T = N , the possibilities for the timing function would
be much richer: one could “create” time (giving back con-
stants), compute things through the ticks, etc. We focused

1or another τ
′ given in the same fashion by some enclosing timing

4

here on the simplest choice for T , which allows many inter-
esting variations.

In [5], Escardo defines precisely the operational seman-
tics, then defines time as the number of steps of reduction
(or the number of recursion unfoldings, etc.), then he de-
fines the model according to this particular timing. The
problem is, if we change the presentation of the opera-
tional semantics (say, split a rule in two), then we change
the whole meaning of the term. In the present paper, we
chose to define time inside the model. We believe that the
timings we get this way are more natural, since the mod-
els describe sequentiality most precisely. It would of course
be better to give operational semantics corresponding to the
model, for instance through the above translation.

In the sequel, we give an instance of this construction
inside the games model.

3. Category of timed games

3.1. Arenas, plays and strategies

We use the variant of Hyland and Ong games described
in [7]: it allows a modular description as constraints on
strategies as in [2], and contrary to [9], without the categor-
ical description of the exponentials as in [2] (which would
require both a co-Kleisli construction for the ! comonad and
the Kleisli construction for the time monad).

Thus we have a uniform presentation for different classes
of strategies (innocent, well-bracketed, etc.) in a relatively
simple setting.

Definition 8 An arena is a triple 〈MA, λA,`A〉 where

• MA is a set of moves,

• λA is the labeling function, from MA to {O,P} ×
{Q,A} (opponent, player, question, answer),

• `A is the enabling relation, such that

– if n `A m and n 6= m, then λO,PA (n) 6=

λO,PA (m),

– if m `A m, then λA(m) = OQ and there is no
n 6= m such that n `A m (m is an initial move),

– if n `A m and m is an answer, then n is a ques-
tion.

Definition 9 A justified sequence in an arena A is a finite
sequence onMA, together with a pointer from each movem
to a preceding move n, such that n `A m. The hereditary
justifier of a movem is the unique initial movem0 such that
there exists a sub sequencem0m1 . . .mk wheremi justifies
mi+1 and m = mk.

A legal play is a justified sequence where player and op-
ponent alternate. We write LA the set of legal plays.

Definition 10 If sm has odd length, the current thread
dsme is the subsequence of moves hereditarily justified by
the hereditary justifier of m (the connected component of
m). If sm has even length, sm is well-threaded at m if the
justifier of m occurs in dse. A play is well-threaded if it is
well-threaded at each player move. The current thread of a
legal play is also a legal play.

The player view is defined by:

• psmq = m if m is an initial move,

• psmtnq = psqmn if n is an O-move and m justifies
n,

• psmq = psqm if m is a P-move.

A play sm ∈ LevenA is visible atm if the justifier ofm occurs
in psq. It is visible if it is visible at each player move.

The product and arrow arenas are defined in the usual
way. We define the lifted arena A⊥:

• MA⊥
= {q, a} +MA,

• λA⊥
(q) = OQ, λA⊥

(a) = PA, λA⊥
(m) = λA(m)

otherwise,

• m `A⊥
n iff m = n = q or m = q, n = a or m =

a, n `A n or m 6= n,m `A n.

Definition 11 A strategy σ over an arenaA is a non-empty,
even-prefix closed set of even-length legal plays overA such
that if sab, sac ∈ σ, then sab = sac (determinism).

Definition 12 A strategy is visible if whenever sab ∈ σ,
then b is justified in psaq.

A strategy is well-bracketed if the player answers are jus-
tified by the last unanswered opponent question in the view.

A strategy is single-threaded if all plays of σ are well-
threaded and player moves depend only on the current
thread: if sab, t ∈ σ and dsae = dtae, then there exists
a unique way to extend ta with b such that dsabe = dtabe.

A visible strategy is innocent if player moves depend only
on the view: if sab, t ∈ σ and psaq = ptaq, then there
exists a unique way to extend ta with b such that psabq =
ptabq.

Theorem 13 Arenas and single-threaded (resp. innocent)
strategies form a CCC. Well-bracketed strategies induce
sub-CCCs.

3.2. The Time Monad

Since G is cartesian closed, we can apply the results
of the previous section, to get a monad with a tensorial
strength, but we still need to define an ordering, a Galois
connection, the fixpoint transformation and the arrows for

5

the constants. One easily checks that, whatever choice we
make for T , η is epi: the T arena is always empty, because
the initial move would have to be made by player, i.e. by
the strategy η, which by definition never happens.

