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RECURRENCE RATE IN RAPIDLY MIXING DYNAMICAL SYSTEMS

BENOIT SAUSSOL

Abstract. For measure preserving dynamical systems on metric spaces we study the time
needed by a typical orbit to return back close to its starting point. We prove that when the
decay of correlation is super-polynomial the recurrence rates and the pointwise dimensions are
equal. This gives a broad class of systems for which the recurrence rate equals the Hausdorff
dimension of the invariant measure.

1. Introduction

1.1. Decay of correlations. Let (X, f, µ) be a measure preserving dynamical system. Recall
that the system is said to be mixing if for any functions ϕ, ψ in L2 the covariance

Cov(ϕ ◦ fn, ψ) :=

∫

ϕ ◦ fnψdµ −

∫

ϕdµ

∫

ψdµ → 0 as n→ ∞. (1)

The decay of the correlation function is, in great generality, arbitrarily slow. The notion of rapid
mixing needs a little more structure.

Assume that X is a metric space with metric d, and consider the space Lip(X) of real Lipschitz
functions on X. For many dynamical systems an upper bound for (1) of the form ‖ϕ‖‖ψ‖θn has
been computed, where θn → 0 with some rate, and ‖ · ‖ is a norm on a space of functions with
some regularity. Without loss of generality we are considering in this paper the rate of decay of
correlations for Lipschitz observables1.

A broad class of systems enjoy exponential decay of correlations. The main result of the paper
(Theorem 3) applies to systems with super-polynomial decay of correlation. This includes for
example Axiom A systems with equilibrium states, hyperbolic systems with singularities with
their SBR measures such as those considered by chernov in [7], many systems with a Young
tower [16, 17], expanding maps with singularities such as in [13], some non-uniformly expanding
maps [1], etc. The main reference for these questions is certainly the book by Baladi [2]. The
reader will also find in the review by Luzzatto [11] an exposition of the recent methods for
non-uniformly expanding systems and an extensive bibliography on this active field.

1.2. Recurrence rate and dimensions. The return time of a point x ∈ X under the map f
in its r-neighborhood is

τr(x) = inf{n ≥ 1: d(fnx, x) < r}.

We are interested in the behavior as r → 0 of the return time. We define the recurrence rate as
the limits

R(x) = lim inf
r→0

log τr(x)

log(1/r)
and R(x) = lim sup

r→0

log τr(x)

log(1/r)
.

Date: November 2004.
1For example an immediate approximation argument allows easily to go from Holder or class Ck to Lipschitz.
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Whenever R(x) = R(x) we denote by R(x) the value of the limit.
From now on we assume that X is a finite dimensional Euclidean space. Denote by HD(Y )

the Hausdorff dimension of a set Y ⊂ X. We define the Hausdorff dimension of a probability
measure µ by

HD(µ) = inf{HD(Y ) : µ(Y ) = 1}

We also define a local version of the dimension, namely

dµ(x) = lim inf
r→0

log µ(B(x, r))

log r
and dµ(x) = lim sup

r→0

log µ(B(x, r))

log r
(2)

It is well known that the Hausdorff dimension satisfies the relation

HD(µ) = ess-sup dµ. (3)

Barreira and Saussol established in [4] the following relation

Proposition 1. Let f be a measurable map and µ be an invariant measure for f . The recurrence
rates are bounded from above by the pointwise dimensions :

R ≤ dµ and R ≤ dµ µ-a.e.

We refer to the works by Boshernitzan [6] and Ornstein and Weiss [12] for pioneering related
results.

In this paper we are giving conditions under which the opposite inequalities will hold, estab-
lishing the equalities

R = dµ and R = dµ µ-a.e. (4)

1.3. Statement of the results.

Definition 2. We say that (X, f, µ) has super-polynomial decay of correlations if we have
∣

∣

∣

∣

∫

ϕ ◦ fnψdµ −

∫

ϕdµ

∫

ψdµ

∣

∣

∣

∣

≤ ‖ϕ‖‖ψ‖θn (5)

with limn θn/n
p = 0 for all p > 0, where ‖ · ‖ is the Lipschitz norm.

We say that the local decay of correlations is super-polynomial if there exists a partition
(modulo µ) into open sets Vi and sequences θi

n such that (5) holds whenever suppϕ ⊂ Vi and
suppψ ⊂ Vi, where limn θ

i
n/n

p = 0 for all p > 0.

The main result of the paper is the following.

Theorem 3. Let (X, f, µ) be a measure preserving dynamical system. If the entropy hµ(f) > 0,
f is Lipschitz (or piecewise Lipschitz with finite average Lipschitz exponent ; see Definition 15)
and the (local) decay of correlation is super-polynomial then

R = dµ and R = dµ µ-a.e.

