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GRAVITATIONALLY INDUCED ELECTROMAGNETISM
AT THE COMPTON SCALE
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Department of Physics
AlbaNova University Center
Stockholm University
106 91 Stockholm, Sweden

kr@physto.se

It is shown that Einstein gravity tends to modify the electind magnetic fields appreciably at distances
of the order of the Compton wavelength. At that distance tiawitational field becomes spin dominated
rather than mass dominated. The gravitational field coujgldbe electromagnetic field via the Einstein-
Maxwell equations which in the simplest model causes thetr@static field of charged spinning particles
to acquire an oblate structure relative to the spin directid pure Coulomb field is therefore likely to
be incompatible with general relativity at the Compton ecdh the simplest model, the magnetic dipole
corresponds to the Dirac g-factgr= 2. Also, it follows from the form of the electric field that tiedectric
dipole moment vanishes, in agreement with current expetiahdimits for the electron. Quantitatively, the
classical Einstein-Maxwell theory predicts the magnetid alectric dipoles of the electron to an accuracy
of about one part in 16 or better. Going to the next multipole order, one finds thatfitst non-vanishing
higher multipole is the electric quadrupole moment whicprisdicted to be-124 b for the electron. Any
non-zero value of the electric quadrupole moment for theteda or the proton would be a clear sign of
curvature due to the implied violation of rotation invarian There is also a possible modification of the
Coulomb force proportional to™*. However, the size of thisfiect is well below current experimental
limits. The corrections to the hydrogen spectrum are exgokttt be small but possibly detectable.

PACS numbers: 14.70Cd, 14.20Dh, 04.20.-q, 04.40Nr, 0480C



1 Introduction

Gravitational forces are generally regarded as negligitmeatomic and nuclear physics. This belief is based on the
argument (see e.g. Wheel& [1]) that the endBdy?/r of the gravitational interaction between two protons isgtaly
4x10°3%eV at the nucleon Compton wavelength. This is extremely stoabpared to the other three forces. The weakest
of these, the weak interaction, has an interaction enertheatame distance of approximately* 8. However, a weak
point of this argument is tha&M?/r is the Newtonian energy. We are using the Newtonian form efehergy in an
argument to estimate if Newtonian gravity is valid! In thista | will use a direct approach to estimate the gravitationa
and electromagnetic fields at short distances based on tistelfi-Maxwell field equations. Electrons and protons are
massive particles and therefore generate gravitatiordsfieTo find the gravitational field of the electron we consider
properties which have an imprint in the macroscopic worldmBry properties of the electron which can be detected at
long range are the masMf, the charge@), the angular momentum per unit mass< S/M) and the magnetic dipole
moment [¢). The two latter quantities are related by the g-factor,olior the electron has the valge = 2 (the small
QED corrections t@e are touched upon in the last section). It is well-known thatelectrovacuum black hole solutions
of the Einstein-Maxwell equations can be uniquely describg the Kerr-Newman metri¢][2[][3[J4][J5] (se¢][6] for a
review of the black hole uniqueness theorems). The KerrfiN@wsolution is characterized by the three quantities

Q anda. In addition, it has a magnetic dipole moment correspontbrey g-factorg = 2, just as the electron. This fact
was noted by Carter in 196E [7]. Itis an essential ingredietiie uniqueness theorems leading up to the Kerr-Newman
geometry that the solutions satisfy certain boundary dendi for black hole horizons. The Kerr-Newman models are
black holes only if they satisfy the inequali? > Q2 + a%. By contrast, the Kerr-Newman solutions wM? < Q? + a?
have a naked ring-like singularity in their central regidéir spinning elementary particles like electrons and rarde
unlike black holes, the mass is dominated by the spis, M (numbers are given at the end of this section).