Eventually, we choose T to be the arena 1⊥ (two moves:
one initial opponent question q, which justifies the player
answer a).

Definition 14 Let s, t be plays of Γ ⇒ T ⇒ A: we define
s � t iff

• s � Γ, A = t � Γ, A, and

• s is a sub-sequence of t i.e. there exists an injective
monotonic map φ : N → N such that si = tφi and if
si justifies sj then tφi justifies tφj .

This means that t is s where some moves were inserted
in T . This extends to an order on the strategies of Γ → T ⇒
A: σ � τ if σ is Egli-Milner smaller than τ : ∀s ∈ σ, ∃t ∈
τ, s � t and ∀t ∈ τ, ∃s ∈ σ, s � t.

Lemma 15 � is compatible with composition and with the
monadic constructions (equations 1).

Lemma 16 seq : T ×A → A is the sequence operator:

T × A T A
qA

q
a

q
a

qA

...
...

Up to here, the definitions were quite canonical. There
is some freedom in the choice of ϕ, ψ, Y, if, succ and pred,
depending on what one wants to observe. This is like in
[5], in which several models/languages are given, accord-
ing to what “events” are counted: each reduction step, or
only recursion unfoldings. In the light of our translation into
PCF with an extra argument, it is actually even closer to [6],
where the yields are explicitly put in the program. Here, we
choose where to put the occurrences of τ . One can think of
time resolution being more or less fine-grained.

In the present paper, we give the somehow most pre-
cise timing of strategies: we control exactly the number of
moves played between two moves by the context.

3.3. Real-time strategies

Definition 17 A strategy σ : A ⇒ B is a real-time strategy
if player never plays twice in a row in A, or equivalently
if player never answers to an opponent move in A with a
move in A.

Proposition 18 The composition, product of real-time
strategies are also real time, and so are the identities and
the projections. Thus, the arenas with the real-time strate-
gies make a sub cartesian category Grt of G.

With our restriction on the plays, composition is in fact
much simpler: there are always at most two moves played
in the center arena between moves in the outside arenas.
This is a kind of soundness property: we cannot hide a long
computation by composition.

Proposition 19 The monadic morphism η and µ and the
tensorial strength t are real-time, and if σ is real-time, then
so is T ⇒ σ. Thus, we can build the Kleisli category C over
Grt.

3.4. The Galois Connection

Remember that we want a Galois connection between
C(A×B,C) and C(B,A ⇒ C) i.e. two transformations:

G(A×B, T ⇒ C)
ϕ
−→ G(B, T ⇒ A ⇒ C)

G(B, T ⇒ A⇒ C)
ψ
−→ G(A×B, T ⇒ C)

such that (this is an equivalence rule):

ϕf � σ

f � ψσ

We will actually check that ϕ and ψ are monotonic and
that ψϕf � f and ϕψf � f .

The idea is simple: the usual curry/uncurry operations
in games only amounts to a relabeling of moves. Here the
problem is that in general the plays we get by uncurrying do
not respect the new condition (they play several times in a
row on the left side). For example, the plus operation:

NB
ϕ(+)

T ⇒ NA ⇒ NC
q

q

2
q

3
5

NA × NB
ϕϕ(+)

T ⇒ NC
q

q

2
q

3

5

6

But thanks to the monad, there is always a possible player
move on the right side: ask in T .

NA × NB T ⇒ NC
q

q

2
q
a

q

3
5

On the contrary, we can “compress” the curryfied version
of a play, by removing the two moves in T that come right
before a move in NA.

More formally, we write U(·) the relabeling correspond-
ing to usual uncurryfication and C the curryfication. In the
rest of the section, σ is a strategy ofB → T ⇒ A⇒ C and
τ is a strategy of A×B → T ⇒ C

The sequences we get by applying U , are not real-time.
If m is a move in A, we call I(m) the initial move in C
that hereditarily justifies it. We define θs as U(s) where all
opponent moves mA in A are replaced by qTaTmA where
qT is justified by I(mA).

Lemma 20 If t is a play of B ⇒ (T ⇒ A ⇒ C) then θt is
a play of A×B ⇒ (T ⇒ C).

We define ψτ as the closure of {θt | t ∈ τ} by pair
prefix.

Proposition 21 If τ is a strategy of B ⇒ (T ⇒ A ⇒ C),
then ψτ is a real-time strategy of (A × B) ⇒ T ⇒ C.
Moreover, if τ is innocent (resp. well-bracketed), so is ψτ .

