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MIXING DIFFEOMORPHISMS AND FLOWS WITH PURELY

SINGULAR SPECTRA.

BASSAM R. FAYAD

Abstract. We give a geometric criterion that guaranteesa purely singular
spectral type for a dynamical system on a Riemannian manifold. The crite-
rion, that is based on the existence of fairly rich but localized periodic approx-
imations, is compatible with mixing. Indeed, we use it to construct examples
of smooth mixing flows on the three torus with purely singular spectra.

1. Introduction

1.1. Mixing is one of the principal characterisctics of stochastic behavior of a
dynamical system (T,M, µ). It is a spectral property and in the great majority
of cases it is a consequence of much stronger properties of the system, such as
the K-property or fast correlation decay, which imply a Lebesgue spectrum for the
associated unitary operator: f → f ◦ T defined on L2(M,µ,C). In this paper, we
prove the following

Theorem. There exist on Td, d ≥ 3, volume preserving flows and diffeomorphisms
of class C∞ that are mixing and have purely singular spectra.

The only previously known examples where mixing of the system was accompa-
nied by singular spectrum of the associated unitary operator were obtained in an
abstract measure theoretical or probabilistic frame, such as Gaussian and related
systems which by their nature do not come from differentiable dynamics, or rank
one and mixing constructions which do not have yet C∞ realizations.

To obtain our examples, we introduce a criterion for singular spectrum, based on
the existence of fairly rich families of almost periodic sets, that is compatible with
mixing, albeit at a slow rate. Then, we construct smooth mixing reparametrizations
of some Liouvillean linear flows on T3 satisfying the criterion, hence displaying a
purely singular spectrum. As a by-product we observe, due to Host’s theorem [8],
that the latter mixing reparametrizations are actually mixing of all orders.

1.2. Periodic approximations and singular spectra.

A basic property implying the singularity of the spectrum of (T,M, µ) is rigidity,
i.e. the existence of a sequence of times tn such that for any measurable set A ⊂M
it holds that µ (T tnA△A→ 0) where A△B stands for the symetric difference be-
tween A and B. For smooth systems the latter property is often obtained as a
consequence of a stronger one, namely the existence of cyclic (or more generally
periodic) approximations in the sense of Katok and Stepin, see [11], i.e. the ex-
istence of a sequence of almost periodic towers such that any measurable set can
asymptotically be approximated by levels from the indivual towers.
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Rigidity of (T,M, µ) is clearly not compatible with mixing. To get a criterion that
guarantees a singular spectrum without precluding mixing, we relax the concept of
periodic approximations to that of having strongly periodic towers with nice levels
whose total measure might tend to zero but such that any measurable set can be
covered by unions of levels from possibly different towers.

Definition (Slowly coalescent periodic approximations). Let T be an ergodic
transformation of a Riemannian manifold M preserving a volume µ. We say that
the dynamical system (T,M, µ) dispalys slowly coalescent periodic approximations,
if there exists γ > 1 and a sequence of integers kn+1 ≥ γnkn such that for every
n ∈ N there exists a sequence

Cn =
⋃

i∈N

Bn,i

where the Bn,i, i = 0, . . . , are balls of M satisfying

(i) sup
i∈N

r(Bn,i) −→
n→∞

0,

(ii) µ
(

T knBn,i△Bn,i

)

≤ γ−nµ(Bn,i), (where △ denotes the symetric difference
between sets),

(iii) µ

(

⋂

m∈N

⋃

n≥m

Cn

)

= 1.

In Section 2 we will prove the following theorem

Theorem (Criterion for the singularity of the spectrum). A dynamical system
(T,M, µ) dispalying slowly coalescent periodic approximations has a purely singular
spectral type.

Remark 1. In general, µ(Cn) need not converge to zero. For a rotation of the circle,
for example, it tends to the contrary to 1, in which case the terminology slowly
coalescent becomes a euphemism. For a mixing system (T,M, µ) however, (ii)
implies that µ(Cn) → 0 and this is what we refer to by coalescent. The terminology
slowly coalescent is then used to refer to property (iii) that is the key property
in guaranteeing a purely singular spectrum. We will abreviate slowly coalescent
periodic approximations with SCPA.

Remark 2. If the sets Cn satisfy adequate independence conditions, (iii) will follow
from the Borel Cantelli Lemma if

∑

µ(Cn) = +∞.

