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Abstract

We present a continuous time model of maturation and survival, obtained as
the limit of a compartmental evolution model when the number of compartments
tends to infinity. We establish in particular an explicit formula for the law of the
system output under inhomogeneous killing and when the input follows a time-
inhomogeneous Poisson process. Identifiability issues are discussed, and an applica-
tion to the modelling of the toxicity of anti-cancer drugs is given. Such models can
be seen in particular as generalisations of previous works of Jacquez & Simon and
Schuhmacher & Thieme.
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Introduction

As presented by John. A. Jacquez and Carl P. Simon in their joint paper [JS02],
dynamical models of many biological processes give rise to systems of ordinary differ-
ential equations called “compartmental systems”. Such compartmental systems can be
interpreted as birth and death processes. They can also be seen as particular queueing
systems. The reader may find an introduction to compartmental systems in for example
[JS93] and references therein. For birth and death and queueing processes, one can find
recent introductions in [Bor03] and [Rob03] for example.

Catenary chain of compartments with one-way flow can be used to generate time lags,
see for example [Gou86], [Győ89], [ST88], [JS02] and references therein. The compart-
ments that belong to the chain correspond to hidden states ; the last compartment being
the only observed. In biology, these states are often used to describe the different stages
of maturation of cells. Their number is generally not precisely known but it is likely to
be large. Such hidden states are interpreted as position in the chain. The particles (cells)
are transported from position 0 to n and can be killed during transport. The observed
effect in the last compartment is thus a lag for the surviving particles. Roughly speaking,
the catenary chain thus corresponds to a one-way drift with possible killing.

We first consider a compartmental model as the one shown in Figure 1. The dynamic
of the maturation process of a single particle from position 0 to n is described. This
description allows to deduce the maturation dynamics for the continuous model by letting
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the number of compartments goes to infinity. This first step is quite similar to the results
given in [JS02] but it allows to introduce the general probabilistic formalism used in the
subsequent steps of the study.

A random number of independent particles enter in this system. We chose an inhomo-
geneous Poisson process to describe their apparition at the first stage of maturity. The
law of the number of particles that reach the last stage of maturity is then deduced. In a
way, our approach can be seen as a complement and extension of the boxcartrain models
considered for example in [ST88], the novelty being mainly the space-time inhomogeneous
killing, the stochastic interpretation in terms of Feynman-Kac’s formulæ, and the compu-
tation of the output occupation law when the input follows a time-inhomogeneous Poisson
process.

This work was initially motivated by a Pharmacokinetics/Pharmacodynamics study
of the toxicity of an anti-cancer drug. The observed effect is the number of circulating
neutrophiles (in blood) while the drug action occured during their maturation stages, cf.
figure 3. The continuous model we study can be interpreted as a limit model of most
models used to describe toxicity of anti-cancer drugs. It enables to show that despite
the apparent variety of models with different physiological meaning, most of them are
indistinguishable in certain situations discussed in Section 2.2.

Outline of the paper. In section 1, we derive a continuous maturation model for a
single particle, from a finite compartmental model by letting the number of compartments
tends to ∞. In section 2, we consider the occupation law of the output when the input
is a Poisson process, we also discuss identifiability issues, and applications to anti-cancer
drugs models in pharmacology. Finally, Section 3 gathers various postponed Lemmas and
proofs.

Notations and conventions. In the sequel, we denote by R+ the non negative half
line [0, +∞). For a set A, we denote by IA the indicator function defined by IA(x) = 1
if x ∈ A and IA(x) = 0 otherwise. For two real numbers a and b, we denote by a ∧ b
and by a ∨ b the minimum and the maximum of a and b. We denote by L(X) the law of
the random variable X, by L(X|Y ) the conditional law of X given Y , and by E(X|Y )
the conditional expectation of X given Y . We use in addition the classical associated
maps L(X|Y = y) and E(X|Y = y). We denote by P(λ), the Poisson distribution with
intensity λ > 0 defined by

P(λ) := e−λ
+∞
∑

n=0

λn

n!
δn.

We denote by B(n, p) the binomial distribution of size n ∈ N and parameter p ∈ [0, 1]
defined by

B(n, p) :=

n
∑

k=0

(

n

k

)

pk(1 − p)n−kδk,

where
(

n
k

)

:= n!/(k!(n − k)!) is the binomial coefficient. In particular, B(1, p) is the
Bernoulli distribution pδ1 + (1 − p)δ0 and B(n, p) = B(1, p)∗n where ∗ denotes the con-
volution. We denote by NB(n, p) the negative-binomial distribution of size n ∈ N

∗ and
parameter p ∈ [0, 1] defined by

NB(n, p) :=
+∞
∑

k=n

(

k − 1

n − 1

)

pn(1 − p)k−nδk.
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In particular, NB(1, p) is the Geometric distribution G(p) and NB(n, p) = G(p)∗n. Finally,
we denote by Γ(n, λ) the Gamma distribution of shape parameter n ∈ N

∗ and scale
parameter λ ∈ R

∗
+ which is absolutely continuous with respect to Lebesgue’s measure on

R with probability density function

t ∈ R 7→
λn

(n − 1)!
tn−1e−λt IR+(t).

In particular, Γ(1, λ) is the exponential distribution E(λ) and Γ(n, λ) = E(λ)∗n.

n

Poisson input

elimination (state e)

Output zone of interest

ρ ρ ρ

κ(t, n)

10

κ(t, 1)κ(t, 0)

Figure 1: A particular compartmental model: catenary chain of compartments with Pois-
son input, one-way flow (ρ), and space-time-inhomogeneous killing (κ).

1 The continuous position model for a single particle

Let us recall briefly the Markovian formalism on a finite set. Let S(n) be a finite set
indexed by a positive integer n. Let (X

(n)
t )t>0 be the continuous time Markov process

with state space S(n) which encodes the position of a particle in S(n) at time t. Such
a process is entirely described by the associated Markov semi-group of conditional laws
L(X

(n)
t |X(n)

s = x) for any x ∈ S(n) and any 0 6 s 6 t. The discrete topology on S(n)

makes continuous any function f : S(n) → R. For any (continuous) function f : S(n) → R,

any x ∈ S(n) and any 0 6 s 6 t, one can define P
(n)
s,t (f) : S(n) → R by

P
(n)
s,t (f)(x) = E

(

f(X
(n)
t ) |X(n)

s = x
)

.
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Since P
(n)
s,t is linear and S(n) is finite, P

(n)
s,t can be seen as a stochastic matrix. Namely, for

any i and j in S(n),

P
(n)
s,t (i, j) = P(X

(n)
t = j |X(n)

s = i) = P
(n)
s,t (I{j})(i),

where I{j} is the indicator function of the set {j}. In particular, functions from S(n) to R

can be seen as vectors and one has

P
(n)
s,t (f)(i) =

∑

j∈S(n)

P
(n)
s,t (i, j)f(j).

