
HAL Id: hal-00003568
https://hal.science/hal-00003568v1

Preprint submitted on 14 Dec 2004 (v1), last revised 10 Apr 2006 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Gravitationally induced electromagnetism at the
Compton scale

Kjell Rosquist

To cite this version:
Kjell Rosquist. Gravitationally induced electromagnetism at the Compton scale. 2004. �hal-
00003568v1�

https://hal.science/hal-00003568v1
https://hal.archives-ouvertes.fr


cc
sd

-0
00

03
56

8,
 v

er
si

on
 1

 -
 1

4 
D

ec
 2

00
4

USITP-04-08

GRAVITATIONALLY INDUCED ELECTROMAGNETISM
AT THE COMPTON SCALE

Kjell Rosquist

Department of Physics

AlbaNova University Center

Stockholm University

106 91 Stockholm, Sweden

kr@physto.se

It is shown that Einstein gravity tends to modify the electric and magnetic fields appreciably at distances
of the order of the Compton wavelength. At that distance the gravitational field becomes spin dominated
rather than mass dominated. The gravitational field couplesto the electromagnetic field via the Einstein-
Maxwell equations which in the simplest model causes the electrostatic field of charged spinning particles
to acquire an oblate structure relative to the spin direction. A pure Coulomb field is therefore likely to
be incompatible with general relativity at the Compton scale. In the simplest model, the magnetic dipole
corresponds to the Dirac g-factor,g = 2. Also, it follows from the form of the electric field that theelectric
dipole moment vanishes, in agreement with current experimental limits for the electron. Quantitatively, the
classical Einstein-Maxwell theory predicts the magnetic and electric dipoles of the electron to an accuracy
of about one part in 10−3 or better. Going to the next multipole order, one finds that the first non-vanishing
higher multipole is the electric quadrupole moment which ispredicted to be−124 b for the electron. Any
non-zero value of the electric quadrupole moment for the electron or the proton would be a clear sign of
curvature due to the implied violation of rotation invariance. There is also a possible modification of the
Coulomb force proportional tor−4. However, the size of this effect is well below current experimental
limits. The corrections to the hydrogen spectrum are expected to be small but possibly detectable.

PACS numbers: 14.70Cd, 14.20Dh, 04.20.-q, 04.40Nr, 04.80Cc
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1 Introduction

Gravitational forces are generally regarded as negligiblefor atomic and nuclear physics. This belief is based on the
argument (see e.g. Wheeler [1]) that the energyGM2/r of the gravitational interaction between two protons is roughly
4×10−30eV at the nucleon Compton wavelength. This is extremely small compared to the other three forces. The weakest
of these, the weak interaction, has an interaction energy atthe same distance of approximately 104 eV. However, a weak
point of this argument is thatGM2/r is the Newtonian energy. We are using the Newtonian form of the energy in an
argument to estimate if Newtonian gravity is valid! In this note I will use a direct approach to estimate the gravitational
and electromagnetic fields at short distances based on the Einstein-Maxwell field equations. Electrons and protons are
massive particles and therefore generate gravitational fields.1 To find the gravitational field of the electron we consider
properties which have an imprint in the macroscopic world. Primary properties of the electron which can be detected at
long range are the mass (M), the charge (Q), the angular momentum per unit mass (a = S/M) and the magnetic dipole
moment (µ). The two latter quantities are related by the g-factor, which for the electron has the valuege = 2 (the small
QED corrections toge are touched upon in the last section). It is well-known that the electrovacuum black hole solutions
of the Einstein-Maxwell equations can be uniquely described by the Kerr-Newman metric [2] [3] [4] [5] (see [6] for a
review of the black hole uniqueness theorems). The Kerr-Newman solution is characterized by the three quantitiesM,
Q anda. In addition, it has a magnetic dipole moment correspondingto a g-factorg = 2, just as the electron. This fact
was noted by Carter in 1968 [7]. It is an essential ingredientin the uniqueness theorems leading up to the Kerr-Newman
geometry that the solutions satisfy certain boundary conditions for black hole horizons. The Kerr-Newman models are
black holes only if they satisfy the inequalityM2 ≥ Q2 + a2. By contrast, the Kerr-Newman solutions withM2 < Q2 + a2

have a naked ring-like singularity in their central region.For spinning elementary particles like electrons and nucleons,
unlike black holes, the mass is dominated by the spin,a≫ M (numbers are given at the end of this section).

