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Abstract: We examine two associative products over the ring of symmetric functions related to

the intransitive and Cartesian products of permutation groups. As an application, we give an

enumeration of some Feynman type diagrams arising in Bender’s QFT of partitions. We end by

exploring possibilities to construct noncommutative analogues.

Résumé: Nous étudions deux lois produits associatives sur les fonctions symétriques correspondant

aux produits intransitif et cartsien des groupes de permutations. Nous donnons comme application

l’énumération de certains diagrammes de Feynman apparaissant dans la QFT des partitions de Ben-

der. Enfin, nous donnons quelques pistes possibles pour construire des analogues non-commutatifs.

1 Introduction

In a relatively recent paper, Bender, Brody and Meister introduce a special Field Theory de-
scribed by

G(z) =
(

e(
∑

n≥1
Ln

zn

n!

∂
∂x

)
)(

e(
∑

m≥1
Vm

xm

m!
)
)∣

∣

∣

x=0
(1)

in order to prove that any sequence of numbers {an} can be generated by a suitable set of rules
applied to some type of Feynman diagrams [1, 2]. These diagrams actually are bipartite finite
graphs with no isolated vertex, and edges weighted with integers.

Expanding one factor of (1), we can observe surprising links between: the normal ordering
problem (for bosons), the parametric Stieltjes moment problem and the convolution of ker-
nels, substitution matrices (such as generalised Stirling matrices) and one-parameter groups of
analytic substitutions [7, 8, 13].

The aim of this paper is to make explicit the multifaceted connections between noncommutative
symmetric functions (here MQSym, FQSym [5]) and the Feynman diagrams arising in the
expansion of formula (1) used in combinatorial physics [13].

The structure of the contribution is the following. In Section 2, we define two associative
products in S =

⊔

Sn related to the Intransitive and Cartesian products of permutation groups.
These products induce a structure of 2-associative algebra over the symmetric functions. The
properties of this algebra are investigated in Section 3. At the end of this section, we give,
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as an application, an inductive formula for computing generating series of Bender’s Feynman
diagrams. Noncommutative analogues are proposed in Section 4.

2 Actions of a direct product of permutation groups

2.1 Direct product actions

The actions of the direct product of two permutation groups (in particular, the structure of the
cycles) give rise to interesting properties related to the enumeration of unlabelled objets [12].
We open this section with the definition of two actions (namely, Intransitive and Cartesian).
For greater detail about these constructions (or for constructions involving the wreath product)
the reader can refer to [3].
Consider two pairs (G1,X1) and (G2,X2), where each Gi is a permutation group acting on Xi.
The intransitive action of G1 ×G2 on X1 ⊔X2 (here ⊔ means disjoint union) is defined by the
rule

(σ1, σ2)x =

{

σ1x if x ∈ X1

σ2x if x ∈ X2
. (2)

This action will be denoted by (G1,X1)→+ (G2,X2) := (G1 ×G2,X1 ⊔X2).
The Cartesian action of G1 ×G2 on X1 ×X2 is defined by

(σ1, σ2)(x1, x2) = (σ1x1, σ2x2). (3)

This action will be denoted by (G1,X1)րց (G2,X2) := (G1×G2,X1×X2). Note that neither of
the two laws just defined is commutative. A natural question to ask is whether such a structure
enjoys some algebraic properties. For example, is the րց law distributive over →+ ?
In other words, what is the meaning of

(G1,X1)րց ((G2,X2)→+ (G3,X3)) = (G1 ×G2 ×G3,X1 × (X2 ⊔X3))

and

((G1,X1)րց (G2,X2))→+ ((G1,X1)րց (G3,X3)) = (G1×G2×G1×G3, (X1×X2)⊔ (X1×X3)).

The groups G1×G2×G1×G3 and G1×G2×G3 are not isomorphic, so distributivity does not
hold, although the set-theoretical Cartesian product is distributive over disjoint union. However
an examination of the structure of the cycles (see [3] for the general construction or section 2.2
for a particular case) shows that the cycles are the same. More precisely, a cycle can appear
with different multiplicities according to which group is acting, but if we focus on the set of the
cycles, the two structures are similar.
Now, let us give a construction which takes such a phenomenon into account.

