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Non quantum uncertainty relations of
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Qiuping A. Wang
Institut Supérieur des Matériaux et Mécaniques Avancés,

44, Avenue F.A. Bartholdi, 72000 Le Mans, France

Abstract

After a recapitulation of an information-action method for the
study of stochastic dynamics of hamiltonian systems perturbed by
thermal noise and chaotic instability, we show that, for the ensemble
of all the possible paths between two state points, the action principle
acquires a statistical form 〈δA〉 = 0. The main objective of this paper
is to prove that, via this information-action description, some uncer-
tainty relations such as 〈∆A〉 ≥ 1

2η for action, 〈∆x〉〈∆P 〉 ≥ 1
η for po-

sition and momentum, and 〈∆H〉〈∆t〉 ≥ 1
2η for hamiltonian and time,

exist for stochastic dynamics of hamiltonian systems. These relations
describe, through action or its conjugate variables, the fluctuation of
stochastic dynamics due to random perturbation characterized by the
parameter η.

PACS numbers : 02.50.-r (Stochastic processes); 05.40.-a (fluctuation);
45.20.-d (classical mechanics); 46.15.Cc (Variational methods)

1 Introduction

The discussion of this work is limited to mechanical systems without con-
sidering the quantum effect. We use the term regular dynamics to mean the
mechanical processes with time reversible trajectories (geodesics) uniquely
determined for each system by the Hamiltonian equations, or equivalently,
by least action principle. Compared to this deterministic character of regu-
lar dynamics, one of the strong difference of irregular (random, stochastic, or
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statistical) dynamics is the uncertainty (unpredictability) of the trajectories
of the system. This uncertainty can be illustrated in Figure 1 showing the
diffusion of perfume molecules in the air. Clearly, from the point of view
of classical mechanics, if there is no random perturbation of the molecules
of air, an isolated perfume molecule leaving the hole a of the bottle at time
ta has only one possible path or a fine bundle of paths having least action
and arrives at a sole point b at time tb. With the random perturbation of
thermal noise of air molecules, however, the perfume molecules can arrive at
many very different points b at a time tb. This is the first dynamical uncer-
tainty due to the random noise. In the theories of chaos, this uncertainty is
usually measured by Kolmogorov-Sinai entropy or by Lyapunov exponent[1].
Another uncertainty is that, at time tb, the perfume molecules can arrive
at a point b through different paths. This uncertainty in path space has
been considered, e.g., in the path integral approach to quantum[2] and non
quantum[3] dynamics and in the large deviation theory[4]. In general, these
two uncertainty are not independent from each other. It is obvious that,
without the first uncertainty, the second one cannot take place.

While the mathematics of regular dynamics can be perfectly formulated
on the basis of the least action principle in classical mechanics, irregular or
random dynamics, found in diffusion, chaotic and other nonequilibrium phe-
nomena, is much more complicated to be described due to its stochastic and
random feature. Nowadays, statistical and thermodynamic theories of irreg-
ular dynamics are still in development, among which we can cited nonequilib-
rium statistical mechanics[5, 6], chaotic dynamics theory[1], anomalous trans-
port theory[7], large deviation theory[4], small random perturbation theory[8]
and path integral method starting from Brownian motion[3]. Many questions
and topics concerning, e.g., time irreversibility[9], variational approaches[3,
10, 11, 12], chaotic nature of dynamic process[14, 15], connection with quan-
tum physics[16, 17, 18] are still open to investigation. Much efforts have been
made to clarify the origin of diffusion laws[19] such as the Fokker-Planck
equation, the Fick’s laws, the Fourier law, the Ohm’s law and the anomalous
diffusion laws (fractional or nonlinear)[7].