While the Kerr-Newman metric is the unique solution for black hole configurations, there is no corresponding unique-
ness theorem which can be applied to elementary particles like the electron. Ideally, it would be possible to prove such
a theorem if appropriate boundary conditions are imposed, although for reasons given below, some deviations from the
Kerr-Newman geometry are expected, unlike the situation for black holes. As noted above, the Kerr-Newman metric has
the correct g-factor for the electron,g = 2. Moreover, it has been shown to be the only asymptotically flat solution of the
Einstein-Maxwell equations for which the geodesic and Klein-Gordon equations can be solved by separation of variables
[8]. The Dirac equation is also known to be separable on a Kerr-Newman background [9]. The conclusion is that although
other solutions exist, the Kerr-Newman geometry is by far the simplest which can model the external Einstein-Maxwell
field of the electron. Based on these arguments I make the basic assumption in this note that the Einstein-Maxwell field
of the electron is accurately described by the Kerr-Newman model down to some radiusr0 > 0. The robustness of this
assumption will be discussed in the concluding section. Thenature of the central singularity atr = 0 will be left aside. The
classical description of the gravitational field is expected to break down anyway at sufficiently small distances. Because
of the quantum nature of the angular momentum of elementary particles it seems that the gravitational field itself will
acquire some quantum aspect by being so closely tied to the spin. However, I will take the point of view here to pursue
the classical non-quantum description. This will lead to conclusions which are possible to test experimentally.

It is also of interest to consider the Einstein-Maxwell fieldof the proton. However, there is a complication due to the
fact that its g-factor isgp = 5.59 and so is almost three times larger than that of the electron. This means that the Kerr-
Newman geometry is not a good model for the proton’s Einstein-Maxwell field. However, it should still be sufficient to
use this model for the purpose of making rough estimates of the sizes of various effects. With this caveat in mind we will
use the Kerr-Newman geometry as a model for the proton as well. The range of validity, specified byr0, of this geometry
is not an easy question but we can at least say that for the proton it would be shaky to consider the region inside the radius
of the proton at about 1 fm= 10−13cm. For the electron it would be dubious to consider radii less than 10−18cm, where
it is not known if the electron can still be considered as a point particle. There is also the issue of vacuum polarization at
the Compton radius and below, but this is a problem already inthe flat space picture.

There are three characteristic lengths which govern the gravitational and electromagnetic fields of the electron and the
proton. Using geometric units (see e.g. [10]), they are the mass radius2 associated withM, the charge radius associated
with Q and the spin radius3 associated witha. The value of the charge radius is

Q→ e= 1.38× 10−34 cm .
1Neutrons are not discussed in this paper.
2For macroscopic systems it is common to use 2M as the gravitational radius of an object. That is the value ofr which gives the location of the

horizon of a Schwarzschild black hole with massM. However, this is not relevant in the present context.
3This term is taken from [11].
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For the electron and the proton, the other two lengths are

The electron mass radius: M → me = 6.76× 10−56 cm

The proton mass radius: M → mp = 1.24× 10−52 cm

The electron spin radius: a→ ae =
Że

2
=
~

2me
= 1.93× 10−11 cm

The proton spin radius: a→ ap =
Żp

2
=
~

2mp
= 1.05× 10−14 cm

whereŻ is the (reduced) Compton wavelength. Note thatMa = ~/2 and that 2meae/e2 = α−1 whereα is the fine structure
constant. Note also that the three length scales are hugely different;M ≪ Q≪ a with Q/M ∼ 1021 anda/Q ∼ 1023 for
the electron.

2 The gravitational and electromagnetic fields at atomic andsubatomic dis-
tances

A prevailing view today is that classical (non-quantum) Einstein gravity can be trusted in the sub-Planckian regime
E≪ EPlanckcorresponding to length scalesℓ ≫ ℓPlanck= 1.6×10−33cm. It is expected that the spacetime geometry in this
sub-Planckian regime will be the arena of all non-gravitational physical processes. According to this view, gravitational
interactions will only be important for microphysics at andbelow the Planck length where a quantum theory of gravity will
be needed. It is the Einstein-Maxwell fields at atomic and subatomic distances which concerns us here. The crucial point
made here is that these fields are likely to be different from the standard Minkowski/Coulomb fields of the laboratory
and consequently that the gravitational field will deviate from its Newtonian form already at distances of the order of
the Compton wavelength. This will in turn lead to modifications of the electromagnetic field at the same distances. In
particular the Coulomb form of the electrostatic interaction will break down at the Compton scale. This can be considered
as a gravitationally induced electromagnetic effect. Such effects have been considered before in the context of gravitational
radiation [12] [13]. To illustrate the effect we will estimate the gravitational and electric fields for the electron and the
proton. For reasons of brevity, the magnetic field will not bediscussed in this paper. The gravitational and electromagnetic
fields should satisfy the Einstein-Maxwell field equations [10]

