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Signals for Cellular Automata in dimension 2 or higher
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Abstract. We investigate how increasing the dimension of the array can help to draw signals
on cellular automata. We show the existence of a gap of constructible signals in any dimension.
We exhibit two cellular automata in dimension 2 to show that increasing the dimension allows
to reduce the number of states required for some constructions.

1 Introduction

Cellular automata (CA) are simple mechanisms that appear in many fields. They are best
described as simple cells regularly arranged in an array of dimension k. All these cells
have a finite number of states, and change all at the same time (synchronously) of state
according to the same rules, looking at their neighbors. Physical systems containing many
discrete elements with local interactions are conveniently modeled as cellular automata,
such as dendritic crystals growth, evolution of biological populations...

Introduced by von Neumann in [vN66] to study self-reproduction, cellular automata
emerge as a key model of massively parallel computation. Exact mathematical computa-
tions are possible, since one can simulate a Turing machine, but cellular automata have a
very different way to represent data. The geometrical aspect of cellular automata induces
specific questions that do not appear in sequential models.

Whereas the work of a CA is based on local exchange in the nearest neighborhood, at
global scale the collective behavior of the CA often emerges as signals, i.e. continuous lines
in the space-time diagram, which capture the organization and the sending of information
through the network. Cellular automata as computational systems can be seen from two
main points of view: either a CA is designed to fill a specific task, or a given CA is analyzed
in terms of general properties and dynamics. In both cases, the notion of signal appears. To
build a CA, signals are a tool that makes the transition from the local to the global behavior,
to geometrically describe the organization and the motion of information between cells (see
e.g. [Fis65,Maz87]). When analyzing a CA, the behavior of many CA shows “particles in
motions”, whose trajectories can be interpreted as signals (see [Mar00], or even the gliders
in the game of Life [BCG82]).

Intuitively, signals are some paths through the space-time diagram which encode and
combine the information, but an all-encompassing formalization is lacking. Nevertheless,
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some attempt has been done (see [MT99]). We propose an alternative definition for CA
that generate signals.

In dimension 1, it has been shown that some signals around the diagonal axis can not
be set up by any CA: a signal set up by any CA either becomes parallel to the diagonal
axis or takes at least a logarithmic slow-down. Surprisingly, in higher dimensions, although
more cells are involved around the diagonal axis, we will show that the same gap occurs. So,
increasing the dimension does not help to construct such signals around the diagonal axis.
This partially answers the problem #51 of the list of open problems on CA (see [DFM00]).

However, we have a gain in terms of number of states. In dimension 1, performing
along the diagonal axis a logarithmic slow-down requires at least 4 states (it is not difficult
to review the few CA with 3 states). But in dimension 2, we exhibit a CA with 3 states
(including the quiescent state) which performs a logarithmic slow-down along the diagonal
axis. Furthermore we show that this CA is optimal in terms of number of states.

To complete the analysis of the gain of working in higher dimension, we describe a
CA that supports other logarithmic slow-downs with less states in dimension 2 than in
dimension 1.

2 Definition of a signal

A k-dimensional cellular automata is a k-dimensional array of finite automata (cells) in-
dexed by Zk. All cells evolve synchronously at discrete time steps. At each step, each cell
enters a new state according to a transition function involving only its local neighborhood.

We use the notation u = (u1, . . . , uk) to designate a k-vector. 0 is the null vector
(0, . . . , 0). 1 is the unary vector (1, . . . , 1) and t · u is the product of u by a scalar t.

Formally a k-CA is defined by (S, V, f, λ) where: S is the set of states, V =
{
x1, . . . ,xv

}
⊂

Zk is the neighborhood, f from Sv into S is the transition function, λ ∈ S is the quiescent
state which verifies f (λ, . . . , λ) = λ.

A site (u, t) refers to the cell u at time t and 〈u, t〉 denotes its state at time t. We refer
to the whole mapping (u, t) 7→ 〈u, t〉 as the space-time diagram of the CA.

For time t ≥ 0 we have

〈u, t + 1〉 = f
(〈

u + x1, t
〉
, . . . , 〈u + xv, t〉

)

We will consider three different neighborhoods: the Von Neumann neighborhood, the
Moore neighborhood and the trellis neighborhood.

VVon Neumann =
{
x ∈ Zk :

∑
|xi| ≤ 1

}
,

VMoore =
{
x ∈ Zk : |xi| ≤ 1

}
,

Vtrellis =
{
x ∈ Zk : |xi| = 1

}
.
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Note that, with the trellis neighborhood, the states 〈u, t〉 and 〈u′, t′〉 do not interfere
if for some i the sums ui + t and u′

i + t′ are not of same parity. So at time t we will deal
only with cells u = (u1, · · · , uk) such that u1, · · · , uk, t are of same parity, the other sites
are considered as quiescent or non-existent.