While the Kerr-Newman metric is the unique solution for Bl&iole configurations, there is no corresponding unique-
ness theorem which can be applied to elementary partidleshie electron. Ideally, it would be possible to prove such
a theorem if appropriate boundary conditions are imposéipuigh for reasons given below, some deviations from the
Kerr-Newman geometry are expected, unlike the situatiomfack holes. As noted above, the Kerr-Newman metric has
the correct g-factor for the electrog= 2. Moreover, it has been shown to be the only asymptoticatystlution of the
Einstein-Maxwell equations for which the geodesic and #l@&iordon equations can be solved by separation of variables
[E]. The Dirac equation is also known to be separable on aKewman backgroun(ﬂ[g]. The conclusion is that although
other solutions exist, the Kerr-Newman geometry is by fargimplest which can model the external Einstein-Maxwell
field of the electron. Based on these arguments | make the Assiimption in this note that the Einstein-Maxwell field
of the electron is accurately described by the Kerr-Newmadehdown to some radiug > 0. The robustness of this
assumption will be discussed in the concluding section.rtere of the central singularity at= 0 will be left aside. The
classical description of the gravitational field is expddie break down anyway at ficiently small distances. Because
of the quantum nature of the angular momentum of elementaycfes it seems that the gravitational field itself will
acquire some quantum aspect by being so closely tied to the ldpwever, | will take the point of view here to pursue
the classical non-quantum description. This will lead toatosions which are possible to test experimentally.

It is also of interest to consider the Einstein-Maxwell fiefdhe proton. However, there is a complication due to the
fact that its g-factor ig), = 5.59 and so is almost three times larger than that of the elecifbis means that the Kerr-
Newman geometry is not a good model for the proton’s Eindtééxwell field. However, it should still be $ficient to
use this model for the purpose of making rough estimateseosittes of variousféects. With this caveat in mind we will
use the Kerr-Newman geometry as a model for the proton as Wedl range of validity, specified lry, of this geometry
is not an easy question but we can at least say that for therpitotzould be shaky to consider the region inside the radius
of the proton at about 1 fre 10~13cm. For the electron it would be dubious to consider radi kesan 10'%cm, where
it is not known if the electron can still be considered as apparticle. There is also the issue of vacuum polarizatton a
the Compton radius and below, but this is a problem alreadydrilat space picture.

There are three characteristic lengths which govern thétgtenal and electromagnetic fields of the electron amd th
proton. Using geometric units (see e.El [10]), they are thesmadiusassociated wittM, the charge radius associated
with Q and the spin radifsassociated witl. The value of the charge radius is

Q- e=138x10%cm.

INeutrons are not discussed in this paper.

2For macroscopic systems it is common to usé &s the gravitational radius of an object. That is the value which gives the location of the
horizon of a Schwarzschild black hole with mads However, this is not relevant in the present context.

3This term is taken from|[11].



For the electron and the proton, the other two lengths are

The electron mass radius M — me = 6.76x 10°%cm
The proton mass radius M — my = 1.24x 102cm
The electron spin radius a— a= de_ " _193x10Mcm
2 2me
, . A _ & 14
The proton spin radius a—-ag=—=-——=105x10"cm
2 2m

where is the (reduced) Compton wavelength. Note tkiat = 7/2 and that Bheae/€? = o~ wherea is the fine structure
constant. Note also that the three length scales are huifigyaht;M <« Q <« awith Q/M ~ 10?* anda/Q ~ 10?3 for
the electron.

2 The gravitational and electromagnetic fields at atomic andsubatomic dis-
tances

A prevailing view today is that classical (non-quantum)d$f@in gravity can be trusted in the sub-Planckian regime
E < Eppanckcorresponding to length scalés> fpanck = 1.6 x 10-3%cm. It is expected that the spacetime geometry in this
sub-Planckian regime will be the arena of all non-gravatadi physical processes. According to this view, graotzi
interactions will only be important for microphysics at drelow the Planck length where a quantum theory of gravity wil
be needed. It is the Einstein-Maxwell fields at atomic anchtaric distances which concerns us here. The crucial point
made here is that these fields are likely to béedéent from the standard Minkowgkioulomb fields of the laboratory
and consequently that the gravitational field will deviateni its Newtonian form already at distances of the order of
the Compton wavelength. This will in turn lead to modificaticof the electromagnetic field at the same distances. In
particular the Coulomb form of the electrostatic interactivill break down at the Compton scale. This can be considere
as a gravitationally induced electromagneffeet. Such fects have been considered before in the context of gravritalti
radiation ] ]. To illustrate theffect we will estimate the gravitational and electric fieldstfee electron and the
proton. For reasons of brevity, the magnetic field will notliseussed in this paper. The gravitational and electromizgn
fields should satisfy the Einstein-Maxwell field equatic@][

