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Abstract

We propose a two-step simulation scheme for the solution of a singular stochastic
differential equation with exploding drift. First we estimate the strong order of the Yosida
approximation. Then we use a semi-implicit Euler scheme to discretize the approximate
solution. Numerical experiments are displayed for the paths of Brownian particles with
strong repulsive interaction. We also present two simple simulation schemes for Bessel
processes with arbitrary dimension.

Keywords: Multivalued stochastic differential equations, Yosida approximation, interacting Brownian
particles, semi-implicit scheme.

1 Introduction

Multivalued stochastic differential equations are used to model a large class of random evolu-
tions such as stochastic differential equations with reflection on the boundary of a domain [22],
diffusion equations with hysteresis [16], or systems of Brownian particles with repulsive inter-
action [10]. Existence and approximation of such equations, also called stochastic variational
inequalities, have received much attention in the recent years. Existence has been proved in
several papers ([3], [8], [9], [21]). Numerical approximation has been tackled in [1], [4] and
[19].

The last two authors have proposed the same projection scheme which is natural and
efficient in the case of pure reflection (|20], [18]). In [19], the convex function is assumed to be
continuous on the closure of the domain and in [4] its gradient satisfies a polynomial growth
condition. In both papers, the difficult case of exploding drift is avoided. In the work [1],
these restrictions are released and the authors use a splitting up method. Their scheme is not
easy to implement because at each step they have to solve a multivalued ordinary differential
equation. Our aim is to set a discrete simulation scheme which also works for stiff equations.
An example of such equations is given in dimension one by the Bessel processes. Let us mention
the recent work [13] where the weak error of an approximation scheme for these processes is
estimated.

The paper is organized as follows. In Section 2, we recall some material on multivalued
maximal monotone operators associated with a proper lower semi-continuous convex function
to introduce multivalued stochastic differential equations and their approximate equations. In
Section 3, we estimate the strong order of approximation: note that in [21] the estimation



order is £'/?* and in [1] it is €'/'0. Improving the arguments in [21], we obtain ¢'/8. In Section

4, we cannot use an explicit Euler scheme to discretize the approximate solution because the
drift term is Lipschitz continuous with constant 1/e. So we resort to a more involved semi-
implicit scheme which behaves much better, as was noted for stiff equations in [14]. Section 5
is devoted to the simulation of some systems of Brownian particles with repulsive interaction
which are multidimensional extensions of Bessel processes.

2 Preliminaries

The purpose of this section is to recall some results on the subdifferentials of convex lower
semi-continuous functions being maximal monotone operators which will be used all along
this work. The relevant material on convex analysis and maximal monotone operators may be
found in V. Barbu and Th. Precupanu |2] or in H.Brézis [6].

2.1 Swubdifferential of a convex function

Let ¢ be a convex function defined in R?, d € N*. We denote by
dom(p) = {x eR:p(z) < oo}

the domain of ¢. We say that ¢ is proper if Int(dom(yp)) # 0.
The subdifferential of ¢, written as dyp, is an operator in R? defined by its graph

(z,y) € Gr(dp) & Yz € BT, p(z) < 9(2) + (y, = - 2) (1)
For any z € R?, we note

dp(z) = {y eR : (z,y) € Gr(dyp) } .

The domain of dy is
D) = {z e R : o) £0} . (2)

The following proposition is stated without proof.

Proposition 2.1 The subdifferential O¢ is a multivalued mazimal monotone operator in RY.
Moreover, we have

Int(D(0p)) = Int(dom(p)) C D(dp) C dom(p) C dom(p) = D(dyp), (3)

where we recall that Int(D) and D are respectively the interior and the closure (for the
Euclidean topology) of D in R®.



Particular case: Subdifferential of the indicator function.
Let D be a convex closed subset of R? with nonempty interior. It follows that

Ip(z) 0 if e D,
xr =
P +oo if z ¢ D

is convex, l.s.c. and proper with dom(Ip) = D. Its subdifferential is

dp(x) = {yeRd (y,z—xz) > O,VzED},
ie.

0 if z¢ D,
dp(z) = {0}y if z € Int(D),
1, if € dD,
where II, is the normal cone at z.

Note: In the one-dimensional case, every multivalued maximal monotone operator A with
Int(D(A)) # 0 is the subdifferential of a proper l.s.c. convex function. This property does
not hold in the multidimensional case.

2.2 Yosida approximation

We will construct in this part a sequence of single valued approximations for the subdifferential
of a proper l.s.c. convex function. Let us recall that, for each ¢ > 0 and z € R? | the equation
z € (I +€A)(y) has one and only one solution y in the domain of A if A is a maximal
monotone operator of RY. The Yosida approximation of the subdifferential dp of a proper
l.s.c. convex function ¢ is the application (. defined by

Be = 1(1_71'5)7

£

where 7.z is the unique solution of the equation y € (I + dp) ' (z), z € RY,

Proposition 2.2 For each ¢ > 0, we have :
i) m. is a contraction from R to D(dy);
i) Be is a single valued mazimal monotone operator defined on the whole R?, Lipschitz

. _ 1
continuous with constant — ;
€

iii) for every € RY | B.(z) € dp(m.x) .