Observe that the graph of dependencies of a k-dimensional cellular automata with
Moore neighborhood contains the graph of dependencies of a k-dimensional cellular au-
tomata with Von Neumann neighborhood; so the simulation of a Von Neumann CA can be
done in real time by a Moore CA. The graph of dependencies of a k-CA with Moore neigh-
borhood also contains the graph of dependencies of a k-dimensional trellis. And as shown
in dimension 1 (see [CČ84,IKM85]), provided the cells u of a CA with trellis neighborhood
correspond to the set of cells

{
u + x : x ∈ {0, 1}k

}
of a CA with Moore neighborhood, the

trellis CA and the Moore CA are time-wise equivalent. Hence a trellis CA which performs
the same task than a Moore CA, might have more states but always with less interconnec-
tions.

We recall the definition of impulse CA’s and signals (see [MT99]):

Definition 1 (Impulse CA) An impulse CA is a 5-tuple (S, V, f,G, λ) where (S, V, f, λ)
is a CA and G a distinguished state of S such that at initial time t = 0 all cells are in the
quiescent state λ but the cell 0 which is in state G:

{
〈x, 0〉 = λ if x 6= 0,
〈0, 0〉 = G.

Definition 2 (Signal) For a given neighborhood V , a V-signal Γ is a sequence of sites
{(u(t), t)}t≥0 such that

– u(0) = 0.
– For all t ≥ 0: u(t + 1) − u(t) ∈ V .

Fundamentally, a signal is a continuous path in the graph of dependencies of the CA.
To emphasize the elementary moves of the V-signal Γ , we denote by Γx where x ∈ V , the

set of sites of Γ which reach the next one by a −x move: Γx = {(u(t), t) ∈ Γ : (u(t) − x, t + 1) ∈ Γ}.
Note that {Γx}x∈V defines a partition of Γ .

We recall the definition of impulse CA which draw explicitly a signal.

Definition 3 (Construction of a signal) An impulse CA A = (S, V, f,G, λ) constructs
a V-signal Γ if there exists a subset S0 of S such that (u, t) ∈ Γ if and only if 〈u, t〉 ∈ S0.

We propose also two alternative definitions of impulse CA which draw implicitly signals.

Definition 4 (Detection of a signal) An impulse CA A = (S, V, f,G, λ) detects a V-
signal Γ if there exists a partition {Sx}x∈V of the set of states S such that if (u, t) ∈ Γx

then 〈u, t〉 ∈ Sx.
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Definition 5 (Supporting a signal) An impulse CA A = (S, V, f,G, λ) supports a V-
signal Γ if there exists a finite automaton F = (S, Q, δ, q0) with S the input alphabet, Q
the set of states, δ from Q × S into Q × V the transition function and q0 the initial state
and a sequence of states {q(t)}t≥0 such that q(0) = q0 and for all t ≥ 0: δ (q(t), 〈u(t), t〉) =
(q(t + 1),u(t + 1) − u(t)).

The construction of a signal is a characterization by marking all the sites of the signal
with a special set of states, whereas supporting a signal is a more dynamic tool, enabling
the use of a finite automaton to retrieve the signal from the space-time diagram. Detection
is a special case of support.

Actually the three notions are equivalent. If an impulse CA A constructs a V-signal
Γ then it detects it and if an impulse CA A detects a V-signal Γ then it supports it.
Furthermore, we get:

Proposition 1 If an impulse CA A supports a V-signal Γ then there exists an impulse
CA A′ which constructs it.

Proof. Suppose that Γ is supported by the impulse CA A = (S, V, f,G, λ) with the finite
automata F = (S, Q, δ, q0). Consider the new impulse CA A′ = (S × ({0} ∪ Q) , V, f ′, (G, q0), (λ, 0))
with

f ′((sx,mx), . . .︸ ︷︷ ︸
x∈V

) = (f(sx, . . .︸ ︷︷ ︸
x∈V

),m))

where m ∈ Q if and only if there exists a ∈ V such that ma ∈ Q and δ (ma, sa) = (m,a).
Then the subset S0 = S × Q marks exactly the sites of Γ .

Definition 6 (Basic signals) A V-signal is basic if the sequence of its elementary moves
(whose values are in V ) {u(t + 1) − u(t)}t≥0 is ultimately periodic.

Actually the basic signals do not use the parallelism of the CA:

Claim 2 The impulse CA A = ({λ}, V, f, λ, λ) supports exactly the basic V-signals.

Proof. Any impulse CA (S, V, f, λ), in particular the CA A = ({λ}, V, f, λ, λ), supports any
basic V-signal. Conversely, a quiescent background can only support ultimately periodic
moves.