Rµν =
κ

4π

(

FµρFν
ρ − 1

4gµνFρσFρσ
)

, (1)

which relate the Ricci curvature on the left hand side to the electromagnetic energy-momentum tensor on the right hand
side. Hereκ is the Einstein gravitational constant which has the value 8π in geometric units. These equations deter-
mine both the metricgµν and the electromagnetic field tensorFµν.4 Note first that a Coulomb force together with the
Schwarzschild metric does not correspond to a solution of (1). In fact, if we assume spherical symmetry, then the only
charged asymptotically flat solution of the Einstein-Maxwell equations is the Reissner-Nordström metric (see e.g. [10]).
It then follows that the gravitational potential switches from the mass dominated NewtonianM/r form to the charge dom-
inated formQ2/r2 at r = Q2/(2M). This can be seen from (7) below by settinga = 0. The switch from mass to charge
domination happens atr = e2/(2me) = 1.4×10−13cm for the electron (i.e. half the classical electron radius). Furthermore,
we know from studies of black hole physics for example, that the angular momentum of a source has profound effects on
the gravitational field. In view of the fact that the spin of the electron and the proton dominates both the mass and the
charge by huge factors, it seems to be an inescapable conclusion that it is the spin which will determine the gravitational
field at the Compton scale.

As discussed above, we expect that the gravitational field ofan electron is given to a good approximation by the Kerr-
Newman solution (see [10] [14] [15] for details about its connection and curvature). Using Boyer-Lindquist coordinates
[16] we can then write the metric as

g = −(L0)2 + (L1)2 + (L2)2 + (L3)2 , (2)

whereLµ is a Lorentz co-frame given by

L0 =

√
∆

ρ
(dt − asin2θdφ) , L1 =

ρ
√
∆

dr , L2 = ρdθ , L3 =
sinθ
ρ

(r2
∗dφ − adt) , (3)

4Up to a duality rotation of the electromagnetic field [10].
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where
∆ = r2 − 2Mr + Q2 + a2 , ρ2 = r2 + a2 cos2θ , r2

∗ = r2 + a2 . (4)

The electromagnetic field can be specified by the 4-potentialwhich can be taken as [10]

A = − Qr

ρ
√
∆

L0 = −Qr
ρ2

(dt − asin2θdφ) . (5)

The field itself is then given by the relationFµνdxµ ∧ dxν = 2dA.

2.1 Theg-force

A convenient way of estimating the strength of the gravitational field is to compute theg-force at a given distance. To
calculate theg-force we must first make a choice of observer frame. It so happens that there is a preferred frame which
corresponds to objects which are static with respect to the static observers at infinity (“distant stars”). The choice of
observer frame is actually a rather subtle issue which we will return to when discussing the multipole expansion of the
electric field in section 2.2. It effectively requires that we define some flat background geometry (“laboratory frame”)
which serves as a reference frame. Our choice of the static observers is supported by the optical analogue formulation
of the Schwarzschild geometry given in [17]. In these analogue models, the static observer frame coincides with the
laboratory frame. We follow the standard procedure and declare an object in the Kerr-Newman spacetime to be a static
object5 if its spatial coordinatesr, θ, φ are all constant. The 4-velocity of such a static object is given by

u = f −1/2 ∂

∂t
, (6)

where

f = 1− 2ΦG , ΦG =
2Mr − Q2

2ρ2
=

2Mr − Q2

2(r2 + a2 cos2θ)
, (7)

andΦG can be loosely regarded as a generalized gravitational potential. In the limit r → ∞ it goes over into Newton’s
potentialΦG → M/r. It should be noted thatf > 0 for all values of the Boyer-Lindquist coordinates. This implies that
there is no ergoregion [10] in this geometry (at least not in the Boyer-Lindquist coordinate patch). Therefore the static
observers are defined for all values of the Boyer-Lindquist coordinates. Theg-force is given by the 4-acceleration

