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Abstract

We propose a new type system for lambda-calculus en-
suring that well-typed programs can be executed in polyno-
mial time: Dual light affine logic (DLAL). DLAL has a sim-
ple type language with a linear and an intuitionistic type
arrow, and one modality. It corresponds to a fragment of
Light affine logic (LAL). We show that contrarily to LAL,
DLAL ensures good properties on lambda-terms: subject
reduction is satisfied and a well-typed term admits a poly-
nomial bound on the reduction by any strategy. Finally we
establish that as LAL, DLAL allows to represent all poly-
time functions.

1 Introduction

Functional languages like ML assist the programmer
with prevention of such errors as run-time type errors,
thanks to automatic type inference. One could wish to ex-
tend this setting to verification of quantitative properties,
such as time or space complexity bounds (see for instance
[17]). We think that progresses on such issues can fol-
low from advances in the topic of Implicit Computational
Complexity, the field that studies calculi and languages
with intrinsic complexity properties. In particular some
lines of research have explored recursion-based approaches
([19, 8, 16]) and approaches based on linear logic to control
the complexity of programs ([14, 18]).

Here we are interested in Light affine logic (LAL)
([2, 14]), a logical system designed from Linear logic and
which characterizes polynomial time computation. By the
Curry-Howard correspondence proofs in this logic can be
used as programs. Some nice aspects of this system with
respect to other approaches are the facts that it includes
higher-order types as well as polymorphism. Moreover it
naturally extends to a consistent naive set theory, in which�Work partially supported by project GEOCAL ACINouvelles inter-
faces des mathématiquesand project CRISS ACISécurité informatique.

one can reason about polynomial time concepts. In particu-
lar the provably total functions of that set theory are exactly
the polynomial time functions ([14, 25]).

However the syntax of LAL is quite delicate, in partic-
ular because it has two modalities. Some term languages
have been proposed (in particular in [24]) but programming
is in general difficult. We think a better grasp would be
given on this system if one could use as language plain
lambda-calculus and then in a second phase have an auto-
matic (or semi-automatic) LAL type inference performed.
In case of success a well-typed program would have the
guarantee that it can be executed in polynomial time.

This approach has been examined in [3, 4]. In particular
it has been shown in [4] that type inference in propositional
LAL is decidable. However some problems remain:� First, to execute the well-typed program with the ex-

pected polynomial bound the lambda-term is not suf-
ficient. One has to use the type derivation and extract
a light lambda term(introduced in [24]) or a proof-net
([2]) that can be executed with the correct bound. In
particular this means that if we use ordinary abstract
machines for the evaluation we do not have any guar-
antee on the execution time.� Second, even if type inference is decidable we do not
have for the moment any efficient procedure. The diffi-
culty actually comes from two points: the type deriva-
tion might need to specify some sharing of subterm;
moreover the language of types is large (because there
are two modalities) and this results in an important
search space to explore.

To try to overcome these problems we propose here a new
type system, that we call Dual light affine logic (DLAL). It
corresponds to a simple fragment of LAL. It relies on the
idea of replacing the! modality by two notions of arrows:
a linear one and an intuitionistic one. This is in the line of
the works of Barber and Plotkin (Dual intuitionistic linear
logic, [7]) and Benton ([9]). DLAL then offers the follow-
ing advantages over LAL as a type system:



� its language of types is ’smaller’, in the sense that it
corresponds to a strict subset of LAL types.� DLAL keeps the same properties as LAL (P-
completeness and polynomial bound on execution) but
ensures the complexity bound on the lambda-term it-
self: if a term is typable one can extract the bound
from the derivation, then forget about the type and exe-
cute the term using any strategy (and any abstract ma-
chine), with the guarantee that the reduction will ter-
minate within the bound. This means that DLAL of-
fers a system where the program part and the complex-
ity specification part are really separate. The program
part corresponds to the lambda-term and the complex-
ity specification to the type.� we think type inference should become easier, though
this question still has to be explored. Indeed DLAL of-
fers the following advantages: first there is no sharing
in DLAL derivations; second, a large part of the diffi-
culty of LAL type inference has to do with the fact that
the types can use any sequence of the two modalities!, x, that is to say words over a binary alphabet. For
this reason the type inference procedure of [4] used
words constraints, which are hard to solve. By con-
trast Elementary affine logic (EAL) (corresponding to
elementary complexity) has only one modality! and
its type inference can be performed using linear con-
straints, that is to say integer programming. The prob-
lem of EAL type inference has been shown decidable
and studied in detail by Coppolaet al. (see [11, 12]),
starting from motivations in optimal reduction.

We believe DLAL should be easier to understand than
LAL and could make this light logic approach accessible
to a larger community. Moreover DLAL might open the
way to a closer study of LAL types as well as of evaluation
procedures for LAL-typed lambda-terms.

The proofs omitted here due to space constraints can be
foud in [6].
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2 Background on Light affine logic

Notations. Given a lambda-termt we denote byFV (t)
the set of its free variables. Given a variablex we denote byno(x; t) the number of occurrences ofx in t. The notation�! will stand for�-reduction on lambda-terms.

2.1 Light affine logic

The formulas of Light affine logic (LAL) are given by
the following grammar:A;B ::= � j A( B j !A j xA j 8�:A
We omit the connective
 which is definable. We will writey instead of either! or x.

Light affine logic is a logic for polynomial time compu-
tation in the proofs-as-programs approach to computing. It
controls the number of reduction (or cut-elimination) steps
of a proof-program using two ideas:

(i) stratification,
(ii) control on duplication.
Stratification means that the proof-program is divided

into levels and that the execution preserves this organiza-
tion. It is managed by the two modalities (also calledexpo-
nentials) ! andx.