3 A gap on constructible signals

In dimension 1, it has been shown that the signals {(t − u(t), t)}t≥0 such that u(t) =
o (log(t)) and u(t) 6= Θ(1) are not constructible (see [MT99]). Here we will show for Moore
neighborhood (and therefore trellis neighborhood) that even in higher dimension, the signal
of maximal speed {(t · 1, t)}t≥0 can not be slowed down below the logarithm.
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First we define, for i ∈ Zk and t ∈ N, Dt
i

to be the state 〈t · 1 − i, t〉. The states
of the neighbor cells of Dt+1

i
with relative coordinates x ∈ VMoore are Dt

i−x−1
. Thus,

Dt+1
i

= f(Dt
i−x−1, . . .︸ ︷︷ ︸
x∈VMoore

). And at initial time, only the cell 0 is in a non-quiescent state G:

D0
i =

{
G if i = 0
λ else.

Claim 3 Dt
i
= λ if i ∈ Zk \ Nk or 2t < max (i1, . . . , ik).

Proof. As 0 is the only active cell at time 0, at time t ≥ 0 (with Moore neighborhood) a
cell c is in a quiescent state if any of its coordinates ca is such that |ca| > t. In particular,
with c = t · 1 − i, if any ia is such that |t − ia| > t, i.e. ia < 0 or ia > 2t, we have Dt

i
= λ.

We consider the words Di ∈ S∞ corresponding to the significant part of the diagonals:

Di =

{
(Dt

i
)t≥⌈max(i1,...,ik)/2⌉ if i ∈ Nk

λ∞ else.

The next proposition states the periodic behavior of Di. As Dt+1
i

is defined by Dt
i−x−1

where x ∈ VMoore, the periodic behavior of Di can be characterized by the periodic behavior
of the lower diagonals Di−x−1 where x ∈ VMoore \ {1}.

Proposition 4 For all i ∈ Zk, there exists αi ∈ S⋆, βi ∈ S⋆, ui ∈ N and vi ∈ N such
that:

– Di = αi (βi)
∞.

– ui + vi ≤ |S| and 1 ≤ vi ≤ |S|.

– |αi| ≤ Mi + uiPi, where Mi is max
x∈VMoore\{1}

(|αi−x−1|).

– |βi| divides viPi, where Pi is lcm
x∈VMoore\{1}

(|βi−x−1|).

Proof. We do an induction on r = i1 + · · · + ik. Remark that the sum of all coordinates of
i − x − 1 is always smaller than the sum of all coordinates of i, for x ∈ VMoore \ {1}. The
proposition is true for r < 0. Indeed in this case i ∈ Zk \ Nk. So Di is λ∞ and we can set
αi to be the empty word, βi = λ, ui = 0 and vi = 1. We suppose the proposition true up
to r and we will prove it for r + 1 = i1 + · · · + ik. Let τ stand for ⌈max (i1, . . . , ik)/2⌉. By
hypothesis of recurrence, we have Dt

i−x−1
= Dt′

i−x−1
for all x ∈ VMoore \ {1} and all t, t′

such that t > t′ ≥ τ + Mi and Pi divides (t− t′) (Pi is the least common multiple of all the
periods for x ∈ VMoore \ {1}, hence the periodicity).
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Among the |S| + 1 states
{
Dτ+Mi

i
,Dτ+Mi+Pi

i
, . . . ,D

τ+Mi+|S|Pi

i

}
at least two are equal:

for some a and b with 0 ≤ a < b ≤ |S|, Dτ+Mi+aPi

i
= Dτ+Mi+bPi

i
. Thus, by induction, it

follows that for all u:

Dτ+Mi+aPi+u+1
i

= f(Dτ+Mi+aPi+u
i−x−1

, . . .
︸ ︷︷ ︸

x∈VMoore

) = f(Dτ+Mi+bPi+u
i−x−1

, . . .
︸ ︷︷ ︸

x∈VMoore

)

= Dτ+Mi+bPi+u+1
i

.

We can choose αi = Dτ
i
· · · Dτ+Mi+aPi−1

i
, βi = Dτ+Mi+aPi

i
· · · Dτ+Mi+bPi−1

i
, ui = a and

vi = b − a which verify the desired properties.

The following corollary specifies the length of the periodic and non-periodic parts of
Di.

Corollary 5 For all i ∈ Nk, there exists αi ∈ S⋆, βi ∈ S⋆ such that

– Di = αi (βi)
∞.

– |αi| < |S| lcm(1, . . . , |S|)i1+···+ik .
– |βi| divides lcm(1, . . . , |S|)i1+···+ik+1.