We postpone the proof at the end of Section 3. This extends some results by Barreira and
Saussol in [4, 5], including the case of Axiom A systems with equilibrium states. The theorem
also applies to loosely Markov dynamical systems and we recover Urbanski’s result in [15]. The
hypotheses in Theorem 3 are satisfied in a number of systems such as those already quoted in
the introduction. All these systems have in common some hyperbolic behavior. We now give
an example of a relatively different nature, due to the possibility of zero Lyapunov exponents,
where one can still apply Theorem 3.
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Example 4 (Ergodic toral automorphisms). Recall that any matrix A ∈ Sl(k,Z) (i.e. the
entries of A are in Z and |detA| = 1) gives rise to an automorphism f of the torus T

k by
f(x) = Ax mod Z

k which preserves the Lebesgue measure. The map f is ergodic if and only
if the matrix A has no eigenvalue root of unity. Lind’s established [10] the exponential decay of
correlations (using the algebraic nature and Fourier transform) which is more than enough to
apply Theorem 3 and get

R(x) = k for Lebesgue a.e. x ∈ T
k.

for any ergodic automorphism of the torus, even non-hyperbolic.

Let f be a diffeomorphism of a compact manifold M and µ be an invariant measure. By
Oseledec’s multiplicative ergodic Theorem the Lyapunov exponents

λ(x, v) = lim
1

n
log |dxf

nv|

are well defined for all nonzero v ∈ TxM for a.e. x ∈ M . Recall that a measure µ is said to be
hyperbolic if none of its Lyapunov exponents are zero. Barreira, Pesin and Schmeling [3] prove
the following.

Proposition 5. Let f be a diffeomorphism of a compact manifold and µ be an ergodic hyperbolic
measure. Then we have

dµ = dµ = HD(µ) µ-a.e.

The case of an hyperbolic measure with zero entropy is completely understood.

Proposition 6. let f be a diffeomorphism of a compact manifold and µ be an hyperbolic invari-
ant measure. If hµ(f) = 0 then R = 0 = HD(µ) µ-a.e.

Proof. Barreira and Saussol established in [4] the inequality R ≤ dµ µ-a.e. and it follows from
Ledrappier and Young’s work [9] that HD(µ) = 0 if hµ(f) = 0, which allows to conclude by
Proposition 5. �

Corollary 7. Let f be a diffeomorphism of a compact manifold and µ be an hyperbolic measure
with super-polynomial rate of decay of correlation. Then we have

R = HD(µ) µ-a.e.

Proof. If the entropy is zero then this is the content of Proposition 6. If the entropy is non-zero
then this is the content of Theorem 3. �

We point out that in the case of interval maps with nonzero Lyapunov exponent, Saussol,
Troubetzkoy and Vaienti prove that R = HD(µ) µ-a.e. for ergodic measures, under very weak
regularity conditions [14]. See Remark 17-(i) for related results.

We now give a sketch of the strategy adopted in this paper.
Theorem 8 states that under sufficiently rapid mixing the recurrence rates equal the pointwise

dimensions a.e. on the set where R > 0. Indeed, mixing implies that µ(B ∩ f−nB) → µ(B)2

as n → ∞. Thus we have µ(B ∩ f−nB) ≤ 2µ(B)2 for large n. If now we consider the set
B ∩ f−nB ∩ f−n−1B ∩ · · · ∩ f−n−ℓB then its measure is bounded by 2ℓµ(B)2. If ℓ ≤ µ(B)−1+ε

then we get that the proportion of points inside B that never enter in B in the time interval
[n, n + ℓ] is bounded by 2µ(B)ε. Using the decay of correlations we are able to prove that this
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last statement is true for n of the order diam(B)−δ for some small δ > 0, whenever B is a ball.
This is what we call the long fly property. A Borel Cantelli argument then shows that typical
points do have long flies (see Lemma 9 for precise statement). If in addition we also have R > δ
then it immediately shows that the return time into small neighborhoods B cannot be much less
(at an exponential scale) than µ(B)−1, establishing Equation (4).

On the other hand, for systems which are not too wild (e.g. finite Lyapunov exponents, see
Lemma 16) and with nonzero metric entropy, a symbolic coding (see Lemma 14) allows to use
Ornstein-Weiss’ theorem on repetition time of symbolic sequences to prove that the return time
of a typical point in a ball B is not less than diam(B)−δ ; see Lemma 12.