Duplication is controlled as in Linear logic: an argument
can be duplicated only if it has undergone a!-rule (hence
has a type of the form!A). What is specific to LAL with
respect to Linear logic is the condition under which one can
apply a!-rule to a proof-program: it should have at most
one occurrence of free variable (rule (! i) of Figure 1).

We present the system as a natural deduction type-
assignment system for lambda-calculus that we call NLAL:
see Figure 1. We have:� for (8 i): (*) � does not appear free in�.� the (! i) rule can also be applied to a judgement of the

form ;` u : A (u has no free variable).

This system uses the notion ofdischarged formulas, which
are expressions of the form[A℄y with y = ! or x (resp. !-
discharged orx-discharged formula), whereA is a (proper)
formula. Discharged formulas only appear on the l.h.s. of
judgments and the only rules that can be applied to them
are(!e), (xe) and(Cntr). In particular note that one cannot
apply the(( i) rule to a discharged formula. Discharged
formulas are merely a technical artifact to handle the rules
for modalities and contraction in a convenient way; in par-
ticular we do not use them in final typing judgments.

The notation�, � will be used for environments at-
tibuting formulas to variables. For environments of dis-
charged formulas we use the following notation: if� = x1 :A1; : : : ; xn : An then [�℄y = x1 : [A1℄y; : : : ; xn : [An℄y.
We also writey� = x1 : yA1; : : : ; xn : yAn.

The sequent calculus presentation of LAL is perhaps bet-
ter known, but natural deduction is more convenient for our
purpose here. In the sequel we write� `LAL t : A for a
judgement derivable in NLAL.

The depthof a derivationD is the maximal number of(!i) and(xi) rules in a branch ofD. We denote byjDj the
sizeof D defined as its number of judgments.



x : A ` x : A (Id)�; x : A ` t : B� ` �x:t : A( B (( i)
�1 ` t : A( B �2 ` u : A�1;�2 ` (t u) : B (( e)�1 ` t : A�1;�2 ` t : A (Weak)
x1 : [A℄!; x2 : [A℄!;� ` t : Bx : [A℄!;� ` t[x=x1; x=x2℄ : B (Cntr)�;� ` t : A[�℄!; [�℄x ` t : xA (x i)

�1 ` u : xA �2; x : [A℄x ` t : B�1;�2 ` t[u=x℄ : B (x e)x : B ` t : Ax : [B℄! ` t : !A (! i)
�1 ` u : !A �2; x : [A℄! ` t : B�1;�2 ` t[u=x℄ : B (! e)� ` t : A� ` t : 8�:A (8 i) (*) � ` t : 8�:A� ` t : A[B=�℄ (8 e)

Figure 1. Natural deduction for LAL

Now, Light affine logic enjoys the following property:

Theorem 1 ([14, 1]) Given a NLAL proofD with depthd,
its normal formD0 can be computed inO(jDj2d+1) steps.

This statement refers to reduction performed either on
proof-nets ([14, 2]) or on light lambda terms ([24]). If the
depthd is fixed and the size ofD might vary (for instance
when applying a fixed term to binary integers) then the re-
sult can be computed in polynomial steps.

Moreover we have:

Theorem 2 ([14, 2]) If a functionf : f0; 1g? ! f0; 1g? is
computable in polynomial time, then it is representable in
LAL.

2.2 LAL and beta-reduction

It was shown in [24] that light affine lambda-calculus
admits polynomial strong normalization: the bound of the-
orem 1 holds on the length ofany reduction sequence of
light affine lambda-terms. However, this property is not true
for LAL-typed plain lambda-terms and�-reduction: indeed
[2] gives a family of LAL-typed terms (with a fixed depth)
such that there exists a reduction sequence of exponential
length. So the reduction of LAL-typed lambda-terms is
not stronglypoly-step (when counting the number of beta-
reduction steps). Hence it is not strongly polytime, when
counting the cost of the simulation of the reduction on a
Turing machine.

We stress here with an example the fact that normaliza-
tion of LAL-typed lambda-terms is not evenweaklypoly-
time: there exists a family of LAL-typed terms (with fixed
depth) such that the computation of their normal form on a
Turing machine (using any strategy) will take exponential
space, hence exponential time.

First, observe that the following judgments are derivable:yi :!A�Æ!A�Æ!A `LAL �x:yixx :!A�Æ!Az :!A `LAL z :!A
From this it is easy to check that the following is derivable:y1 :!A�Æ!A�Æ!A; : : : ; yn :!A�Æ!A�Æ!A; z :!A `(�x:y1xx)(� � � (�x:ynxx)z � � � ) :!A

Using(xi), (Cntr) and(!e) we finally get:y :!(!A�Æ!A�Æ!A); z :!!A ` (�x:yxx)nz : x!A
Denote bytn the term(�x:yxx)nz and byun its nor-

mal form. We haveun = y un�1un�1, so junj = O(2n),
whereasjtnj = O(n): the size ofun is exponential in the
size oftn. Hence computingun from tn on a Turing ma-
chine will take at least exponential space (if the result is
written on the tape as a lambda-term).

It should be noted though that even ifun is of exponen-
tial size, it nevertheless has a type derivation of sizeO(n).
To see this, note that we havez : [A℄!; y :!A (!A (!A `LAL yzz :!A. Now maken copies of it and com-
pose them by (! e); each time (! e) is applied, the term
size is doubled. Finally, by applying (! e), (x i), (Cntr)
and (! e) as before, we obtain a linear size derivation fory :!(!A(!A(!A); z :!!A `LAL un : x!A.