u̇µ = uµ;νu
ν = uµ;tu

t = f −1/2uµ;t , (8)

where we have exploited the fact thatut is the only non-vanishing component ofu. Using this fact again and also the time
independence ofu we get

uµ;t = uµ,t + Γ
µ
νtu
ν = f −1/2 Γµ tt , (9)

where theΓµνρ are the Christoffel symbols in Boyer-Lindquist coordinates. Hence

u̇µ = f −1 Γµtt . (10)

The only two non-vanishing components of the formΓµtt are

Γr
tt =
∆[M(r2 − a2 cos2 θ) − Q2r]

ρ6
, Γθtt = −

Ma2r sin 2θ
ρ6

. (11)

This leads to

u̇ =
∆[M(r2 − a2 cos2 θ) − Q2r]

fρ6

∂

∂r
−

Ma2r sin 2θ
fρ6

∂

∂θ
. (12)

To find the actualg-force we must express ˙u in a Lorentz frame adapted to the static object frame. Note that the co-frame
Lµ in (3) is boosted in theφ-direction with respect to the static object frame. However, theg-force has only components
along the 1- and 2-directions which both lie in the rest frameof the static object. Therefore the two relevant frame vectors
we need are

L1 =

√
∆

ρ

∂

∂r
, L2 =

1
ρ

∂

∂θ
. (13)

5Known as a static observer [10] in a macroscopic context.
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This gives
∂

∂r
=
ρ
√
∆

L1 ,
∂

∂θ
= ρL2 . (14)

The acceleration then becomes

u̇ =

√
∆[M(r2 − a2 cos2 θ) − Q2r]

fρ5
L1 −

Ma2r sin 2θ
fρ5

L2 . (15)

This is theg-force on the static object. The two components can be displayed more explicitly as

u̇1 =
[r(Mr − Q2) − Ma2 cos2θ]

√

r2 − 2Mr + a2 + Q2

(r2 − 2Mr + a2 cos2θ + Q2)(r2 + a2 cos2θ)3/2
=

M
r2
+ O(r−3)

u̇2 = − Ma2r sin 2θ
(r2 − 2Mr + a2 cos2θ + Q2)(r2 + a2 cos2θ)3/2

=
Ma2 sin 2θ

r4
+ O(r−5) .

(16)

The interpretation is thatM′u̇ is the force needed to counteract the gravitational force ona test massM′ in order to keep
r, θ andφ constant. Hence, we can express the gravitational force perunit mass asf µG(r, θ) = −u̇µ. Note that there is
no force in theφ-direction. At infinity, theg-force has its expected Newtonian form. The limiting behavior of the radial
force asr → 0 is f 1

G(r, π/2) = a/r2 in the equatorial plane andf 1
G(0, 0) = M/a2 along the axis of symmetry. Note that the

force is repulsive in both cases. See [18] [19] for further discussion of the repulsive nature of the gravitational forcein the
Kerr-Newman and Reissner-Nordström models.

2.2 Multipole expansion of the electric field

Performing a multipole expansion is an essential tool to understand the physical effects of gravitational and electro-
magnetic fields. Although such expansions are more or less straightforward in flat space, this is not the case in curved
spacetimes (see for example Thorne [20] and Simon [21]). In flat space, the multipole expansion is often defined in terms
of the spherical harmonics which represent solutions of theLaplace equation. However, in curved space, the Laplace
equation is only valid in ther → ∞ limit. There are basically two related issues which complicate the situation when
curvature is present. The first is the choice of background orlaboratory geometry. The second is the choice of coordinates.
Actually, these issues are related since once a background geometry has been chosen, there is always the natural choice
of spherical coordinates corresponding to any Cartesian coordinate system. This leaves only the Poincaré group as the
remaining freedom. In practice, there is usually a natural choice of Cartesian coordinate frame in which the object under
study is at rest. Choosing the origin as the center of mass further restricts the freedom as does an alignment along the axis
of symmetry for axisymmetric systems. This leaves finally atmost a subgroup of the rotation group as the remaining free-
dom. Some aspects of the physical significance of choosing anappropriate background have been discussed by Penrose
[22] and by Gao and Wald [23]. Curiously, this issue has not been of much concern in works on multipole expansions,
although Thorne [20] remarked that his multipoles had othervalues than those of other workers. A common thread in all
approaches appears to be the desire to express the expansionentirely in terms of spherical harmonics (see e.g. [21]). In
my view, this is too restrictive since it automatically excludes, for example, spherical terms of the typer−2 which a priori
could have physical significance. From a physical point of view, there is no ambiguity in the choice of background, we
should use the uniquely defined laboratory frame! The problem is to identify the laboratory frame in a given physical
problem. Having done that there is still the issue of finding the relation between the spherical coordinate system of the
laboratory and the coordinates used to specify the geometryof the physical system we are interested in.