Proposition 2.3 For each ¢ > 0, put

e
p=(z) = min <2—8|<E —y? + so(y)> , 2R (4)

Then @, is called the Yosida approximation of the function @ and
i) @. : RY = (—o0,+00) is conver with domain dom(p.) = R?;



i) @. is of class C* (Rd;R> with V. = bc;

i11) the infimum defining @.(x) is attained at .z and
€ 2
pe() = S 1A:(2)]" + p(mez); (5)

w) letting € | 0, we have . (x) T @(x) for all x € R%;
v) there exists ¢ > 0 such that for any = € R?,

—c(1 + [z]) < p(mez) < @e(z) < @(2). (6)
If ¢ is the indicator of a convex nonempty subset D, then
mex = projp(x) Ve>0,VzeRe;
1
Be(z) = B (z — projp(z)) Ve>0,VzeRe.
We conclude this subsection by stating some properties which will be needed in the sequel.

The proof of the first proposition may be found in [8] and the proof of the second one is easy,
hence it will be omitted.

Proposition 2.4 For any a € R?, there exist constants v > 0, ¢ > 0 (depending only on ¢)
such that, for each ¢ € R* , z € RY,

(Be(z), 2 —a) > rlf(2)] + elBe(2)]* = e(z] +1). (7)

Proposition 2.5 Let F be a convez, continuous, differentiable function, from R% into R.
Then the implicit Fuler scheme with step size «

yn+1=yn+af(yn+1)a 0<n<N-1, (8)

where f = —VF, is well-defined (i.e the equation y — af(y) = ¢, ¢ € R has a unique
solution for all a > 0). Moreover, the sequence {F(ypn)}nen is decreasing.

2.3 Multivalued stochastic differential equations
Let be given
i)de N and 0 < T < 400
ii) ¢ : R? - (—o0;+00] convex, l.s.c. and proper ;
iii) b: RY = R and o : R? = R ®R? Lipschitz continuous mappings;
iv) (Q,F,P) a probability space with filtration F; satisfying the usual conditions;

v) B = {B;,F;0<t<o0} a d-dimensional standard Brownian motion defined on
(Q,F, F;,P) with By = 0;



vi) € ar.wv. defined on (Q,Fy,P), and taking values in dom(y) P-a.s.

With the previous data and assumptions, we shall approximate and simulate the unique solu-
tion (X;)o<¢<7 of the multivalued stochastic differential equation

{ dX, + 0p(Xy)dt 3 b(X;)dt + o(X;)dB, (9)

Xo=¢

By definition, a solution to the above equation is a pair of processes (X, K) such that:

i) X = {X;,0<t<T} is a continuous, adapted process with values in dom(y) and
Xo=¢&;

i) K = {K;,0<t<T} isacontinuous, adapted process with bounded variation taking
values in R? with Ky = 0;

111) dX; = b(Xt)dt + O'(Xt)dBt — dKy;

iv) for every pair of continuous, adapted process (a, 3) taking values in R? and satisfying
(aw,Bu) € Gr(0p) Vuel0,T],

the measure (X, — o, dK, — Budu) is P-a.s. nonnegative on [0, 7.

We now give the plan of the paper. For each ¢ > 0 fixed, we firstly give an approximate
solution which is the solution of the ordinary stochastic differential equation

dXx: b(X)dt — B.(X[)dt + o(X{)dB, (10)
Xg X

Next we estimate of the term E

sup|X; — X;|”| , p > 2, to obtain the order of the
t<T
approximation.

T
We secondly propose a semi-implicit Euler scheme with step size a = N N € N* on the

time interval [0,T] to approximate the solution (X7 )o<i<r

X, = Xo P—ps.

X(n+1)a = Yfzcz + ab(yia) - aﬂe(yirﬂrl)a) + J(Yia)(B(n-l—l)a - Bna) (11)
X, = X, if t € [na,(n+1)a).

and estimate the term [E

sup ‘th — Yi‘p , p > 2. Putting together both approxima-

0<t<T

tions we obtain
D

Q2

E| sup |X, - X;["| < c(p)es + 02(10)8—;,,-

0<t<T

Since the estimation is valid for all p > 2, we moreover get the pathwise convergence.

Before going to the main section, we note that if the gradient of the function ¢ is repulsive
enough, then there is no local time at the boundary of the domain. If moreover ¢ belongs to



C'(Int(dom(y))), equation (9) turns into the ordinary stochastic differential equation

{ dX; = b(Xy)dt — Vo(X;)dt + o(X;)dB, (12)

Xo = ¢

with exploding drift at the boundary of the domain.