2.3 Discussion

The counter-example of the previous section illustrates a
mismatch between lambda-calculus and Light affine logic.
It can be ascribed to the fact that the (! e) rule on lambda-
calculus not only introduces sharing but also causes dupli-
cation. As Asperti neatly points out ([1]), “while every da-
tum of type!A is eventually sharable, not all of them are



actually duplicable.” The aboveyzz gives a typical exam-
ple. While it is of type!A and thus sharable, it should not be
duplicable, as it contains more than one free variable occur-
rence. The (! e) rule on lambda-calculus, however, neglects
this delicate distinction, and actually causes duplication.

Light affine lambda-calculus (�LA ) remedies this by
carefully designing the syntax so that the (! e) rule allows
sharing but not duplication. As a result, it offers the prop-
erties of subject-reduction with respect to LAL and polyno-
mial strong normalization ([24]). However it is not as sim-
ple as lambda-calculus; in particular it includes new con-
structions!(:), x(:) and let(:) be(:) in (:) corresponding to
the management of boxes and contractions in proof-nets.

The solution we propose here is more drastic: we simply
do not allow the (! e) rule to be applied to a term of type!A. This is achieved by removing judgments of the form� ` t :!A. As a consequence, we also remove types of the
form A (!B. Bang! is used only in the form!A ( B,
which we consider as a primitive connectiveA ) B. Note
that it hardly causes a loss of expressiveness in practice,
since linear logic as decomposition of intuitionistic logic
does not use types of the formA(!B.

3 Dual light affine logic (DLAL)

The system we propose does not use the! connective but
distinguishes two kinds of function spaces (linear and non-
linear). This approach is analogous to that of Dual intu-
itionistic logic of Barber and Plotkin ([7]), or the system of
Benton ([9]), which correspond to Intuitionistic linear logic.
Thus we call our system Dual light affine logic (DLAL). We
will see that it corresponds in fact to a well-behaved frag-
ment of LAL.

The languageLDLAL of DLAL types is given by:A;B ::= � j A( B j A) B j xA j 8�:A
There is an unsurprising translation(:)� from DLAL to
LAL given by:� (A) B)� = !A� ( B�,� (:)� commutes to the other connectives.

LetLDLAL? denote the image ofLDLAL by (:)�.
For DLAL typing we will handle judgements of the form�;� ` t : C. The intended meaning is that variables in�

are (affine) linear, that is to say that they have at most one
occurrence in the term, while variables in� are non-linear.
We give the typing rules as a natural deduction system that
we call NDLAL: see Figure 2. There is only one kind of
discharged formulas,[A℄x, which as in the case of NLAL
are not used in final typing judgments. We have:� (*) � does not appear free in�1;�1.

� in the () e) rule the r.h.s. premise can also be of the
form ;` u : A (u has no free variable).

In the rest of the paper we will write�;� `DLAL t : A
for a judgement derivable in NDLAL.

Remark 3 In fact one could give an alternative presenta-
tion of NLAL without discharged formulas: for that one
would replace the rules(xi), (xe) by a single rule with sev-
eral premises (in the style of [10]). The properties of the
system would be the same; we adopted the present formu-
lation because it is slightly more convenient to prove the
properties in the next sections.

Observe that the contraction rule(Cntr) is used only
on variables on the l.h.s. of the semi-column. It is then
straightforward to check the following statement:

Lemma 4 If �;� `DLAL t : A then the setFV (t) is in-
cluded in the variables of�[�, and ifx 2 � then we haveno(x; t) 6 1.

We can make the following remarks on NDLAL rules:� Initially the variables are linear (rule(Id)); to convert
a linear variable into a non-linear one we have to use
the (xi) rule. Note that it adds ax to the type of the
result and that the variables that remain linear (thexi)
get a discharged type.� the (( i) (resp. () i)) rule corresponds to abstraction
on a linear variable (resp. non-linear variable);� observe () e): a term of typeA ) B can only be
applied to a termu with at most one occurrence of free
variable.

Note that the only rules which correspond to substitutions
in the term are (Cntr) and (x e): in (Cntr) only a variable
is substituted and in (x e) substitution is performed on a
linear variable. Combined with Lemma 4 this ensures the
following important property:

Proposition 5 If a derivation D has conclusion�;� `DLAL t : A then we havejtj � jDj.
This Proposition shows that the mismatch between lambda-
calculus and LAL illustrated in the previous section is re-
solved with DLAL.

One can observe that the rules of DLAL are obtained
from the rules of LAL and the(:)� translation, and it follows
that:

Proposition 6 Given a lambda-termt, if �;� `DLAL t :A then[��℄!;�� `LAL t : A�.



;x : A ` x : A (Id)�1; �1; x : A ` t : B�1; �1 ` �x:t : A( B (( i)
�1; �1 ` t : A( B �2; �2 ` u : A�1;�2; �1;�2 ` (t u) : B (( e)�1; x : A; �1 ` t : B�1; �1 ` �x:t : A) B () i)
�1; �1 ` t : A) B ; z : C ` u : A�1; z : C; �1 ` (t u) : B () e)�1; �1 ` t : A�1;�2; �1;�2 ` t : A (Weak)

x1 : A; x2 : A;�1; �1 ` t : Bx : A;�1; �1 ` t[x=x1; x=x2℄ : B (Cntr); �; x1 : B1; : : : ; xn : Bn ` t : A�;x1 : [B1℄x; : : : ; xn : [Bn℄x ` t : xA (x i)
�1; �1 ` u : xA �2;x : [A℄x;�2 ` t : B�1;�2; �1;�2 ` t[u=x℄ : B (x e)�1; �1 ` t : A�1; �1 ` t : 8�:A (8 i) (*)