A multipole expansion of the electric field could start either from the electric field itself or from an electrostatic
potential. Both these cases have their problems but we choose to use the potential approach as it seems somewhat easier
to handle. It is not a straightforward procedure even to define an electrostatic potential in a curved spacetime. We startby
considering the Lorentz force on a test chargeQ′ with 4-velocityuµ. This force is given by the expressionFµ = Q′Fµνuν.
The work needed to move the charge a distance dxµ then becomes

δW = Fµdxµ = Q′Fµνu
νdxµ . (17)

To define a potential we must require that this work is a closed1-form meaning that the condition

d(Fµνuνdxµ) = 0 (18)

must be satisfied. This equation therefore defines observersfor which an electrostatic potential can be defined. Turning
now to the Kerr-Newman geometry and choosing the static observer frame as discussed above, a short calculation gives

δW/Q′ = Fµνu
νdxµ = utdAt = d(utAt) − Atdut . (19)
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Figure 1:The Einstein electrostatic potential energy for a test particle along the spin axis is plotted together
as a function ofr with the Coulomb potential for comparison. The electron potential is shown in the left
panel and the proton in the right. The latter should only be taken as a qualitative indication of the electric
field of the proton. The curve for the proton has been computedwith an adjusted spin radiusa→ (gp/2)a
to account for an expected enhancement of higher electromagnetic multipoles due to theg-factor. The scale
along the horizontal axis is in units of 1fm= 10−13cm (beware that the coordinate distance used here is not
exactly equal to laboratory distance as discussed in the text). Note that the reduced Compton wavelength is
Że = 386 fm for the electron andŻp = 1.32 fm for the proton.

FE@Θ,ΦD, r = 0.5a

Figure 2:A spherical plot of the electrostatic potential atr = a/2 = ŻC/4 (for g = 2). For each point on
the surface, parametrized by the angles (θ, φ), the value of the potential corresponds to the distance to the
origin, r = 0. Only values of the potential in the directions 0≤ φ ≤ 3π/2 are shown to make the extent of
the pinching along the axis more evident.

It can be verified by direct calculation that d(utdAt) does not vanish identically implying that the static observer frame
is not associated with an electrostatic potential. However, in the limit r → ∞ where dut → 0 we can still hope to use
ΦE = −utAt as potential. This hope can actually be substantiated by expansion of the two terms in (19) in powers of 1/r.
We therefore define the electrostatic potential by

ΦE = −utAt =
Qr

f 1/2ρ2
=

Qr
√

(r2 − 2Mr + Q2 + a2 cos2θ)(r2 + a2 cos2θ)
, (20)

keeping in mind that it can only be used up to a certain expansion order to be specified later on. Note thatΦE approaches
the Coulomb form at large distances. The expression (20) is valid for objects which are non-relativistic with respect to
the static objects. In practice this means non-relativistic in the laboratory sincef = 1 to extremely good accuracy for
macroscopic distances. The form of the potential is illustrated in figures 1 and 2. When interpreting these figures, it
should be kept in mind that the coordinater is different from the Euclidean radial variable used in the lab. However, at
r ∼ a it is of the same order as the Euclidean radius so the diagramsshould give a qualitatively correct picture down to the
Compton scale. The precise relation betweenr and measured values of e.g. the radius of the proton is a somewhat subtle
issue related to the choice of observer frame. Since the potential is a function of cos2θ, there is no electric dipole moment.
Recent measurements [24] of the electric dipole moment of the electron have set an upper limit of|de| ≤ 1.6× 10−27ecm.
From the general form of the moment structure (see [25] and [26]) one would expect a non-zero dipole to have a size
of the order∼ ea. It is therefore natural to express the upper limit in a dimensionless way as|de|/(eae) ≤ 8.3 × 10−17.
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Expansion in 1/r of the potentialΦE gives