The family of linear operators (P
(n)
s,t )06s6t acting on functions f : S(n) → R forms a

Markov semi-group. In other words,

1. If f > 0 then P
(n)
s,t (f) > 0;

2. P
(n)
s,t (1) = 1 where 1 is the constant function which is equal to 1;

3. For any 0 6 s 6 u 6 t
P

(n)
u,t ◦ P(n)

s,u = P
(n)
s,t .

The infinitesimal generators (L
(n)
t )t>0 of the Markov semi-group (P

(n)
s,t )06s6t are by defini-

tion the operators defined for any s > 0, any f : S(n) → R and any x ∈ S(n) by

L(n)
s (f)(x) := ∂t=s

[

t 7→ P
(n)
s,t f(x)

]

.

Here again, one can see L
(n)
s as a matrix defined for any i, j in S(n) by

(L(n)
s )i,j = ∂t=s [t 7→ Ps,t(i, j)].

In the literature related to compartmental systems, the matrix Ls is known as the “transfer
matrix”. The reader may find an excellent reference for Markov processes and related
topics in the book [EK86] by N. Ethier and G. Kurtz.

1.1 The maturation with killing model

Let us consider now the special case where S(n) := {0, 1, . . . , n} ∪ {e}. Each value
from 0 to n corresponds to a maturation stage (or position) of a particle, the final value
n being the final maturation stage. As we will see, the state e will serve as an absorbing
state from which the particle cannot escape (cemetery point). Let

κ(n) : R+ × {0, . . . , n} → R+

be a function which is smooth in the first variable, and ρ(n) be a positive real number.
Let (X

(n)
t )t>0 be the Markov process with infinitesimal generators (L

(n)
t )t>0 given for any

i and j in S(n) and any t > 0 by

(L
(n)
t )i,j =































ρ(n) if i 6= e and j = i + 1

κ(n)(t, i) if i 6= e and j = e

−(ρ(n) + κ(n)(t, i)) if i = j 6∈ {n, e}

−κ(n)(t, n) if i = j = n

0 otherwise.

(1)
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The dynamics of the associated process can be read directly on the expression of the
infinitesimal generator (1) above. Namely, at time t and from position i, the particle can
only move to position i+1 with rate ρ(n), or die (being killed) with rate κ(i, t) and placed
in the special state e from which it cannot escape. Instead of expressing the infinitesimal
generators in matrix form as in (1), one can alternatively adopt an equivalent functional
point of view which consists in writing that for any f : S(n) → R, and any i ∈ S(n),

L
(n)
t (f)(i) =

∑

j∈S(n)

(L
(n)
t )i,jf(j).

This gives L
(n)
t (f)(e) = 0 and for any i ∈ {0, . . . , n}

L
(n)
t (f)(i) = ρ(n)(f(i + 1) − f(i)) + κ(n)(t, i)(f(e) − f(i)),

where we have taken the convention f(n + 1) := f(n).

1.2 The continuous limit

Let S := [0, 1] ∪ {e} and consider the natural inclusion πn : S(n) → S defined by
πn(i) = i/n for any i ∈ {0, . . . , n} and πn(e) = e. Assume now that ρ(n) = nρ for some
positive constant ρ and that κ(n)(t, i) = κ(t, i/n) for some bounded piecewise continuous
function

κ : R+ × [0, 1] → R+.

By this way, any function f : S → R induces naturally a function f(πn) from S(n) to R,
and one has

L
(n)
t (f(πn))(i) = nρ

(

f

(

i + 1

n

)

− f

(

i

n

))

+ κ

(

t,
i

n

)(

f(e) − f

(

i

n

))

.

By using suitable continuity arguments based on Taylor’s formulas, one can show that
the Markov process (n−1 X

(n)
t )t>0 converges in law when n goes to ∞ toward the Markov

process (Xt)t>0 with state space S := [0, 1] ∪ {e} and infinitesimal generators

Lt(f)(x) =

{

ρf ′(x) + κ(t, x)(f(e) − f(x)) if x 6= e

0 if x = e
(2)

defined for continuous functions f : S → R which are smooth on [0, 1] and vanish at
the boundaries. One can find detailed techniques of such limiting procedures in [EK86]
for example. The obtained generator Lt above is the addition of a deterministic con-
stant drift term ρf ′(x) together with a random space-time inhomogeneous killing term
κ(t, x)(f(e) − f(x)). The interpretation in terms of the position Xt of the particle is quite
clear: the particle is moving from left to right on [0, 1] with a constant speed ρ. At any
time t, it can be killed (and thus placed in state e) with rate κ(x, t) where x is the current
position.

Actually, one can always explicitly translate on the semi-group the effect of the ad-
dition of a killing term to a Markov generator, by mean of a Feynman-Kac formulae, cf.
Lemma 3.4. In some ways, our case (2) is the simplest one since we add a killing term to
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a deterministic generator (constant drift). Lemma 3.4 or even a direct check shows that
the Markov semi-group associated to (2) is given for any 0 6 s 6 t and any x ∈ S by

Ps,t(f) (x) =

{

p(s, t, x)f(x + ρt) + (1 − p(s, t, x))f(e) if x 6= e

f(e) if x = e

where p(u, v, e) = 0 and for any x 6= e

p(u, v, x) := exp

(

−

∫ v

u

κ(w, x + ρ(w − u)) dw

)

. (3)

As we will see, function p corresponds to a survival probability. It is sometimes more
convenient to write

p(u, v, x) = exp

(

−

∫ v−u

0

κ(u + w, x + ρw) dw

)

.

One can check that for any x ∈ S and any s > 0

∂t=s [t 7→ Ps,t(f) (x)] = Ls(f)(x),

where Ls is defined by (2). Recall that by definition of the semi-group, for any x ∈ S,
any bounded continuous function f : S → R and any 0 6 s 6 t one has

Ps,t(f) (x) := E(f(Xt) |Xs = x) .

In particular, for any Borel set A

P(Xt ∈ A |Xs = x) = Ps,t(IA) (x).