We define ϕ the opposite way: we remove the moves
in T occurring just before a move in A. The visibility
condition ensures that we do not “mix” several threads: if
u = sqTaT s

′mA is a play, we know that ma is justified in
psqTaT sq = psqqTaT s, so it must be in the same “thread”
as qT .

We write C(·) for the usual curryfication operation. Let
s be a play of A × B ⇒ T ⇒ C. We transform C(s) by
removing all sub-sequences qT aT occurring just before an
opponent move in A: we call ρs the resulting sequence.

Lemma 22 If s is a play of A×B ⇒ (T ⇒ C), then ρs is
a play of B ⇒ (T ⇒ A⇒ C).

We need to be careful here: we do not want to transform
plays that end with qT because we do not know yet if we
have to remove it or not. We need to “look ahead” a little:
we define πσ as the set of s ∈ σ such that

• s does not end with qT or

• s ends with qT and saT qT ∈ σ.

We define ϕσ as the closure by pair prefix of ρπσ.

Proposition 23 if σ is a strategy of A × B ⇒ (T ⇒ C),
then ϕσ is well defined, and it is a strategy of B ⇒ (T ⇒
A ⇒ C). Moreover, if σ is innocent (resp. well-bracketed),
so is ϕσ.

Lemma 24 ψ and ϕ respect the naturality conditions
(equations 2).

Proof: Since the only transformation on A is the identity,
the moves in A are exactly the same on both sides of the
equality, so the added (resp. deleted) moves are the same
too. 2

Proposition 25 ϕ and ψ define a Galois connection. More
precisely, σ � ψϕσ, and ϕψσ = σ.

Proof: Let σ be a strategy ofA×B ⇒ (T ⇒ C). Let s be a
play of σ. ρs is U(s) where some move were added. These
moves and only these moves are deleted by θ, so θρs = s.

On the contrary, if s ∈ f , we prove that ρθs � s. θ
deletes some moves of s, all of which are put back by ρ.
But, in the general case, moves in A do not come after
moves in T , so θ deletes less than ρ adds, and ρθs � s. 2

Note that there is an obvious dual definition: put the
moves in T after (and not before) moves in A. It is a bit
easier to show that curryfication yields a deterministic strat-
egy (since we do not have to look ahead), but our Galois
connection corresponds to a more natural transformation of
the λ-terms.

3.5. PCF constants

Definition 26 We define succ, pred, and if as the smallest
real-times strategies which meet the requirements.

succ and pred are as expected. We give a typical play for if,
where we can see that moves was added between the evalu-
ation of the test and the evaluation of the “then” branch:

N × N × N T ⇒ N
q

q

0
q
a

q
n

n

7

We define the fixpoint in the usual way: given a strategy
σ : Γ → A ⇒ A, when define a chain of strategies fi :
Γ ⇒ A (for the inclusion ordering): f0 = ∅ and fi+1 =
ψσ ◦ t ◦ 〈fi,Γ〉. We finally take Y σ =

⋃
fi.

We have all the elements needed to prove the following
theorem:

Theorem 27 The games and the real-time strategies are a
model with time of PCF (built over the games model without
time).

4. Defining power of the real-time strategies

Since our operations (monadic lift, curryfication, uncur-
ryfication) preserve well-bracketedness and innocence, one
expects a hierarchy of models as in [2, 7]:

T Gst

T Gi T Gv,b

T Gi,b

where st stands for single-threaded, i for innocent, v for
visible and b for well-bracketed.

It seems that the model of innocent and well bracketed
real-time strategies does not allow more separation than the
original innocent and well bracketed strategies model: al-
though two β-equivalent terms can have a different denota-
tion (timing λτ.Ω returns the result if it took no time to
compute it, and loops otherwise), this information is about
observational ordering, which a purely functional context
cannot use. We were not able to formally prove it, though.

4.1. Non innocent strategies

If we allow non-innocent strategies, we can count the
ticks. Something like:

new x = 0 in timing M (λτ.x := x+ 1; τ); deref x

returns the number of ticks used in the computation of M .
With this “profiling” operation, we can separate terms

that compute the same value in a different number of steps,
like 1 and (λx.x + 1)0.

4.2. Non Well-Bracketed Strategies and Interleav-
ing

If we relax the well-bracketedness condition, we are al-
lowed to stop the computation when the term uses one of its

((A ⇒ B) ⇒ C) T ⇒ (A + C)

q
qC
aC

inC
qC
aC

q
qC

qB

inA
qA

qA

...
...