As a starting point of what we will describe in this paper, we would like to
mention some characteristics shared by large deviation theory, perturbation
theory, and path integral approach. In these theories, variational method
is use to find the most probable (or optimal) paths (histories, trajectories)
with the help of rate functional[4], action functional[5, 8, 12, 13], or path
integral[3, 18]. All these functionals can be called effective action S whose
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optimization, through a postulated exponential transition probability with
a factor exp(−αS), allows one to find the most probable paths. Note that
S are not necessarily the mechanistic action defined in classical mechanics
with the Lagrangian L = E − U [3], where E and U are respectively kinetic
and potential energy. Here L is defined for hamiltonian systems satisfying
(in one dimensional space)

ẋ =
∂H

∂P
and Ṗ = −

∂H

∂x
(1)

where x is the coordinates, P = mẋi the momenta, and H = E + U is
the hamiltonian of the system. The mechanistic action is defined by A =
∫ b
a L(x, P, t)dt. Its stationary δA = 0 according to least action principle leads

to the Euler-Lagrange equations[20]

∂

∂t

∂L

∂ẋ
−

∂L

∂x
= 0. (2)

If we consider the Legendre transformation H = P ẋ−L, Eqs.(1) can be easily
derived from Eq.(2). It is worth noticing that, when the effective actions
mentioned above are calculated by time integral of an effective Lagrangian,
Eq.(2) is always satisfied by the optimal paths[3, 5, 8, 13, 18].

A point to be noticed is that, in the above theories and their applications,
one is most interested by the most probable paths whose neighborhood pro-
vides the basic contribution to the transition probability[3, 8, 12, 18]. The
other less probable paths of larger actions are often neglected or only taken
into account (or buried) in the path integrals[2, 3]. As a matter of fact,
the extension of classical action principle only to the optimal paths is, to our
opinion, incomplete. The physics represented by the larger action paths is an
inseparable part of the dynamics and may be essential for the fundamental
understanding of irregular dynamics. Recently, an informational method was
proposed[21, 22] to treat all the possible paths as an ensemble. The method
considers hamiltonian systems under random perturbation of thermal noise
and chaotic instability leading to the uncertainties shown in Fig. 1. These
uncertainties are measured by a path information associated with different
paths between two points in phase space. This path information is optimized
in connection with the average action of the hamiltonian system calculated
over all the possible paths. We have here an exponential probability of ac-
tion. In principle, this action can be any effective action mentioned above.
But in our previous work, the classical mechanistic action is used. It is worth
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noticing that this variational method is proven to be equivalent to an “ex-
tended least action principle”, i.e., instead of δA = 0, we have 〈δA〉 = 0
where the average 〈·〉 is taken over all the paths. Using classical action turns
out to be an useful choice since we have been able to derive the diffusion laws
mentioned above for all the possible paths not only for the optimal paths. In
this paper we will describe some mathematical consequences of this approach.
Our main objective here is to derive non quantum uncertainty relations. The
results can be extended to other type of actions.

2 Optimizing information-action

First let us recapitulate briefly the method. Let pk(b|a) be the transition
probability along a path k (k = 1, 2, ...w) from a phase points a and to an-
other point b. The dynamic uncertainty associated with pk(b|a) is measured
with the following Shannon information

Iab = −
w
∑

k=1

pk(b|a) ln pk(b|a). (3)

We have the following normalization
∑w

k=1 pk(b|a) = 1. If w is very large
in an ergodic phase volume and if the paths are sufficiently smooth, the
sum

∑

k should be replaced by a path integral in the Feynman sense[2], e.g.,
Iab = −

∫

D(x)pk(b|a) ln pk(b|a) in keeping a and b fixed. The average action
between a and b is given by

〈Aab〉 =
w
∑

k=1

pk(b|a)Aab(k). (4)

where Aab(k) is the classical action along a path k. Our optimal information-
action method consists in the following operation:

δ[Iab + α
w
∑

k=1

pk(b|a) − η
w
∑

k=1

pk(b|a)Aab(k)] = 0 (5)

leading to

pk(b|a) =
1

Z
exp[−ηAab(k)], (6)
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where the partition function Z =
∑

k exp[−ηAab(k)] =
∫

D(x) exp[−ηAab(k)].
It is straightforward to see the following relationships :

Iab = ln Z + η〈Aab〉 (7)

and

〈Aab〉 = −
∂

∂η
ln Z, (8)

It is proved that[21] the distribution Eq.(6) is stable with respect to the
fluctuation of action. It is also shown in [21] that if one uses the action of a
free particle, pk(b|a) is just the transition probability of Brownian particles[2,
3, 6]. In this case, we have a precise physical meaning of the multiplier η, i.e.,
η = 1

2mD
where m is the mass and D the diffusion constant of the Brownian

particle. The signification of η will be discussed later in a general way for
particles moving in a potential field U(x).