�1; �1 ` t : 8�:A�1; �1 ` t : A[B=�℄ (8 e)

Figure 2. Natural deduction for DLAL

The data types of LAL can be directly adapted to DLAL.
For instance we had for tally integersNLAL = 8�:!(� (�)( x(�( �), and in DLAL:N = 8�:(�( �) ) x(�( �)W = 8�:(�( �) ) (�( �) ) x(�( �)
The inhabitants of typeN are the familiar Church integers:n = �f:�x:(f (f : : : (fx) : : : ))
with n occurrences off . The following terms for addition
and multiplication on Church integers are typable in DLAL:add = �n:�m:�f:�x:(n f (m f x)) : N ( N ( Nmult = �n:�m:(m �k:�f:�x:(n f (k f x))) 0mult : N ) N ( xN
Finally, we have a partial converse to Proposition 6:

Proposition 7 If the following conditions hold:� t is in normal form,� the judgment[�0℄!;�0 `LAL t : A0 can be derived us-
ing (8e) only with instantiation onLDLAL? formulas,

then the judgment�;� `DLAL t : A with �� = �0, �� =�0, A� = A0 is derivable.

See [6] for the proof.

4 Properties of DLAL

4.1 Subject reduction

In this section, we will establish the subject reduction
property for DLAL. It should be stressed that subject reduc-
tion is by no means a trivial property in the current setting,

because lambda calculus does not have any constructs cor-
responding to modalities of light logics; as a matter of fact,
LAL as a type assignment system for lambda-calculus (Fig-
ure 1) does not satisfy the subject reduction property. For
this reason, we will give a rather detailed argument here.
Throughout this section, by�;� ` t : A we will mean�;� `DLAL t : A. We will also use notation�;� `n t : A
when�;� ` t : A has a derivation of size at mostn.

Lemma 8 (Substitution)

(1) If �;� `n t : A, then�[B=�℄; �[B=�℄ `n t : A[B=�℄ for everyB.

(2) If �1; �1 `n u : A and�2;x : A;�2 `m t : B, then�1;�2; �1;�2 `n+m t[u=x℄ : B.

(3) If ; �1;�1 `n u : A and�2;x : [A℄x;�2 `m t : B,
then�1;�2; [�1℄x;�2 `n+m t[u=x℄ : B.

(4) If ; z : C ` u : A andx1 : A; : : : ; xn : A;�;� ` t :B, thenz : C;�;� ` t[u=x1; : : : ; u=xn℄ : B.

Definition 1 The l.h.s. premises of (( e), () e) and (x
e) as well as the unique premise of (8 e) are calledmajor
premises. A DLAL derivation is8x-normalif� no conclusion of a (8 i) rule is the premise of a (8e)

rule;� no conclusion of a (x i) rule is the major premise of a
(x e) rule;� no conclusion of (Weak), (Cntr) and (x e) is the major
premise of elimination rules: (( e), () e), (x e), (8
e).

Lemma 9 (8x-Normalization) If �;� ` t : A has a
derivation, then it also has a8x-normal derivation.



This lemma can be proved by employing Substitution
Lemma (1) and (3) as well as permutability of (Weak),
(Cntr) and (x e) over the elimination rules.

Lemma 10 (Abstraction Property) Let �;� ` �x:t : A
be derivable with a8x-normal derivationD. Suppose that
the last rule (r) ofD is neither (Weak), (Cntr) nor (x e).
Then, (r) is an introduction rule corresponding to the out-
ermost connective ofA.

Proof. By induction onD. First, (r) cannot be (8 e); if it
were, thenD would be of the form

...�;� ` �x:t : 8�:B (r’)�;� ` �x:t : B[C=�℄ (8 e)

SinceD is 8x-normal, (r’) is neither (weak), (cntr) nor
(x e). Hence by the induction hypothesis, (r’) must be (8 i),
but that is impossible.

Second, (r) cannot be (( e), () e) nor (Id), since the
subject�x:t does not match the subjects of these rules.
The only possibility is therefore an introduction rule cor-
responding to the outermost connective ofA.

As a direct consequence, we have:

Lemma 11 (Paragraph Property) Let D be a8x-normal
derivation. IfD contains an application of (x e):�1; �1 ` u : xA �2;x : [A℄x;�2 ` t : B�1;�2; �1;�2 ` t[u=x℄ : B (x e)

thenu is not of the form�x:v.

Proof. SinceD is assumed to be8x-normal, the last rule
used for deriving the l.h.s. premise is neither (Weak), (Cntr)
nor (x e). Hence by the previous lemma, ifu is of the form�x:v, the last rule must be (x i), which contradicts the8x-
normality ofD.

Theorem 12 (Subject Reduction)If �;� ` t0 : A is
derivable andt0 �! t1, then�;� ` t1 : A is derivable.

Proof. By 8x-Normalization Lemma, there is a8x-
normal derivationD of �;� ` t : A. The proof is carried
out by induction onD.

(Case 1) The last rule ofD is (( e):

.... D1�1; �1 ` t : A( B .... D2�2; �2 ` u : A�1;�2; �1;�2 ` (t u) : B (( e)

If the redex is insidet oru, then the statement of the the-
orem follows from the induction hypothesis. If(t u) itself

is the redex, thent must be of the form�x:v. By Abstrac-
tion Property Lemma, the last rule ofD1 is (( i), hence we
have�1;x : A;�1 ` v : B. By Substitution Lemma (2),
we have�1;�2; �1;�2 ` v[u=x℄ : B as required.

(Case 2) The last rule ofD is () e): Similar to (Case 1),
except that Substitution Lemma (4) is used instead of (2).