1.3. Spectral type of reparametrized linear flows.

The problem of understanding the ergodic and spectral properties of reparametriza-
tions of linear flows on tori were raised by A. N. Kolmogorov in his I.C.M. address
of 1954 [16]. Since then and starting with the work of Kolmogorov himself, this
problem has been intesively studied and a surprisingly rich variety of behaviors were
discovered to be possible for the reparametrized flows. We say surprisingly because
at the time when Kolmogorov raised the problem, some strong restrictions on the
spectral type of the reparametrized flow were expected to hold, at least in the case
of real analytic reparametrizations, Cf. [16] as well as the appendix by Fomin to
the russian version of the book of Halmos on ergodic theory where absence of mixed
spectrum was conjectured for smooth reparametrizations of linear flows.
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We denote by Rt
α the linear flow on the torus Tn given by

dx

dt
= α,

where x ∈ Tn and α is a vector of Rn. Given a continuous function φ : Tn → R∗
+

we define the reparameterization flow T t
α,φ by

dx

dt
=

α

φ(x, y)
.

If the coordinates of α are rationally independent then the linear flow Rt
α is

uniquely ergodic and so is T t
α,φ that preserves the measure with density φ. Other

properties of the linear flow may change under reparameterization. While the linear
flow has discrete (pure point) spectrum with the group of eigenvalues isomorphic
to Zn, a continuous time change may yield a wide variety of spectral properties.
This follows from the theory of monotone (Kakutani) equivalence [10] and the fact
that every monotone measurable time change is cohomologous to a continuous one
[17]. However, for sufficiently smooth reparameterizations the possibilities are more
limited and they depend on the arithmetic properties of the vector α.

If α is Diophantine and the function φ is C∞, then the reparameterized flow
is smoothly isomorphic to a linear flow. This was first noticed by A. N. Kol-
mogorov [16]. Herman found in [7] sharp results of that kind for the finite regularity
case. Kolmogorov also knew that for a Liouville vector α a smooth reparametriza-
tion could be weak mixing, or equivalently the associated unitary operator to the
reparametrized flow could have a continuous spectrum.

M. D. Šklover proved in [18] the existence of real-analytic weak mixing reparametriza-
tions of some Liouvillean linear flows on T2; his result being optimal in that he
showed that for any real-analytic reparametrization φ other than a trigonometric
polynomial there is α such that T t

α,φ is weakly mixing. In [2], it was shown that

for any Liouvillean translation flow Rt
α on the torus Tn, n ≥ 2, the generic C∞

reparametrization of Rt
α is weakly mixing.

Continuous and discrete spectra are not the only possibilities. In [4], B. Fayad,
A. Katok and A. Windsor have proved that for every α ∈ R2 with a Liouvillean
slope there exists a strictly positive C∞ function φ such that the flow on T2 T t

α,φ

has a mixed spectrum since it has a discrete part generated by only one eigenvalue.
They also construct real-analytic examples for a more restricted class of Liouvillean
α.

Recently, M. Guenais and F. Parreau [6] achieved real-analytic reparametriza-
tions of linear flows on T2 that have an arbitrary number of eigenvalues. They
even construct an example of a reparametrization of a linear flow on T2 that is
isomorphic to a linear flow on T2 with ”exotic” eigenvalues, i.e. not in the span of
the eigenvalues of the original linear flow.

Finally, unlike continuous or descrete spectra, there exist real-analytic functions
φ that are not trigonometric polynomials, and for which a mixed spectrum is pre-
cluded for the flow T t

α,φ for any choice of α. Indeed, it was proven in [5] that for
a class of functions satisfying some regularity conditions on their Fourier coeffi-
cients the following dichotomy holds: T t

α,φ either has a continuous spectrum or is

L2 isomorphic to a constant time suspension.
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Reparametrizations and mixing. Katok [9] showed that for a function φ > 0 of
class C5 any reparametrized flow T t

α,φ has a simple spectrum, a singular maximal
spectral type, and cannot be mixing. The singularity of the spectrum was extended
by A. V. Kočergin to Lipschitz reparametrizations [12]. The argument is based on
a Denjoy–Koksma type estimate which fails in higher dimension [19]. Based on the
latter fact, it was shown in [3] that there exist α ∈ R3 and a real-analytic strictly
positive function φ defined on T3, such that the reparametrized flow T t

α,φ is mixing.
Recently Kočergin showed that for Hölder reparametrizations of some Diophan-

tine linear flows on T2 mixing is possible [14].
The mixing examples obtained by reparametrizations of linear flows belong to

a variety of fairly slow mixing systems, also including the mixing flows on surfaces
constructed by Kočergin in the seventies [13], for which the type and the multiplicity
of the spectrum remain undetermined.