The corresponding conditional law is given for any 0 6 s 6 t and any x ∈ S by

L(Xt |Xs = x) =

{

p(s, t, x) δx+ρ(t−s) + (1 − p(s, t, x)) δe if x 6= e

δe if x = e

The conditional law L(Xt |Xs = x) is thus a Dirac or a Bernoulli measure. Recall that it
corresponds to the law of the position of a particle at time t given its position x at time s.
Namely, the particle is killed between time s and t with probability 1− p(s, t, x). At time
t, it is either at position x + ρ(t − s) with probability p(s, t, x), or at position e (killed)
with probability 1− p(s, t, x). The quantity p(s, t, x) is exactly the “survival probability”
of the particle at time t given that it was in position x at time s. One can define the
“maturation time” τ by

τ :=
1

ρ
. (4)

In this definition, τ is a time and 1 is a position, in such a way that ρ = 1/τ is a speed.

position in [0,1] = stage of maturity
position 1 = maturity

6



The term “maturation time” is justified by the fact that in absence of killing (i.e. κ ≡ 0),
one has p(s, t, 0) = 1 and τ is exactly the deterministic time taken by a particle to reach
position 1 from position 0 (at constant speed ρ).

Conclusion. If one views position 0 as an input and position 1 as an output, the whole
dynamics corresponds to a lag and killing. Namely, if one puts a particle at the input at
time s, then either this particle will be killed and never see the output with probability
1−p(s, s+ τ, 0), or will reach the output at time s+ τ with probability p(s, s+ τ, 0). The
maturation time τ corresponds to a time lag. The whole picture is given by Figure 2.

Extension. The dynamics can be extended from S = [0, 1] ∪ {e} to the whole right
side half line S = R+ ∪ {e}, provided that one consider a suitable killing function

κ : (t, x) ∈ R+ × R+ 7→ κ(t, x) ∈ R+.

We will always consider this extension in the sequel.

position in [0, 1] = stage of maturity
position in (1, +∞) = maturity

In this extended model, a particle evolves from left to right at constant speed ρ. At time
t, it can be killed (and placed in position e) with rate κ(t, x) where x is its position on R+.
The particle is mature when its position exceeds position 1. Hence, in term of maturity,
we consider here that the output is the whole interval (1, +∞) instead of position 1; and
by this way, the killing action of κ on the position interval (1, +∞) corresponds to an
extinction after the arrival at maturity. In Figure 2, the box labelled “Lag τ” corresponds
to the interval of position [0, 1], whereas the box labelled “Maturity” corresponds to the
interval of positions (1, +∞).

EliminationElimination
1 − p(s + τ, t, 1)1 − p(s, s + τ, 0)

time s + τtime s

Lag τ
Input Output

Maturity

Figure 2: Schematic view of the system. Recall that τ is the maturation time. The
quantity p(s, s+τ, 0) is the survival probability of a particle up to maturity given the fact
that it was at the input of the system at time s. The quantity p(s + τ, t, 1) is the survival
probability at time t of a mature particle given the fact that it was at the input of the
system at time s (makes sense for t > s + τ).

2 Output occupation law when the input is Poisson

We consider a system describing the maturation of particles, as in the conclusion of
Section 1. We assume that independent particles enter into the system at random times.
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We denote by Tn the arrival time of the nth particle at the system input. These particles
evolve independently according to the maturation dynamics described in Section 1. This
dynamics depends on some positive constant ρ and some piecewise continuous function
κ : R+ × R+ → R+. Let (Mt)t>0 be the output occupation process, in other words the
number of mature particles still present at time t. The stochastic process (Mt)t>0 is a
Markov process. Let Zt,n be the Bernoulli random variable corresponding to the presence
in the output at time t of the nth particle. On the event {M0 = 0}, one has for any t > 0

Mt :=











0 if t < τ
Ct−τ
∑

n=1

Zt,n if t > τ ,
(5)

where τ is the maturation time as in (4), and where the process (Ct)t>0 is defined by

Ct :=

+∞
∑

n=1

I{Tn6t} = inf {n ∈ N, such that Tn+1 > t}.

The random variable Tn is the nth jump time of the counting process (Ct)t>0, and Ct is the
number of particles that have entered the system before time t. In the sequel, we consider
exclusively the case where (Ct)t>0 is a time-inhomogeneous Poisson process starting from
0 with locally integrable intensity function λ : R+ → R+. The infinitesimal generators
(LC

t )t>0 of (Ct)t>0 are given for any t > 0, any n ∈ N and any f : N → R by

LC
t (f)(n) := λ(t)(f(n + 1) − f(n)). (6)

When the intensity function λ : R+ → R+ is constant, the process (Ct)t>0 reduces to a
homogeneous simple Poisson process.

Theorem 2.1 below gives the law of the Markov process (Mt)t>0, by mean of its semi-
group, and Corollary 2.2 gives the associated infinitesimal generators. Finally, Remark
2.3 provides the expression of the parameters of the semi-group in terms of the coefficients
of the infinitesimal generators.

Theorem 2.1 (Semi-group). Let (Mt)t>0 be the output occupation process defined by
(5) where the input counting process (Ct)t>0 is as in (6). Assume that there exists bounded
piecewise continuous functions g : R+ × [0, 1] → R+ and µ : R+ → R+ such that for any
(t, x) ∈ R+ × R+

κ(t, x) = g(t, x)I[0,1](x) + µ(t)I(1,+∞)(x). (7)

Then, for any s, t with 0 6 s 6 t and any n ∈ N

L(Mt |Ms = n) = B(n, p(s, t, 1)) ∗ P(r(s, t)), (8)

where

r(s, t) :=

∫ (t−τ)∨0

(s−τ)∨0

λ(u) p(u, t, 0) du, (9)

where p is defined by (3) and τ by (4). In particular, for any 0 6 s 6 t and any n ∈ N

E(Mt|Ms = n) = np(s, t, 1) + r(s, t). (10)
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Proof. The proof is postponed to Section 3 page 15.

Corollary 2.2 (Infinitesimal generators). Under the hypotheses of Theorem 2.1, the
infinitesimal generators (Ls)s>0 of the Markov process (Mt)t>0 are given for any s > 0,
any f : N → R and any n ∈ N

∗ by

Ls(f)(n) = nµ(s)(f(n − 1) − f(n)) + λg(s − τ)(f(n + 1) − f(n)) I[τ,+∞)(s), (11)

where by notational convention f(−1) = f(0) and where for any t > 0

λg(t) := λ(t) p(t, t + τ, 0) = λ(t) exp

(

−

∫ τ

0

g(t + w, ρw) dw

)

. (12)

Proof. The proof is postponed to Section 3 page 17.