Proof. We do a recurrence on r = i1 + · · · + ik. For r = 0, according the proposition we
have |α0| ≤ u0 < |S|, |β0| divides v0 which divides lcm(1, . . . , |S|).

Now we suppose the corollary true up to r. Then for r +1 = i1 + · · ·+ ik we have Mi <
|S| lcm(1, . . . , |S|)i1+···+ik−1 ≤ lcm(1, . . . , |S|)i1+···+ik ; Pi divides lcm(1, . . . , |S|)i1+···+ik . So

|αi| ≤ Mi + uiPi

< lcm(1, . . . , |S|)i1+···+ik + (|S| − 1) lcm(1, . . . , |S|)i1+···+ik

< |S| lcm(1, . . . , |S|)i1+···+ik .

And |βi| divides viPi which divides lcm(1, . . . , |S|)i1+···+ik+1.

The following claim emphasizes a first constraint on constructible signals implied by
proposition 4.

Claim 6 If a V-signal Γ = {(u(t), t)}t≥0, constructed by an impulse CA (with Moore
neighborhood) enters the periodic part of the CA at some step t0 then the V-signal becomes
constant: for all t ≥ t0, u(t) = u(t0) + (t − t0) · 1.

Proof. The value of (u(t0), t0) belongs to the subset S0 which marks the V-signal Γ . More-
over, it belongs to the diagonal Dt0·1−u(t0). Suppose this site belongs to the periodic part
βt0·1−u(t0). Then from (u(t0), t0) onward, there is an infinite number of sites of Dt0·1−u(t0)

which belong to S0. As Γ must go through all sites whose states belong to S0, the signal
Γ always remains on the diagonal Dt0·1−u(t0).
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Finally we exhibit the gap relating to constructible signals.

Proposition 7 Let a V-signal {(t − u(t), t)}t≥0 and
m(t) = max (u1(t), . . . , uk(t)) be such that:

– m(t) is not constant: m(t) 6= Θ(1);
– m(t) is below the logarithm: m(t) = o(log(t)).

Then there exists no impulse CA with Moore neighborhood which supports such V-signal.

Proof. According to claim 6, a V-signal {(t − u(t), t)}t≥0 constructible by an impulse CA
with Moore neighborhood , providing m(t) 6= Θ(1), never enters the periodic part of the
CA. Moreover, observe that 〈t − u(t), t〉 belongs to Du(t).

The non-quiescent part of Du(t) begins on the site (⌈m(t)/2⌉ · 1 − u(t), ⌈m(t)/2⌉) and so
the periodic part of Du(t) begins on the site

((
⌈m(t)/2⌉ + |αu(t)|

)
· 1 − u(t), ⌈m(t)/2⌉ + |αu(t)|

)
.

Hence if the signal is constructible, we get for all t, t < ⌈m(t)/2⌉+ |αu(t)|; and according to

corollary 5, t < ⌈m(t)/2⌉+ |S|1+k·m(t). So for some constant C, we have for all t: t < Cm(t).
In other words m(t) = Ω (log(t)).

Remark 1. Remark that the periodic phenomenon we just have examined along the
signal of maximal speed {(t · 1, t)}t≥0, by an adequate rotation, occurs along all signals
{(t · x, t)}t≥0 with x ∈ Vtrellis. The proposition 7 remains true for any V-signal {(c(t), t)}t≥0

and m(t) = max (|c1(t)| − t, . . . , |ck(t)| − t) with m(t) 6= Θ(1) and m(t) = o(log(t)).
Remark 2. Due to the equivalence of Moore CA and trellis CA, the same limitation
operates for the construction of Vtrellis-signals on CA with trellis neighborhood.
Remark 3. With von Neumann neighborhood, the signals {((t − m(t)) · x, t)}t≥0 with
x ∈ VVon Neumann, m(t) 6= Θ(1) and m(t) = o(log(t)) are not constructible by any impulse
CA with Von Neumann neighborhood; otherwise using an adequate rotation, signals such
{((t − m(t)) · 1, t)}t≥0 would be constructible by an impulse CA with Moore neighborhood,
contradicting proposition 7.

4 Construction of the logarithm in dimension 2

Let A be the following impulse 2-CA with the neighborhood Vtrellis =
((

1
1

)
,
(

−1
−1

)
,
(

1
−1

)
,
(

−1
1

))
.

The set of states S is {λ, 0, 1}, the initial distinguished state is 1, the quiescent state is λ
and the transition function f is depicted in figure 1.

Proposition 8 Let ℓ be the function t 7→ ⌊log2(t + 1)⌋. A detects the signal
{(

t−ℓ(t)
t−ℓ(t)
t+ℓ(t)

)}
t≥0

,

with the following partition: S(
1
1

) = {0} and S(
−1
−1

) = {1}.