(the dots stand for the copycat strategy)

Figure 3. the catchA,C strategy

arguments. In particular, if we can stop it when it uses time,
we can separate terms that take no time to compute from the
others: we can now stop the computation of Ω.

More interesting, in a language with sums, we can stop a
computation and restart it where it was stopped: we define
the strategy catchA,C of type ((A ⇒ B) ⇒ C) ⇒ (A+C)
where C is a flat type (like N or 1): catchA,C M gives
the result (of type C) if M does not use its argument, or the
argument of typeA given to it. See figure 3 for the maximal
threads.

We compose this with the proper innocent and well-
bracketed strategy to get a strategy catchA of type ((A ⇒
B) ⇒ C) ⇒ (T ⇒ A): it behaves as above if it catches a
value of typeA and loops infinitely otherwise (asking again
and again in T).

Now, we define for M : N , M ′ : T ⇒ N :

embed M = λτ.timing M (λτ ′.τ)

step M ′ = catchT⇒N,Nλα.timing M ′(catchTλβ.αβ)

Intuitively, if we apply step to M : T ⇒ N , it answers
either that the computation is not finished, giving the re-
mainder, or that is it finished, giving the result.

We have all the tools we need to implement schedulers:
we can run term for a time slice, then do something else,
then restart the term where it was stopped and so on.

This is quite similar to the trampolined style of Ganz,
Friedman and Wand [6]. Actually, the types are just the
same, but thanks to the Kleisli construction, the thunks do
not appear explicitly in the term: we do not need a trans-
formation, all the embedding is done inside the model. Fol-
lowing their construction we have several schedulers:

8

• pogo-stick: give the control back at once to the term,

• see-saw: alternates between two (or more) continua-
tions, to allow simulation of parallelism through inter-
leaving,

• more complicated cases with dynamic thread creation
etc.

Note that we can actually implement parallel or. In the
sequel, we write parallelMN the term implementing
the interleaved execution of M and N with the see-saw
scheduler.

4.3. Delay, Synchronization, Communication

Thanks to the structure of the model, we can make delays
completely transparent: the term tries to read some variable,
which asks for time for a while before returning the value.
A term without explicit reference to time does not know,
this is completely internalized in the model: it just passes
the ticks between the variable and the context.

In the same fashion, it is easy to synchronize two threads
with the help of non-innocent strategies: let semaphore

be the strategy corresponding to the following pseudo-ML
code:

let x = ref 0 in
lambda tau.
(incr x; while x<>0 do tau; () done,
decr x; while x<>0 do tau; () done)

In G, it has type T ⇒ (com × com), where com = 1⊥,
so, in the Kleisli category, it has type com × com. Now,
we can use the two different sides for two threads. When
one of them is asked, it loops asking for time (which, again,
unless explicitly specified through the use of timing , the
context does not see) until the other side is asked too, that is
until the other thread has reached the synchronization point.

Let us take an example, again in pseudo-ML:

let sync1,sync2 = semaphore tau
in
parallel (...; sync1; ...)

(...; sync2; ...)

sync1 and sync2 are plain variables in the terms, which
do not even need to know that they are actually synchroniza-
tions. When the computation reaches one of them, it waits
(asking for more time) until the other is reached too, then
they return () at their next time tick, and the computation
can continue.

Actually, in order to have a single-threaded strategy,
we need to lift the arena com × com. A typical play of
semaphore would then look like figure 4. We cannot com-
pose it directly with strategies arising from term, since it is

T ⇒ (com × com)⊥
q
a

q
q
a
q

q
a

a
a

Figure 4. A typical play of semaphore

a lifted form: it would fit much better in a call-by-value de-
scription, but the categorical description of another model
with two monads was out of the scope of this extended
abstract. We therefore use a special construct to compose
it with a strategy of com ⇒ com ⇒ A: the strategy
callbyvalue : (com × com)⊥ × (com ⇒ com ⇒ A) → A.
It answers to an initial move in A by the initial move of
(com × com)⊥, and when the environment answers, it acts
as the copycat between the corresponding coms and the
As. We add the corresponding construction to the syn-
tax: syncλa.λā.M composes the denotation of M with
semaphore, through callbyvalue, thus synchronizing an oc-
currence of a with an occurrence of ā (note that this is a
one-shot synchronization).