3 Extended action principle for irregular dy-

namics

As expected, Eq.(6) is a least action distribution, i.e., the most probable
paths are just the paths of least action δAab(k) = 0 satisfying Euler-Lagrange
equation and Hamiltonian equations. The other paths do not satisfy Eqs.(1)
and (2). In general, the paths have neither δAab(k) = 0 nor δ〈Aab〉 = 0.
Eq.(5) implies following relationship

− ηδAab + δIab = 0. (9)

By using Eqs.(3), (4) and the distribution (6), it is easy to calculate that
Eq.(9) is equivalent to

〈δAab(k)〉 =
∑

k

pk(b|a)δAab(k) = 0. (10)

This extension of action principle can also be derived from normalization of
probability implying δ

∑

k pk(b|a) = 0 and, from Eq.(6),

δ
∑

k

pk(b|a) ∝
∑

k

pk(b|a)δAab(k) = 〈δAab(k)〉 = 0. (11)
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On the other hand, in mimicking equilibrium thermodynamics, we can
define a dynamic potential

Ψ =
1

η
ln Z

as an analog of the free energy of Helmholtz. From Eqs.(7) and (9), it is
straightforward to see that the extended action principle Eq.(11) is equivalent
to the following variational principle

δΨ = 0. (12)

A remarkable application of this above variational approach to computation
of thermodynamic properties of hamiltonian systems was (independently)
carried out recently[10]. The authors derived thermodynamic equations of
motions for equilibrium systems with different Hamiltonians, already known
in the literature and used in simulations of molecular dynamics, by consid-
ering the particle histories in phase space on constant energy surface.

The extension of action principle has some consequences on the equations
of motion as discussed in [23]. For example, for the paths whose action is

not at stationary, we get ∂
∂t

∂Lk(t)
∂ẋ

− ∂Lk(t)
∂x

6= 0 and Ṗ 6= −∂H
∂x

which implies a
stochastic equation like

Ṗk = −
∂H

∂x
+ R (13)

where R is a random force representing the random perturbation of thermal
noise and chaotic instability. On the other hand, using the action principle
Eq.(10), we recover Eqs.(1) and (2) for the ensemble of paths:

〈

∂

∂t

∂Lk(t)

∂ẋ

〉

−

〈

∂Lk(t)

∂x

〉

= 0 (14)

and

〈ẋ〉 =

〈

∂H

∂P

〉

and
〈

Ṗ
〉

= −

〈

∂H

∂x

〉

. (15)

This implies that the mean of the “random force” R over all possible paths
must vanish, i.e., 〈R〉 = 0, required by the extended action principle.

In what follows, we are concerned with the spreads of the distribution
of the stochastic dynamics, in other words, the deviation of the irregular
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dynamics from the regular one due to random perturbation. This uncertainty
is a priori measured by the path information we introduced. But here it will
be analyzed at the level of mechanical quantity like position, momentum,
action and energy.

4 Uncertainty relations

For the sake of simplicity, we suppose the point a at x is very close to the
point b at x0 and the transition takes place in the infinitesimal time interval
δt = t − t0. This segment can be considered as a factor (a small element of
a long path) in path integral technique[2]. Let δx = x(t)− x0(t0), the action
is given by

Aab(x) =
m(δx)2

2δt
+ F

δx

2
δt − U(x0)δt, (16)

where F = −
(

∂U
∂x

)

(x+x0)/2
is the force on the path and m the mass of the

studied system. The transition probability is

pk(b|a) =
1

Z
exp

(

−η

[

m

2δt
δx2 + F

δt

2
δx

])

(17)

with

Z =
∫ ∞

−∞
dx exp

(

−η

[

m

2δt
δx2 + F

δt

2
δx

])

(18)

= exp

[

F 2ηδt3

8m

]

√

2πδt

mη
.