Proof. Claim 9 All cells with state 1 or 0 (called “active cells”) have coordinates
(

x
y

z

)

such that −z ≤ y ≤ x ≤ z, z ≥ 0 and x + z and y + z are both even (“even” cells).
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a b c d f(a, b, c, d) Rule number

λ λ λ λ λ #0
1 λ λ λ 0 #1
0 λ λ λ 1 #2
λ λ 0 1 1 #3
1 λ 0 1 0 #4
0 λ 0 1 1 #5
1 λ 1 0 1 #6
1 λ 0 0 1 #7
0 λ 1 0 0 #8
0 λ 0 0 0 #9
⋆ 1 λ ⋆ 1 #10
⋆ 1 1 ⋆ 1 #11
⋆ 1 0 ⋆ 0 #12
⋆ 0 ⋆ ⋆ 0 #13
⋆ ⋆ ⋆ ⋆ λ #14

a, b, c and d are the cells with the follow-
ing relative coordinates in the space-time
diagram:

– a is
(
−1

−1

−1

)
,

– b is
(
−1

1

−1

)
,

– c is
(

1

1

−1

)

– d is
(

1

−1

−1

)
.

Rules are sorted by order of precedence.

Fig. 1. Transition function for A.

The property of x + z and y + z is always true in such a trellis (see the definition).
The condition z ≥ 0 is quite obvious, as this is mandated by the definition of a space-time
diagram. Now, let us look at the relation −z ≤ x ≤ z (−z ≤ y ≤ z can be proved by the
same arguments). As the only cell at time z = 0 that has a non-quiescent state has the
property that x = 0, and that the neighborhood’s x-range is {1,−1}, no cell can enter a

non-quiescent state unless it includes the cell
(

0
0
0

)
in its dependencies, i.e. if −z ≤ x ≤ z.

The remaining condition y ≤ x is due to the transition function. Let us suppose that
the condition is true up to some value z, and let us check that the condition at z + 1
still holds true, i.e. that no rule numbered from #1 to #13 is applied to any cell such
that x > y. If the rule holds true up to z, then all neighbors except the one with relative

coordinates
(

1
−1
−1

)
are such that x > y. So, their states are the quiescent state λ. Thus, the

only possibility for cells such that x > y is to meet the quadruplet (λ, λ, λ, 1) or (λ, λ, λ, 2)
or the quiescent rule (#0). As both these quadruplets fall in the catch-all rule (#14), the
induction is proved (it is obviously true for z = 0).

Let us now define k by k =
∑

i k
(i)

2i) (i.e. k is the binary writing of k). We also
define k̃ to be the number of consecutive 1’s at the beginning of k. Let us define a spatial
transformation for the space-time diagram with:

W
(i)
k,l = V

(
k−i+l
k−i−l
k+i+l

)
.

Let us call A
(i)
k,l, B

(i)
k,l, C

(i)
k,l and D

(i)
k,l the four neighbors of cell W

(i)
k,l . We have the following

equalities:

A
(i)
k,l = W

(i)
k−1,l B

(i)
k,l = W

(i)
k,l−1 C

(i)
k,l = W

(i−1)
k,l D

(i)
k,l = W

(i−1)
k−1,l+1
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As proven by claim 1, W
(i)
k,l is λ if any of the indices is −1. We consider the words Wk,l

that we get by the concatenation of all W
(i)
k,l , for i ≥ 0:

Claim 10 Wk,0 is k + 1λ∞, and for all l > 0, Wk,l is 1k̃+10|k+1|−k̃+1λ∞.

The execution can be seen on figure 2. In fact, we can read the binary writing of k + 1

according to some spatial transformation (the one performed by W
(i)
k,l).

Fig. 2. Sample execution of A. White cubes are sites instate 0, dark cubes are sites in state
1. The binary writingcan be seen horizontally on the picture. Depth is difficult to perceive.

We shall prove the claim with an induction on k, and dividing the proof in two subcases:
whether k = 2j − 2 for some j or not.

Subcase 1: k = 2j − 2. We suppose the claim true up to k, and we shall prove the

claim for k + 1. The claim can be transformed this way for k = 2j − 2: W
(i)
k,l = 1 for any l

(even l = 0) and 0 ≤ i < j, else W
(i)
k,l = λ. We get the following items:

– B
(i)
k+1,0 = λ for all values of i (see claim 1).

– W
(0)
k+1,0 = 0 (according to rule #1).
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– With a quick induction (for C
(m)
k+1,0), W

(m)
k+1,0 = f(1, λ, 0, 1) = 0 for all m < j (rule #4).