The structure of the paper is as follows. We state and prove in Section 2 the core result,
Theorem 8. In Section 3 we provide some conditions under which the recurrence rate is nonzero.

2. Rapid mixing implies long flies

Theorem 8. Assume that the local rate of decay of correlations is super-polynomial. Then on
the set {R > 0} we have

R = dµ and R = dµ µ-a.e.

Proof. By Proposition 1 we know that R ≤ dµ and R ≤ dµ. Furthermore, the first inequality

implies that {R > a} ⊂ {dµ > a} µ-a.e. But on the set {R > a} we have τr(x) ≥ r−a provided r

is sufficiently small. By Lemma 9 below with δ = a and ε > 0 we get that τr(x) ≥ µ(B(x, r))−1+ε

provided r is sufficiently small, for µ-a.e. x ∈ {R > a}. Thus R ≥ (1 − ε)dµ and R ≥ (1 − ε)dµ

µ-a.e. on {R > a}. The conclusion follows by taking ε > 0 arbitrary small. �

The following lemma expresses that the orbit of a typical point has the long fly property.

Lemma 9. Let Xa = {dµ > a} for some a > 0. For any δ, ε > 0, for µ-a.e. x ∈ Xa there

exists r(x) > 0 such that for any r ∈ (0, r(x)) and any integer n in [r−δ, µ(B(x, r))−1+ε] we have
d(fnx, x) ≥ r.

Proof. For clarity we assume that the (global) rate of decay of correlation is super-polynomial.
The obvious modifications in the proof would consits essentially in considering separately each
sets G ∩ {x ∈ Vi : d(x, ∂Vi) > ν} for arbitrarily small ν > 0 in place of the unique set G defined
below.

Let D = dim(X). Fix b > 0, c = aε/3 and consider for r0 > 0 the set G = G1∩G2∩G3 where

G1 = {x ∈ Xa : ∀r ≤ r0, µ(B(x, r)) ≤ ra}

G2 = {x ∈ X : ∀r ≤ r0, µ(B(x, r)) ≥ rD+b}

G3 = {x ∈ X : ∀r ≤ r0, µ(B(x, r/2)) ≥ µ(B(x, 4r))rc}.

We claim that µ(G) → µ(Xa) as r0 → 0. Indeed, by definition of the lower pointwise dimension
we have µ(G1) → µ(Xa). In addition since dµ ≤ D a.e. we have µ(G2) → 1 and since X is
Euclidean the measure µ is weakly diametrically regular (see Lemma 1 in [4]), thus µ(G3) → 1
as well. Let r ≤ r0 and define the set

Aε(r) = {y ∈ X : ∃n ∈ [r−δ, µ(B(y, 3r))−1+ε], d(fny, y) < r}.
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Let x ∈ G. By the triangle inequality we get the inclusions

B(x, r) ∩Aε(r) ⊂ {y ∈ B(x, r) : ∃n ∈ [r−δ, µ(B(x, 2r))−1+ε], d(fny, x) < 2r}

⊂
⋃

r−δ≤n≤µ(B(x,2r))−1+ε

B(x, r) ∩ f−nB(x, 2r).

Let ηr : [0,∞) → R be the r−1-Lipschitz map such that 1[0,r] ≤ ηr ≤ 1[0,2r] and set ϕx,r(y) =

ηr(d(x, y)). Clearly ϕx,r is also r−1-Lipschitz. By the assumption on the decay of correlation we
obtain

µ(B(x, r) ∩ f−nB(x, 2r)) ≤

∫

ϕx,2rϕx,2r ◦ f
ndµ

≤ ‖ϕx,2r‖
2θn +

(
∫

ϕx,2rdµ

)2

≤ r−2θn + µ(B(x, 4r))2.

Choose p > 1 such that δ(p − 1) − 2 ≥ D + 2b and take r0 so small that n ≥ r−δ
0 implies

θn ≤ (p− 1)n−p. Since
∑

n≥q n
−p ≤ 1

p−1q
1−p we obtain

µ(B(x, r) ∩Aε(r)) ≤ rδ(p−1)−2 + µ(B(x, 2r))−1+εµ(B(x, 4r))2

≤ µ(B(x, r/2))
(

rb + rεa−2c
)

.