2.2 Explicit realization

We will denote by ◦N the natural action of Sn on {0, . . . , n − 1}. Let Sn and Sm be two
symmetric groups, we note by ◦I the intransitive action of Sn ×Sm on {0, · · · , n+m− 1} and
by ◦C the Cartesian action of Sn ×Sm on {0, . . . , nm− 1}. More precisely,

(σ1, σ2) ◦I i =

{

σ1 ◦N i if 0 ≤ i ≤ n− 1
σ2 ◦N (i− n) + n if n ≤ i ≤ n+m− 1

. (4)

for 0 ≤ i ≤ n+m− 1, and

(σ1, σ2) ◦C (j + nk) = (σ1 ◦N j) + n(σ2 ◦N k) (5)

for 0 ≤ j ≤ n− 1 and 0 ≤ k ≤ m− 1.
The intransitive product is the map →+ : Sn ×Sm → Sn+m defined by

σ1 →+ σ2 = σ1σ2[n] (6)

where σ2[n] denotes σ2 composed with the shifted substitution i→ i+n (here permutations are
considered as words and →+ is nothing else but shifted concatenation).
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Example 2.1 Let σ1 = 1320 ∈ S4 and σ2 = 534120 ∈ S6. Here, we denote a permutation of
Sn by the word whose ith letter is the image of i under the natural action on {0, . . . , n − 1}).
With this notation, we obtain

σ1 →+ σ2 = 1320978564

and
σ2 →+ σ1 = 5341207986

Clearly, it turns out that →+ is not commutative.

The following proposition shows that the natural action of Sn+m coincides with the intransitive
action of Sn ×Sm.

Proposition 2.2 (σ1 →+ σ2) ◦N i = (σ1, σ2) ◦I i. �

Let us introduce a similar construction for the Cartesian action: we define a map
րց: Sn ×Sm → Snm by

σ1 րց σ2 =
∏

i,j

ci րց c′j (7)

where σ1 = c1 · · · ck (resp. σ2 = c′1 · · · c
′
k′) is the decomposition of σ1 (resp. σ2) into a product

of cycles and

cրց c′ =

l∧l′−1
∏

s=0

(φ(s, 0), φ(s + 1, 1) · · · , φ(s + l ∨ l′ − 1, l ∨ l′ − 1)), (8)

where ∧ denotes the gcd, ∨ denotes the lcm, c = (i0, · · · , il−1), c
′ = (j0, · · · , jl′−1) are two cycles

and φ(k, k′) = i
k mod l

+ nj
k′ mod l′

. Just like the Intransitive action, the Cartesian action
coincides with the natural action.

Proposition 2.3 (σ1 րց σ2) ◦N i = (σ1, σ2) ◦C i .

Proof — From (7), it suffices to prove the property only when σ1 = c and σ2 = c′ are two
cycles. But as (8) is equivalent to

cրց c′ =

l∧l′−1
∏

s=0

(is + nj0, (c, c
′) ◦C (is + nj0), . . . , (c

l∨l′−1, c′
l∨l′−1

) ◦C (is + nj0))

=

l∧l′−1
∏

s=0

(is + nj0, c ◦C is + nc′ ◦N j0, . . . , c
l∨l′−1 ◦N is + nc′

l∨l′−1
◦N j0)),

which completes the proof. �

Example 2.4 Consider the two permutations σ1 = 2031 ∈ S4 and σ2 = 01723456 ∈ S8. The
permutation σ1 consists of a unique cycle c1 = (0, 2, 3, 1) and σ2 = c′1c

′
2c

′
3 is the product of the

three cycles c′1 = (0), c′2 = (1) and c′3 = (7, 6, 5, 4, 3, 2). Hence, the permutation σ1 րց σ2 is the
product of four cycles given by

1. c1 րց c′1 = (0, 2, 3, 1)

2. c1 րց c′2 = (4, 6, 7, 5)

3. c1 րց c′3 = (28, 26, 23, 17, 12, 10, 31, 25, 20, 18, 15, 9)(30, 27, 21, 16, 14, 11, 29, 24, 22, 19, 13, 8).