Remark 2.3 (Expression of p(s, t, 1) and r(s, t)). Assume that the hypotheses of The-
orem 2.1 are fulfilled. One has for any 0 6 s 6 t

p(s, t, 1) = exp

(

−

∫ t

s

µ(w) dw

)

. (13)

In the other hand, p(u, t, 0) = p(u, u+τ, 0)p(u+τ, t, 1) for any u and t with 0 6 u 6 t−τ .
Therefore, the coefficient r(s, t) defined by (9) can be rewritten by virtue of the expressions
(13) and (12) for any τ 6 s 6 t as

r(s, t) =

∫ t

s

λg(u − τ) exp

(

−

∫ t

u

µ(w) dw

)

du, (14)

where λg is as in (12). The formulas (13) and (14) allow to express the conditional law
(8) in terms of the coefficients of the infinitesimal generators (11). It makes clear the fact
that the knowledge of (Ls)06s6t is equivalent to the knowledge of the law of the process
(Ms)06s6t given M0.

Remark 2.4 (Negative values of κ and input rate amplification). The direct use
of Feynman-Kac’s formulae of Lemma 3.4 and a careful reading of the proof shows that
Theorem 2.1 still makes sense even when g in (7) takes negative values. In that case,
the quantity p(s − τ, s, 0) may exceed 1, and thus cannot be interpreted as a “survival
probability”. In view of (14), such negative values of g correspond to an “amplification”
of the input rate instead of a killing. Notice that one can always write g = g+ − g− where
g− := sup(−g, 0) > 0 and g+ := sup(g, 0) > 0. By this way, the negative values of g are
gathered in g− and can be incorporated into λ. The two models corresponding to (λ, g)
and (λg−, g+) are indistinguishable since they give rise to the same function r via (14).
Functions g with negative values are considered in the discussion about identifiability in
Section 2.1.

Remark 2.5 (Simulation of the sample paths). The simulation of the sample paths
of the process (Mt)t>0 can be done via the law of the jumps of the process, which can
be obtained from the expression of the infinitesimal generators given by Corollary 2.2.
Namely, assume that the process is at position n at time s, and let

T := min{t > s : Mt 6= Ms} − s

9



be the next “waiting time”. Then, by using the matrix notation Lu(i, j) := Lu(I{j})(i),
one has for any t > 0

P(T 6 t) = 1 − exp

(
∫ s+t

s

Lu(n, n) du

)

.

Moreover, given that the jump occurs at time t, the process moves to n+1 with probability
Lt(n, n + 1)/Lt(n, n) and to n − 1 with probability Lt(n, n − 1)/Lt(n, n), cf. [Bor03, pp.
179-180]. This leads, by using (11), to the following schematic algorithm to simulate a
sample path. Assume that the process is in state n ∈ N at time s > τ .

• Generate an exponential random variable U with law E(1);

• Compute T := F−1(U) where F (t) := n
∫ t

0
µ(s + u) du +

∫ t

0
λg(s − τ + u) du;

• Compute P := λg(s + T − τ)/(nµ(s + T ) + λg(s + T − τ));

• Generate a Bernoulli random variable J with law B(1, P ), independent of U .

The next jump will occur at time s + T , from state n to state n + 2J − 1.

As one can see clearly on the infinitesimal generators (11), (Mt)t>0 is a particular
inhomogeneous birth and death process, cf. for example [Bor03]. Process (Mt)t>0 can
also be seen as an inhomogeneous queueing system with infinite number of servers in
parallel. The literature on similar queueing systems is enormous, cf. for example [Zĕı88]
and [ZC85] and references therein. In an M/M/∞ queue, each client is immediately
served by an independent dedicated server. Recall that the infinitesimal generators of a
time-inhomogeneous M/M/ς queue (i.e. ς servers in parallel) is given by

(Ls)i,j =











λ(s) if j = i + 1

(i ∧ ς)µ(s) if j = i − 1

−(λ(s) + (i ∧ ς)µ(s)) if j = i.

In other words, for any function f : N → R and any n ∈ N

Ls(f)(n) = (n ∧ ς)µ(s)(f(n − 1) − f(n)) + λ(s)(f(n + 1) − f(n)),

where by notational convention f(−1) = f(0). When g ≡ 0 and µ is constant in (7), one
has p(s − τ, s, 0) = 1 for any s > 0. Consequently, the process (Mt)t>0 is in that case
an M/M/∞ queue with input intensity λ and constant output intensity µ. When λ is
constant, the invariant measure of this queue is the Poisson law P(λ/µ). In a way, the
M/M/∞ queue with constant intensities is for the Poisson process what the Ornstein-
Uhlenbeck process is for Brownian motion, cf. [Rob03, Theorem 6.14].

The role played by the M/M/∞ queueing processes in our model is due to the inde-
pendency of the particles in the definition of (Mt)t>0. One can alternatively consider a
non independent killing after maturation, which can lead for example to an M/M/1 type
queueing process. Unfortunately, the law at fixed time of such a process, even for the
homogeneous case, is far more complex than the simple formula obtained in the M/M/∞
case, cf. [Tar02] and [Rob03].
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Assume that the input rate function λ is constant. When µ ≡ 0 in (7), i.e. when there
is no killing after maturation, the formula (9) for r(s, t) when 0 6 s 6 t boils down to

r(s, t) = λ

∫ (t−τ)∨0

(s−τ)∨0

exp

(

−

∫ τ

0

g(w + u, ρw) dw

)

du.

In that case, t ∈ R+ 7→ r(s, t) is non decreasing since the main integrand does not depend
on t. This is not surprising since the particles are never killed after maturation. Hence,
on {Ms = 0}, the process t ∈ R+ 7→ Mt is non decreasing, and in particular its expected
value r(s, t) is non decreasing too.

Let us consider now the particular case in (7) where κ is of the form

k(t, x) = g(t)I[0,α](x) + µI(1,+∞)(x), (15)

where α ∈ [0, 1], where µ ∈ R+, and where g : R+ → R+ is a smooth function. It corre-
sponds to a time dependent killing before the maturation stage α and to a constant killing
after maturation. No killing is made between maturation stage α and full maturation.
The formula (9) for r(s, t) when τ 6 s 6 t boils down to

r(s, t) = λe−µ(t−τ)

∫ t−τ

s−τ

exp

(

uµ −

∫ ατ

0

g(u + w) dw

)

du. (16)

When g ≡ 0, this formula reduces to the classical M/M/∞ average queue length

r(s, t) =
λ

µ

(

1 − e−µ(t−s)
)

. (17)

Assume that function g in (15) vanishes at infinity, then the two formulas (16) and (17) are
equivalent when t goes to +∞. In particular, the Poisson measure P(λ/µ) is a stationary
distribution of (Mt)t>0 in that case. One can see on figure 3 that this Poisson equilibrium
is quickly reached. It is possible to quantify the speed of convergence in total variation
norm, cf. [Rob03].

2.1 Identifiability of the parameters

According to Theorem 2.1, the law of (Mt)t>0 is parametrised by the positive real
number ρ and the three functions λ : R+ → R+ and g : R+×[0, 1] → R+ and µ : R+ → R+.