K
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which relate the Ricci curvature on the left hand side to tketeomagnetic energy-momentum tensor on the right hand
side. Herex is the Einstein gravitational constant which has the valwén8geometric units. These equations deter-
mine both the metrig,, and the electromagnetic field tendgy,.* Note first that a Coulomb force together with the
Schwarzschild metric does not correspond to a solutiorﬂ))flﬁlfact, if we assume spherical symmetry, then the only
charged asymptotically flat solution of the Einstein-MaKkweguations is the Reissner-Nordstrom metric (see @).[1
It then follows that the gravitational potential switchesr the mass dominated Newtoniir form to the charge dom-
inated formQ?/r? atr = Q?/(2M). This can be seen frorf](7) below by settmg 0. The switch from mass to charge
domination happens at= €/(2me) = 1.4 x 10~13cm for the electron (i.e. half the classical electron radiEsirthermore,
we know from studies of black hole physics for example, thatangular momentum of a source has profoutetes on
the gravitational field. In view of the fact that the spin oétblectron and the proton dominates both the mass and the
charge by huge factors, it seems to be an inescapable camctbat it is the spin which will determine the gravitatibna
field at the Compton scale.

As discussed above, we expect that the gravitational fietth@flectron is given to a good approximation by the Kerr-
Newman solution (se¢ [ILO] [L4] [IL5] for details about its meation and curvature). Using Boyer-Lindquist coordisate
[@] we can then write the metric as

g=—(L%%+ (LH? + (L2 + (L3, 2
wherel* is a Lorentz co-frame given by
L0= ﬂ(dt asirfodg), L'=Lodr, 2=pdo, L®=3"%024p_ ad, 3)
P VA p

4Up to a duality rotation of the electromagnetic fieEl[lO].



where
A=r>-2Mr+Q*+a?, p?=r?+a?cogh, r’=r?+a’. (4)

The electromagnetic field can be specified by the 4-potentiadh can be taken aﬂlO]

_'DQTFK 10— _%(dt — asirf6de) . ©)

The field itself is then given by the relatidf, dx* A dx” = 2dA.

A=

2.1 Theg-force

A convenient way of estimating the strength of the grawtaai field is to compute thg-force at a given distance. To
calculate theg-force we must first make a choice of observer frame. It so bapphat there is a preferred frame which
corresponds to objects which are static with respect to tdii observers at infinity (“distant stars”). The choice of
observer frame is actually a rather subtle issue which weretiirn to when discussing the multipole expansion of the
electric field in sectioZ. Itfeectively requires that we define some flat background gegni&aboratory frame”)
which serves as a reference frame. Our choice of the stasiereérs is supported by the optical analogue formulation
of the Schwarzschild geometry given iE|[17]. In these anadomodels, the static observer frame coincides with the
laboratory frame. We follow the standard procedure andadecn object in the Kerr-Newman spacetime to be a static
objecP if its spatial coordinates 6, ¢ are all constant. The 4-velocity of such a static objectisgiby

d
— f—1/2_ 6
u r (6)

where

_2Mr-Q*  2Mr-@? @
202 2(r2+a?co%d)’

and®g can be loosely regarded as a generalized gravitationahpatteln the limitr — oo it goes over into Newton'’s
potentialdg — M/r. It should be noted that > 0 for all values of the Boyer-Lindquist coordinates. Thigiias that

there is no ergoregiorEILO] in this geometry (at least nohm Boyer-Lindquist coordinate patch). Therefore the stati
observers are defined for all values of the Boyer-Lindquistdinates. Thg-force is given by the 4-acceleration

f=1-205, g

= U = uut = Y20 (8)

where we have exploited the fact thiis the only non-vanishing componentwfUsing this fact again and also the time
independence af we get
W = Wy + M0 = 1200 9

where thd™*,, are the Christfiel symbols in Boyer-Lindquist coordinates. Hence
W= iy (10)