ΦE/Q =

[

1
r
− 2

3a2P2(cosθ)
1
r3

]

+

[

M
r2
+

(

3
2 M2 − 1

2Q2 − 1
3a2

) 1
r3

]

+ O(r−4) , (21)

whereP2 is a Legendre polynomial. In (21) we have grouped together terms corresponding to a standard multipole
expansion between the square brackets to the left. The remaining terms between the square brackets to the right are due
the fact that the potential is not a solution of the Laplace equation as expected in a curved geometry. Comparison with
the expansion of the termutdAt in (19) shows that the omission of that term does not affect the angle dependent terms
in (21) at the quadrupole level. As for the spherical terms, their structure is unaffected and only the numerical values of
the Q-dependent coefficients do get changed for terms of the orderr−2 and below. As discussed below these terms are
dominated bya-dependent terms at this level. Therefore the expansion in (19) is reliable up to the specified order (r−3).

It has already been noted that the exact form of the expansion(21) depends on the choice of observer frame. In
addition to the choice of frame, there is the problem of interpretation of the coordinates in relation to the spacetime ofthe
laboratory. In particular, a preliminary investigtion hasindicated that the spherical coordinate radius in the static observer
frame is given by ˆr =

√
r2 + a2. Performing the multipole expansion in ˆr shows that the multipoles in (21) will remain

unchanged. The second term in (21) corresponds to an electric quadrupole moment given byq = − 1
3a2. For the electron,

this givesqe = −124 b (1b= 10−24cm2) in conventional units. This is actually quite large by the standards of nuclear
electric quadrupole moments. For example, the measured value for the deuteron isqD = 0.00286 b [27] which is smaller
than the predicted electron value by a factor of about 10−5.

The fact thatq < 0 indicates that the electric potential corresponds to an oblate charge distribution (cf. figure 2).
According to the Wigner-Eckart theorem, a spin1

2 particle cannot have an electric quadrupole moment (see e.g. [28]).
However, that theorem is a statement about eigenstates of the angular momentum operator in flat space. Put another way,
a measurement of a non-zero electric quadrupole moment for the electron or the proton would be a clear signature of
spacetime curvature. For the proton one would expect a valuefor the quadrupole about (gp/2)2(ap/ae)2 ∼ 10−6 times the
electron value. It is interesting that the deuteron quadrupole, although prolate, has a size which is not very far off the
expected value for the proton.

Another effect of the curved geometry is that the potentialΦE fails to be a solution of the Laplace equation. This is
manifested in (21) by the appearence of higher order terms which do not correspond to a standard multipole expansion.
The first two of these are the second order termM/r2 and the third order term−a2/(3r3) (neglectingQ andM). As can
readily be checked, the third order term dominates the second order one even at macroscopic distances. The result is that
the Coulomb potential acquires a modification of the form

Q
r
→ Q

r

(

1− a2

3r2

)

. (22)

Experimenters often model deviations from Coulomb’s law byassuming a potential of the formr−(1+s) wheres is the
parameter to be determined experimentally [29]. This meansthat for a given candidate potentialΦ, the parameters can
be expressed as

s= −r
d
dr

ln

(

Φ

ΦC

)

, (23)

whereΦC is the Coulomb potential. Now using the form (22) we find to lowest order ina2/r2

s=
2a2

3r2
. (24)

Settinga = ae and assuming a laboratory distance of 50 cm we then get a valuefor the correction of the orders∼ 10−25.
This is far below the present best limit 6× 10−17 [29]. Note however that the situation we are considering here is the force
on a single electron. In laboratory experiments, typicallya large number of charges is involved. The actual effect would
then depend on the extent of alignment of the spins of the charges.

To estimate the effect on the hydrogen spectrum we note that the correction to the potential energy from (21) is of
the order∆V/V ∼ (gp/2)2(a/r)2. This leads to a change in the potential energy of the electron in the electric field of the
proton of the order∆V/V = (gp/2)2(ap/lB)2 ∼ 10−13 wherelB is the Bohr radius. The size of this correction is at the
limit of present measurements [30]. There is also a correction due to a change in the potential energy of the proton in the
electron’s electric field. In addition, corrections at the hyperfine level also arise from changes in the magnetic field.