(λ, ρ, µ, g) 7→ L((Mt)t>0|M0).

It is then natural to ask about the identifiability of these parameters, in other words,
about the injectivity of this parametrisation. According to Corollary 2.2 and Remark
2.3, the dynamics is fully described by τ and by the two functions µ and λg where λg is
defined by (12). Function µ is always identifiable. In the other hand, function λg(· − τ)
is identifiable but the couple (λ, g) is not. The action of g can be compensated by λ
and vice versa. Namely, and in the spirit of Remark 2.4, suppose that g can be written
g = g1 + g2, where g1 and g2 are non-negative functions. Then, according to (14), the
two models corresponding respectively to (λ, g) and (λg1, g2) are indistinguishable. The
extreme case corresponds to (λg, 0), for which the entire killing function g is merged into
the input rate function λ.
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Drug kinetic g
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Figure 3: This example corresponds to the case (15) with λ ≡ 1, α = 1
2
, µ ≡ 1, ρ = 1, and

g(t− 10) = e−t/10 − e−t/2. Are plotted the average number E(Mt |M0 = 0) of circulating
neutrophiles (particles), and the “drug kinetic” g. One can observe on the plot of the
average number of particles three main time phases. The first phase corresponds to an
ascendancy to a Poisson equilibrium before the action of the drug via g. The second phase
corresponds to a decrease due to the action of the drug via function g (delayed by the
time lag is τ = ρ−1 = 1). In the third phase, the drug action decreases and the Poisson
equilibrium is reached again.

Let us analyse some special cases. For any θ > 0, let us consider the transformation
which replaces (λ, g) by (λθ, gθ) defined by

λθ := θλ and gθ := g + ρ log θ.

Notice that gθ may become negative when θ < 1, cf. Remark 2.4. Function µ and param-
eter ρ are left unchanged, and one can check that λθ

gθ = λg. Therefore, the dynamics is

invariant by this transformation: the models corresponding to (λ, ρ, µ, g) and (λθ, ρ, µ, gθ)
are indistinguishable. A multiplicative perturbation of the input intensity λ corresponds
to an additive perturbation of the killing function g before maturation. Hence, one can
decide to normalise the parametrisation by taking for example λ ≡ 1.

Similarly, when λ is constant, and for any θ > 0, let us consider the transformation
which replaces (ρ, g) by (ρθ, gθ) defined by

ρθ := θρ and gθ := θg.

Notice that by (4), one has τθ = τ/θ. Here again, µ is left unchanged and for any
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s > τcritical(ρ, θ) := max(τ, τθ)

exp

(

−

∫ s

s−τθ

κθ(w, ρθ(w − s + τθ)) dw

)

= exp

(

−

∫ s

s−τ

κ(w′, ρ(w′ − s + τ)) dw′

)

,

where we used the change of variable w = s+(w′−s)θ. Therefore, the dynamics is invari-
ant by this transformation: the models corresponding to (λ, ρ, µ, g) and (λ, ρθ, µ, gθ) are
indistinguishable after the critical time tcritical(ρ, θ). A multiplicative perturbation of the
maturation time τ corresponds, after some critical time, to a multiplicative perturbation
of the killing function g before maturation.

Remark 2.6 (Estimation of the parameters). Suppose that one observes a finite
sequence ((t1, Mt1+ε1), . . . , (tn, Mtn +εn)) where t1 < · · · < tn are random times and where
(ε1, . . . , εn) is some unobserved noise. A natural question is to ask about the estimation of
the parameters τ, µ, λg of the dynamics from such observations. In absence of noise, one
can provide at least some heuristic graphical methods in the case corresponding to (17).
However, a more general answer is out of the scope of this paper and will be hopefully the
subject of a forthcoming article.

2.2 Application to anti-cancer drugs models

Myelosuppression is the dominating toxicity for most anti-cancer drugs, cf. [FK03].
The circulating leukocytes in blood comprise neutrophils (approximately 60-70% in hu-
mans), lymphocytes (30%), monocytes (5%), eosinophils (2%) and basophils (< 1%).
Maturation of eosinophils, basophils and monocytes basically follows the same matura-
tion steps in the bone marrow as that of neutrophils. For this reason the neutrophils
profiles are usually used as marker of toxicity.

All blood cells originate from a common type of cell, the pluripotent haematopoietic
stem cell (PHSC), which has a high capacity for selfrenewal, i.e. such cells can give
rise to “identical” daughter cells. PHSCs can also differentiate to form lymphoid stem
cells or myeloid multipotent stem cells (CFU-GEMMs), which give rise to granulocytes,
erythrocytes, monocytes and platelets. During maturation, the cells remain at a certain
stage for a while, and then move to the next stage, as shown in Figure 4. Most cells in
the bone marrow are lineage specific precursors with little self-renewal capacity and high
mitotic activity. Non-mitotic cells include metamyelocytes, band cells and segmented
neutrophils that are released into the blood. Neutrophils disappear from the blood in a
random (first-order) process. Thereafter, the neutrophils enter the tissues, where they
undergo apoptosis. Regulation of leukocyte levels is still only partly understood.

There is a huge literature on Pharmacokinetics/Pharmacodynamics models that de-
scribe the link between the drug concentration profiles and their effect (neutrophils
cells counts for toxicity of anti-cancer drugs). Among the authors, Jusko described in
[DGJ93, GJ01] the properties of a large number of indirect models while others, cf. for
example [FFSK00, HSS+98], specialised on the study of models for anti-cancer drugs.
These empirico-physiologic models macroscopically mimic the action of drugs on cells
and share two properties. Firstly, they allow to describe the whole time course of neu-
trophils. Secondly, there is an intrinsic delay between the drug administration and the
effect. Cancer drugs models can be roughly classified into three families.
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Figure 4: Cell evolution diagram

1. In the first family of models, cells are created at constant rate and they transit to
compartments to mimic leukocyte maturation. A number of compartments with
replicating cells are connected in series with a number of compartments of non-
replicating cells and a compartment of circulating leukocytes. Only compartments
with replicating cells are sensitive to the drug action. From a macroscopic point of
view, the bone marrow produces progenitor stem cells that divide rapidly that can
be killed. If these cells survive, they continue their maturation without “obstacle”
in the bone marrow. Finally, they migrate into blood, the observed pool, as white
blood cells, cf. Figure 4.

2. In models from the second family, all compartments with replicating cells are con-
catenated to give the input of a number of compartments of non replicating cells,
cf. Figure 5. At equilibrium, (without drug) there is a constant rate production
of non-replicating cells that continue their maturation until they reach blood. The
drug action only concentrates on the production of non replicating cells.