Let B ⊂ G be a maximal r-separated set2. Since (B(x, r))x∈B covers G we have

µ(G ∩Aε(r)) ≤
∑

x∈B

µ(B(x, r) ∩Aε(r))

≤
∑

x∈B

µ(B(x, r/2))(rb + rεa−2c)

≤ rb + rεa−2c

since by the balls (B(x, r/2))x∈B are disjoints. This implies that
∑

m

µ(Aε(e
−m)) <∞,

thus by Borel-Cantelli Lemma we obtain that for µ-a.e. y ∈ G there exists m(y) such for every
m > m(y) there exists no n ∈ [e−δm, µ(B(y, 3e−m))−1+ε] such that d(fny, y) < e−m. By weak
diametric regularity (and changing slightly if necessary the values of ε and δ), this proves the
lemma. �

Remark 10. Observe that we only use that the decay of correlation is at least n−p for some
p > D+2

δ
+ 1. If in addition (5) holds with the first norm ‖ϕ‖ taken to be the L1(µ) norm (e.g.

expanding maps) then p > D+1
δ

+ 1 suffices.

2that is if x 6= x′ ∈ B then d(x, x′) ≥ r and maximal in the sense that for any y ∈ G there exists x ∈ B such
that d(x, y) < r.
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3. Non-zero recurrence rate

We proceed now to find conditions under which the recurrence rate does not vanish. Denote by
ξ(x) the unique element of a partition ξ containing the point x and by ξn = ξ∨f−1ξ∨· · ·∨f−n+1ξ
the dynamical partition, for any integer n .

3.1. Coding by symbolic systems : partitions with large interior.

Definition 11. We say that a partition ξ has large interior if for µ-a.e. x there exists χ =
χ(x) <∞ such that B(x, e−χn) ⊂ ξn(x) for all n sufficiently large.

Next lemma, which proof is fairly simple, is the key-observation which gives to Theorem 8 all
its interest.

Lemma 12. If there exists a partition with large interior and nonzero entropy then R > 0 µ-a.e.

Proof. Let ξ be such a partition. Define

Rn(x, ξ) = min{k > 0: fkx ∈ ξn(x)}.

Ornstein and Weiss [12] prove that if ξ is a finite partition with entropy hµ(f, ξ) then

lim
n→∞

1

n
logRn(x, ξ) = hµ(f, ξ) µ-a.e.

Since ξ has large interior, for µ-a.e. x ∈ X there exists a number χ = χ(x) such thatB(x, e−χn) ⊂
ξn(x). Thus

R(x) = lim inf
n→∞

log τe−n(x)

nχ(x)
≥ lim inf

n→∞

logRn(x, ξ)

nχ(x)
=
hµ(f, ξ)

χ(x)
> 0 µ-a.e.

�

Combining Lemma 12 and Theorem 8 we get that if we have local super-polynomial decay of
correlations and a partition of positive entropy with large interior then R = dµ and R = dµ. The
rest of the section consists in finding sufficient conditions for the existence of such a partition.

3.2. Reasonable dependence on initial condition.

Definition 13. We say that a system (X, f, µ) is reasonably sensitive if for µ-a.e. x there exists
γ, λ > 0 such that fn is eλn-Lipschitz on the ball B(x, e−γn) for all n sufficiently large.

Lemma 14. If the system (X, f, µ) is reasonably sensitive and the entropy hµ(f) > 0 then there
exists a partition with large interior and nonzero entropy.

Proof. Claim : For any x ∈ X, s > 0 there exists ρ ∈ (s, 2s) such that

µ({y ∈ X : ρ− 4−ns < d(x, y) < ρ+ 4−ns}) ≤
1

2n−1
µ(B(x, 2s)). (6)

Indeed, let m be the measure on the interval (0, 2) defined by m([0, t)) = µ(B(x, st)). We con-
struct a sequence of open intervals In starting from I0 = (1, 2). If In is an interval of length
4−n we divide it into 4 pieces of equal length and choose In+1 the left of the right central piece
of smallest measure. We have m(In+1) ≤

1
2m(In). In is a decreasing sequence of intervals with

In+1 ⊂ In thus ∩nIn contains one point, say ρ̄. Since ρ̄ ∈ In we have ρ̄ ± 4−n ∈ In−1 thus
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m((ρ̄− 4−n, ρ̄+ 4−n)) ≤ m(In−1) ≤
1

2n−1m(I0). Proving the claim with ρ = sρ̄.

Fix s > 0 so small that any partition made by sets of diameter less than 2s has nonzero
entropy. Choose a maximal s-separated set E. For any x ∈ E take ρx ∈ (s, 2s) such that (6) in
the claim holds. Let E = {x1, x2, . . .} be an enumeration of the (at most) countable set E. Put
Bi = B(xi, ρxi

) and define Q1 = B1, Q2 = B2 \Q1, Q3 = B3 \ (Q1 ∪Q2), . . . By maximality the
collection of sets ξ = {Q1, Q2, . . .} is a partition of X (modulo µ) and since ∂ξ ⊂ ∪i∂Bi we get

µ({x ∈ X : d(x, ∂ξ) < 4−ns}) ≤ µ(∪i{x ∈ X : ρxi
− 4−n < d(xi, x) < ρxi

+ 4−n})

≤
1

2n−1

∑

i

µ(B(xi, 2s)).