3 Approximate solution

Several authors have proved by the penalization method the convergence in L? of the sequence
of the approximate solutions X¢ to the unique solution X of the multivalued stochastic
differential equation (9) (see, e.g. [1], [8]).

In [21], the estimation

L

E| sup | X — Xy>| < ee™ , 0<T < 400.

0<t<T

was proved. We will generalize the result to the LP-case (p > 2) and find a larger power.
3.1 Main estimates

We firstly recall the main steps of Storm’s proof in [21].

Proposition 3.1 Let p > 2 and assume Xog € LP. Then for every € > 0 there exists a
constant ¢ independent of € such that

T £ T 5
€ € £\|2
gWﬂ+(ﬁmwg@)+(AEM&w@

Proposition 3.2 Let p > 2 and assume X € L?P. Then for every 0 <e <1 and § > 0, we
have

E <ec. (13)

1

2
p
sup‘X? - m;Xf‘ ] L (14)
t<T

2

E | sup | X; — X}

‘p
t<T

< CE|sup|Xj - mX;P

t<T

+ cE

3.2 Convergence rate

Proposition 3.3 Let p > 2 and assume Xo € L/ and B[ |o(Xo)[P] < oo. Then for every
0 <e<1 we have

b
2

E|sup| X{ — m.X; |? | < ce*. (15)

t<T

Proof: Since ¢, is only C', we shall need the easy following lemma which can be proved
by regularizing the function f and using the Itd formula.



Lemma 3.4 Let f be a convex function of class C'(R%:R) whose gradient is Lipschitz
continuous with constant . Then for all p > 1, we have almost surely

€ 2p €\ |2p AT ey |2p—1 € €
PR < 1FXD) +2p/ (17 (XD VI(XD). o(X2)dB, )
/ M UFEDP VIR AP (1K + 1)2ds
tATE

FXPPHV XD (XS] + 1) ds

/ FXPPI A (XD), u(XE) Y ds.
0

o

\

For every k > 0, we define 7, = inf{¢: |X;| > k}. Applying the lemma to the convex

function . whose gradient is Lipschitz continuous with constant —, taking the supremum
€

over t and taking expectations, we get

c tATE B
E[ sp ¢E<X:>2p] < E[e(X0)7] + E[/ o (XD (IX7] + 1)2ds]
s<tATE o) 0

tATE
+cE / e (XIPP721B:(X5) P (1X5| + 1)*ds
0

: zpﬁ[ wp [ (XD 50X, o(Xi)d, >]

s<tATE JO

tATE
wa| [T o 8.0 (13 + 1>ds] .
' (16)

Step 1: Estimate of the second term in the right hand side of (16).
The convex function ¢ is bounded below by an affine function . Moreover . is a contraction
and B.(z) € dy(m.x). So we have, for every z € R?,

—c(1 + |z|) < p(rex) < [Be(z)|lz —al + c.
Hence from the definition of ¢, and Proposition 2.4, we have
€
@) = [S18:@) + e(mea)| < S1B:0) + ¢ + clo] + e(1 + |a])|B(a) -

Applying this inequality to the second term on the right hand of (16), we obtain

c tATE oy 1 9
e[ [ e (x4 0Pas)

2 tATE
< e PME| sup ewwxzﬂ“(u sup |X§|) / ewE(Xz)Fds]
0

s<tATE s<tATE

3
+ee” TR | sup €2p_2|<pE(X§)2p_2<1 + sup X§> ]

s<tAT s<tAT
3 tATE
b B sup 2 () (14 s (x3) [ I Orlas
s<tATE s<tATE 0




Using the Holder inequality, we get

c EATi ey|2p—1 € 2
_E i e (X5) [P ([X5| + 1)%ds
22 tAT, 2p ap] v
< e | sw o x| T | ([ T dncnpas) (14 s pxi)
s<tAT 0 s<tAT
2p—2 3 %
—2p+1 2 evizp | 7 e
+ce” PTtE| sup e | (X5)|P El {1+ sup |X;|
s<tAry s<tAT
2
Pl 5p] % tAT, 2|
vee 8| swp x| T E( (14 s xil) || ([T oris)
s<tAT S<tAT 0

Hence if Xy € L, by Proposition 3.1, we have

2p—2

tATE D)
[ oo x| < e B ] e ] T o
£ 0 s<tATE
Step 2: Estimate of the third term on the right hand side of (16).
If Xo € L*, by the Hélder inequality and Proposition 3.1, we have
tATE p—1
P
o [/ - (X5) 272 B.(X3) [ (1 X3 + WS] : +E[ e €2piwe<X§>2’”}
0 s<tAT
(18)

Step 3: Estimate of the fourth term on the right hand side of (16).
Using Doob’s maximal inequality, we get

2R [ sup /0 (lpe (X571 B(X5) , 0(X5)dB, >]

s<tAT

_4p-—1
ce” 2 E

IN

S<tAT

1
tATE bl
sup e[, (XE)[2! ( /0 . (X5)? (X3 + 1>2ds) ] .