The potential energy of the point x0 disappears after normalization because
it does not depend on x. F is considered constant on small δx. It is easy to
show[22] that the probability of Eq.(17) satisfies the Fokker-Planck equation
and that other diffusion laws can be trivially derived from it.

How far are the randomly perturbed paths deviated from the optimal
paths? How different are Eqs.(15) from Eqs.(1)? This question can be an-
swered, under different angles, by the standard deviation of action 〈∆A〉2 =

〈A2〉 − 〈A〉2 = 〈A2〉 − 〈Aab〉
2 = −∂〈Aab〉

∂η
, of position 〈∆x〉2 = 〈x2〉 − 〈x〉2, of
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momentum 〈∆P 〉2 = 〈P 2〉−〈P 〉2 and of Hamiltonian 〈∆H〉2 = 〈H2〉−〈H〉2.
Using the formula below1, we obtain

〈x〉 = −
Fδt2

2m
, (19)

〈P 〉 = −
Fδt

2
, (20)

〈x2〉 =
δt

mη
+

F 2δt4

4m2
, (21)

and

〈P 2〉 =
m

δtη
+

F 2δt2

4
. (22)

This means

〈∆x2〉 =
δt

mη
(23)

and

〈∆P 2〉 =
m

δtη
. (24)

Cancelling the time δt and m in the above two equations, we get a “classical
uncertainty relation” for irregular dynamics

〈∆x2〉〈∆P 2〉 =
1

η2
. (25)

Notice that this is only a asymptotic relation for δt → 0. For a measurable
(longer) length of time and path, we divide them into small segments of the
order of δt and δx. Eq.(25) should be valid for each segment. Thus it can be
trivially proven that the total deviation 〈∆〉2 of whatever quantity on a path

1
∫

∞

−∞
dx exp(−αx2 + 2γx) = exp(γ2/α)

√

π
α

and
∫

∞

−∞
xndx exp(−αx2 + 2γx) =

1

2n−1α

√

π
α

dn−1

dγn−1 [γ exp(γ2/α)].
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is a sum of all the deviations on its small segments (Gaussian law of errors,
see for example [6]). So in general, we must write

〈∆x〉2〈∆P 〉2 ≥
1

η2
(26)

which is valid for any period of time and path length. If the system is in
rotation with δx/R = δθ where θ is the rotation angle and 1/R the curvature
of δx, then we get

〈∆θ〉2〈∆J〉2 ≥
1

η2
, (27)

where J is the angular momentum.
The action uncertainty can be calculated from Eqs.(8) and (18) :

〈Aab〉 =
1

2η
−

F 2δt3

8m
(28)

so that

〈∆A〉2 = −
∂〈Aab〉

∂η

=
1

2η2
. (29)

This relation can be written as 〈∆L〉2〈δt〉2 = 1
2η2 where 〈∆L〉2 = 〈L2〉− 〈L〉2

is the standard deviation of Lagrangian. For arbitrary time and path length,
we must write

〈∆A〉2 ≥
1

2η2
. (30)

and

〈∆L〉2〈∆t〉2 ≥
1

2η2
(31)

where 〈∆t〉2 = 〈t2〉− 〈t〉2 is the standard deviation of time measure. Eq.(31)
can be verified in the same way as for position and momentum, through the
calculation of 〈t〉 and 〈t2〉 with the distribution Eq.(17) in relaxing δt and
fixing δx.
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Now let H(t) be the Hamiltonian on the considered path segment at mo-
ment t, we have the Legendre transformation H(t) = P ẋ−L(t). Considering
L = E − U and E = P ẋ/2, we get

〈∆H〉2 = 〈∆L〉2 + 4(〈EU〉 − 〈E〉〈U〉). (32)

E and U are two independent variable, so 〈EU〉 = 〈E〉〈U〉, we obtain

〈∆H〉2 = 〈∆L〉2 (33)

and

〈∆H〉2〈∆t〉2 ≥
1

2η2
. (34)