The only two non-vanishing components of the fdriy are

A[M(r?2 — a?cog 6) - Q?r Ma?r sin 2
Iy = [M( 5 ) — Q] Y= s (11)
This leads to .
- AM(r* -a*cos 6) - Q] & Ma’rsin® § (12)

fpb or fpb 90"

To find the actuaf)-force we must expreasin a Lorentz frame adapted to the static object frame. Naiettte co-frame

L#in @) is boosted in the-direction with respect to the static object frame. Howetlgg-force has only components

along the 1- and 2-directions which both lie in the rest frarhie static object. Therefore the two relevant frame ueacto

we need are

_YAo 10 (13)
p or

5Known as a static obserle] in a macroscopic context.

Ly




This gives
g e 0
I — =l . 14
ar \/Z 1, 90 pL2 ( )
The acceleration then becomes
2 _ a2 e 2 o
e VA[M(r2 — a2 cog 6) Qr]Ll_ Marsm29L2. (15)
fp® fp®

This is theg-force on the static object. The two components can be disdlanore explicitly as

1 [r(Mr - Q%) - Ma?cogd]yr2-2Mr +a2+ Q@ M

== +003
(r2 — 2Mr + a2 co$6 + Q?)(r2 + a2 cog)3/2 r2 ) (16)
: Ma?r sin 26 Ma? sin 29
= - = +0(r™).
(r2 — 2Mr + a2 co$6 + Q?)(r2 + a2 co2d)3/2 r4
The interpretation is tha¥l’u is the force needed to counteract the gravitational forca tast mas$1’ in order to keep
r, 6 and¢ constant. Hence, we can express the gravitational forcemiemass adj(r,6) = —#. Note that there is

no force in thep-direction. At infinity, theg-force has its expected Newtonian form. The limiting bebawif the radial
forceas —» 0Ois fé(r, n/2) = a/r? in the equatorial plane an@(o, 0) = M/a? along the axis of symmetry. Note that the
force is repulsive in both cases. S@ [ [19] for furthecdBsion of the repulsive nature of the gravitational fimdbe
Kerr-Newman and Reissner-Nordstrom models.

2.2 Multipole expansion of the electric field

Performing a multipole expansion is an essential tool toeustand the physicalffects of gravitational and electro-
magnetic fields. Although such expansions are more or leagtforward in flat space, this is not the case in curved
spacetimes (see for example Thor@ [20] and Sir@n [21])atrsflace, the multipole expansion is often defined in terms
of the spherical harmonics which represent solutions ofLtiq@lace equation. However, in curved space, the Laplace
equation is only valid in the — oo limit. There are basically two related issues which congiécthe situation when
curvature is present. The firstis the choice of backgroutalmratory geometry. The second is the choice of coordénate
Actually, these issues are related since once a backgreeordefry has been chosen, there is always the natural choice
of spherical coordinates corresponding to any Cartesiandawate system. This leaves only the Poincaré group as the
remaining freedom. In practice, there is usually a natunalee of Cartesian coordinate frame in which the object unde
study is at rest. Choosing the origin as the center of matisdurestricts the freedom as does an alignment along tise axi
of symmetry for axisymmetric systems. This leaves finalljnast a subgroup of the rotation group as the remaining free-
dom. Some aspects of the physical significance of choosirgppropriate background have been discussed by Penrose
[@] and by Gao and WaldeZ3]. Curiously, this issue has nebaf much concern in works on multipole expansions,
although Thorne|E0] remarked that his multipoles had otlaéres than those of other workers. A common thread in all
approaches appears to be the desire to express the expansiety in terms of spherical harmonics (see e@ [21]). In
my view, this is too restrictive since it automatically exaés, for example, spherical terms of the typewhich a priori
could have physical significance. From a physical point efwithere is no ambiguity in the choice of background, we
should use the uniguely defined laboratory frame! The probieto identify the laboratory frame in a given physical
problem. Having done that there is still the issue of finding telation between the spherical coordinate system of the
laboratory and the coordinates used to specify the georo&the physical system we are interested in.