To illustrate proposition 2.3, it suffices to draw the cycles in the Cartesian product {0, . . . , n−
1} × {0, . . . ,m− 1} whose elements are re- labelled (i, j)→ i+ nj. For example, the two cycles
appearing in c1 րց c′3 give the following partition of {0, 1, 2, 3} × {2, 3, 4, 5, 6, 7}.
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On the other hand, the permutation σ2 րց σ1 is the product of the four cycles

1. c′1 րց c1 = (0, 16, 24, 8)

2. c′2 րց c1 = (1, 17, 25, 9)

3. c′3 րց c1 = (7, 22, 29, 12, 3, 18, 31, 14, 5, 20, 27, 10)(6, 21, 28, 11, 2, 23, 30, 13, 4, 19, 26, 15)

Clearly, σ1 րց σ2 6= σ2 րց σ1 : the law րց is not commutative.

2.3 Algebraic structure

The advantage of the new structures over the ones defined in section 2.1 consists in the omission
of the operations over the groups. Hence, algebraic properties come to light quite naturally.
First, the two laws are associative.

Proposition 2.5 Associativity
Let σ1 ∈ Sn, σ2 ∈ Sm and σ3 ∈ Sp be 3 permutations

1. σ1 →+ (σ2 →+ σ3) = (σ1 →+ σ2)→+ σ3

2. σ1 րց (σ2 րց σ3) = (σ1 րց σ2)րց σ3

Proof — 1) Set η1 = σ1 →+ (σ2 →+ σ3) and η2 = (σ1 →+ σ2)→+ σ3. One has

η1 ◦N i =







σ1 ◦N i if 0 ≤ i ≤ n− 1
σ2 ◦N (i− n) + n if n ≤ i ≤ m+ n− 1
σ3 ◦N (i− n−m) + n+m if n+m ≤ i ≤ n+m+ p− 1

for each 0 ≤ i ≤ n+m− 1, and the same holds for η2 ◦N i. It follows that η1 = η2.
2) The strategy is the same. First, we set η1 = σ1 րց (σ2 րց σ3) and η2 = (σ1 րց σ2)րց σ3. The
action of η1 can be computed as follows

η1 ◦N (i+ ni′) = σ1 ◦N i+ n(σ2 րց σ3) ◦N i′ = σ1 ◦N i+ nσ2 ◦N j + nmσ3 ◦N k

where 0 ≤ i ≤ n− 1, 0 ≤ i′ ≤ mp− 1, 0 ≤ j ≤ m− 1 and 0 ≤ k ≤ p− 1.
On the other hand, the action of η2 is

η2 ◦N (k′ + nmk) = (σ1 րց σ2) ◦N k′ + nmσ3 ◦N k = σ1 ◦N i+ nσ2 ◦N j + nmσ3 ◦N k

where 0 ≤ i ≤ n−1, 0 ≤ j ≤ m−1, 0 ≤ k ≤ p−1 and 0 ≤ k′ ≤ nm−1. Hence, η1 ◦N i = η2 ◦N i

for 0 ≤ i ≤ nmp− 1 and η1 = η2. �

From example 2.1 and 2.4, neither →+ nor րց is commutative. But, one has the property of left
distributivity.
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Proposition 2.6 Semi-distributivity
Let σ1 ∈ Sn, σ2 ∈ Sm and σ3 ∈ Sp be three permutations

σ1 րց (σ2 →+ σ3) = (σ1 րց σ2)→+ (σ1 րց σ3)

Proof — We use the same method as in the proof of proposition 2.5. First, let us define
η1 = σ1 րց (σ2 →+ σ2) and η2 = (σ1 րց σ2)→+ (σ1 րց σ3). The action of η1 is