Modifying the reparametrizations of [3], it is possible to maintain mixing while
the time one map of the reparametrized flow is forced to satisfy the SCPA criterion
stated above, thus yielding

Theorem. For d ≥ 3, there exists α ∈ Rd and a strictly positive function φ over
Td of class C∞ such that the reparametrized flow T t

α,φ is mixing and has a singular
maximal spectral type with respect to the Lebesgue measure.

A dynamical system (T,M, µ) (or flow (T t,M, µ)) is said to be mixing of order

l ≥ 2 if, for any sequence {(u(1)
n , · · · , u(l−1)

n )}n∈N
, where for i = 1, · · · , l − 1 the

{u
(i)
n }n∈N

are sequences of integers (or real numbers) such that lim
n→∞

u(i)
n = ∞, and

for any l-upple (A1, · · · , Al) of measurable subsets of M , we have

lim
n→∞

µ
(

T−u(1)
n −...−u(l−1)

n Al ∩ · · · ∩ T−u(1)
n A2 ∩A1

)

= µ(Al−1) · · ·µ(A1).

The general definition of mixing corresponds to mixing of order 2. A system
is said to be mixing of all orders if it is mixing of order l for any l ≥ 2. Host’s
theorem [8] asserts that a mixing system with singular spectrum is mixing of all
orders, hence we get

Corollary. For d ≥ 3, there exists α ∈ Rd and a strictly positive function φ over
Td of class C∞ such that the reparametrized flow T t

α,φ is mixing of all orders.

The paper consists of two sections. In Section 2 we prove Theorem-Criterion
1.2. In Section 3 we apply the criterion to obtain Theorem 1.3.

2. Slowly coalescent periodic approximations

In this section we prove Theorem 1.2.

2.1. We will use the following criterion that guarantees a singular spectrum for
(T,M, µ):

Proposition. Let (T,M, µ) be a dynamcial system. If for any complex nonzero
function f ∈ L2

0(M,µ), i.e.
∫

M
f(x)dµ(x) = 0, there exists a measurable set E ⊂M

with µ(E) > 0, and a strictly increasing sequence ln, such that for every x ∈ E we
have

lim sup
n→∞

1

n

∣

∣

∣

∣

∣

n−1
∑

i=0

f(T lix)

∣

∣

∣

∣

∣

> 0 (2.1)
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then the maximal spectral type of the unitary operator associated to (T,M, µ) is
singular.

Proof. Assume that T has an absolutely continuous component in its spectrum.
Then there exists f ∈ L2

0(M,µ) such that the spectral measure corresponding to
f on the circle S writes as σf (dx) = g(x)dx where g ∈ L1(S,R+, dx) is bounded.
With the notation

Snf(x) =

n−1
∑

i=0

f(T li(x))

we write spectrally

∥

∥

∥

∥

Snf

n

∥

∥

∥

∥

2

L2

=
1

n2

∫

S

∣

∣

∣

∣

∣

n−1
∑

i=0

zli

∣

∣

∣

∣

∣

2

g(z)dz

≤
supz∈Sg(z)

n2

∫

S

∣

∣

∣

∣

∣

n−1
∑

i=0

zli

∣

∣

∣

∣

∣

2

dz

≤
supz∈Sg(z)

n
.

From this we deduce by the Borel Cantelli Lemma that Sn2f/n2 converges to
zero for almost every x ∈M . By another use of the Borel Cantelli Lemma we can

then interpolate between n2 and (n+ 1)
2

showing that for almost every x ∈M we
have Snf(x)/n −→

n→∞
0 which overrules (2.1). �

2.2. Proposition 2.1 has the following immediate corollary

Corollary. Let (T,M, µ) be a dynamcial system. If for any complex nonzero
function f ∈ L2

0(M,µ), there exist τ > 1, a measurable set E ⊂ M with µ(E) > 0
and a sequence kn+1 ≥ τn+1kn such that for every x ∈ E we have

lim sup
n→∞

1

[τn]

∣

∣

∣

∣

∣

∣

[τn]−1
∑

i=0

f(T iknx)

∣

∣

∣

∣

∣

∣

> 0, (2.2)

then the maximal spectral type of the unitary operator associated to (T,M, µ) is
singular.

Proof. The criterion of Proposition 2.1 holds with the set E and the sequence ln
given by:
k1, . . . , [τ ]k1, . . . , kj , 2kj, 3kj , . . . , [τ

j ]kj , kj+1, 2kj+1, . . . , [τ
j+1]kj+1, . . . �

2.3. In the sequel we will assume that (T,M, µ) satisfies (i) − (iii) of Theorem
1.2. We fix 1 < τ < γ and an arbitrary nonzero function f ∈ L2

0(M,µ). For ε > 0
we define the set

Dε = {x ∈M |f(x) ≥ 2ε} .