(Case 3) The last rule is (x e):�1; �1 ` u : xA �2;x : [A℄x;�2 ` t : B�1;�2; �1;�2 ` t[u=x℄ : B (x e)

By Paragraph Property Lemma,u is not an abstraction.
Therefore, no new redex is created by substitutingu for x int. Thus each redex int[u=x℄ has a counterpart int or u, and
we can therefore apply the induction hypothesis to obtain
the desired result.

The other cases are straightforward.

4.2 Normalization

Thedepthof a DLAL derivationD is the maximal num-
ber of premises of (x i) and r.h.s. premises of () e) in a
branch ofD. DLAL types ensure the following strong nor-
malization property:

Theorem 13 (Polynomial time strong normalization)
Let t be a lambda-term which has a typing derivationD of
depthd in DLAL. Thent reduces to the normal formu in
at mostjtj2d reduction steps and in timeO(jtj2d+2) on a
Turing machine. This result holds independently of which
reduction strategy we take.

In this section, we prove a weaker form of this theorem,
namely we prove that thereexistsa reduction sequence fromt to u which is of length at mostjtj2d and which requires
timeO(jtj2d+2) to execute. Theorem 13 itself can then be
proved either by extending this result using the standard-
ization technique developed in [24] or by showing that any
beta reduction sequence for a DLAL typable lambda term
can be simulated by a longer�LA reduction sequence (see
Appendix E).

Definition 2 A stratified termis a term with each abstrac-
tion symbol� annotated by a natural numberd (called its
depth) and also possibly by symbol!.

Thus an abstraction looks like�dx:t or �d!x:t. In the
following, �dox:t stands for either�dx:t or �d!x:t. Whent is a stratified term,t[+1℄ denotest with the depths of all
abstraction subterms increased by 1. The type assignment
rules for stratified terms are obtained by modifying the
rules (( i), () i), () e), (x i) of DLAL as follows:



�1; �1; x : A ` t : B�1; �1 ` �0x:t : A( B (( i)�1; x : A; �1 ` t : B�1; �1 ` �0!x:t : A) B () i)�1; �1 ` t : A) B ; z : C ` u : A�1; z : C; �1 ` (t u[+1℄) : B () e); �1;�2 ` t : A�1; [�2℄x ` t[+1℄ : xA (x i)

A redex at depthd is a redex with the main abstraction
at depthd. Thedepthof a termt is the maximal depth of all

the abstraction subterms. We writet d�!�u when there is a
reduction sequence fromt tou which consists of reductions
of redices at depthd.

Lemma 14 Given a DLAL derivation of�;� ` t : A of
depthd, t can be decorated as a stratified termt0 of depthd
such that�;� ` t0 : A.

It is not hard to see that8x-Normalization Lemma, Ab-
straction Property Lemma, Paragraph Property Lemma and
Subject Reduction Theorem hold for stratified terms as well.

The following three lemmas are all concerned with ty-
pable stratified terms.

Lemma 15 Reducing a redex at depthd does not create a
new redex at depth less thand.

Proof. We prove that there is no typable stratified term
which contains a subterm of the form

(1) (�dox:t)(�eoy:u) with e < d;

(2) �dox:�eoy:t with e < d.

The lemma easily follows from this, because a lower depth
redex is created only by reducing (1) or a redex of the form:(�dox:�eoy:t)uv with e < d.

The above claim is proved by induction on the size of8x-normal derivationD.
(Case 1) The last inference is (( i): Since the rule (( i)
always introduces an abstraction at depth0, a term of the
form (2) is never produced.
(Case 2) The last inference is (( e):�1; �1 ` t : A( B �2; �2 ` u : A�1;�2; �1;�2 ` (t u) : B (( e)

If t is an abstraction, then the last inference to derive�1; �1 ` t : A( B is not (weak), (cntr) nor (x e), sinceD
is 8x-normal. By Abstraction Property Lemma, the last in-
ference should be (( i) andt should be of the form�0x:t0.
Hence a term of the form (1) is never produced.
(Case 3) The last inference is (x e):�1; �1 ` u : xA �2;x : [A℄x;�2 ` t : B�1;�2; �1;�2 ` t[u=x℄ : B (x e)

By Paragraph Lemma,u is not an abstraction. Hence a term
of the form (1) or (2) is never produced by the substitutiont[u=x℄.
Lemma 16 If t d�!�u, then the length of the reduction se-
quence is bounded byjtj.
Proof. Observe:� If a typable stratified termt contains(�dx:u)v, thenno(x; u) � 1.� If a typable stratified termt contains(�d!x:u)v, thenv

does not contain any abstractions at depthd.

Hence a reduction at depthd strictly decreases the number
of abstractions at depthd, that is obviously bounded byjtj.
Lemma 17 If jtj � 2 and t d�!�u, thenjuj is bounded byjtj(jtj � 1).
Proof (sketch).Observe:� Reducing a linear redex(�dx:v1)v2 does not increase

the size.� The number of bound variables at depthd (i.e. those
bound by�do) is less thanjtj � 1 (trivial).� The above number does not increase by reduction:C[(�d!x:v)v0℄ �! C[v[v0=x℄℄, becausev0 contains at
most one free variable (which is possibly bound by�d! in the contextC), and all other variables inv0 are
bound at deeper depths).� Therefore, any subterm int which is to be duplicated
during reductions at depthd (such asv0 above) has at
mostjtj � 1 copies inu.

A formal proof is given in [6].

Theorem 18 (Polynomial time weak normalization) Lett be a lambda-term which has a typing derivationD of
depthd in DLAL. Thent can be normalized withinjtj2d
reduction steps, and within timeO(jtj2d+2) by a Turing
machine.