η1◦N (i+nj) = η1◦N i+n(σ2 →+ σ3)◦N j =

{

σ1 ◦N i+ nσ2 ◦N j if 0 ≤ j ≤ m− 1
σ1 ◦N i+ nσ3 ◦N (j −m) +m if m ≤ j ≤ p+m− 1

(9)
where 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ m+ p− 1.
On the other hand, one has

η2 ◦N k =

{

(σ1 րց σ2) ◦N k if 0 ≤ k ≤ nm− 1
(σ1 րց σ3) ◦N (k − nm) + nm if nm ≤ k ≤ n(m+ p)− 1

. (10)

If 0 ≤ k ≤ mn− 1, we set k = i+ nj where 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ m− 1. Hence,

(σ1 րց σ2) ◦N k = σ1 ◦N i+ nσ2 ◦N j. (11)

Similarly, if nm ≤ k ≤ n(m + p) − 1, we set (k − nm) = i + nj where 0 ≤ i ≤ n − 1 and
0 ≤ j ≤ p− 1. Hence,

(σ1 րց σ3) ◦N (k − nm) + nm = σ1 ◦N i+ n(σ3 ◦N (j −m) +m). (12)

Substituting (11) and (12) in (10), one recovers the right hand side of (9). It follows immediately
that η1 = η2. �

The two laws can be extended by linearity to the graded vector space
⊕

n≥0 Q[Sn] and endow
this space with a structure of 2-associative algebra. In the next section, we construct a product
⋆ in Sym (the algebra of symmetric functions) defined on the power sums and appearing when
one examines the cycle index polynomial of a Cartesian product. This product is the image of
րց under a particular morphism. We will prove that this last property implies the associativity
and the distributivity of ⋆ over × (the natural product in Sym) and +.

3 Cycle index algebra

3.1 Cartesian product in Sym

We first construct a 2-associative morphism
⊕

n≥0 Q[Sn] 7→ Sym (a 2-associative algebra is just
a vector space equipped with 2 associative laws [9]).
The arrow maps a permutation σ ∈ Sn to a product of power sums. For j ≥ 1, let cj(σ) be the
number of cycles in σ of length j and set

Z(σ) =

∞
∏

j=0

ψ
cj(σ)
j (13)

where ψi denotes the ith power sum symmetric function. We claim that Z is a morphism
mapping →+ to × (the usual product in Sym) and that րց is compatible with Z to the extent
that there exists an associative law on Sym such that Z is also a morphism mapping it to րց.
This second law is given on the power sums basis by

∏

1≤i≤∞

ψαi

i ⋆
∏

1≤j≤∞

ψ
βj

j =
∏

1≤i,j≤∞

ψ
αiβj(i∧j)
i∨j (14)

(the sequences (αi)i≥1, (βj)j≥1 have finite support). It is straightforward to check that
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Proposition 3.1 i) The mapping Z :
⊕

n≥0 Q[Sn] 7→ Sym is a morphism of 2-associative
algebras sending the two laws →+ ; րց respectively to ×; ⋆ (recall that × denotes the usual
product of Sym).
More precisely, for σ, τ ∈ ⊔n≥0Sn = S one has

Z(σ →+ τ) = Z(σ)Z(τ) ; Z(σ րց τ) = Z(σ) ⋆ Z(τ) (15)

ii) The law ⋆ is associative, commutative and distributive over ×.

Proof — i) For the first relation of (15), one just notices that cj(σ →+ τ) = cj(σ) + cj(τ). For
the second relation, one observes that the Cartesian product of a i-cycle and a j-cycle produces
i ∧ j cycles of length i ∨ j. Thus, one has cr(σ րց τ) =

∑

p∨q=r(p ∧ q)cp(σ)cq(τ), whence (15).
ii) When σ ∈ Sn is a cycle of maximum length, one has Z(σ) = ψn, hence the image of Z

contains also all the products of power sums and we get Im(Z) = Sym. Then, by proposition
3.1(i), ⋆ is distributive on the left over ×. Complete distributivity follows from commutativity
of ⋆, which straightforwardly follows from the definition. �

The following structural result goes into particulars of the distributivity of ⋆ over ×.