If Xy € L* then, by the Holder inequality and Proposition 3.1, we obtain

2p—1

s e (2p—1 5 5 _4p-1 2 £\(2 P
WE | sup / (0e(X5) P 6o(X2), 0(X2)dB.Y| < cem "B sup €] (X5)
s<tATE J0 S<tAT
(19)

Step 4: Estimate of the fifth term on the right hand side of (16).
Since
tATE
CE[/ 0= (X5) PP~ 1B (X5)| (1X5] + 1) ds
0

—4P+1E 2p—1 X&) 21 Ty xe X€ 1\d
ce 2 sup €77 oo (X7)| ; e? |B:(X5)| (1X5] + 1) ds

S<tAT

IN



Using the Cauchy and Holder inequalities, and Proposition 3.1, if Xg € L*, we have

ATk ey (2p—1 € € —dp+1 2 €y1(2 %
ck / | (X)) B(XF) ([Xs| + 1)ds| < cem 2 E| sup e [p:(X])[|?
0 s<tAT
(20)
By (17)-(20), (16) becomes
2p-1
1 2p
B[#lp. (i )] < PE[[p ()] + BB | sup (X))
s<tAT
p—1 (21)
2 evizp| 7
+CEE[ sup EPQOE(XS)|p:|
S<tAT

We define A = e_pE[ sup 52p|<p€(X§)2p], then A < oo.
S<tAT

Since —c(1 + [z]) < ¢e(z) < @(z) and E[|p(Xo)*] < ¢, (21) yields

A
i ~ <1 (22)
1-L 1-1
c(ap—i—A 2 4+ A P)

As e < 1, we see that A is uniformly bounded (with respect to € and k) by some constant.

After delocalization, it follows that for any p > 1, if Xo € L% and E [ \tp(Xo)\Qp} < o0,

E|supe? o (X{)|? | < ce? (23)
t<T
Now using the bounds on ¢(w.z) given by (6), we obtain
p(mea) P < e(1 + |z + Jge(2)[P).
From inequality (23), we deduce
E | supe? [p(m.X7)[% | < P (24)
t<T

Using the inequality ca? — b < (a+ b)* and (23)-(24), we have

E

sup | X — m. X{["| < cE
t<T

sup | | X7 — m X7 |? + 2¢ p(m X7) 2p]
t<T

+ cE

sup & w(Wst)IZ”]
t<T

IN

E | supe? |, (X7)|?

+ cE
t<T

sup e Iw(Wst)Q”]
t<T

IN

ceP



which completes the proof of the proposition. O

Thanks to Proposition 3.2, for every ¢ > 0Oand ¢ > 0, we have

E|sup|Xi — XJ|®| < clef +4%).

t<T

We have proved that the sequence of process (X;)o<i<r is Cauchy in LP, and so converges
to a continuous process (X;)o<<7. By the end of the proof of Theorem 3.2 in [21], we can
show that the limit is the unique solution of the multivalued stochastic differential equation
(9) for which we have

E | sup|X; — X;|” s

t<T

< ces Vp>2. (25)

Taking € = 1/n, we may obtain the a.s. uniform convergence for p > 8.

4 Euler semi-implicit scheme

The book [15] is a good reference for the discretized simulation of ordinary stochastic dif-
ferential equations with Lipschitz coefficients. We are interested here in the case where the
coefficients are more singular. On other words, the diffusion coefficient remains Lipschitz
continuous but the drift one is the sum of a Lipschitz term and a monotone one.

4.1 Euler semi-implicit scheme

Let p>2,0<T <oo and N € N*. We propose a Euler semi-implicit scheme with step size

T
a= associated to the process (Xi)o<i<7:

{ X4 = 2 € Int(dom(y)) (26)

X(n+1)a = 7fzcz + ab(yiza) - aﬁﬁ( n+1 ) + U(Yfza)(B(TH»l)a - Bna)'

By Proposition (2.5), it is easy to see that this scheme is well defined. We also introduce the
continuity version: if ¢ € [na, (n + 1)), then

X = Xpa + (t = na)b(Xp0) = (t = n0):(X(ni1)a) + 0(Xpa)(Bi = Bna) . (27)
We first state an simple elementary inequality which looks like a discrete It6 formula.

Lemma 4.1 Let {c;}ren and {dy}ren two sequences of RY. For every n € N*, we have

n 2

> (ex + di)

k=0

n

n k—1 n k
Schl2+Z<2Zcz+d >+2Z<Z ci+ di) >
k=0 k=0 i=0 i=0

10



4.2 Estimate in P

We know from the previous section that any random variable X; belongs to LP.This is also
true for the discretized process.