3. The third family of models has only two compartments. The first one represents
the replicating cells which are sensitive to the drug. The second compartment
represents the blood, from which the cells are excreted. The transit compartments
are substituted by a lag time which mimics the delay between the actual drug action
and its observed effect in blood. The picture corresponds roughly to Figure 2.

The continuous model we studied can adapt to compartments with replicating cells by a
careful adjustment of the functions g and λ, cf. Section 2.1.
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Conclusion. Most kineticists use mainly the first family of models to describe the
myelosuppression toxicity of anticancer drugs. Friberg summarized in [FK03] the current
kineticists preferences : “transit compartments are more attractive than lag times (third
family of models) since they actually mimic the different cell stages within the bone
marrow and since the maturation is a gradual process contrarily to lag-time”. The same
author suggested that increasing the number of transit compartments is a good way to
increase the delay without adding any extra parameters since the same transit rate is used.
In light of our work, these two assertions seem contradictory and penalizing for numerical
purpose. Actually, adding transit compartments in models from family 1 or 2 to adjust for
a long delay makes these models close to a lag-time model (family 3). Moreover, the first
and second families of models lead to high dimensional systems of differentials equations
which are mainly solved numerically while the dimension of the system given by the third
family of models is always 2. We argue that a preliminary analysis of the system, leading
to a fine choice of the κ function, should save computer time and minimize numerical
errors without lost in interpretation.

κ(t, n)

ρ
blood

ρ ρρλ

κ(t, 0)

Non replicating cells

Figure 5: Cell maturation model. Second family.

3 Proofs and Lemmas

Proof of Theorem 2.1. The process (Ct)t>0 can be constructed as a simple Poisson process
starting from 0 and changed in time. Namely,

(Ct)t>0 := (NF (t))t>0 (18)

where (Nt)t>0 is a homogeneous simple Poisson process starting from 0 with intensity 1
and where the “time change function” F is defined by

F (t) :=

∫ t

0

λ(u) du. (19)

Notice that the jump times of (Ct)t>0 are (Tn)n∈N∗ := (G(Un))n∈N∗ where (Un)n∈N∗ are
the jump times of (Nt)t>0 and where G := F−1 is the generalised inverse of F defined by

G(u) := inf{v ∈ R+ such that F (v) > u}. (20)

Recall that (Un+1 − Un)n∈N∗ is a sequence of i.i.d. exponential random variables with
common law E(1), and in particular, L(Un) = Γ(n, 1).

Let us establish (8). As we will see below, the binomial part B(n, p(s, t, 1)) in (8) cor-
responds actually to the n particles already mature at time s. They evolve independently
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of the new particles arriving at maturity on the time interval [s, t]. These ones correspond
to the Poisson part P(r(s, t)) in (8).

The event {Ms = n} corresponds to the presence at time s of n independent mature
particles. We do not know the position of each particle. However, since by assumption the
killing function κ does not depend on the position after maturation, the survival probabil-
ity at time t of each particle does not depend on the position in (1, +∞). More precisely,
each particle has a probability p(s, t, 1) to be still present at time t. By independence,
the number of these particles still present at time t follows a binomial law B(n, p(s, t, 1)).

To this binomial number of particles, one has to add the independent number of
particles with law L(Mt |Ms = 0). Therefore, the problem is reduced to the computation
of L(Mt |Ms = 0). For simplicity, we will compute L(Mt |Mτ = 0) since the case s > τ is
similar. More precisely, we will compute L(Mt) when L(Mτ ) = δ0.

Recall that Zt,n is the Bernoulli random variable corresponding to the presence in the
output (1, +∞) at time t of the particle number n. On the event {M0 = 0}, the process
(Mt)t>0 is then defined by (5). Let us consider the Markov process (Xt)t>0 with state

space R+ ∪ {e} constructed in Section 1. Let ((X
[n]
t )t>0)n∈N be independent instances of

(Xt)t>0 starting from 0, independent of (Ct)t>0. One has

Zt,n :=

{

I(1,+∞)(X
[n]
t−Tn

) if t > Tn

0 if not.

Thus, for any t > τ , any n ∈ N
∗ and any 0 6 t1 6 · · · 6 tn 6 t − τ

L(Zt,1, . . . , Zt,n | T1 = t1, . . . , Tn = tn, Ct−τ = n) = Q(t1, t) ⊗ · · · ⊗ Q(tn, t),

where for any 0 6 s 6 t, Q(s, t) is the probability measure on {0, 1} defined by

Q(s, t) =

{

δ0 if t < s + τ

(1 − p(s, t, 0)) δ0 + p(s, t, 0) δ1 if t > s + τ .

Therefore, for any α ∈ R, any t > τ , any n ∈ N
∗ and any 0 6 t1 6 · · · 6 tn 6 t − τ

E
(

eαMt | T1 = t1, . . . , Tn = tn, Ct−τ = n
)

=

n
∏

i=1

Ψt,α(ti), (21)

where for any s such that 0 6 s 6 t

Ψt,α(s) := 1 + (eα − 1)p(s, t, 0). (22)

Recall now that (Ct)t>0 = (NF (t))t>0 and that (Tn)n∈N∗ = (G(Un))n∈N. For any t > τ , any
α ∈ R, and any n ∈ N, one can write

E
(

eαMt|Ct−τ = n
)

= E
(

E
(

eαMt| T1, . . . , Tn, Ct−τ = n
))

= E
(

E
(

eαMt|G(U1), . . . , G(Un), NF (t−τ) = n
))

. (23)

Since (Nt)t>0 is a simple Poisson process with jump times (Un)n∈N∗ , one has

L(U1, . . . , Un |NF (t−τ) = n) = σn (24)
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where σn is the law of the order statistics of the uniform law over the cube Kn :=
[0, F (t − τ)]n. The support of σn is the simplex ∆n := {0 6 u1 6 · · · 6 un 6 F (t − τ)}.
Therefore, by virtue of (24) and (21), equation (23) gives

E
(

eαMt |Ct−τ = n
)

=

∫

∆n

Ψt,α(G(u1)) · · ·Ψt,α(G(un)) dσn(u1, . . . , un)

= (n!)−1
∑

σ∈Σn

∫

∆n

Ψt,α(G(uσ(1))) · · ·Ψt,α(G(uσ(n))) dσn(u1, . . . , un)

=

∫

Kn

Ψt,α(G(u1)) · · ·Ψt,α(G(un)) |K|−n du1 · · · dun

=

(

1

F (t − τ)

∫ F (t−τ)

0

Ψt,α(G(u)) du

)n

.