A multipole expansion of the electric field could start eitfiem the electric field itself or from an electrostatic
potential. Both these cases have their problems but we ettoasse the potential approach as it seems somewhat easier
to handle. It is not a straightforward procedure even to éefimelectrostatic potential in a curved spacetime. Welsyart
considering the Lorentz force on a test cha@jevith 4-velocityu”. This force is given by the expressiép = Q'F,,u”.

The work needed to move the charge a distanédlten becomes

oW = Fdx = Q'F,, udx . 17)
To define a potential we must require that this work is a cldséafm meaning that the condition
d(F,udx) =0 (18)

must be satisfied. This equation therefore defines obsedimengich an electrostatic potential can be defined. Turning
now to the Kerr-Newman geometry and choosing the staticrebs&ame as discussed above, a short calculation gives

SW/Q = F,udx = u'dA = d(Uu'A) — Adu'. (19)



ed

5 ed
3
4 2.5
3 2
kev MeV 1.5
2
1
1 0.5
0 200 400 600 800 100012001400 0 05 1 1-5f 2 2.5 3
fm m

Figure 1:The Einstein electrostatic potential energy for a testiglaralong the spin axis is plotted together
as a function of with the Coulomb potential for comparison. The electroreptill is shown in the left
panel and the proton in the right. The latter should only lerniaas a qualitative indication of the electric
field of the proton. The curve for the proton has been compwidan adjusted spin radius— (g,/2)a
to account for an expected enhancement of higher electnoatiagnultipoles due to thg-factor. The scale
along the horizontal axis is in units of 1fm 10-*3%cm (beware that the coordinate distance used here is not
exactly equal to laboratory distance as discussed in thg fégte that the reduced Compton wavelength is

e = 386 fm for the electron andl, = 1.32 fm for the proton.

Te[6, 9], r = 0.5a

Figure 2: A spherical plot of the electrostatic potentialrat a/2 = 1c/4 (for g = 2). For each point on
the surface, parametrized by the angle®), the value of the potential corresponds to the distancheo t
origin, r = 0. Only values of the potential in the directions0p < 37/2 are shown to make the extent of
the pinching along the axis more evident.

It can be verified by direct calculation thatuft{A;) does not vanish identically implying that the static obseiframe
is not associated with an electrostatic potential. Howewethe limitr — oo where dit — 0 we can still hope to use
@ = —U'A; as potential. This hope can actually be substantiated bgresipn of the two terms ir|z|19) in powers ofrl
We therefore define the electrostatic potential by

Qr Qr

O = —U'A = = ’
202 2= 2Mr + Q@ + a2 cog) (12 + a2 coSH)

(20)

keeping in mind that it can only be used up to a certain exparmider to be specified later on. Note tigtapproaches
the Coulomb form at large distances. The express@n (23lid for objects which are non-relativistic with respect to
the static objects. In practice this means non-relatwvistithe laboratory sincé = 1 to extremely good accuracy for
macroscopic distances. The form of the potential is ilkrts in figures[ll anﬂ 2. When interpreting these figures, it
should be kept in mind that the coordinates different from the Euclidean radial variable used in the lab. éiex, at

r ~ aitis of the same order as the Euclidean radius so the diagshmdd give a qualitatively correct picture down to the
Compton scale. The precise relation betweand measured values of e.g. the radius of the proton is a soatewbtle
issue related to the choice of observer frame. Since thepalés a function of co®), there is no electric dipole moment.
Recent measuremen24] of the electric dipole momenteogliactron have set an upper limit|df| < 1.6 x 10-2’ecm.
From the general form of the moment structure (sEb [25] ]J) [he would expect a non-zero dipole to have a size
of the order~ ea It is therefore natural to express the upper limit in a disienless way agls|/(ea) < 8.3 x 107,