Proof. By Lemma 14,t can be decorated as a stratified
term t0 of depthd. By Lemma 15, normalization can be
doneby levels. Namely, there is a reduction sequence of the
form t0 � t0 0�!�t1 1�!� � � � td d�!�u
with u normal. Without loss of generality, we may assume
that jtij � 2 for 0 � i < d. The length of the reduction
sequence above is bounded byjt0j + jt1j + � � � + jtdj by
Lemma 16. Hence it is sufficient to show thatjt0j+ jt1j+ � � �+ jtdj � jtj2d :



The proof is by induction ond. Since it is trivial whend =0, let us assumed > 0. Then we havedXi=0 jtij � jtj2d�1 + jtdj (by the induction hypothesis)� jtj2d�1 + jtd�1j(jtd�1j � 1) (by Lemma 17)� jtj2d�1 + jtj2d�1(jtj2d�1 � 1)
(by the induction hypothesis)= jtj2d :

It is readily seen that the numberjtj2d also bounds the
size of every term occurring in the above reduction se-
quence. Since a beta reduction stept �! u costs timeO(jtj2) on a Turing machine, the overall time required for
normalization isjtj2d � O(jtj2d�2) � O(jtj2d+2).
4.3 Expressiveness

We will show that polynomial time Turing machines can
be simulated in DLAL by adapting the proof given for LAL
in [2]. The key point is that of coercions for typeN .

4.3.1 Coercions

Coercions will allow us under certain conditions to turn a
non-linear variable of integer typeN into a linear variable,
and a linear variable of typexN into a linear variable of typeN . We express coercions on the typeN as rules derivable
in NDLAL: n : N ; � ` t : A;m : N; x� ` C1[t℄ : xA (coerc1)�;n : xN;� ` t : A�;m : N;� ` C2[t℄ : A (coerc2)

whereC1[:℄ andC2[:℄ are contexts, which contain as free
variables some variables of the environments:C1[x℄ = (m(�g:�p:(g (su p))))(�n:x)0C2[x℄ = (�n:x)(m su 0)su is the usual term for successor. Observe that in the
conclusion of(oer2) the context and the type of the term
are not changed, while they are in(oer1). Note also that
in the premise of(oer1) the variablen is the only non-
linear variable of the context.

Lemma 19 For i = 1; 2 we have: for any Church integerk and termt the termCi[t℄[k=m℄ reduces tot[k=n℄. Hence�m:Ci[t℄ is extensionally equivalent to�n:t.

For instance,C1[t℄[2=m℄ reduces tot[2=n℄ as follows:C1[t℄[2=m℄ �! (�g:�p:g (su p))2�n:t 0�!� (�g:�p:g (su p))(�p:t[su p=n℄) 0�!� (�p:(t[su su p=n℄)) 0�! t[su su 0=n℄ � t[2=n℄:
4.3.2 Encoding some polynomials

For the simulation we need to encode polynomials on the
typeN . To keep things short and as it is sufficient for the
Turing machines we will content ourselves with the family
of polynomials of the form:P [X ℄ = aXd + b; with a; b 2 N andd = 2k:
We will use the technique of [21]. Recall from section 3
that we have:add : N ( N ( N mult : N ) N ( xN:
Using successively the rules (coerc1), (coerc2), (x i), (Cntr)
and (coerc1), we get from the typing judgment ofmult a
judgment;m : N ` t : x4N . The termt is such thatsquare = �m:t computes the squaring function.

By composingsquare k times using thex rules we get
a termu representing the functionx �! x2k with typeN ( x4kN .

We can derive for multiplication, using (coerc 1) and the
rules forx, a termmultp : xpN ( xp+1N ( xp+2N and
for addition a termaddq : xqN ( xqN ( xqN . The
Church integersa andb representinga andb can be given
typesxpN andxqN . Hence, assumingk � 1 and takingp = 4k � 1, q = 4k + 1 we finally get the following term
representing the polynomialP :tP = �n:(addq(multp a (u n)))b : N ( xqN:
4.3.3 Simulation of Ptime Turing machines

The encoding of a Ptime Turing machine in LAL ([2]) con-
sists in two parts: (i) the quantitative part: encoding the
polynomial, (ii) the qualitative part: defining a function of
typeonfig( onfig whereonfig is the type of config-
urations, which simulates an execution step of the machine.

The whole encoding then exploits these two parts to iter-
ate a suitable number of times the step function on the initial
configuration.

One can check on the LAL derivations of [2] that: all the
derivations, but those of the quantitative part, are done inLDLAL?. In particular all rules(8e) are done onLDLAL?
formulas. Such a derivation can be converted into a LAL
typing derivation for a lambda-termt and it is possible to
assumet is in normal form (otherwise we normalize it).



Thus, using Proposition 7 we get that all these terms are
typable in DLAL. Together with the encoding of polynomi-
als of section 4.3.2 this shows that Ptime Turing machines
can be encoded in DLAL. Therefore we have:

Theorem 20 If a functionf : f0; 1g? ! f0; 1g? is com-
putable in polynomial time, then there exists a lambda-termt and an integern such that̀ DLAL t : W ( xnW andt
representsf .

5 Discussion on the DLAL type inference
problem

As there is a forgetful map from propositional EAL/LAL
to simple types (removing modalities and replacing( with!) the problem of type inference for lambda-calculus in
these systems can be addressed as adecorationproblem
(in the line of [13]): starting from a simple type for the
term, decorate it with modalities in order to obtain a suit-
able EAL/LAL type. This approach has been explored for
EAL ([11]) and LAL ([3, 4]) type inference.