– W
(j)
k+1,0 = f(W

(j)
k,0, λ,W

(j−1)
k+1,0,W

(j−1)
k,1 ) = f(λ, λ, 0, 1) = 1 (rule #3).

– W
(j+1)
k+1,0 = f(W

(j+1)
k,0 , λ,W

(j)
k+1,0,W

(j)
k,1) = f(λ, λ, 1, λ) = λ (rule #14).

– With a quick induction (for C
(m)
k+1,0), W

(m)
k+1,0 = λ for all m > j + 1 (rule #0).

– Now, we use an induction on l, since we proved the claim for l = 0. B
(i)
k+1,l = 0 for

all values of i such that 0 ≤ i ≤ j, except if l = 1 (where B
(j)
k+1,1 = 1). So, rule

#13 applies for all i such that 0 ≤ i ≤ j and W
(i)
k+1,l = 0. The only exception is

W
(j)
k+1,1 = f(λ, 1, 0, 1) = 0 according to rule #12.

– We continue the induction on l to use rule #14 for W
(j+1)
k+1,l .

W
(j+1)
k+1,l = f(W

(j+1)
k,l ,W

(j+1)
k+1,l−1,W

(j)
k+1,l,W

(j)
k,l+1) = f(λ, λ, 0, λ) = λ.

– Last, we compute the values for l > 0 and i > j + 1. All neighbors are λ, therefore

W
(i)
k+1,l = λ.

There is one special case, the case k = 0, which is the starting point of the in-

duction. W
(0)
0,0 is obviously what we are looking for. For all values of l > 0, we have

W
(0)
0,l = f(λ,W

(0)
0,l−1, λ, λ) = 1, by using rule #10. For all other W

(i)
0,l , either rule #14 or #0

will be used, the result being always λ.

Subcase 2: ∀j, k 6= 2j − 2. As such, there is at least one 0 in the binary writing of
k + 1. Let us recapitulate a few facts about the incrementation of a binary number: to
increment a binary number, all the initial (starting from lower-weight digits) 1’s have to
be turned into 0’s, and the first 0 is turned into a 1 (the special case of 2j − 1 will not
appear there). Our first goal will be to check that Wk+1,0 is correctly generated from Wk,0.
Remember that k̃ is the number of initial 1’s in the binary writing of k. We prove the claim
by induction:

– B
(i)
k+1,0 = λ for all values of i (see claim 1). If k is even then W

(0)
k+1,0 = 0 (according to

rule #1). If k is odd, then W
(0)
k+1,0 = 1 (rule #2).

– For 0 < i ≤ k̃ + 1, the value of D
(i)
k+1,0 = 1. With a quick induction, we can prove that

W
(i)
k+1,0 = 0 (rule #4) as all A

(i)
k+1,0 = 1. This condition is not met if k is odd.

– For i = k̃ + 1, rule #5 is triggered (W
(i)
k+1,0 = 1). This is not done if k was odd (in fact

the incrementation is already over if k is odd).

– For k̃ + 1 < i < |k + 1| (and there is at least one value of i for which this is true), the

value of D
(i)
k+1,0 = 0. As B

(i)
k+1,0 = λ, any of the rules #6, #7, #8 or #9 will be used.

All those rules state that W
(i)
k+1,0 = A

(i)
k+1,0 = W

(i)
k,0.
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– For i = |k + 1|, we have A
(i)
k+1,0 = B

(i)
k+1,0 = λ, C

(i)
k+1,0 = 1 (since all binary writings end

with a 1). So, rule #14 applies, and W
(i)
k+1,0 = λ.

– For i > |k + 1|, a quick induction shows that C
(i)
k+1,0 is λ, thus making W

(i)
k+1,0 be λ.

– We proved the claim for l = 0 (see the preliminary explanation on binary incre-

mentation). As C
(0)
k+1,l = λ, it’s easy to prove that for all l > 0, B

(0)
k+1,l is not λ, so

W
(0)
k+1,l = W

(0)
k+1,0 (using either rule #10 or rule #13).

– Let us consider now the case 0 < i < k̃ + 2 (this case may not happen if k is even).

We prove by induction on X = l + i that in this case, the value is always 1. W
(i)
k+1,l =

f(A
(i)
k+1,l, 1, 1,D

(i)
k+2,l), since l− 1 and i− 1 will both have a smaller sum than X. Thus,

this sub-proof is done (using rule #11, the value is always 1). The proof for the case
l = 1 or i = 1 is very easy (using the previous item).

– Now, let us consider the case where i = k̃ + 2, with i 6= 0 and i 6= |k + 2| (i.e. k is odd
and there is at least a 0 in the binary writing of k + 2). With a quick induction on l,

as W
(i)
k+1,0 is 0, we have W

(i)
k+1,l = 0 for all l (using rule #13) (this is the first 0 in the

binary writing of k + 2).