Proposition 3.2 Let P be the set of products of power sums (i.e. P = {
∏∞

i=1 ψ
αi

i }(αi)i≥1∈NN∗ ).

Then P is closed by × and ⋆ and more precisely (P,×, ⋆) is isomorphic to a subsemiring of the
Z-algebra Z[Np] of the monoid (Np, sup) (where p stands for the set of prime numbers).

Proof — The fact that P is closed by × and ⋆ follows from the definition and (14). Now P

contains the two units (1 and ψ1), therefore (as a consequence of the properties established for
the laws ×, ⋆) it is a semiring. For every p ∈ p and n ∈ N∗, let νp(n) be the exponent of p in
the decomposition of n in prime factors (n =

∏

p∈pp
νp(n)). Define an arrow φ : P → Z[(Np] by

φ(
∏

1≤i≤∞

ψαi

i ) =
∑

1≤i≤∞

iαi(p 7→ νp(i)). (16)

As φ(m1m2) = φ(m1) + φ(m2) by construction (16), it suffices to prove that
φ(ψi ⋆ ψj) = φ(ψi)×s φ(ψj) where ×s stands for the product in Z[(N(p), sup)]. But

φ(ψi ⋆ ψj) = φ(ψi∧j
i∨j ) = (i ∧ j)φ(ψi∨j) = (i ∧ j)(i ∨ j)(p 7→ νp(i ∨ j)) =

(i ∧ j)(i ∨ j)(p 7→ sup(νp(i), νp(j))) = ij(p 7→ sup(νp(i), νp(j))) = φ(ψi)×s φ(ψj).

The arrow being clearly into the claim is proved. �

3.2 Cycle index polynomial

Let S =
⊔

n≥0 Sn be the disjoint union of all the symmetric groups and Ssg =
⋃

n≥0 (Sn)sg be
the set of all the subgroups of all symmetric groups (i.e. the set of all permutation groups over
some interval [1..n]). For simplicity, we identify a permutation group G ∈ (Sn)sg with its action
(G, {0, . . . , n − 1}) (see section 2.1). Laws →+ and րց can be defined over Ssg by

G1 →+ G2 := (G1 ×G2, {0, . . . , n+m− 1}) (17)

where G1 acts on {0, . . . , n− 1} and G2 acts on {n, . . . , n +m− 1} and

G1 րց G2 := (G1 ×G2, {0, . . . , nm− 1}) (18)

where the action on {0, . . . , nm− 1} is given by (σ1, σ2)k = φ−1((σ1, σ2)φ(k)), the map φ being
the bijection φ : {0, . . . , nm− 1} → {0, . . . , n− 1} × {0, . . . ,m− 1} defined by φ(i+ nj) = (i, j)
if 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ m− 1 and (σ1, σ2)(i, j) = (σ1i, σ2j). Note that both →+ and րց are

6



associative but րց is not distributive over →+ .
Let Z : Ssg → Sym be defined by

Z(G) = Z

(

1

|G|

∑

σ∈G

σ

)

. (19)

Polyà’s cycle index polynomial of G is defined to be Z(G).

Example 3.3 1. The cycle index of the symmetric group Sn is Z(Sn) = hn.

2. The cycle index of the alternating group An is Z(An) = hn + en.
Here hn (resp. en) denotes a complete (resp. elementary) symmetric function. These examples
appear as exercices in [10] (ex.9 p 29).

Since Z is a morphism of 2-associative algebra, one recovers the classical relations (see [3])

Z(G1 →+ G2) = Z(G1)Z(G2) (20)

Z(G1 րց G2) = Z(G1) ⋆ Z(G2) (21)

Example 3.4 1. The cycle index polynomial of the Intransitive product of two symmetric
groups Sn and Sm is

Z(Sn →+ Sm) = hnhm.

2. The cycle index polynomial of the Cartesian product of two symmetric groups Sn and Sm

is

Z(Sn րց Sm) = hn ⋆ hm =
∑

|λ|=n,

|ρ|=m

mλ ⋆ mρ =
∑

|λ|=n,

|ρ|=m

1

zλzρ

∏

i,j

ψ
λi∧ρj

λi∨ρj
,

where mλ denotes a monomial symmetric function and zλ =
∏

inini! if ni is the number
of parts of λ equal to i.