Turning now to the electric field itself, we find that for the static object, it is given by

Eµ = Fµν uν = Fµtu
t , (25)
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leading to

E =
Q(r2 − a2 cos2θ)
ρ3Σ1/2

dr −
Qa2r sin 2θ
ρ3Σ1/2

dθ , (26)

where we have defined
Σ = r2 − 2Mr + Q2 + a2 cos2θ . (27)

Expressed in the static object rest frame vectors (13) this becomes

E = E1L1 + E2L2 =
Q∆1/2(r2 − a2 cos2θ)

ρ4Σ1/2
L1 −

Qa2r sin 2θ
ρ4Σ1/2

L2 . (28)

Let us now consider the radial electric force per unit mass ona test particle with massM′ and chargeQ′

f 1
E(r, θ) =

Q′

M′
E1 =

Q′Q∆1/2(r2 − a2 cos2θ)
M′ρ4Σ1/2

. (29)

At infinity this reduces tof 1
E = (Q′/M′)(Q/r2) which is just Coulomb’s force (per unit mass). In the smallr limit,

the behavior isf 1
E(r, π/2) = (Q′/M′)(a/r2) in the equatorial plane, while along the symmetry axis we have f 1

E(0, 0) =
−(Q′/M′)(Q/a2).

It is of interest to compare the radial electromagnetic and gravitational forces on a test particle in the smallr limit.
The ratios between the forces are given by (fE/ fG)θ=π/2 = Q′/M′ and (fE/ fG)θ=0 = −(Q′/M′)(Q/M). UsingM = M′ = me

andQ = Q′ = e we find that fE/ fG ∼ 1021 in the equatorial plane andfE/ fG ∼ 1042 along the axis. This shows that the
electromagnetic forces dominate by huge factors, althoughthe ratio in the equatorial plane is smaller than the Newtonian
estimate 1042. However, the reason that the forces differ in strength is really due to the charge-to-mass ratio, notbecause
the strengths of the gravitational and electromagnetic fields themselves are drastically different. On the contrary, if one
compares the gravitational force per unit massfG with the electric force per unit charge (M′/Q′) fE one finds that they
are equal along the axis. This means that the gravitational and electromagnetic fields themselves are of the same order.
The gravitational force, however, is so much smaller than the electromagnetic force because of the exceedingly small
factorm/e for the elementary particles. This explains why an apparently small gravitational field can give rise to sizable
electromagnetic effects via the Einstein-Maxwell field equations.

3 Discussion

The identification of the Kerr-Newman geometry with the gravitational field of the electron appears to be the simplest
and most natural assumption. But what about the quantum nature of the spin? Isn’t it unreasonable to use a quantized
property in the metric as though it were classical? Here, onecould turn the table around and ask the same question about
the quantized charge and for that matter about the quantizedmass. Or, why should the spin (or the magnetic moment)
be treated differently than the mass and the charge with respect to gravity in the microscopic domain? And if this is
really so, in what situations should we ignore the spin and when should we use the macroscopic recipe for setting up
the gravitational field? Another possible counter-argument is that the spin is vectorial while the charge and the mass are
scalar quantities. However, this would still leave the question open why this fact should motivate a different treatment in
the microscopic domain.

From a more quantitative point of view one could argue as follows. Suppose that the Kerr-Newman geometry is at
least a good approximation at large distances for the electron’s Einstein-Maxwell field. Then certainly, this approximation
must break down at some distance,r0, if for no other reason, because the metric has a curvature singularity atθ = 0,
r = 0. Now, the only free parameters in the Kerr-Newman metric are the mass,me, the charge,e and the spinmeae.
Moreover, we do know that the Kerr-Newman metric gives an accurate prediction for both the magnetic and the electric
dipoles. Let us say we model the deviation from Kerr-Newman in the far field by adding an effective stress tensor,Teff

µν ,
in the field equations. This tensor could emanate from QED corrections or quantum gravity for example. Then we know
that we can neglectTeff