– Now, we study the case k̃ + 2 < i < |k + 2|. We still do an induction of l + i and prove

that the value is always 0. W
(i)
k+1,l = f(A

(i)
k+1,l,B

(i)
k+1,l, 0,D

(i)
k+2,l), with B

(i)
k+1,l being 0 or

1 (if l = 1). Either way, rule #12 or #13 is used, and the value still ends up being 0.

– We consider i = |k + 2|, and increasing values of l. A
(i)
k+1,l = λ. B

(i)
k+1,1 is also λ. We will

prove with an induction on l that B
(i)
k+1,l = λ for any l > 0. Let us presume it’s true.

C
(i)
k+1,l may be 0, but D

(i)
k+1,l = W

(i−1)
k,l+1 is always 0. If it was not 0, then k +1 would have

no 0 in its writing, and this is excluded in this subcase. So, rule #3 does not apply,
hence the result (rule #14 is used).

– For larger values of i, the claim is straightforward, since only rule #0 will be used.

Proposition 11 (Optimality) The result of proposition 8 is optimal for dimension 2,

that means it is not possible to detect the signal
{(

t−ℓ(t)
t−ℓ(t)
t+ℓ(t)

)}
t≥0

with only two states.

Proof. Let us suppose that there exists an impulse CA with only two states 0 and 1
contradicting the proposition. Referring to claim 2, the general state of the impulse CA
must not be the quiescent state. Let us decide that 0 is the quiescent state. As we want to
detect the aforementioned signal, then we can only choose one partition (because the state
1 has to be in Γ(

−1
−1

)). Thus, we have Γ(
1
1

) = {0} and Γ(
−1
−1

) = {1}.

Let us now consider a few sites of the signal. We must obtain:

V
(

0
0
0

)
= 1 V

(
1
1
1

)
= 0 V

(
0
0
2

)
= 1 V

(
1
1
3

)
= 1.
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Recall that V
(

x
y
z

)
is 0 if |x| > z or |y| > z. We can rewrite two of these values the way

they are computed from f :

V
(

1
1
1

)
= f(V

(
0
0
0

)
,V

(
2
0
0

)
,V

(
2
2
0

)
,V

(
0
2
0

)
) = f(1, 0, 0, 0) = 0

Thus, we get f(1, 0, 0, 0) = f(0, 0, 0, 0) = 0. Now we write:

V
(

1
1
3

)
= f(V

(
0
0
2

)
,V

(
2
0
2

)
,V

(
2
2
2

)
,V

(
0
2
2

)
) = f(1, a, b, c) = 1

with the following values for a, b and c:

a = V
(

2
0
2

)
= f(V

(
1

−1
1

)
,V

(
3

−1
1

)
,V

(
3
1
1

)
,V

(
1
1
1

)
) = f(V

(
1

−1
1

)
, 0, 0, 0) = 0

b = V
(

2
2
2

)
= f(V

(
1
1
1

)
,V

(
3
1
1

)
,V

(
3
3
1

)
,V

(
1
3
1

)
) = f(0, 0, 0, 0) = 0

c = V
(

0
2
2

)
= f(V

(
−1

1
1

)
,V

(
−1

3
1

)
,V

(
1
3
1

)
,V

(
1
1
1

)
) = f(V

(
−1

1
1

)
, 0, 0, 0) = 0

Thus, a = b = c = 0, and V
(

1
1
3

)
= f(1, 0, 0, 0) = 0. This is in contradiction with the

fact that V
(

1
1
3

)
must be 1.

5 Building non-primal logarithmic signals

Recall that, in dimension 1, to build a logarithmic slow-down (in base b) requires at least
b states. If b is not primal, then it can be written as the product of two numbers x and
y whose gcd is 1. Here, we exhibit a 2-dimensional CA that supports such a logarithmic
slow-down with only x + y + 2 states instead of xy.

Let x and y be two integers such that gcd(x, y) = 1. Let A be the following impulse
2-CA with the neighborhood Vtrellis =

((
1
1

)
,
(

−1
−1

)
,
(

1
−1

)
,
(

−1
1

))
. The set of states S is

{λ, π0, π1, . . . , πx, κ0, κ1, . . . , κy}, the initial distinguished state is π1, the quiescent state
is λ and the transition function f is as in figure 3.