For EAL, types are decorated with sequences inf!g�,
while for LAL they range overf!; xg�. In both cases the
main difficulty is to determine where in the derivation to
place the exponentials introduction rules: (! i) for EAL and
(! i), (x i) for LAL. These rules correspond toboxesin the
proof-nets syntax ([2]).

In [12] an algorithm for EAL type inference was de-
scribed as follows: first placeabstract boxeson the simple
type derivation, parametered with integer variables (a box
with parametern corresponds ton ! rules); then express the
typing conditions for thisabstract derivation, which yield
linear equations on the parameters. Finding a suitable EAL
derivation then amounts to solve these systems of linear
equations.

In [4] an analogous method was used for LAL type in-
ference, but as there are here two modalitiesf!; ?g the con-
straints involved were constraints on words.

The system DLAL corresponds by the(:)� translation to
a fragment of LAL where onlyxk and !xk sequences are
used (and a certain discipline on! is enforced). In fact!
andx are assigned two distinct roles:! is used to handle po-
tential duplications whilex is used to manage stratification.
This suggests carrying out the decoration of the simple type
derivation with the following steps:� step 1: finding non-linear applications; this step deals

with placing! exponentials in the derivation (which is
not very different from [13]).� step 2: completing the type derivation by placing thex
rules, which is then similar to EAL inference.

We leave for future work the proper study of DLAL type
inference and of its complexity. A proposal of algorithm

following the previous scheme and adapting the EAL pro-
cedure of [12] can be found in [6].

6 Conclusion and perspectives

We have presented a polymorphic type system for
lambda-calculus which guarantees that typed terms can be
reduced in a polynomial number of steps, and in polyno-
mial time. This system, DLAL, has been designed as a
subsystem of LAL. We have proved that it is complete for
the class PTIME by showing how to encode polynomial
time Turing machines. Being arguably simpler than Light
affine logic, DLAL might help to a better understanding of
LAL, in particular of the reduction strategies it induces on
lambda-terms. It should also be more amenable to type in-
ference. Other approaches to characterization of complex-
ity classes in lambda-calculus have considered restrictions
on type orders (see [15, 20, 23]); it would be interesting
to examine the possible relations between this line of work
and the present setting based on linear logic. Finally DLAL
might provide some new intuitions on the topic of denota-
tional semantics for light logics ([5]).
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APPENDIX

A Sequent calculus for LAL

The sequent-calculus presentation of LAL is given on
figure 3. It is equivalent to the natural deduction presenta-
tion, as a type system:

Lemma 21 A judgment� ` t : A is derivable in the LAL
sequent calculus iff it is derivable in NLAL.

B Sequent calculus for DLAL

The sequent-calculus presentation of DLAL is given on
figure 4.

As usual in a sequent calculus presentation application
is handled by the left introduction rule for the arrow con-
nective. Here there are two arrows:( and). Note that
in the case of() l), the argumentu is constrained to be
typed with a judgment; z :D ` u :A, so to have at most one
variable, which is linear.

Again, it is equivalent to the natural deduction formula-
tion:

Lemma 22 A judgment�;� ` t : A is derivable in the
DLAL sequent calculus iff it is derivable in NDLAL.

C From derivations in LAL to derivations in
DLAL: Proof of Proposition 7

To prove Prop. 7 we first prove the analogous property
with sequent calculus typing (Lemma 25) and then use the
fact that the sequent calculus and natural deduction presen-
tations are equivalent (Lemmas 21 and 22).

In the rest of this section, unless explicitely stated deriva-
tions will be sequent calculus derivations and� `LAL t : A
(resp. �;� `DLAL t : A) will stand for a LAL (resp.
DLAL) sequent calculus typing judgment.

Definition 3 We say an LAL derivation istidy if it satisfies
the following conditions:

1. formulas in (Id) rules (axioms) do not start with a! orx,
2. a rule!l introducing a formula!A is followed by a rule

in which !A is active (8l,( l,( r, Cut, !r, xr) or it
is the last rule of the derivation,

3. a rulexr is followed by rulesxl for all the discharged
formulas[B℄x on the l.h.s. of the sequent, or it is the
last rule of the derivation.



x :A ` x :A Id �1 ` u :A x :A;�2 ` t :C�1;�2 ` t[u=x℄ :C Cut� ` t :C�;� ` t :C Weak x : [A℄!; y : [A℄!;� ` t :Cz : [A℄!;� ` t[z=x; z=y℄ :C Cntr�1 ` u :A1 x :A2;�2 ` t :C�1; y :A1 �ÆA2;�2 ` t[yu=x℄ :C �Æl x :A1;� ` t :A2� ` �x:t :A1 �ÆA2 �Ærx :A[B=�℄;� ` t :Cx :8�:A;� ` t :C 8l � ` t :A� ` t :8�:A 8r; (� is not free in�)x : [A℄!;� ` t :Cx :!A;� ` t :C !l x :B ` t :Ax : [B℄! ` t :!A !rx : [A℄x;� ` t :Cx :xA;� ` t :C xl �;� ` t :A[�℄!; [�℄x ` t :xA xr
Figure 3. Sequent-calculus for LAL

Intuitively: condition 2 says that rules!l are appliedas
late as possible(with top-down orientation); condition 3
that rulesxl are appliedas early as possible.

Lemma 23 (tidying lemma) If t is a lambda-term and� `LAL t : A is derivable, then this judgement can be
obtained with a tidy derivation. If the initial derivation is
cut-free, one can give a cut-free tidy derivation.

Proof. If there is in the derivation an(Id) rule (axiom)
on a formula of the form!B or xB then one can�-expand
it, using rules!l; !r; xl; xr until getting an(Id) rule which is
not of this form.