Since the xi are s-separated and X is Euclidean there are at most c(X) = c(dimX) balls of

radius 2s that can intersect, thus the last sum is bounded by c(X)
2n−1 . This proves that for some

constants a, c > 0 and all ε > 0

µ(x ∈ X : d(x, ∂ξ) < ε) < cεa.

Thus for any b > 0 we have by the invariance of µ
∑

n

µ({x ∈ X : d(fnx, ξ) < e−bn}) ≤
∑

n

ce−abn <∞.

This implies by Borel-Cantelli Lemma that for µ-a.e. x there exists n(x) < ∞ such that
d(fnx, ∂ξ) ≥ e−bn, hence B(fnx, e−bn) ⊂ ξ(fnx), for any n ≥ n(x). Taking c(x) ∈ (0, 1)
sufficiently small we have B(fnx, c(x)e−bn) ⊂ ξ(fnx) for all integer n.

Fix x ∈ X where the reasonable sensitovoty condition holds. Without loss of generality, and
changing if necessary c(x) into a smaller constant we assume that fn is eλn-Lipschitz on the ball
B(x, c(x)e−γn) for all integer n and that λ > γ + b.

We show then by induction that B(x, c(x)e−λn) ⊂ ξk(x) for any k ≤ n. Indeed, this is trivially
true for k = 1, and if this holds for some k ≤ n− 1 then we have

fk(B(x, c(x)2e−γn) ⊂ B(fkx, c(x)eλk−γn) ⊂ B(fkx, e−bn) ⊂ ξ(fkx).

Hence B(x, c(x)2e−γn) ⊂ ξk+1(x). �

We finally provide a sufficient condition for reasonable sensitivity.

Definition 15. If there exists a partition A (modulo µ) into open sets such that on each A ∈ A

the map f is Lipschitz with constant Lf (A) and the singularity set ∂A = ∪A∈A∂A is such
that µ({x ∈ X : d(x, ∂A) < ǫ}) ≤ cǫa for some constants c > 0 and a > 0 then we say
that f is piecewise Lipschitz with average Lipschitz exponent logLf =

∫

log+ Lf (A(x))dµ(x) =
∑

A∈A
log+ Lf (A)µ(A).

Lemma 16. If f is Lipschitz, or piecewise Lipschitz with finite Lispchitz exponent then (X, f, µ)
is reasonably sensitive.

Proof. We prove the piecewise case, the other one is obvious. Let λ > logLf . By the Birkhoff
Ergodic Theorem, for µ-a.e. x there exists m(x) such that

Lf (A(x))Lf (A(fx)) · · ·Lf (A(fn−1x)) ≤ eλn
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for all n ≥ m(x). Replacing if necessary the upper bound by eλn/c(x) for some constant c(x) ≥ 1
the inequality will hold for any integer n. Proceeding as in the last part of the proof of Lemma 14
we get that for any b > 0, changing c(x) if necessary, we have B(fnx, c(x)e−bn) ⊂ A(fnx) for
any integer n. We then conclude similarly that B(x, c(x)2e−bne−λn) ⊂ A

n(x). This concludes
the proof taking γ = b+ λ. �

The proof of Theorem 3 follows now easily from the preceding results.

Proof of Theorem 3. By Lemma 16 the map is reasonably sensitive. This implies by Lemma 14
the existence of a partition with large interior. By Lemma 12 we find that R > 0 a.e. and the
conclusion follows from Theorem 8. �

Remark 17. (i) We remark that if f is C1 on a compact manifold, or more generally if f is
piecewise C1+α with reasonable singularity set such as in [8], then the exponents λ and γ in
Definition 13 can be taken arbitrarily close to the largest Lyapunov exponent3 λ+

µ . Thus the

exponent χ in Lemma 12 may also be taken arbitrarily close to λ+
µ . This readily implies that

R ≥ hµ/λ
+
µ . This is optimal in dimension one or more generally for conformal maps, where

under mild assumptions we have HD(µ) = hµ/λµ.

(ii) Combining the above observation with Remark 10 shows that the assumption on the super-
polynomial decay of correlations in Theorem 8 may be reduced to a decay at a rate n−p for some
p > D+2

hµ
λ+

µ + 1.
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