Very easily, we can pass values on this channel: replace
com×com byA×(A→ com): a couple of values, one that
reads a value of type A on the channel, and one that writes
a value of typeA on the channel and returns com. Here, the
strategy channel waits for both sides to be ready, then act as
the identity between both As. Figure 5 describes a typical
play.

We can use the communication channels in the same
fashion: channel λa.λā.M , executes M where a is used as
a variable containing the value read on the channel, and ā
as a function writing the given value on the channel. Again,
all the latency is hidden unless the term explicitly uses the
non-functional feature timing .

All of this looks a lot like the cellstrategy of Abramsky,
Honda and McCusker in [1]. The main difference is that we
do not stop if the value is first read (we wait until it is ini-
tialized) and that we do not answer immediately to a write

command (we wait until there is a corresponding read). The
other difference is that we do not allow here several com-
munications on the channel, whereas their references can
be written and read an arbitrary number of times.

Actually, using a variant of their cell strategy, one can im-
plement a multiple-communication channel (with the help
of dedicated read and write constructs).

9

T (N × N com)⊥
q
a

q
q
a
q

q
q
n

q
a

n
a

a

Figure 5. A typical play of channel

5. Conclusion and further work

We introduced a notion of time in the λ-calculus like
languages, and defined the notion of model for such a lan-
guage. Although we presented one particular model in the
present paper, it appears that there are many other possibil-
ities:

• another monad (but T ⇒ seems to be the most natu-
ral choice),

• we chose the example of games semantics, but there
must be equivalent presentations in any interactive set-
ting, maybe even in static settings (such as hyperco-
herences with the multiset exponentials, see [4, 3])

• what we measure: we give here a Galois connec-
tion that make the denotation real-time, but one could
choose other notions of time, modifying the semantics
accordingly (put time on recursion, on primitives etc.)

We showed that non well-bracketed strategies allowed
the simulation of parallelism through interleaving, and that
combined with references, one could even synchronize
threads and pass values. The natural corresponding exten-
sion would be to allow non determinism in strategies. One
could also try to give an embedding for the full π-calculus
(in PCF+timing with a inductive type for channels).

There are many open problems about the intrinsic power
of such a description: do the factorization theorems for
non innocent or non well-bracketed strategies apply to this
model? What is the exact separating power of the non inno-
cent strategies, which allow one to measure the time used in
the computation of a sub-term?

References

[1] S. Abramsky, K. Honda, and G. McCusker. A fully ab-
stract game semantics for general references. In Proceed-
ings, Thirteenth Annual IEEE Symposium on Logic in Com-
puter Science, 1998.

[2] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstrac-
tion for PCF. Information and Computation, 163:409–470,
2000.

[3] N. Barreiro and T. Ehrhard. Anatomy of an extensional col-
lapse. 1997.

[4] T. Ehrhard. Hypercoherence: A strongly stable model of lin-
ear logic. In J.-Y. Girard, Y. Lafont, and L. Regnier, editors,
Advances in Linear Logic, pages 83–108. Cambridge Uni-
versity Press, 1995. Proceedings of the Workshop on Linear
Logic, Ithaca, New York, June 1993.

[5] M. H. Escardó. A metric model of PCF. Laboratory for
Foundations of Computer Science, University of Edinburgh.
Unpublished research note, presented at the Workshop on
Realizability Semantics and Applications, 1999, April 1998.

[6] S. E. Ganz, D. P. Friedman, and M. Wand. Trampolined
style. In Proc. 1999 ACM SIGPLAN International Confer-
ence on Functional Programming, pages 18–27, Paris, Sept.
1999.

[7] R. Harmer. Games and full abstraction for nondeterministic
languages. PhD thesis, University of London, 1999.

[8] B. P. Hilken. Towards a proof theory of rewriting: the
simply-typed 2-λ calculus. Technical Report UCAM-CL-
TR-336, University of Cambridge, Computer Laboratory,
May 1994.

[9] J. M. E. Hyland and C.-H. L. Ong. On full abstraction
for PCF: I, II, and III. Information and Computation,
163(2):285–408, Dec. 2000.

[10] J. Longley. The sequentially realizable functionals. Tech-
nical Report ECS–LFCS–98–402, University of Edinburgh,
1998.

[11] S. MacLane. Categories for Working Mathematicians.
Springer-Verlag, New York, 1971.

[12] E. Moggi. Notions of computation and monads. Information
and Computation, 93:55–92, 1991.

10