Expansion in 1r of the potentialbg gives

1 1
Qe/Q= |- - %32P2(0059)r—3

M 1 i}
. + r—2+(§M2—%Q2—%a2)r—3 +0@r™, (21)

where P, is a Legendre polynomial. IrﬂlZl) we have grouped togeth@ndecorresponding to a standard multipole
expansion between the square brackets to the left. The mérgaerms between the square brackets to the right are due
the fact that the potential is not a solution of the Laplaceatign as expected in a curved geometry. Comparison with
the expansion of the termtdA; in (@) shows that the omission of that term does rt#c the angle dependent terms

in (@) at the quadrupole level. As for the spherical termsirtstructure is urféected and only the numerical values of
the Q-dependent cd&cients do get changed for terms of the orderand below. As discussed below these terms are
dominated bya-dependent terms at this level. Therefore the expansidtliig reliable up to the specified orderY).

It has already been noted that the exact form of the expar@)hdepends on the choice of observer frame. In
addition to the choice of frame, there is the problem of imtetation of the coordinates in relation to the spacetimbef
laboratory. In particular, a preliminary investigtion hiadicated that the spherical coordinate radius in thecstdiserver
frame is given by = Vr2 + a2. Performing the multipole expansion irshows that the multipoles il) will remain
unchanged. The second term (21) corresponds to an elgodrupole moment given loy= —%az. For the electron,
this givesge = —124 b (1b= 10-%“cn?) in conventional units. This is actually quite large by thanslards of nuclear
electric quadrupole moments. For example, the measuree @t the deuteron igp = 0.00286 b] which is smaller
than the predicted electron value by a factor of aboa?10

The fact thatg < 0 indicates that the electric potential corresponds to datelzharge distribution (cf. figung 2).
According to the Wigner-Eckart theorem, a sgirparticle cannot have an electric quadrupole moment (sedRgp.
However, that theorem is a statement about eigenstates afijular momentum operator in flat space. Put another way,
a measurement of a non-zero electric quadrupole momenhéoelectron or the proton would be a clear signature of
spacetime curvature. For the proton one would expect a Vafutbe quadrupole aboug{/2)?(ap/ae)? ~ 1076 times the
electron value. It is interesting that the deuteron quasleypalthough prolate, has a size which is not very fértloe
expected value for the proton.

Another dfect of the curved geometry is that the potendalfails to be a solution of the Laplace equation. This is
manifested in@l) by the appearence of higher order ternmishado not correspond to a standard multipole expansion.
The first two of these are the second order tdifr? and the third order terma?/(3r®) (neglectingQ andM). As can
readily be checked, the third order term dominates the skooder one even at macroscopic distances. The result is that
the Coulomb potential acquires a modification of the form

9—>9(1 az). (22)

r r 3r2

Experimenters often model deviations from Coulomb’s lawalsguming a potential of the form®*9 wheres is the
parameter to be determined experiment@ [29]. This méaaisfor a given candidate potentid| the parametes can
be expressed as

d )
s= —raln(gc) , (23)
where®c is the Coulomb potential. Now using the forfn}(22) we find toéstvorder ira?/r?
2a?
S= 32 (24)

Settinga = a, and assuming a laboratory distance of 50 cm we then get a f@ltiee correction of the ordes ~ 10725,
This is far below the present best limix6L0~" [@]. Note however that the situation we are considering liethe force
on a single electron. In laboratory experiments, typicallprge number of charges is involved. The actdida would
then depend on the extent of alignment of the spins of thegelsar
To estimate theféect on the hydrogen spectrum we note that the correctionetgadiential energy frorrdel) is of
the orderAV/V ~ (gp/2)*(a/r)?. This leads to a change in the potential energy of the eledtrthe electric field of the
proton of the ordeAV/V = (gp/2)%(ap/lg)? ~ 10°1* wherelg is the Bohr radius. The size of this correction is at the
limit of present measurementis [30]. There is also a cowratue to a change in the potential energy of the proton in the
electron’s electric field. In addition, corrections at thyéarfine level also arise from changes in the magnetic field.
Turning now to the electric field itself, we find that for thatst object, it is given by

E,=F, U =Fuu, (25)



leading to

222 ;
E= o 3;1/(2;0520) dr - Qazsrzsll/gzgde’ (26)
P p
where we have defined
¥ =12 - 2Mr + Q* + a®cosh . (27)