Thus, by (19), (22) and (20) the formula above gives

E
(

eαMt |Ct−τ = n
)

=

(

1 +
eα − 1

F (t − τ)

∫ t−τ

0

λ(v) p(v, t, 0) dv

)n

.

Since L(Ct−τ ) = P(F (t − τ)), one obtains finally

E
(

eαMt

)

= E
(

E
(

eαMt |Nt−τ

))

= e(eα−1)r(t),

where by definition

r(t) =

∫ t−τ

0

λ(u) p(u, t, 0) du

=

∫ t−τ

0

λ(u) exp

(

−

∫ t−u

0

κ(u + w, ρw) dw

)

du.

Therefore, Mt has the Laplace transform of a Poisson distribution with intensity r(t),
which concludes the proof.

Proof of Corollary 2.2. The formula (11) for the infinitesimal generators of (Mt)t>0 follows
immediately from (8) and Lemma 3.1. Namely, one has for any 0 6 s 6 t and any x ∈ R+

∂tp(s, t, x) = −κ(t, x + ρ(t − s)) p(s, t, x).

Since p(t, t, x) = 1 for any t > 0 and any x ∈ R+, we get that ∂t=sp(s, t, 1) = −µ(s). Now,
the following basic rule of calculus

∂t

∫ t

s

F (t, u)du = F (t, t) +

∫ t

s

(∂1F )(t, u)du

gives immediately that for any s, t with τ 6 s 6 t

∂tr(s, t) = λ(t − τ) p(t − τ, t, 0) −

∫ t−τ

s−τ

κ(t, 1 + ρ(t − u))λ(u) p(u, t, 0) du.

Therefore one obtains ∂t=sr(s, t) = −λ(s−τ)p(s−τ, s, 0), and the conclusion follows from
Lemma 3.1.

17



Lemma 3.1. Let T := {(s, t) ∈ R
2 with 0 6 s 6 t} and let p : T → (0, 1] and b : T → R+

be two bounded piecewise C1 functions. Let (Rt)t>0 be a continuous time stochastic process
with state space N such that L(Rt |Rs = n) = B(n, p(s, t)) ∗ P(λ(s, t)) for any (s, t) ∈ T
and any n ∈ N. Then the following two properties hold.

1. The process (Rt)t>0 is Markov if and only if p and λ satisfy to the following equations

(a) p(t, t) = 1 and λ(t, t) = 0 for any t > 0;

(b) p(s, t) = p(s, u)p(u, t) for any 0 6 s 6 u 6 t;

(c) λ(s, t) = λ(s, u)p(u, t) + λ(u, t) for any 0 6 s 6 u 6 t.

2. If (Rt)t>0 is Markov, its infinitesimal generators (Lt)t>0 are given for any s > 0,
any function f : N → R and any n ∈ N by

Lsf(n) = −n(∂t=sp(s, t))(f(n − 1) − f(n)) + (∂t=sλ(s, t))(f(n + 1) − f(n)),

where by notational convention f(−1) = f(0).

Proof of Lemma 3.1. The process (Rt)t>0 is Markov if and only if for any 0 6 s 6 u 6 t
and any n ∈ N, the mixture obtained by mixing the family {L(Rt|Ru = m), m ∈ N}
with the law L(Ru|Rs = n) is precisely L(Rt|Rs = n). By assertion 1 of Lemma 3.2 and
assertion 1 of Lemma 3.3, this statement is equivalent to

B(n, p(s, t)) ∗ P(λ(s, t)) = B(n, p(s, u)p(u, t)) ∗ P(λ(s, u)p(u, t) + λ(u, t)).

The first part of Lemma 3.1 follows by considering the particular cases n = 0 and s = u = t
or by considering Laplace or Fourier transforms or generating functions. It remains to
derive the second part of Lemma 3.1, namely the formula for the infinitesimal generators.
By density, it is enough to consider functions of the form f(n) = exp(αn) where α ∈ iR
and i2 = −1. Define for any n ∈ N and any 0 6 s 6 t the quantity

Qn(α, s, t) := E(f(Zt) |Zs = n) .

Since L(Rt |Rs = n) = B(n, p(s, t)) ∗ P(λ(s, t)), we get by denoting β := eα − 1 that

Qn(α, s, t) = E
(

eαZt |Zs = n
)

= (p(s, t)β + 1)n exp (λ(s, t)β).

Therefore, one has by taking the partial derivative in t

∂tQn(α, s, t) = nβQn−1(α, s, t)∂tp(s, t) + βQn(α, s, t)∂tλ(s, t),

where by notational convention Q−1(α, s, t) = 0. But one has also that for any m ∈ N

Qm+1(α, s, t) − Qm(α, s, t) = p(s, t)βQm(α, s, t).

Thus, this gives by denoting ∆m(α, s, t) := Qm+1(α, s, t) − Qm(α, s, t)

∂tQn(α, s, t) = na(s, t)∆n−1(α, s, t) + b(s, t)∆n(α, s, t),
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where ∆−1 := 0 and where

a(s, t) := −∂t log p(s, t) and b(s, t) :=
∂tλ(s, t)

p(s, t)
.

Since p(s, s) = 1 by virtue of the first part of Lemma 3.1, we have actually that

a(s, s) = −∂t=sp(s, t) and b(s, s) = ∂t=sλ(s, t).

In the other hand, one has that ∆m(α, s, s) = f(m + 1) − f(m), and the desired formula
for Ls follows finally from the definition of the infinitesimal generators

Lsf(n) := ∂t=s[t 7→ E(f(Zt) |Zs = n)].

Lemma 3.2 (Bernoulli process and mixtures). Let (X, Y ) be a couple of random
variables. Then the following statements are true for any p, p′ ∈ [0, 1], and any n ∈ N.

1. If L(Y ) = B(n, p′) and L(X | Y ) = B(Y, p), then L(X) = B(n, pp′). In other words,
the binomial distribution B(n, pp′) can be obtained by mixing the family of binomial
distributions {B(m, p), m ∈ N} with the binomial distribution B(n, p′);

2. If L(Y ) = NB(n, p) and L(X | Y ) = NB(Y, p′), then L(X) = NB(n, pp′). In other
words, the negative-binomial distribution NB(n, pp′) can be obtained by mixing the
family of negative-binomial distributions {NB(m, p′), m ∈ N} with the negative-
binomial distribution NB(n, p);

3. Let (An)n∈N and (Bn)n∈N be two independent Bernoulli processes with parameters
p and p′ respectively. Then the compound (ABn

)n∈N is a Bernoulli process with
parameter pp′.