3.3 Enumeration of a type of Feynman diagrams related to the Quantum

Field Theory of partitions

The cycle index polynomials are classic tools used in combination with Polyà’s theorem, for the
enumeration of unlabelled objects. Let us recall the general process. Consider a permutation
group G acting on a finite set X = {x1, · · · , xn}. Let L = {l0, . . . , lp, . . . } (possibly infinite) be
another set, and f : X → L. The type t(f) of f is the vector (i0, . . . , ip, . . . ) where ik is the
number of elements of X whose image by f is lk. The shape s(f) of f is the partition obtained by
sorting in the decreasing order t(f) and erasing the zeroes. For example, a function f having the
type t(f) = (0, 1, 0, 9, 1, 2, 0, . . . , 0, . . . ) has the shape s(f) = (9, 2, 1, 1). The number ds

λ(G,L)
of G-classes on LX with the shape λ is the coefficient of mλ in the expansion of Z(G) in the
basis of monomial symmetric functions:

Z(G) =
∑

λ

ds
λ(G,L)mλ. (22)

Now, let us apply this method to enumerate the Feynman diagrams arising in the expansion
of formula (1). These diagrams are bipartite finite graphs with no isolated vertex, and edges
weighted with integers. First, we enumerate all bipartite finite graphs with edges weighted with
integers. Let n and m be the numbers of vertices in each of the two parts. We consider the
edges as a function e from {0, . . . , n − 1} × {0, . . . ,m− 1} to N. The type (resp. the shape) of
a graph is the type (resp. the shape) of its edges, i.e. t(e) (resp. s(e)). The number dλ(n,m)
of graphs with type λ is equal to the number of orbits with type λ, for the action of Sn րց Sm

on N{0,...,n−1}×{0,...,m−1}. Hence, the generating function of the shape is

g(n,m) :=
∑

λ

ds
λ(n,m)mλ = Z(Sn) ⋆ Z(Sm) (23)
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Specializing the symmetric functions appearing in (23) to the alphabet {y0, . . . , yk, . . . , }, the
coefficient dt

I(n,m) of
∏

y
ik
k in the expansion of g(n,m) is equal to the number of graphs with

type I = (i0, . . . , ik, . . . ),

g(n,m) =
∑

I=(i0,...,ip,... )

dt
I(n,m)

∞
∏

k=0

y
ik
k . (24)

Note that one can enumerate graphs having edges weighted with integers less than or equal to
p by specializing to the finite alphabet {y0, . . . , yp}.
Let us define the generating series of the type of our Feynman diagrams

F (n,m) :=
∑

I=(i0,...,ip,... )

f t
I(n,m)

∞
∏

k=0

y
ik
k , (25)

where f t
I(n,m) denotes the number of Feynman diagrams of type I. Remark that F (n,m) is a

symmetric function over the alphabet {y1, . . . , yp, . . . } but not over {y0, . . . , yp, . . . }.

Example 3.5 Let us give the first examples of generating series for weight in {0, 1, 2}.

1. F (1, 1) = y1 + y2

2. F (2, 1) = F (1, 2) = y2
1 + y1y2 + y2

2

3. F (2, 2) = y2
0y

2
1+y2

0y
2
2+y2

0y1y2+y0y
3
1+3y0y

2
1y2+3y0y1y

2
2+y0y

3
2+y4

1+y3
1y2+3y2

1y
2
2+y1y

3
2+y4

2

One can remark that under this specialization,

F (2, 2) + F (2, 1)y2
0 + F (1, 2)y2

0 + F (1, 1)y3
0 + y4

0 = 3m22 +m4 + 3m211 +m31 = g(2, 2).

The latter equality could be stated in a more general setting.

Theorem 3.6 One has the following decomposition of the cycle index polynomial.