µν at the dipole level. As discussed above the electric dipole has been constrained by experiments
([24]) to be zero at an accuracy level of. 10−16. Because of the methodology used in those experiments, theyconstrain
only odd (parity violating) electric multipoles. The magnetic dipole on the other hand is measured to be ([30])µe/(eae) =
1 + α/(2π) + O(α−2). The deviation from Kerr-Newman should therefore be of theorderα/(2π) ∼ 10−3. However, the
situation is complicated by the possible influence of highermultipoles which could in principle be affecting the cyclotron
type experiments for measuring the electron’s anomalous magnetic moment (see [31] [32] [33] for a description of how
those experiments are made). The actual deviation from Kerr-Newman could then be different from that indicated above.
The upshot of all this is that the influence ofTeff

µν on the dipoles is probably at most 10−3 and maybe smaller. It then seems
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likely that the influence ofTeff
µν on the next multipole, namely the electric quadrupole, is also small. Thus, even though

the numerical value for the quadrupole would be affected at some level of approximation, the first few digits maywell
coincide with the Kerr-Newman values.

A main conclusion of this work is that the gravitational and electromagnetic fields may have an appreciable interaction
at the Compton scale. I have shown that this leads to observable consequences. In particular, the most obvious test of
these ideas is to measure the electric quadrupole moment of the electron. The impressive experimental limit set on the
electric dipole moment suggests that it would not be beyond present techniques to perform such a measurement. The
accurate values obtained for nuclear electric quadrupolesare also encouraging in this regard. It would also be of interest
to measure or set limits on the electric quadrupole moment ofthe proton. Any non-zero value of the electric quadrupole
moment for the electron or the proton would signal the presence of curvature because of the implied violation of rotational
invariance.

The predicted value for the electric quadrupole moment of the electron is not a certain consequence of the Einstein-
Maxwell equations. Other solutions which are more general than Kerr-Newman do exist (see e.g. [34]). However, it would
require a substantial amount of fine-tuning to make the quadrupole exactly zero. In principle, a vanishing quadrupole could
be the result of some as yet unknown selection rule. For the proton though, being a composite particle, such fine-tuning
would seem even more artificial. Even if it is true that the Kerr-Newman metric is a good model for the Einstein-Maxwell
field of the electron, it would be nice to have some more hard mathematical theorem to justify this assumption, for
example along the lines of the uniqueness theorems for blackholes. In the absence of such a theorem, it would still seem
likely, given the assumption of spin domination, that the Kerr-Newman metric at the very least gives a good qualitative
description of the gravitational field of the electron at distances down to nuclear length scales.

There appears to be only a few options, depending on the outcome of future experiments. We could accept the lesson
from general relativity and use the modified forms of the electric and magnetic fields in atomic and subatomic physics, or
we could abandon or at least modify Einstein gravity at smalldistances, starting at some length scale above the Compton
wavelength. In the latter case, a microscopic spin would have a different status vis-à-vis gravity than a macroscopic
angular momentum. A third but less likely alternative wouldbe that even if we accept general relativity, nature somehow
conspires to keep spacetime almost but not quite flat at microscopic scales.

It goes without saying that if gravity is really spin dominated at the Compton scale, then this would affect many
aspects of physics. The questions which pop up in such a scenario are too many to be mentioned here. To name only a
few, is the drastic changes of the electric and gravitational fields in the spin direction at the Compton wavelength scale
an indication that the nuclear forces are more directly connected with the electromagnetic and gravitational forces than
has been thought previously? Another related issue is what happens to quantization if you can no longer assume a flat
background. For example, in a consistent quantum theory, the electron creation operator should create its own patch of
spacetime together with the other properties of the electron. Is quantum gravity entering through Compton’s back door?

End note:
A scan of the literature reveals that several authors have considered the Kerr-Newman metric as a model for the electron’s
gravitational and electromagnetic fields. In particular, the late Chaim L. Pekeris noted the influence of the spin on the
gravitational field at the Compton wave length [11]. Following that work Pekeris and Frankowski [35] tried to treat the
electron as a Kerr-Newman geometry in its own right without an interior source. Using Chandrasekhar’s separation [9]
of the Dirac equation on the Kerr-Newman background they studied the solutions but found that the states were unstable
although in good agreement numerically with standard theory including the hyperfine levels (apart from an unexplained
factor of two). Other authors have tried to construct a classical model for the electron with the Kerr-Newman metric as the
exterior gravitational field glued to an interior extended charged rotating source (see e.g. [36] [37] and references therein).
In a recent paper, Arcos and Pereira [38] discuss implications of the topological structure of the Kerr-Newman geometry
if taken as a model for the electron.
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