Since f ∈ L2
0(M,µ) is not null, there exists ε0 > 0 such that µ(Dε0) > 0.

Theorem 1.2 will hold proved if we show that:

Proposition. Under the conditions of Theorem 1.2, we have that, for µ a.e. point
x ∈ Dε0 , there exits infinitly many integers n such that

1

[τn]

[τn]−1
∑

i=0

f(T iknx) ≥ ε0. (2.3)
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2.4. For x ∈ Dε0 , let N(x) ∈ R+ ∪ {∞} be such that for every n ≥ N(x), (2.3)
fails for x. The function N(x) is naturally measurable and we have to show that
almost surely it is equal to infinity. This will clearly hold if we prove the following

Proposition. Under the conditions of Theorem 1.2, for every N ≥ 0 and for every
measurable set D ⊂ Dε0 , we can find a set D ⊂ D satisfying

• µ(D) > 0;
• For every x ∈ D, (2.3) holds for some n ≥ N .

2.5. Define f0 = min(f, 2ε0). To prove Proposition 2.4 we will need the following
Lemma

Lemma. There exists N0 such that if n ≥ N0 and Bn is a set satisfying (ii) of
Theorem 1.2 and

∫

Bn

f0(x)dµ(x) ≥
3

2
ε0µ(Bn)

then there exists a set Bn ⊂ Bn with µ(Bn) ≥ µ(Bn)/5 such that (2.3) holds for
every x ∈ Bn.

Proof. Let Bn and kn be as in (ii) of Theorem 1.2. For x ∈M , we use in this proof
the notation

Snf(x) :=

[τn]−1
∑

i=0

f(T iknx).

Define

B̃n =

[τn]−1
⋃

i=0

T−iknBn B̂n =

[τn]−1
⋂

i=0

T−iknBn.

Clearly B̂n ⊂ Bn ⊂ B̃n and since τ < γ, (ii) implies for n sufficiently large

µ(B̃n△B̂n) ≤
ε0
100

µ(Bn). (2.4)

Define f̃0 = f0 on Bn and equal to zero otherwise. We then have

∫

B̃n

Snf̃0(x)

[τn]
dµ(x) =

∫

M

Snf̃0(x)

[τn]
dµ(x) =

∫

M

f̃0(x)dµ(x) =

∫

Bn

f0dµ(x),

hence from our hypothesis
∫

B̃n

Snf̃0(x)

[τn]
dµ(x) ≥

3

2
ε0µ(Bn). (2.5)

On the other hand, since f̃0 ≤ 2ε0 we get

∫

B̃n

Snf̃0(x)

[τn]
dµ(x) ≤ µ(B̃n)ε0 + µ

({

x ∈ B̃n

∣

∣

∣

∣

∣

Snf̃0(x)

[τn]
≥ ε0

})

2ε0

which in light of (2.4) and (2.5) leads to

µ

({

x ∈ B̃n

∣

∣

∣

∣

∣

Snf̃0(x)

[τn]
≥ ε0

})

≥ (1/4 − 1/200)µ(Bn),
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which using (2.4) again yields

µ

({

x ∈ B̂n

∣

∣

∣

∣

∣

Snf̃0(x)

[τn]
≥ ε0

})

≥ 1/5µ(Bn),

which is the desired inequality since Snf̃0 and Snf0 coincide on B̂n ⊂ Bn. �

2.6. Proof of Proposition 2.4. Let D, a measurable subset ofDε0 such that µ(D) >
0, and N ∈ N be fixed. Define N = sup(N0, N) where N0 is as in Lemma 2.5.

By Vitali’s Lemma and properties (i) and (iii), there exists a constant 0 < ϑ < 1
such that, given any ball B in M , we can find a familly of balls Bni

⊂ B such that

(P1) The Bni
are disjoint;

(P2) Every Bni
belong to some Cn with n ≥ N ;

(P3) µ
(

⋃

Bni

)

≥ ϑµ(B).

For x ∈ D ⊂ Dε0 , we have f0 = 2ε0. Considering a Lebesgue density point we
obtain, for any ǫ > 0, a ball B ⊂M such that

(B1) µ(B ∩D) ≥ (1 − ǫ)µ(B);

(B2)

∫

B

f0(x)dµ(x) ≥ (2 − ǫ)ε0µ(B).

