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Abstract

The gap function φ(k, ω), determined from a Lanczos calculation for a doped 2-leg t-J ladder, is

used to provide insight into the spatial and temporal structure of the pairing interaction. It implies

that this interaction is a local near-neighbor coupling which is retarded. The onset frequency of the

interaction is set by the energy of an S = 1 magnon-hole-pair and it is spread out over a frequency

region of order the bandwith.
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The momentum and frequency dependence of the superconducting gap function φ(k, ω)

provides information on the spatial and dynamic structure of the pairing interaction. Tra-

ditionally, electron tunneling has been used to explore the frequency dependence of the

gap [1]. Presently, angular resolved photoemission spectroscopy [2] (ARPES) and scanning

tunneling microscopy [3, 4] (STM) open the possibility of obtaining both k and ω informa-

tion about the superconducting gap. However, approaches to extract this information on

φ(k, ω) from such experiments are still being explored. As has been previously discussed, a

k and ω dependent gap function for finite t-J lattices can be obtained using Lanczos exact

diagonalization [5, 6]. Here, using results for φ(k, ω) obtained for a doped 2-leg t-J ladder,

we explore what can be learned once data for φ(k, ω) becomes available.

The Hamiltonian for a 2-leg t-J ladder can be written as

H = Jrung

∑

i

(

Si1 · Si2 −
1

4
ni1ni2

)

+ Jleg

∑

i,α

(

Si+1,α · Si,α −
1

4
ni+1,αniα

)

− trung

∑

i

(

c†i,1ci,2 + h.c.
)

− tleg
∑

i,α

(

c†i+1,αciα + h.c.
)

(1)

where ciα are projected hole operators (spin indices are omitted) and α = (1, 2) labels the

two legs of the ladder. We will consider the isotropic case in which Jrung = Jleg = J and

trung = tleg = t and our calculations will be carried out for a periodic 2 × 12 ladder at 1/8

and 1/6 hole doping.

As previously discussed, a gap function can be extracted by combining Lanczos results

for the usual one-electron Green’s function G(k, ω) with the Fourier transform of Gorkov’s

off-diagonal Green’s function

F (k, t) = i 〈Tc−k,−σ(t/2)ck,σ(−t/2)〉 (2)

Here, for a finite system, this expectation value is taken between the ground states for N and

N − 2 particles and we choose the phase of F to be zero. We will take N = 22, N − 2 = 20

corresponding to an average filling n ≃ 21
24

= 0.875. The Dyson equations [7] relating G and

F are

[Z(k, ω) ω − (ǫk + X(k, ω)] G(k, ω) = 1 − φ(k, ω) F (k, ω) (3)

[Z(−k,−ω) ω − (ǫk + X(−k,−ω))] F (k, ω) = −φ(k, ω) G(k, ω) (4)
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with Z and X the usual Nambu self energies and φ(k, ω) the gap function. Then, using the

even (k → −k) parity of Z(k, ω), X(k, ω), ǫk and φ(k, ω) along with the even ω dependence

of Z(k, ω), X(k, ω) and φ(k, ω), we have

φ(k, ω) =
F (k, ω)

F 2(k, ω) + G(k, ω) G(k,−ω)
. (5)

Alternatively, Z(k, ω) can be eliminated to obtain an expression for the superconducting

gap

∆(k, ω) =
φ(k, ω)

Z(k, ω)
=

2ω F (k, ω)

G(k, ω) − G(k,−ω)
. (6)

From a numerical calculation of G(k, ω) and F (k, ω), ∆(k, ω) has been obtained for a 32-

site, t-J cluster [5]. This extended previous work by Ohta et. al [8] who fit the spectral

weight Im F (k, ω) to a dx2−y2 BCS-Bogoliubov quasiparticle form in which the frequency

dependence of the gap was neglected.

In contrast to the long range order of the superconducting ground state of a 2D lattice, a

2-leg ladder exhibits power law pair field correlations [10, 11] which decay as x−1/κρ . Here,

κρ is the Luttinger liquid parameter associated with the massless charge mode. This implies

that for a ladder of length L, the off-diagonal Green’s function F (k, ω) decays [12, 13, 14]

as (ξ/L)
1

2κρ . Here, the coherence length ξ is proportional to the inverse of the gap. For our

doped ladder L = 12 is of order this coherence length so that we can probe the internal

k − ω structure of a pair.

For J/t = 0.4 and 1/8 doping, the k-dependence of the zero frequency gap φ(kx, ky, ω = 0)

is plotted in Fig. 1 for the bonding (ky = 0) and antibonding (ky = π) bands. For comparison,

the solid curves correspond to φ0 (a cos kx−cos ky) with φ0 = 0.3 and a = 0.8. This d-wave-

like k-dependence of the gap function is similar to the behavior found in previous studies of

both the t-J [8] and Hubbard ladders [9]. It implies that the spatial structure of the pairing

interaction is dominantly a near-neighbor interaction.

The frequency dependence of the real and imaginary parts of φ(k, ω) are shown in Fig. 2

for k values which are near the fermi surface of the bonding (red) and antibonding (green)

bands respectively. In general, the gap function φ(k, ω) is a complex frequency-dependent

function φ1 + iφ2 with the imaginary part associated with dynamic decay processes. For our

doped 2-leg ladder with J/t = 0.4, the magnitudes of the zero frequency gaps ∆0 = ∆(kF , 0)

obtained from eq. (6), for both the bonding and antibonding fermi points, are of order 0.15t.