Proposition 4.2 There exists a positive ¢ independent of € and « such that

E| sup (Koo | < c. (28)
n<N
Proof: By formula (26), we can write
. n—1 o o n—1
Xna - T = Z (ab(Xka) + J(Xka)(B(k+l)a - Bka)) - Za/BE( (k+1) ) (29)
k=0 k=0

Applying Lemma 4.1, we get
L n—1 o o )
|Xna - w‘Q < Z ‘ ab(Xka) + J(Xka) (B(k—l—l)a - Bka) ‘
k=0
+2Z (Ko = 7, 0b(Xy0) + 0(X0) (Biisna — Bra))  (30)

—2 Z <X k+)a — T aﬁa(yilﬂ»l)a) > .
Since x € Int(dom(p)), the proposition 2.4 is valid, and by definition de Yflﬂ_l)a, we obtain

~ (Xlsna — 0B Xisna)) < (e = 18X kanya)| + ¢ + X - al
+alb(Xpa) = b@)| + clo(Xia) (B — Bra)l.

We can choose « small enough so that a < iy By the Cauchy inequality and the Lipschitz
c

property of b, (30) becomes
n n
7€ 7€ ~-€
‘Xna - x‘Q < Cza‘Xka —$|2 + 22 ‘U(Xka)(B(lH»l)a - Bka)‘Q

+ Za|a(72a)(B(k+l)a - Bka)| +c

n—1

+ Z <72a - T, 0(720)(B(k+1)04 - Bka)> :
k=0

Applying the following inequality

n n m n
> ™ < (Zm) < ™y Cm™ Ymo> 1, (31)

i=1 i=1

and taking the expectation of supremum, we have

11



D
n—1 2
E | sup ‘Yia — w‘p < cE| sup ZO“Xka — af?
n<N n<N k=0
3
+cE | sup (Z lo( Xka (k+1)a — Bka)2>
n<N

n<N

b
2
+cE | sup (Za 0(X 1) (B (k+1)a — Bka)|> +c

n—1 2
+cE sup (Z <72a - T, U(yia)(B(lvH)a - Bka) > )

n<N A\ k=0
) (32)

Applying the Cauchy and Burkholder-Davis-Gundy inequalities to the two last terms on the
right hand side, (32) becomes

1
E ‘p < §IE sup |X,, — =P | + ¢

n<N-1

+cE < B(g41)a — B;m)|2>
k_

Using again the inequality (31), we obtain

sup ‘X
n<N

[N

‘MZ
5
Q

— 1 —
E | sup ‘Xfm ‘p < 51[-3 sup ‘Xfm - x‘p +c
n<N n<N-1
+CN2_1 Z |J Xka (k—l—l)a - Bka)‘p]
1 N-1
< -E| sup ‘Yfm - x‘p +c Z aE sup \X,m —zl?
2 | n<No1 —

After the usual delocalization and application of Gronwall inequality, we finally obtain

E <ec

sup [ X, — aff
n<N

which completes the proof of the proposition. O

4.3 Order of the Euler semi-implicit scheme

Theorem 4.3 For every p > 2, there exists a positive c¢(p) independent of « and & such
that

E

P
sup | Xz, Yia\p] < o)X (33)
n<N £

12



Proof: For every 1 < n < N, we write X5, and X, with the form (29). Using Lemma
4.1, we have

e 12 n—1 (k+1)a .
sza_Xna < 22 . (b(XsE) - b(Xka))dS

k=0 a
n—1 (k+1)« . 2

+2 / (0(X;) — 0(X4a) ) dBs
k=0 ka
n—1 . (k+1)a .

23 (Ko = T [ (0D = 6T ds
k=0 @
n—1 . (k+1)a .

#2Y (X = T [ (o0X5) - 0(X3)) B
5—0 ka
n—1 . (k+1)a

—22 X(Ek+1)a_X(k+1)a’/k (ﬁa(XsE) B:(X k-l—l )) ds
k=0 @

(34)

1
By the monotony and the Lipschitz property with constant — of S., we have
€

«
2 «

. (k+1)a
B X(Ek+1)a_X(k+1)aa/k (ﬁa(XE) ﬁa( k+1 ))ds

— 2

sup
28 ka<s<(k+1)a

X§ - X(Ek-l—l)a

« £
<5 ‘X(gk+1)a — X(k+1)a

By the Lipschitz property of b and the Cauchy inequality, (34) becomes

n—1
sza _Yfza ’ < o ‘sza _YZQ‘Q + CZO[ ‘Xlia _Yia‘Q
- k=0 )
+CZ <a sup ‘XE Xka| + sup €k+1)o¢ )
k=0 ka<s<(k+1)a ka<s<(k+1)
n=1| ,(k+1) o 2
w23 [ (o) - oK) B
k=0 |/ ke
n—1 (k+1)a
+2Z<X;‘2a —YZQ,/k (o(X7) —o(Yia))st>.
k=0 @