We can choose ǫ > 0 arbitrarilly small in (B1), (B2) and then apply (P1)-(P3)
to the above ball B. We can hence obtain a ball Bn ∈ Cn such that n ≥ N and
µ(Bn ∩ D) ≤ (1 − 1/10)µ(Bn) while

∫

Bn
f0(x)dµ(x) ≥ 3/2ε0µ(Bn). We conclude

using Lemma 2.5. �

3. Application: Slow mixing and singular spectrum

This section is devoted to the proof of Theorem 1.3.

3.1. Reduction to special flows.

Definition. (Special flows) Given a Lebesgue space L, a measure preserving trans-
formation T on L and an integrable strictly positive real function defined on L we
define the special flow over T and under the ceiling function ϕ by inducing on
M(L, T, ϕ) = L× R/ ∼, where ∼ is the identification (x, s + ϕ(x)) ∼ (T (x), s),the
action of

L× R → L× R

(x, s) → (x, s+ t).

If T preserves a unique probability measure λ, then the special flow will preserve
a unique probability measure that is the normalized product measure of λ on the
base and the Lebesgue measure on the fibers.

We will be interested in special flows above minimal translations Rα,α′ of the
two torus and under smooth functions ϕ(x, y) ∈ C∞(T2,R∗

+) that we will denote
by T t

α,α′,ϕ. For r ∈ N
⋃

{+∞}, we denote by Cr(T2,R) the set of real functions

on R2 of class Cr and Zd-periodic. We denote by Cr(Td,R∗
+) the set of strictly

positive functions in Cr(Td,R). Without loss of generality, we will consider cealing
function ϕ with the property

∫

T2 ϕ(x, y)dxdy = 1.
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In all the sequel we will use the following notation, for m ∈ N,

Smϕ(x, y) =

m−1
∑

l=0

ϕ(x + lα, y + lα′)

With this notation, given t ∈ R+ we have for z ∈ T2

T t(z, 0) =
(

R
N(t,z)
α,α′ (z), t− ϕN(t,z)(z)

)

where N(t, z) is the largest integer m such that t− ϕm(x) ≥ 0, that is the number
of fibers covered by z during its motion under the action of the flow until time t.

By the equivalence between special flows and reparametrizations Theorem 1.3
follows if we prove

Theorem. There exists a vector (α, α′) ∈ R2 and ϕ ∈ C∞(T2,R∗
+) such that the

special flow T t
α,α′,ϕ is mixing and satisfies (i)− (iii) of Theorem 1.2, which implies

that the spectral type of the flow is purely singular.

The equivalence between the above theorem and Theorem 1.3 is standard and
can be found in [3], Section 4.

We will now undertake the construction of the special flow T t
α,α′,ϕ. We will first

choose a special translation vector on T2, then we will give two criteria on the
Birkhoff sums of the special function ϕ above Rα,α′ that will guarantee mixing and
SCPA. Finally, we build a smooth function ϕ satisfying these criteria.

3.2. Choice of the translation on T2. Given a real number u, we will use the
following notations: [u] to indicate the integer part of u, {u} its fractional part and
|||u||| its closest distance to integers. Let α be an irrational real number, then there
exists a sequence of rationals { pn

qn
}

n∈N
, called the convergents of α, such that

|||qn−1α||| < |||kα|||, ∀k < qn (3.1)

and for any n ∈ N

1

qn(qn + qn+1)
≤ (−1)

n
(α−

pn

qn
) ≤

1

qnqn+1
. (3.2)

We recall also that any irrational number α ∈ R − Q has a writing in continued
fraction

α = [a0, a1, a2, ...] = a0 + 1/(a1 + 1/(a2 + ...)),

where {ai}i≥1 is a sequence of integers ≥ 1, a0 = [α]. Conversely, any sequence

{ai}i∈N
corresponds to a unique number α. The convergents of α are given by the

ai in the following way:

pn = anpn−1 + pn−2 for n ≥ 2, p0 = a0, p1 = a0a1 + 1,

qn = anqn−1 + qn−2 for n ≥ 2, q0 = 1, q1 = a1.

Following [19] and as in [3], we take α and α′ satisfying

q′n ≥ e3qn , (3.3)

qn+1 ≥ e3q′

n . (3.4)

Vectors (α, α′) ∈ R2 satisfying (3.3) and (3.4) are obtained by an adequate
inductive choice of the sequences an(α) and an(α′). Moreover, it is easy to see that
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the set of vectors (α, α′) ∈ R2 satisfying (3.3) and (3.4) is a continuum (Cf. [19],
Appendix 1).