Z(Sn րց Sm) = ynm
0 +

∑

(1,1)≤lex(k,p)≤lex(n,m)

F (k, p)ynm−kp
0 . (26)

Proof — It suffices to remark that a bipartite graph is either a graph without isolated vertex
or the union of some isolated vertex and a smaller bipartite graph. �

This yields a nice induction formula for the F (n,m)’s.

Example 3.7 From theorem 3.6, one has

F (3, 2) = Z(S3 րց S2)− F (3, 1)y3
0 − F (2, 2)y2

0 − F (2, 1)y4
0 − F (1, 2)y4

0 − F (1, 1)y5
0 − y

6
0.

From example 3.5, it suffices to compute F (3, 1) = y3
1 + y3

2 to enumerate Feynman diagrams
whose edges are weighted by 0, 1 or 2. After simplification, one obtains

F (3, 2) = y6
2 + y5

2y1 + 3y4
2y1 + 3y4

2y1y0 + 2y4
2y

2
0 + 3y3

2y
3
1 + 6y3

2y
2
1y0 + 5y3

2y1y
2
0

+y3
2y

3
0 + 3y2

2y
4
1 + 3y2

2y
3
1y0 + 8y2

2y
2
1y

2
0 + 3y2

2y1y
3
0 + y2y

5
1 + 3y2y

4
1y0 + 5y2y

3
1y

2
0

+3y2y
2
1y

3
0 + y6

1 + y5
1y0 + y3

1y
3
0 + 2y2

1y
4
0.

For example, there are 8 (2, 2, 2)- Feynman diagrams:

v

v

f

f

fXXXXXX���
���

����
�

�
v

v

f

f

fXXXXXXXXXXXX����
�

�
v

v

f

f

fXXXXXX���
���

�
�

�XXX v

v

f

f

fXXXXXXXXXXXX�
�

�
Z

Z
Z v

v

f

f

f

�
�

�

�
�

�
���
���

XXX
���

v

v

f

f

f

�
�

�

�
�

�
���
���

XXX
XXX v

v

f

f

f

�
�

�

�
�

�XXXXXX

XXX
���

v

v

f

f

fXXXXXX���
���XXX
���
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4 Non commutative realizations

4.1 Free quasi-symmetric cycle index algebra

Let (A,<) be an ordered alphabet and w ∈ A∗ a word of length n. One denotes by Std(w), the
permutation σ ∈ Sn defined by

σ(i) = (Number of letters = w[i] in w[1..i] + number of letters < w[i] in w) (27)

Recall that the algebra FQSym is defined by one of its bases, indexed by S and defined as
follows

Fσ =
∑

Std(w)=σ−1

w ∈ Z〈〈A〉〉 (28)

In [5], it is shown that FQSym is freely generated by the Fσ where σ runs over the connected
permutations (see [4]) (i.e. permutations such that σ([1, k]) 6= [1, k] for each k). The algebra
FQSym is spanned by a linear basis, {Fσ}σ∈S, whose product implements the Intransitive
action →+ :

Fσ = Fσ1
· · ·Fσn (29)

where σ = σ1 →+ · · · →+ σn is the maximal factorisation of σ in connected permutations. As a
consequence of this definition, one has

FσFτ = Fσ→+ τ . (30)

This naturally induces an isomorphism of algebras

Z :





⊕

n≥0

Q[Sn],→+ ,+



 → (FQSym, .,+)

σ 7→ Fσ. (31)

One defines the product ⋆ on FQSym by Fσ ⋆Fτ := Fσրցτ . By this way, Z becomes a morphism
of 2-associative algebras. Furthermore, ⋆ is associative, distributive over the sum and semi-
distributive over the shifted concatenation.