The gap, ∆0, is reduced from φ(kF , 0) due to the renormalization factor Z. The onset of
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the imaginary part of φ2(k, ω) seen in Fig. 2(b) appears to occur somewhat below 3∆0. In

addition, the peaking in φ2(k, ω) and the rapid rise in φ1(k, ω) as this onset frequency is

approached suggest that a particular excitation mode occurs at a frequency Ω such that

ω = ∆0 + Ω determines the onset of φ2(k, ω).

The occurrence of an onset peak in φ2(k, ω) at threshold and the short-range nature of

the interaction involving scattering of pairs from the bonding to antibonding band (qy ∼ π),

imply that the pairing in this energy regime is mediated by an S = 1 channel. This follows

from the form of the coherence factor which varies as 1
2

(

1 ± ∆(p+q,ω)∆(p,ω)
E(p+q) E(p)

)

, with the plus

sign associated with the charge channel and the minus sign with the S = 1 spin channel. For

a “d-wave-like” gap with q = (kF (bonding) − kF (antibonding), π) and ω near threshold,

the coherence factor goes to 1 for the spin channel and vanishes for the charge channel.

A plot of the low-energy S = 1 excitations for a doped ladder is shown in Fig. 3(a). The

solid diamonds show a collective S = 1 bound magnon-hole-pair [15, 16] mode and the open

symbols the S = 1 particle-hole continuum. A measure of the spectral weight of the S = 1

channel which couples to φ(k, ω) is given by the d-wave projection of the spin fluctuation

spectral weight

Vd(ω) =
1

N2

∑

k,k′

(cos kx − cos ky) (cos k′
x − cos k′

y) S(k − k′, ω) (7)

with

S(q, ω) = −
1

π
Im

〈

Sα
−q

1

ω + E0 + iη − H
Sα

q

〉

. (8)

Here Sα
q is the Fourier transform of the α spin component. A plot of Vd(ω) versus ω is shown

in Fig. 3(b). The peak at Ω ≃ 0.15t arises from the bound magnon-hole-pair mode and the

high frequency weight comes from the particle-hole continuum. We believe that the onset of

φ2(k, ω) seen in Fig. 2 is due to a process in which a single particle excitation with energy

ω = Ωm + ∆0 emits a bound magnon-hole-pair and drops down to the gap edge while the

remaining φ2(k, ω) 6= 0 region arises from a coupling to the S = 1 continuum.

In order to further characterize the dynamic nature of the pairing interaction, we intro-

duce

I(k, Ω) =
1

π

∫ Ω

0

dω′ φ2(k, ω′)

ω′
. (9)

Then, since the gap function satisfies a dispersion relation, one has

φ1(k, 0) = I(k, Ω → ∞) + φstatic(k) . (10)
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Here, φstatic(k) represents a non-retarded contribution. For example, if one were to make a

mean-field approximation in which

J

(

Si · Sj −
1

4
ninj

)

→ −J
(

〈∆iδ〉∆†
iδ + h.c.

)

one would have an effective attractive pairing interaction which is independent of frequency

which would contribute to φstatic. In Fig. 4(a), we have plotted I(k, Ω)/φ1(k, 0) versus Ω

and one sees that for J/t = 0.4, I(k, Ω) saturates at over 80% of φ1(k, 0). This implies that

the dominant part of the pairing interaction comes from dynamic processes. Also shown,

Fig. 4(b), are similar results for J/t=0.8. In this, unphysically large, J/t regime only 60%

of the ω = 0 gap function is associated with a dynamic pairing interaction. This is similar

to earlier results for the spatial structure of a pair [17, 18] in which near-neighbor sites for

the two holes making up a pair were favored for large values of J/t. For physical values of

J/t, next-near-neighbor (diagonal) hole-hole occupation was favored. The diagonal structure

arises dynamically and reflects the retarded nature of the pairing interaction for physical

values of J/t.

In summary, knowledge of the k- and ω-dependence of the gap function provides informa-

tion on the spatial and temporal structure of the pairing interaction. Numerical solutions

for the two-leg ladder show that the pairing interaction has a short-range, near-neighbor

form, leading to momentum transfer processes which scatter pairs between the bonding and

antibonding states. The d-wave-like momentum dependence of the gap function and the ω

onset of φ2(k, ω) imply that the pairing interaction in this energy regime is mediated by the

S = 1 channel. This channel contains both a bound magnon-pair state and a continuum of

particle-hole excitations. We believe that the magnon-pair mode is responsible for the onset

behavior seen in φ2(k, ω). The dispersion relation for φ1(k, 0) shows that for physical values

of J/t, the dominant part of the interaction is dynamic with contributions coming from both

the magnon-hole-pair mode and the particle-hole continuum.
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FIG. 2: Real (a) and imaginary (b) parts of the gap function φ(k, ω) versus ω for a 2 × 12 ladder at

values of k near the bonding (red) and antibonding (green) fermi momenta [∼ (2π
3 , 0) and ∼ (π

3 , π)

respectively] for J/t = 0.4. Here, ∆0 ∼ ∆(kF ,∆0) and Ωm is the minimum energy for a bound

magnon-hole-pair excitation.
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FIG. 3: (a) Low-energy electron-hole S = 1 excitations for a 1/8-doped J/t = 0.4 ladder for qy = 0

(circles) and qy = π (diamonds) momenta. The solid diamonds denote a bound magnon-hole-pair

collective mode [6]. (b) “d-wave” projection of the spin fluctuation spectral weight with Ωm the

minimum energy of the bound magnon-hole-pair collective mode (1/6 doping).
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contributions are shown by arrows.
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