For any small enough «, using the inequality (31) with power g and taking the expectation

of supremum, we obtain

13



E | sup ‘X — Yfm‘p]
n<N
» P
N-1 o 2 N-1] r(k+1)a 2\ 2
< Em|[Talx, %) |+ [ o)~ o) aB
k=0 k=0 |k
- i AN
+E || D (e sup  |X; - X P+ 5 sup (XS — X(),
k=0 ka<s<(k+1)a €7 ka<s<(k+1)a

(M)

+cE | sup
n<N

. (k+1)a .
Z <Xlia - Xkav / (J(XE) - J(Xka)) dBS>

k=0 ka

Applying (31) to each term on the right hand side, we have

(k+1)a p

(o(X5) — 0(X}a)) dB;
p )ds

(35)

€ e P
sup ‘Xs - Xka|
ka<s<(k+1)a

FE| swp X=Xl

. N1
+ =Nz ! Z o
ep ka<s<(k+1)a

. (k+1)« .
<Xlia - Xkou /k (U(XSE) - U(Xka)) dB; >>

ﬁll
,_.

2

We firstly estimate the term E sup | X7 — Xi, )"
ka<t<(k+1l)a

Lipschitz property of b, 8., o and the proposition 3.1, we have

. Using the definition of X°, the

D caP 4 oot
—_— cQ 2
4

E sup [ X7 — X, |7

ka<t<(k+1)a

+ E sup

ka<s<(k+1)a

IA

(kt1)a (36)

Using this estimation, the Burkholder-Davis-Gundy inequality and the Lipschitz property of
o, we have the following estimate for the second term on the right hand side of (35):

, Nl (k+1) . b
NE1 Z E / (0(X5) - o(X,)) dB,
— ka
T\
< (—) Z QPE| X, — Xpal” +  sup |XE - XE,P (37)
(6] P ka<s<(k+1l)a
= —c p caP p
< sup | X5, — Xy | +(—+ca5>.
i<k eP

cZaE
k=0

14



We now consider the last term on the right hand side of (35). By the Burkholder-Davis-Gundy
and Cauchy inequalities, we obtain

p
2

n—1 (k+1) . .
cE | sup / (Xio — Xpa» (0(X5) — 0(X o)) dBs )
n<N k=0 ko
b
1 (k+1)a 2
< ZE X: - X 2cRE o(X d
< gB| s [Xia - Kool | 4+ 2 Z/k (Xia)| ds

From the Lipschitz property of o, (31) and (36), we deduce that

N—1 ,(k+1)a .
E (Z/ 0(X5) — 0(Xpa)] ds)
— ka

N-1 N-1

EY B[ X - Kol + eNFES Bl swp XS - XG,P
0 ka<s<(k+1)a

p
2

IN
o
%
L
Q

k=0 k=
e aP »
< ¢ o sup‘Xfa X:a‘p + <—p + caz>
k=0
Hence
n (k+1) — — %
cE | sup Z/ (X;, — Xpas (0(XE) — 0(X}4a) ) dBs)
n<N k=0 ko
1 - N-1 ol
< ZE| sup ‘Xfm - Xfm‘ +c Z oE sup‘Xfa X P | + [ = + ca®
2 | <N = | i< ev
(38)
Using(36)-(38), inequality (35) becomes
N— ol
€ & |P
We use the Gronwall inequality to complete the proof. O
Remark:
i) With the main result of the previous section, we finally deduce that
E| sup |Xpo — Yia‘p < cef + c2 (39)
n<N eP

ii) We may also obtain the almost sure uniform convergence of X, toXj, and of X,
to Xt .
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5 Applications

5.1 Some models

Let de N*,0 < M < oo and I = (0,M). We define a convex function ¢ : R — (—o0, +o0]
of class C(I) satisfying ¢(z) = +oc Vo € I°U{0+} and ¢(M—) = +oo if M <
+00. We put

D = {z = (422 .2 el < <<t < 2! + M}
and define the function ¢ : R4 — (oo, 4+oc] by

Z $(z? — z') onD
p(r) = 1<i<j<d
400 on DF.

It is easy to see that ¢ is convex, l.s.c., proper with dom(yp) = D. E. Cépa and D. Lépingle
[11] have shown that in this case the multivalued stochastic differential equation (9) turns into
the stochastic differential equation (12).