Before giving an interpretation of these non quantum uncertainty re-
lations of irregular dynamics, i.e., Eq.(26), Eq.(27), Eq.(30), Eq.(31) and
Eq.(34), we would like to indicate two points. First, it seems that Eq.(30),
the action uncertainty relation, is the most essential one because it tell us
the spread of the action distribution and the deviation of the extended action
principle 〈δA〉 = 0 from the conventional one δA = 0. The other relations
concerns the conjugate variables of action and can be a priori derived from ac-
tion uncertainty. Second, the coefficient η plays a central role in this descrip-
tion of the dynamics. Roughly speaking, η → 0 represents large deviation
of the perturbed dynamics from the regular one (large uncertainty), large η
represents small random perturbation and deviation (small uncertainty), and
η → ∞ implies vanishing perturbation and convergence of irregular dynamics
to regular one (zero uncertainty).

A quantitative relationship between the uncertainty and thermal noise
can be shown with a special example, Brownian motion (F = 0) with diffu-
sion constant D = µkBT [6], where µ is the mobility of the particles, kB is
the Boltzmann constant and T the temperature. Here we see a relationship
between η and temperature characterizing the thermal noise: η = 1

2mµkBT
=

γ
2kBT

where mγ is the friction coefficient. In this case, we can write, for
example,

〈∆x〉〈∆P 〉 ≥ 2kBT/γ, (35)

which implies that the paths may be distributed very widely in phase space
around the optimal (least action) paths at high temperature.
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5 Concluding remarks

We have briefly presented an information-action method for stochastic dy-
namics of hamiltonian systems. We see that in this approach the Euler-
Lagrange equations, the Hamiltonian equations and the action principle only
hold in averaged form over the ensemble of all the possible paths between two
state points. The main result of this paper is to show that some uncertainty
relations, very similar to those in quantum mechanics, exist for stochastic
dynamics of hamiltonian systems.

We are in the realm of classical physics, no quantum effect is considered.
There is normally the consensus that exact value of position and speed can
be a priori assigned to a particle (consensus contested by an interpretation of
quantum mechanics). Then how to understand the uncertainty relations in
classical dynamics? A plausible understanding is that 〈∆A〉 ≥ 1√

2η
implies

the distribution of action cannot be arbitrarily narrow, or the fluctuation of
action has a minimum depending on the random perturbation. 〈∆x〉〈∆P 〉 ≥
1
η

means that the fluctuations or the distributions of position and momentum
cannot be arbitrarily narrow simultaneously. It has no meaning about the
precision of the measure, because we know that a classical body does have
exact position and speed and that the means 〈x〉 and 〈P 〉 can be made
arbitrarily close to the real values of the body whatever the fluctuation 〈∆x〉
and 〈∆P 〉 of the separately measured values.

We would like to indicate that the above results have been obtained by
using the mechanical Lagrangian and action. Nevertheless, as mentioned
above, the same conclusions can be reached with other action functionals and
Lagrangians. It can be trivially shown that similar uncertainty relations can
be derived with, e.g., Onsager-Machlup Lagrangian LOM = (ẋ − µF )2[3, 5]
and Freidlin-Wentzell Lagrangian LOM = [ϕ̇ − b(ϕ)]2 where ϕ̇ = b(ϕ) is the
differential equation of some continuous function ϕ of paths when the pertur-
bation vanishes[8]. If the Lagrangians do not have mechanistic interpretation,
the uncertainty relations should be understood differently depending on the
physical content of the variables.
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Figure 1: An example of random dynamics: the diffusion of scent. At time
ta, the molecules of the perfume get out of the bottle at point a. At time
tb, the molecules arrive at different points bi (i = 1, 2, ...) (first dynamical
uncertainty) so the two ponies smell the scent at the moment. For a pony
putting his nose at a given point b, all the molecules it receives at time tb may
arrive there via different paths (second dynamical uncertainty). Obviously,
as shown by the dotted lines in the figure, the second uncertainty cannot
take place without the first one.
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