3.3. Mixing criterion. We will use the criterion on mixing for a special flow
T t

α,α′,ϕ studied in [3]. It is based on the uniform stretch of the Birkhoff sums Smϕ
of the ceiling function above the x or the y direction alternatively depending on
whether m is far from qn or from q′n. From [3], Propositions 3.3, 3.4 and 3.5 we
have the following sufficient mixing criterion:

Proposition (Mixing Criterion ). Let (α, α′) be as in (3.3) and (3.4) and ϕ ∈
C2(T2,R∗

+). If for every n ∈ N sufficiently large, we have a two sets In and I ′n,
each one being equal to the circle minus two intervals whose lengths converge to
zero, such that:

• m ∈
[

e2qn/2, 2e2q′

n

]

=⇒ |DxSmϕ(x, y)| ≥
m

eqn
, for any y ∈ T and any x

such that {qnx} ∈ In;

• m ∈
[

e2q′

n/2, 2e2qn+1

]

=⇒ |DySmϕ(x, y)| ≥
m

eq′

n

, for any x ∈ T and any

y such that {q′ny} ∈ I ′n;

Then the special flow T t
α,α′,ϕ is mixing.

3.4. Criterion for the existence of slowly coalescent periodic approxima-

tions. We give now a condition on the Birkhoff sums of ϕ above Rα,α′ that is
sufficient to insure SCPA for T t

α,α′,ϕ on M = M(T2, Rα,α′ , ϕ):

Proposition. If for n sufficiently large, we have for any x such that 1/n2 ≤
{qnx} ≤ 1/n− 1/n2 and for any y ∈ T

∣

∣Sqnq′

n
ϕ(x, y) − qnq

′
n

∣

∣ ≤
1

eqn
, (3.5)

then the special flow T t
α,α′,ϕ has slowly coalescent periodic approximations as in

Definition 1.2.

Proof. Let Cn be the set of points (x, y, s) ∈ M satisfying 2/n2 ≤ {qnx} ≤ 1/n−
2/n2. It follows from the definiton of special flows and (3.5) that for (x, y, s) ∈ M
such that 1/n2 ≤ {qnx} ≤ 1/n− 1/n2 we have

T qnq′

n(x, y, s) =
(

x+ qnq
′
nα, y + qnq

′
nα

′, s+ Sqnq′

n
ϕ(x, y) − qnq

′
n

)

but from (3.2) we have that |||qnq
′
nα||| ≤ q′n/qn+1 = o(e−qn) as well as |||qnq

′
nα

′||| ≤

qn/q
′
n+1 = o(e−qn). Therefore (3.5) implies that d(T qnq′

n(x, y, s), (x, y, s)) ≤ 2/eqn .
It is therefore possible to cover Cn with a collection of balls Cn such that each ball

B ∈ Cn has radius less than 1/nqn and satisfies µ
(

T qnq′

nB△B
)

≤ e−nµ(B) which

yields conditions (i) and (ii) of Definition 1.2.
On the other hand it is clear from the difference of scale between the successive

terms of the sequence qn that the sets Cn are almost independent and the fact
that µ(Cn) ≥ 1/n inf(x,y)∈T2 ϕ(x, y) then implies by the Borel Cantelli Lemma that

µ

(

⋂

m∈N

⋃

n≥m

Cn

)

= 1, which is condition (iii) of the Definition 1.2. �
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3.5. Choice of the ceiling function ϕ. Let (α, α′) be as above and define

f(x, y) = 1 +
∑

n≥2

Xn(x) + Yn(y)

where

Xn(x) =
1

eqn
cos(2πqnx) (3.6)

Yn(y) =
1

eq′

n

cos(2πq′ny). (3.7)

Relying on the Proposition-Criterion 3.3 stated above, we proved in [3] that the
flow T t

α,α′,f is mixing. In order to keep this criterion valid but have in addition the
conditions of Criterion 3.4 satisfied we modify the ceiling function in the following
way:

• We keep Yn(y) unchanged.

• We replace Xn(x) by a trigonometric polynomial X̃n with integral zero, that is
essentially equal to 0 for {qnx} < 1/n and whose derivative has its absolute value
bounded from below by 1/eqn for {qnx} ∈ [2/n, 1/2 − 1/n] ∪ [1/2 + 2/n, 1 − 1/n].

The first listed properties of X̃n will yield Criterion 3.4 while the lower bound on
the absolute value of its derivative will insure Criterion 3.3.

More precisely, the following Proposition enumerates some properties that we
will require on X̃n and its Birkhoff sums that will be sufficient for our purposes,
and that we will realize with a specific construction at the end of the section.