We are interested in the following cases. Lety be a strictly positive real number and B be a
d—dimensional Brownian motion. With the initial condition Xy € D a.s.:

for ¢(z) = —ylog(z) on I = (0,00), let

dt

— X< Xx?}<..<XZ 40
XtZ—XtJ t t = = t ( )

dX} = dB} + v >
1<i#j<d

for ¢(z) = —vylog (sin(%)) on I =(0,27), let

i _ i Xi - Xf 1 d 1 )
dXj = dBj + 5 > cot ot d X <L < X< X o (41)
1<i#j<d

for ¢(xz) = —ylog(sinh(z)) on I = (0,00), let

dX{ = dBj +~ Y coth(X;'—Xg')dt X} < X2 <. < xg. (42)
1<izj<d

Each system has a unique strong solution. We may find detailed studies of the system (40) in
[5] and [10], of the systems (41) and (42) in [11].
« T
The discretization error is —— where ¢ is the Yosida approximation parameter of ¢, a = N
€
is the step size of the Euler semi-implicit scheme; we must add the error term due the penal-
ization approximation (see (39)) and the error term from the numerical computation.
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5.2 Law support of the process on [0, T

Before proposing the simulations of process trajectories, it is interesting obtaining a support
result for this trajectories. Recall firstly the formulation of the Skorohod multivalued problem
given in [9]. Let A be a multivalued maximal monotone operator and w € C([0,T];R?)

verifying w(0) € D(A). There exists an unique pair (z, k) such that:
i)z = {z(t); 0 <t < T} is continuous and taking values in D(A);
ii)k = {k(t); 0 <t < T} is continuous with variation bounded, taking values in R? and
null at 0;

iii) for every pair of continuous functions (a, ) on [0,T] and taking values in R? such
that (a(u), B(u)) € Gr(A) Yu € [0,T], the measure (z(u) — a(u),dk(u) — f(u)du) is positive.
In the same paper, it is proved that for every zy € D(A), the application

P Gy (0.THRY) — Cop ([0.71D(A))

is continuous, where Cy,([0,T]);R?) is the set of continuous functions with initial value (.

If we now assume there exists a convex function ¢ of the class C'Int(dom(dyp)) such that
A = 0Op, then from the proof of Lemma 3.4 in [10] there exists a continuous function with
finite variation [ verifying /(0) = 0 and

x( / VQO H{I(S)Elnt(dom(f)np))}ds + Uy
H{m()elnt(dom ()3l = 0.
Proposition 5.1 With the previous conditions on o, if xg € Int(dom(dy)) and the space

CIO([O,T];Rd) is equipped with the Wiener measure Py, starting from xzq, then the law
support of T' is exactly the space Cy,([0,T]; dom(dy) ).

Proof: It is evident that the law support of I' is a subset of Cy,([0,T]; dom(9dyp) ).

Conversely, let z € Cp ([0,T];dom(0¢)) and a € Int(dom(dyp)). For any ¢ > 0, let
c >0 with ¢T' <1 such that

2(t) =a+ (1—ct)(z(t) —a) 0<t<T

belongs to Cy, ([0, T]; Int(dom(0p))) N B(z,€).
Put

t
w'(t) = 2'(t) + /0 Vo(x'(s)ds 0<t<T.

Then w' € Cu([0,T]);R?) and it is clear by uniqueness of the solution of the Skorohod
problem, that 2’ = T'(w'). By continuity of T, T'(B(z,e)) contains a ball B(w',n) with
n > 0 and the properties of the Wiener measure entail

Poo(T(B(w,6)) > Poo(T(B(w',n)) > 0,

which completes the proof. O
It has been proved in [9] that the probability measure I'(P,,) is exactly the law of the process
X in (9) with b =0, 0 = I and X = xo.
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5.3 Linearization method

We firstly consider the process R, , called the Bessel process with dimension 2y + 1 that is
the solution to the one-dimensional equation
dt
dX; = dBy + v—; (43)
Xy

We propose a linearization method where the Brownian motion is approximated by a piecewise
linear path w defined for every ¢ € [na, (n +1)a), 0 <n < N —1, by

B(n-l—l)a — Bna
a

By ~ w(t) = t+ ((n+1)Bpa — nB(n+1)a)'

The equation (43) becomes, for every ¢ € [na, (n +1)a), 0 <n < N —1,

_ B - B
dX, = < (n+1)a na _l> dt.

a Xy

Since the Brownian motion has independent increments, the approximate value X,y (at
time (n + 1)a) satisfies

~ — Xnt1Yni1 + 7) 2
X - X,)Y, —yln| =—""—") = aY
(Xnt1 n)Yni1 Y ( X, Yoir +7 n+1

where (Yy)i<p<n—1 are iid. N(0,/a) random variables. This equation has one or two
positive roots X,41. We choose the largest one. The error order of this method is smaller

1
than 3" Indeed, by Theorem 7.1 in [9] we have

sup | X; — Xy| < 2sup|B; — w(t)| as.
t<T t<T

The error order is estimated thanks to the following proposition ( we may find a proof of in

[18]):

Proposition 5.2 There ezists a positive ¢ such that, for every a € (0,1),

E | sup sup |B; — Bpal|?
n<N na<t<(n+1)a

< calog (é) | (44)

5.4 Penalization method

1. For the one-dimensional equation (43), we have the explicit formula of the Yosida approxi-

mation of Jp
z — \1? + dey
belw) = 2e '

Using the sgrali—implicit scheme (26) we get the explicit expression (from now on we write Yi
in place of X,,,)

- (26 + a) (X, + Yoi1) + a\/(Yz + Yoi1)? + dy(e + a)
nl 2(e + a) ’
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where (Yy)i1<n<n areiid. N(0,/a) variables.