Proof of Lemma 3.2. Some of the desired assertions are well known, but we will give full
proofs here. Assertion 1 follows by considering generating functions, or Laplace or Fourier
transforms. Namely, we simply write for any s ∈ (0, 1)

E
(

sX
)

= E
(

E
(

sX |Y
))

= E
(

(1 + p(s − 1))Y
)

= (1 + p′p(s − 1))n,

and thus L(X) = B(n, pp′). A direct computation of P(X = k) shows that assertion 1 is
in fact a consequence of the following elementary Abel type binomial identity, cf. [Rom84]

n
∑

m=k

(

m

k

)(

n

m

)

am−kbn−m =

(

n

k

)

(a + b)n−k.

Assertion 2 follows easily via generating functions since for any s ∈ (0, 1), one has

E
(

sX
)

= E
(

E
(

sX |Y
))

= E

(

(

p′s

1 − s(1 − p′)

)Y
)

=

(

pp′s

1 − s(1 − pp′)

)n

,

and thus L(X) = NB(n, pp′). Recall that the nth jump time of a Bernoulli process of
parameter p follows a negative-binomial distribution NB(n, p). Thus, assertions 1 and
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2 are direct consequences of assertion 3. Conversely, the compound process (ABn
)n∈N

satisfies for any m ∈ N

L
(

ABn

∣

∣Bn = m
)

= B(m, p).

Thus, assertion 3 is a direct consequence of assertion 1 by taking X = AY and Y = Bn.
One can construct (An)n∈N and (Bn)n∈N by taking A0 = 0, B0 = 0, and

An = ζ1 + · · ·+ ζn and Bn = ξ1 + · · · + ξn,

where (ζn)n∈N∗ and (ξn)n∈N∗ are two independent sequences of i.i.d. Bernoulli random
variables with common law B(1, p) and B(1, p′) respectively. Since these random variables
take their values in {0, 1}, we get

X = ABn
=

Bn
∑

i=1

ζi =

ξ1+···+ξn
∑

i=1

ζi =

n
∑

i=1

ξiζi.

The ξ1ζ1, . . . , ξnζn are i.i.d. Bernoulli random variables with common law B(1, pp′). The
intuition is enlighten if we imagine a gamer who tosses n times independently two inde-
pendent coins with probability of success p and p′.

Lemma 3.3 (Poisson process and mixtures). Let (X, Y ) be a couple of random
variables. Then the following statements are true for any p ∈ [0, 1], any λ ∈ R+, and any
n ∈ N.

1. If L(Y ) = P(λ) and L(X | Y ) = B(Y, p), then L(X) = P(pλ). In other words,
the Poisson distribution P(pλ) can be obtained by mixing the family of binomial
distributions {B(m, p), m ∈ N} with the Poisson distribution P(λ);

2. If L(Y ) = NB(n, p) and L(X | Y ) = Γ(Y, λ), then L(X) = Γ(n, pλ). In other words,
the gamma distribution Γ(n, pλ) can be obtained by mixing the family of gamma
distributions {Γ(m, λ), m ∈ N} with the negative-binomial distribution NB(n, p);

3. Let (Nt)t>0 be a simple Poisson process of intensity λ and let (An)n∈N be a Bernoulli
process with parameter p, independent of (Nt)t>0. Then the compound (ANt

)t>0 is a
simple Poisson process of intensity pλ.

Proof of Lemma 3.3. Some of the desired assertions are well known, but we will give
full proofs here. Assertion 1 follows immediately via generating functions since for any
s ∈ (0, 1)

E
(

sX
)

= E
(

E
(

sX |Y
))

= E
(

(1 + p(s − 1))Y
)

= epλ(s−1),

and thus L(X) = P(pλ). Alternatively, one can derive assertion 1 from assertion 1 of
Lemma 3.2 by considering the Poisson limit, namely

B(n, pn) −→
n→+∞

P(λ) weakly when npn −→
n→+∞

λ.

Assertion 2 follows easily by computing the density of L(X). Namely, for any t > 0,

+∞
∑

m=n

λm

(m − 1)!
tm−1e−λt

(

m − 1

n − 1

)

pn(1 − p)m−n =
(pλ)n

n!
tn−1e−pλt,
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and thus L(X) = Γ(n, pλ). Alternatively, assertion 2 can be deduced from assertion 2 of
Lemma 3.2 by considering the negative-binomial approximation of the gamma distribu-
tion. Namely, let us denote for any α ∈ R and any distribution µ by Dα(µ) the law of αZ
when L(Z) = µ. Then, Drn

(NB(m, pn)) converges weakly toward Γ(m, λ) when

pn −→
n→+∞

0 and
rn

pn

−→
n→+∞

λ > 0.

In particular, the case m = 1 corresponds to the approximation of the exponential distri-
bution E(λ) = Γ(1, λ) by dilations Drn

(G(pn)) of geometric distributions G(pn).
Recall the the nth jump time of a simple Poisson process of intensity λ follows a gamma

distribution Γ(n, λ). Consequently, assertions 1 and 2 follow from assertion 3. Conversely,
the compound Poisson process (ANt

)t>0 satisfies

L(ANt

∣

∣Nt = n) = B(n, p).

Thus, assertion 3 is a consequence of assertions 1 and 2 by taking X = AY and Y = Nt.
We have also to mention for the sake of completeness the classical result which states

that the negative-binomial distribution can be obtained by mixing a family of Poisson
distributions with a gamma distribution.

Lemma 3.4 (Killed Markov process and Feynman-Kac formulæ). Let (Xt)t>0 be a
Markov process with state space S and infinitesimal generators (Lt)t>0. Let Se := S ∪{e}
be an extended state space with e 6∈ S. Let κ : R+ × S → R be a bounded continuous
function. For any 0 6 s 6 t, let Pe

s,t be the linear functional operator defined for any
suitable f : Se → R and any x ∈ Se by

Pe
s,t(f)(x) =

{

E(f(Xt)Ks,t|Xs = x) + (1 −E(Ks,t|Xs = x))f(e) if x 6= e

f(e) if x = e,

where Ks,t := e−
∫

t

s
κ(u,Xu) du. Then (Pe

s,t)06s6t is a Markov semi-group and its infinitesimal
generators are given for any t > 0, any suitable f : Se → R and any x ∈ Se by

Le
t (f)(x) =

{

Lt(f)(x) + κ(t, x)(f(e) − f(x)) if x 6= e

0 if x = e.
(25)

Proof. The proof is classical and can be based on Itô formula, cf. for example [DM04]
and [KS91]. Infinitesimal generators of the form (25) are sometimes called “Schrödinger
operators with potential κ”. In particular, when S = R and Lt(f)(x) = ρf ′(x) for some
real constant ρ, the process (Xt)t>0 is deterministic with L(Xt|Xs = x) = δx+ρ(t−s), and
we thus recover (2).
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