Proposition. Let (α, α′) be as in Section 3.2. There exists a sequence of trigono-

metric polynomials X̃n(x) satisfying

(1)

∫

T

X̃n(x)dx = 0;

(2) For any r ∈ N, there exists N(r) ∈ N such that for every n ≥ N(r),

‖ X̃n ‖Cr ≤
1

e
qn
2

;

(3) For {qnx} ∈ [0, 1/n], |X̃n(x)| ≤
1

q′n
2 ;

(4) For {qnx} ∈ [2/n, 1/2− 1/n], X̃ ′
n(x) ≥

2

eqn
, as well as

for {qnx} ∈ [1/2 + 2/n, 1 − 1/n], X̃ ′
n(x) ≤ −

2

eqn
;

(5) For n ∈ N sufficiently large,

∥

∥

∥

∥

∥

∥

Sqn

∑

l≤n−1

X̃l

∥

∥

∥

∥

∥

∥

≤
1

q′n
2 ;

(6) For n ∈ N sufficiently large, we have for any m ∈ N,

∥

∥

∥

∥

∥

∥

Sm

∑

l≤n−1

X̃ ′
l

∥

∥

∥

∥

∥

∥

≤ qn.

Before we prove this proposition, let us show how it allows to produce the ex-
ample of Theorem 3.1.

3.6. Proof of Theorem 3.1. Define for some n0 ∈ N

ϕ(x, y) = 1 +

∞
∑

n=n0

X̃n(x) + Yn(y) (3.8)
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where Yn is as in (3.7) and X̃n is as in the proposition above. From (3.7) and

Property (2) of X̃n, we have that ϕ ∈ C∞(T,R). Also from (3.7) and (2) again, we
can choose n0 sufficiently large so that ϕ is strictly positive. We then have

Theorem. Let (α, α′) ∈ R2 be as in Section 3.2 and ϕ be given by (3.8). Then
the special flow T t

α,α′,ϕ satisfies the conditions of Propositions 3.3 and 3.4 and is
therefore mixing with a singular maximal spectral type.

Proof. The second part of Proposition 3.3 is valid exactly as in [3] since Yn has
not been modified. Briefly, the reason is that due to (3.2) and (3.3)-(3.4) we have
Yn(y + lα′) ∼ Yn(y) for every l ≤ m ≪ q′n+1 so that |SmY

′
n| is large as required

for m ∈ [e2q′

n/2, 2eqn+1]. Meanwhile, Sm

∑

k<n Yk is much smaller because these
lower frequencies behave as controlled coboundaries for this range of m. As for

Sm

∑

k>n Yk, it is still very small since m ≪ eq′

n+1 . The latter phenomena will be
further explicited and used in the sequel.

Let m ∈ [e2qn/2, 2e2q′

n] and define In := [3/n, 1/2− 2/n] ∪ [1/2 + 3/n, 1 − 2/n].
For x such that {qnx} ∈ In, it follows from (3.2) that for any l ≤ m, 2/n ≤

{qn(x +mα)} ≤ 1/2 − 1/n. Hence, by Property (4) of X̃n

SmX̃
′
n(x) ≥

2m

eqn
.

On the other hand, Properties (2) and (6) imply that

∥

∥

∥
Smϕ

′ − SmX̃
′
n

∥

∥

∥
≤

∥

∥

∥

∥

∥

Sm

∑

l<n

X̃ ′
l

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

Sm

∑

l>n

X̃ ′
l

∥

∥

∥

∥

∥

≤ qn +m
∑

l≥n+1

1

e
ql
2

≤ qn +
2m

e
qn+1

2

= o(
m

eqn
)

for the current range of m. With an exactly similar computation for the other part
of In, the criterion of Proposition 3.3 holds proved.

Let now x be as in Proposition 3.4, that is 1/n2 ≤ {qnx} ≤ 1/n− 1/n2. From
(3.2) we have for any l ≤ qnq

′
n that 0 ≤ {qn(x + lα)} ≤ 1/n, hence Property (3)

implies

|Sqnq′

n
X̃n(x)| ≤

qn
q′n

(3.9)

the latter being very small compared to 1/eqn since q′n ≥ e3qn . From Properties (5)
and (2) we get for n sufficently large

‖ Sqnq′

n

∑

l 6=n

SmX̃l ‖ ≤
1

q′n
+ qnq

′
n

∑

l≥n+1

1

e
ql
2

≤
2

q′n
. (3.10)
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On the other hand, it follows from (3.1) and (3.2) that for any y ∈ T, for any
|j| < q′n, we have

|Sq′

n
ei2πjy | =

∣

∣

∣

∣

sin(πjq′nα
′)

sin(πjα′)