2. In the multidimensional case or in the one-dimendional case with cot or coth, we do not
have any explicit formula for the Yosida approximation of d¢ but we can program a numerical
computation of (. (see the Annex). After obtaining (., at the (n + 1)-th step, we solve the
equation

Yn—l—l =X, — a/BE(YfH—l) + Yot (45)

where (Y;,)i<n<ny = (Y;l,...,Y%)1<n<ny are independent r.v. with iid. with N(0,/a)
components .

1
Since f. is Lipschitz with constant — | if « is much smaller than e, the function — af.(z) +
€

— 6!
Yoi1 + X,i is Lipschitz with constant — < 1. By the fixed-point theorem the following
€

algorithm:

€

first step: X, = —aB(X2) + Yoot + X
(k + 1) — th step: sz+1,k+1 = _aﬁa(XiH—l,k) + Yo + sz

converges quickly to the solution YZH of (45). In each loop, we use the Newton method with
constraints (see the annex) to calculate ﬁE(XfH_Lk).

In [10], the authors have proved existence of simple collisions ( two particles at the same place)

if and only if v < 3 in the case (40) and (41), and existence of simple collisions with positive

1
probability if and only if v < 3 in the case (42). Fig 1 displayss the simulated trajectories

of five particles (d = 5) following equation (40) with v = 0.25 and Fig 2 displays the same
system with v = 1.
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FIG 1. - Paths of five particles from the system (40) with collisions.
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FIG 2. - Paths of five particles from the system (40) without collisions.

5.5 Some properties of particles

1. In the case (40), we define the function f : R? — R by

d
flz) = % S (o — ).
ij—1

Applying the Ito formula and after some computation as in [12], p.251, we get

Proposition 5.3 (f(X;))i>o0 is a Bessel square with dimension (d —1)(dy + 1).

Remark: Other functions have an analogous property, for example

flz) = zd:(fpi)Q.

=1

Thanks to the previous proposition, we can compute exactly the expectation of f(X;). On
the other hand, we calculate the expectation of f(7§) by the Monte-Carlo method. The a.s.
uniform convergence of Y; to X, allows us to test the proposed method. For d = 3 and v =1,
Fig 3 compares a Monte Carlo simulation of f(X,;) with the theoritical value (d — 1)(dry +1)t.
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FIG 3. — Exact expectation and Monte-Carlo approximation.

2. We can find the proof of the following theorem in [17] which presents the asymptotic
behavior of particles with hyperbolic interaction.

1
Proposition 5.4 Let v > 3" For the particles of system (42) we have

i

X
limTt = 2vi—y(d+1) as V1<i<d. (46)

Fig 4 displays a simulation with d =3 and vy = 1.

50
40

30

20
10 k\

I I
5 10 15

FIG 4. — Asymptotic behavior of the system(42).

ANNEX

To obtain the approximate value X  at each time step, we need to solve the equation

r = —aﬁg(.’ll) +c, (47)
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where ¢ is the sum of the previous approximate value and ar.v. ¥ = (Y',...,Y?) € R?
(the choice of Y on each step is independent) whose components are Gaussian centered with
variance « in R and S is the Yosida approximation of subdifferential of ¢.

Since (; is Lipschitz with constant —, if we choose a < ¢, then the function —af. is
€
Lipschitz continuous with constant smaller than 1. The algorithm

(0

gkt = —af: (m(k)> +c

converges quickly to the solution of equation (47).

We calculate (. by the formula

B:(z) = L _87T8x , T E R4

where m.z € Int(dom(yp)) and minimizes the function

1
fly) = 2—8\w—yl2+<p(y) , y € R

Since ¢ is proper lLs.c. convex, we use the Newton method with convex constraints (see [7]).
Consider for example the system (40). We must solve the problem (P1):

-1 d
. 1

min f(y) = o-lz =y =) > In(y; - u)

Y i=1 j=it1

xERd,eeRj_,*yERj_.

The function f is strictly convex, twice differentiable and tends to infinity on the boundary
of the domain, the problem (P1) has a unique solution T € D satisfying

1

jl_wz_g’yzf_l‘ :0 VZ:]_’ ’d
j#i Y !

T = (fEla 7§d) € D

Putting
Toouctigiyyy = B =% V1<i<g<dy
Ek:_l Vi<k<d ., d:d(d2—1)’

Yk

the problem (P1) becomes

( — — — .
T; — X — Zs(jil)dij(j;1)+iij + ZS(iil)dii(i;1)+jii =0 Vi=1,...,d
j<i j>i
T; — T + g(ifl)dfi(ignﬂ.fi = 0 Vi<i<j<d
TiSi—ey = 0 V1<i<d
7 > 0 Vi<i<d
{ 55 > 0 Vi<i<d
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