4.2 Free quasi-symmetric Polyà cycle index polynomial

Let G be a permutation group. The free quasi-symmetric Polyà cycle index polynomial of G is
its image by Z : Ssg → FQSym defined by

Z(G) := Z

(

1

|G|

∑

σ∈G

σ

)

Fσ. (32)

Note 4.1 There is another basis of FQSym indexed by permutations, namely {Gσ}σ∈S. It is
obtained by setting Gσ = Fσ−1 and applying the same construction as above (30) to get a basis
multiplicative with respect to →+ , then

Gσ = Gσ1
· · ·Gσn (33)

where σ = σ1 →+ · · · →+ σn is the maximal factorisation of σ into connected permutations. In
this case, σ−1 splits maximally into σ−1

1 →+ · · · →+ σ−1
n , so one has also Gσ = Fσ−1

and formula
(34) can be rewritten

Z(G) := Z

(

1

|G|

∑

σ∈G

σ

)

Gσ. (34)

The polynomial Z(G) has properties similar to that of Z(G), in particular regarding the laws
→+ and րց.
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Proposition 4.2 Let G1, G2 ∈ Ssg be two permutation groups, one has

1. Z(G1 →+ G2) = Z(G1)Z(G2).

2. Z(G1 րց G2) = Z(G1) ⋆ Z(G2).

Consider the morphism, z : FQSym → Sym defined by z(Fσ) = Z(σ). Note that it is not a
morphism of Hopf algebra because z(F231) = ψ3.
The following diagram is commutative

Ssg
Z
−→ FQSym

Z ↓ z ւ ↑ Z (35)

Sym ←−
Z

⊕

n≥0

Q[Sn]

Example 4.3 1. The free quasi-symmetric cycle index of Sn is

Hn := Z(Sn) =
1

n!

∑

σ∈Sn

Fσ.

One can consider it as a free quasi-symmetric analogue of the complete symmetric function
hn: indeed z(Hn) = Z(Sn) = hn.

2. One can define free quasi-symmetric analogues of elementary symmetric functions consid-
ering the cycle index polynomial of the alternative groups:

En := Z(An)− Z(Sn).

We get z(En) = Z(An)− Z(Sn) = en.

3. The knowledge of analogues of other symmetric functions should be useful to understand
the combinatorics of free quasi-symmetric cycle index. In particular, it should be interest-
ing to find free quasi-symmetric functions whose images by z are the monomial symmetric
functions.

4.3 Realizations in MQSym

We will call labelled diagrams the Feynman diagrams as above but with p white (resp. q black)
spots labelled bijectively by [1..p] (resp. by [1..q]). When one draws such a diagram, one
implicitly assumes that the labelling goes from top to bottom.

f

f

v

v

v(((((
(((((

�����

�����
l

l
l

ll
hhhh

Labelled diagram of the matrix

(

2 0 1
0 2 1

)

.

Now, to such a p× q labelled diagram we can associate a matrix in Np×q and this correspondence
is one-to-one. The condition that no vertex be isolated is equivalent to the condition that there
be no complete line or column of zeroes, i.e. the representative matrix is packed [5]. In the same
way, the diagrams are in one-to-one correspondence with the classes of packed matrices under
the permutations of lines and columns as shown below (the vertical arrows are then one-to-one)

Packed matrices
Class
−−−−→ Classes of packed matrices





y





y

Labelled diagrams −−−−→ Diagrams

(36)
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There is an interesting structure of Hopf algebra (in fact an envelopping algebra) over the dia-
grams [6] which can be pulled back in a natural way to labelled diagrams.
The correspondence described above allows to construct a new Hopf algebra structure on
MQSym and a Hopf algebra structure on the space spanned by the classes.

5 Conclusion

Other realizations in Hopf algebras seem feasible. For example, let us consider the Hopf algebras
of graphs GQSym110 and GTSym110 defined in [11]. An interesting mapping from

⊕

n≥0 Q[SN ]

to GQSym110 or GTSym110 can be constructed sending each cycle to an equivalent loop.
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Dobiński-type relations via substitution and the moment problem, J. Phys. A, to appear
(2004), arXiv : quant-ph/0312202

[9] J.-L. Loday and M. Ronco, On the structure of cofree Hopf algebras, preprint arXiv
:math.QA/0405330

[10] I.G. Macdonald, Symmetric functions and Hall polynomial, second edition, Clarendon
Press, Oxford, 1995.
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