∣

∣

∣

∣

≤
πjq′n
q′n+1

, (3.11)

which yields for Yl as in (3.7)
∥

∥

∥

∥

∥

Sq′

n

∑

l<n

Yl

∥

∥

∥

∥

∥

= o(
1

eq′

n

) (3.12)

while clearly
∥

∥

∥

∥

∥

∥

Sq′

n

∑

l≥n

Yl

∥

∥

∥

∥

∥

∥

= o(
1

e
q′n
2

). (3.13)

In conclusion, (3.5) follows from (3.9), (3.10), (3.12) and (3.13). �

It remains to construct X̃n satisfying (1)-(6).

3.7. Proof of Proposition 3.5. Consider on R a C∞ function, 0 ≤ θ ≤ 1 such
that

θ(x) = 0 for x ≤ 1,

θ(x) = 1 for x ≥ 2.

Then, for n ∈ N, define on R the C∞ function

ξn(x) =

∫ x

0

[

θ(nqnt) − θ

(

nqn(t−
1

2qn
+

2

nqn
)

)]

dt.

It is easy to check the following

• ξn(x) = 0 for x ≤
1

nqn
;

• ξ′n(x) = 1 for x ∈

[

2

nqn
,

1

2qn
−

1

nqn

]

;

• ξn(x) = ξn(1/2) for x ≥
1

2qn
.

We then introduce the function

ςn(x) = ξn(x) − ξn(
1

2
)θ

[

nqn

(

x−
1

2qn
+

2

nqn

)]

and define for x ∈ [0, 1/qn] the function

X̂n(x) =
3

eqn
(ςn(x) − ςn(x− 1/2))

that we extend to a C∞ function over the circle periodic with period 1/qn. It
satisfies

•

∫

T

X̂n(x)dx = 0;

• For any r ∈ N, for n sufficiently large
∥

∥

∥
X̂n

∥

∥

∥

Cr
≤

1

e
3qn
4

;

• X̂n(x) = 0 for {qnx} ∈ [0, 1/n];
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• X̂ ′
n(x) =

3

eqn
for {qnx} ∈ [2/n, 1/2 − 1/n], and

X̂ ′
n(x) =

−3

eqn
for {qnx} ∈ [1/2 + 2/n, 1 − 1/n].

Finally, we consider the Fourier series of X̂n(x) =
∑

k∈Z
X̂n,ke

i2πkx and let

X̃n :=

qn+1−1
∑

k=−qn+1+1

X̂n,ke
i2πkx.

The Fourier coefficients fk of a function f ∈ C∞(T,R) satisfy for any k ∈ Z

(2π)
r−1

|k|
r
|fk| ≤ ‖f‖Cr ≤ sup

k∈N

(2π|k|)
r+2

|fk|. (3.14)

Hence, we have for any r ∈ N
∥

∥

∥
X̃n − X̂n

∥

∥

∥

Cr
≤

∑

|k|≥qn+1

(2πk)r|X̂n,k|

≤
1

2π
‖X̂n‖Cr+2

∑

|k|≥qn+1

1

k2

= o(
1

q′n
2 )

which allows to check (1), (2), (3) and (4) for X̃n from the properties of X̂n.

Proof of Properties (5) and (6). We have due to our truncation

X̃n(x) = ψn(x+ α) − ψn(x) (3.15)

where

ψn(x) =

qn+1−1
∑

k=−qn+1+1

ψn,ke
i2πkx

with

ψn,0 = 0 and for k 6= 0, ψn,k =
X̂n,k

ei2πkα − 1
.

Since |k| < qn+1, it follows from (3.1) that

|ψn,k| ≤ qn+1|X̂n,k|

which with (3.14) implies

‖ψn‖Cr ≤ 2πqn+1‖X̂n‖Cr+2

≤ 2π
qn+1

e
3qn
4

for sufficiently large n. Hence, from (3.15) and (3.2) we get
∥

∥

∥

∥

∥

∥

Sqn

∑

l≤n−1

X̃l

∥

∥

∥

∥

∥

∥

≤
1

qn+1

∑

l≤n−1

‖ψl‖C1

≤
1

qn+1

∑

l≤n−1

ql+1

e
3ql
4

≤
qn
qn+1
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so that property (5) follows. Similarly, we have for sufficiently large n
∥

∥

∥

∥

∥

∥

Sm

∑

l≤n−1

X̃ ′
l

∥

∥

∥

∥

∥

∥

≤ 2
∑

l≤n−1

‖ψl‖C1

≤ qn.

�
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