Expressed in the static object rest frame vectErIs (13) tipimes

QAY?(r? — @ cog¥) L Q&rsin

_El 21 _
E=EL+FElL,= pAT12 1 PRE

Lo. (28)

Let us now consider the radial electric force per unit masa test particle with madsl’ and charg€)

Q// El

Q 1 _ QQAYX(r? - a*cosH)
oE=

M'p421/2

f2(r,0) = (29)

At infinity this reduces tofEl = (Q'/M")(Q/r?) which is just Coulomb’s force (per unit mass). In the snalimit,
the behavior isf(r,n/2) = (Q’/M’)(a/r?) in the equatorial plane, while along the symmetry axis weeh@(0, 0) =
-(Q/M")(Q/@).

It is of interest to compare the radial electromagnetic araditational forces on a test particle in the snralimit.
The ratios between the forces are given by €c)o=r/2 = Q'/M’ and (fe/ fc)s=0 = —(Q'/M’)(Q/M). UsingM = M’ = me
andQ = Q' = ewe find thatfz/ fg ~ 10° in the equatorial plane anf¢/ fg ~ 10* along the axis. This shows that the
electromagnetic forces dominate by huge factors, althdlghatio in the equatorial plane is smaller than the Nevetioni
estimate 1¢7. However, the reason that the forceff@li in strength is really due to the charge-to-mass ratiopaoause
the strengths of the gravitational and electromagnetidgighemselves are drasticallyffégrent. On the contrary, if one
compares the gravitational force per unit mdgswith the electric force per unit charg®(/Q’) fz one finds that they
are equal along the axis. This means that the gravitatiomhksectromagnetic fields themselves are of the same order.
The gravitational force, however, is so much smaller thandlectromagnetic force because of the exceedingly small
factormy/e for the elementary particles. This explains why an appéremall gravitational field can give rise to sizable
electromagneticféects via the Einstein-Maxwell field equations.

3 Discussion

The identification of the Kerr-Newman geometry with the giational field of the electron appears to be the simplest
and most natural assumption. But what about the quantunmenafuithe spin? Isn't it unreasonable to use a quantized
property in the metric as though it were classical? Here,amuéd turn the table around and ask the same question about
the quantized charge and for that matter about the quamtizess. Or, why should the spin (or the magnetic moment)
be treated dferently than the mass and the charge with respect to gravitiyed microscopic domain? And if this is
really so, in what situations should we ignore the spin anémshould we use the macroscopic recipe for setting up
the gravitational field? Another possible counter-arguiiethat the spin is vectorial while the charge and the mass ar
scalar quantities. However, this would still leave the dgioesopen why this fact should motivate df@rent treatment in
the microscopic domain.

From a more quantitative point of view one could argue a®¥adl Suppose that the Kerr-Newman geometry is at
least a good approximation at large distances for the ele’stEinstein-Maxwell field. Then certainly, this approxtion
must break down at some distancg, if for no other reason, because the metric has a curvatogailgirity atd = 0,
r = 0. Now, the only free parameters in the Kerr-Newman metricthe massin., the chargee and the spinmeae.
Moreover, we do know that the Kerr-Newman metric gives arueate prediction for both the magnetic and the electric
dipoles. Let us say we model the deviation from Kerr-Newnrathée far field by adding anfiective stress tensoT,‘jﬁf,
in the field equations. This tensor could emanate from QEectipns or quantum gravity for example. Then we know
that we can negledtl‘fff at the dipole level. As discussed above the electric dipatebeen constrained by experiments
([E]) to be zero at an accuracy level 9110716, Because of the methodology used in those experimentsctivestrain
only odd (parity violating) electric multipoles. The magioalipole on the other hand is measured to lE|([&Q]Ieae) =
1+ a/(2r) + O(a?). The deviation from Kerr-Newman should therefore be ofdhgera/(2r) ~ 10°3. However, the
situation is complicated by the possible influence of highaltipoles which could in principle beff@cting the cyclotron
type experiments for measuring the electron’s anomalouwmetac moment (seeE[BlEBZE[BS] for a description of how
those experiments are made). The actual deviation fromMewman could then be filerent from that indicated above.
The upshot of all this is that the influence'liﬁ:f on the dipoles is probably at most £&nd maybe smaller. It then seems
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likely that the influence oﬂ'l‘jﬁf on the next multipole, namely the electric quadrupole, $® @mall. Thus, even though
the numerical value for the quadrupole would lfieeted at some level of approximation, the first few digits mayi
coincide with the Kerr-Newman values.