Proposition 12 Let ℓ be the function t 7→
⌊
logxy(t + 1)

⌋
. Then A supports the signal{(

t−ℓ(t)
t−ℓ(t)
t+ℓ(t)

)}
t≥0

, using the following finite automaton:

F = (S, {a1, . . . , ay}, δ, a1) with




δ(ay, πx) = (a1,
(

1
1

)
)

∀j 6= y, δ(aj , πx) = (aj+1,
(

−1
−1

)
)

∀i 6= x,∀j, δ(aj , πi) = (aj ,
(

−1
−1

)
)
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A B C D f(A,B, C, D) Rule number

λ λ λ λ λ #0

Rules for l = 0

πj λ λ λ πj+1 (or π1 if j = k) #1
πx λ πk κ⋆ π0 (k 6= x) #2
πj λ πk κ⋆ πj (j, k 6= x) #3
πx λ πx κk π0 (k 6= y − 1) #4
πj λ πx κk πj (j 6= x, k 6= y − 1) #5
πj λ πx κy−1 πj+1 (or π1 if j = k) #6
λ λ πx κy−1 π1 #7

Rules for l = 1

κy−1 πx λ, κy λ κy #8
κy−1 πk λ, κy λ κ0 (k 6= x) #9
κy π⋆ λ, κy λ κ1 #10
κj π⋆ λ, κy λ κj+1 (j 6= y − 1, y) #11
κy π⋆ κk λ κ0 (k 6= y) #12
κj π⋆ κk λ κj (j 6= y, k 6= y) #13
λ π1 λ, κy λ κ1 #14

⋆ ⋆ ⋆ ⋆ λ #15

a, b, c and d are the cells
with the following rela-
tive coordinates in the
space-time diagram:

– a is
(
−1

−1

−1

)
,

– b is
(
−1

1

−1

)
,

– c is
(

1

1

−1

)

– d is
(

1

−1

−1

)
.

Please note that π⋆ is
any state πj , κ⋆ is any
state κj , and ⋆ is any
state. Rules are sorted by
order of precedence.

Fig. 3. Transition function for A.

Proof. Let us use the same spatial transformation as in the preceding section.

W
(i)
k,l = V

(
k−i+l
k−i−l
k+i+l

)
.

Let us call A
(i)
k,l, B

(i)
k,l, C

(i)
k,l and D

(i)
k,l the four neighbors of cell W

(i)
k,l . We have the following

equalities:

A
(i)
k,l = W

(i)
k−1,l B

(i)
k,l = W

(i)
k,l−1 C

(i)
k,l = W

(i−1)
k,l D

(i)
k,l = W

(i−1)
k−1,l+1

We have the following fact: only cells with l = 1 or l = 0 will be non-quiescent. In
fact, cells with l = 0 will only have states in π0, . . . , πx, λ and cells with l = 1 will only
have states in κ0, . . . , κy, λ. This is quite easy to check: rules #1 to #7 always require the
neighbor b to be λ, and rules #8 to #14 always require d to be λ.

The proof is on the same lines as the preceding proof: we can read the writing of k + 1
with the values of Wk,l. However, the writing is a bit more complicated. In fact, x and y
define a mapping of {0, . . . , x−1}×{0, . . . , y−1} into {0, . . . , xy−1} through the Chinese
remainder lemma. Let us call this mapping µ, with the added fact that π0 and πx are made
equivalent (idem for κ0 and κy). Then, we can read the writing in base xy of k + 1 by

considering the i-th bit to be µ(W
(i)
k,0,W

(i)
k,1).

The proof is quite cumbersome, and is reminiscent of the proof of proposition 8. The

main point is that when W
(i)
k,1 = κy is used instead of κ0, it conveys the information that the

neighbor W
(i)
k,1 is exactly πx, and thus that the digit µ(W

(i+1)
k,0 ,W

(i+1)
k,1 ) has to be increased.
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The fact that W
(i)
k,0 is πx instead of being π0 carries the fact that the corresponding W

(i)
k,1

has to be increased by 1.

Possible enhancement: It is possible to use the same set of states for π and κ. That
is, the CA has just a set of states {π0, . . . , πmax(x,y), λ}. It is necessary that x is the smallest
of the two numbers x and y. The transformation of the transition function is as follows:
each κi becomes πi, and each λ in the column D of figure 3 becomes a ⋆ (any state).

6 Prospectives

Note that limitations in the construction of signals are likely correlated to limitations in
terms of language recognition. In particular, the hierarchy between time n and n + log n
set up for one-way cellular automata in dimension 1 (see [KK01]) might be generalized to
higher dimensions.

It should be possible to extend the last proposition in dimension k as follows: one can
get a loga slow-down with the sum of k factors whose gcd is 1 and whose product is a,
plus 2 (the distinguished πx state and λ). Thus, the number of states needed to get a
loga slow-down in dimension k looks strongly related to the decomposition of a in prime
numbers and the number of its factors.
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