A main conclusion of this work is that the gravitational atetéromagnetic fields may have an appreciable interaction
at the Compton scale. | have shown that this leads to obdereabsequences. In particular, the most obvious test of
these ideas is to measure the electric quadrupole momehé @léctron. The impressive experimental limit set on the
electric dipole moment suggests that it would not be beyaedgnt techniques to perform such a measurement. The
accurate values obtained for nuclear electric quadruotesalso encouraging in this regard. It would also be of @gter
to measure or set limits on the electric quadrupole mometiteoproton. Any non-zero value of the electric quadrupole
moment for the electron or the proton would signal the preserf curvature because of the implied violation of rotagion
invariance.

The predicted value for the electric quadrupole moment efelectron is not a certain consequence of the Einstein-
Maxwell equations. Other solutions which are more genbaeai Kerr-Newman do exist (see e@[34]). However, it would
require a substantial amount of fine-tuning to make the qumale exactly zero. In principle, a vanishing quadrupolddo
be the result of some as yet unknown selection rule. For tbepithough, being a composite particle, such fine-tuning
would seem even more artificial. Even if it is true that thernddewman metric is a good model for the Einstein-Maxwell
field of the electron, it would be nice to have some more harthematical theorem to justify this assumption, for
example along the lines of the uniqueness theorems for hiales. In the absence of such a theorem, it would still seem
likely, given the assumption of spin domination, that therkddewman metric at the very least gives a good qualitative
description of the gravitational field of the electron atalises down to nuclear length scales.

There appears to be only a few options, depending on the meatod future experiments. We could accept the lesson
from general relativity and use the modified forms of the leand magnetic fields in atomic and subatomic physics, or
we could abandon or at least modify Einstein gravity at sihiatinces, starting at some length scale above the Compton
wavelength. In the latter case, a microscopic spin woulcetewiferent status vis-a-vis gravity than a macroscopic
angular momentum. A third but less likely alternative wolhédthat even if we accept general relativity, nature somehow
conspires to keep spacetime almost but not quite flat at stogc scales.

It goes without saying that if gravity is really spin domiedtat the Compton scale, then this woulteat many
aspects of physics. The questions which pop up in such asaara too many to be mentioned here. To name only a
few, is the drastic changes of the electric and gravitatifiakls in the spin direction at the Compton wavelength scale
an indication that the nuclear forces are more directly ested with the electromagnetic and gravitational forces th
has been thought previously? Another related issue is wdggbtéms to quantization if you can no longer assume a flat
background. For example, in a consistent quantum theogyelidctron creation operator should create its own patch of
spacetime together with the other properties of the elactsquantum gravity entering through Compton’s back door?

End note:

A scan of the literature reveals that several authors hansidered the Kerr-Newman metric as a model for the eleciron’
gravitational and electromagnetic fields. In particulag tate Chaim L. Pekeris noted the influence of the spin on the
gravitational field at the Compton wave lengfh][11]. Follogithat work Pekeris and Frankowski[35] tried to treat the
electron as a Kerr-Newman geometry in its own right withauirgterior source. Using Chandrasekhar’s separaﬁbn [9]
of the Dirac equation on the Kerr-Newman background theglistlithe solutions but found that the states were unstable
although in good agreement numerically with standard thewluding the hyperfine levels (apart from an unexplained
factor of two). Other authors have tried to construct a atassnodel for the electron with the Kerr-Newman metric as th
exterior gravitational field glued to an interior extendediged rotating source (see e[g] [46] [37] and refereneesith).

In a recent paper, Arcos and Pere [38] discuss implinataf the topological structure of the Kerr-Newman geometry
if taken as a model for the electron.
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