Then we observe that:� a !l rule with main formula!A can commute top-down
with any rule but one active on!A or rules!r, xr. These
commutations do not change the lambda-term associ-
ated to the derivation.� a xl rule acting on[A℄x can commute top-down with
any rule but the one introducing[A℄x, which is neces-
sarily a xr rule. These commutations do not change
the lambda-term associated to the derivation.

Applying these commutations we eventually end up with a
tidy derivation of the same judgement.

Lemma 24 (bang lemma) If D is a tidy cut-free LAL
derivation of a judgement[�℄!; [�℄x;� ` u : !A with�;�;�; A in LDLAL?, then there exists a derivationD0 of
height inferior or equal to that ofD and ending with:x : B ` u : A !rx : [B℄! ` u : !A Weakx : [B℄!;� ` u : !A

and we have� = B;� = ;;
or the same derivation withoutx : B, in which case we

have� = � = ;.

Proof. The r.h.s.!A formula cannot have been introduced
by an(Id) rule as the derivation is tidy. Hence it has been
introduced by a!r rule. Therefore withinD there is a sub-
derivationD1 ending with a rule:y : C ` t : A !ry : [C℄! ` t : !A

or the same with noy : C on the l.h.s.
If there is a following rule inD call it R. The ruleR can

only be a!l orWeak rule. If it is !l it cannot be the last rule,
otherwise� would contain a formula!B, which does not
belong toLDLAL?. As the derivation is tidy the ruleR is
followed by a rule active on!B: 8l,( l,( r, !r, xr. The
rules8l,( r are excluded because they would introduce a
formula not belonging toLDLAL, which is impossible. The
rules( r, !r, xr are excluded because they would change
the r.h.s. formula. Hence the ruleR cannot be a!l rule.

ThereforeR is aWeak rule. Similarly one can check
that if R is not the last rule, then the following rules can
only beWeak or 8l, ( l acting on weakened formulas.
As a consequence we havey = x, C = B, t = u and one
can replace the part of the derivation belowD1 by simply
aWeak rule and obtain the same judgement as conclusion.
The resulting derivation isD0.
Lemma 25 If t is a lambda-term,�;�;�; A are inLDLAL, and D is an LAL derivation of the judgement[��℄!; [��℄x;�� ` t : A� such that:



;x :A ` x :A (Id) �1; �1 ` u :A �2;x :A;�2 ` t :C�1;�2; �1;�2 ` t[u=x℄ :C (Cut)�;� ` t :C�;�;�;� ` t :C (Weak) x :A; y :A;�;� ` t :Cz :A;�;� ` t[z=x; z=y℄ :C (Cntr)�1; �1 ` u :A �2;x :B;�2 ` t :C�1;�2; y :A�ÆB;�1;�2 ` t[yu=x℄ :C (�Æl) �;x :A;� ` t :B�;� ` �x:t :A �ÆB (�Ær); z :D ` u :A �;x :B;� ` t :Cz :D;�; y :A) B;� ` t[yu=x℄ :C () l) x :A;�;� ` t :B�;� ` �x:t :A ) B () r); �; x1 :B1; : : : ; xn :Bn ` t :A�;x1 :xB1; : : : ; xn :xBn ` t :xA (x)�;x :A[B=�℄;� ` t :C�;x :8�:A;� ` t :C (8l) �;� ` t :A�;� ` t :8�:A (8r); � is not free in�;�
Figure 4. Sequent calculus presentation of DLAL� D is cut-free,� quantification inD is only on formulas ofLDLAL?,

then�; x�;� ` t : A is derivable in DLAL.

Proof. To simplify the notations we will omit the symbol(:)� on formulas when there is no ambiguity.
By lemma 23 one can assume the derivationD is tidy.

Then by the subformula property and the assumption on
quantification we get: any formula occurring inD is inLDLAL? or of the form!A with A in LDLAL?.

We proceed by induction onD, considering its last rule:� rule( l:
the last rule is of the form:[�1℄x; [�1℄!;�1 ` u : B [�2℄x; [�2℄!;�2; x : C ` t2 : A ( l[�℄x; [�℄!;� ` t2[y u=x℄ : A
with � = �1;�2, � = �1;�2, � = �1;�2; call D1
andD2 the two immediate subderivations.

AsB( C is inLDLAL?, C is inLDLAL?. Moreover
as�2;�2;�2; A 2 LDLAL? one can apply the induc-
tion hypothesis toD2, which gives a DLAL derivationD02 of conclusion:�2; x�2;�2; x : C ` t2 : A.

ForD2 we have two cases:

– first case: B is not of the form!B1,
thenB 2 LDLAL and one can apply the i.h. toD1, getting a DLAL derivationD01. We then have
a DLAL derivation:

�1; x�1;�1 ` u : B �2; x�2;�2; x : C ` t2 : A ( l�; x�;�; y : B( C ` t2[y u=x℄ : A
– second case: B = !B1, with B1 2 LDLAL,

by lemma 24 there exists an LAL derivationD3
with height inferior to that ofD1 ending with:z : D1 ` u : B1 !rz : [D1℄! ` u : !B1 Weakz : [D1℄!;�1 ` u : !B1
with �1 = D1;�1 = ;,
or ` u : B1 !r` u : !B1 Weak�1 ` u : !B1
with �1 = ;;�1 = ;.
Then by i.h. onD3 we get a DAL derivationD03
of either ; z : D1 ` u : B1 or ; ` u : B1.
Let us assume for simplicity we are in the first
situation (the second one is similar). Then we
can take forD0 the following DLAL derivation,
starting from subderivationsD03 andD02:; z : D1 ` u : B1 �2; x �2;�2; x : C ` t2 : A ( lz : D1;�2; x �2; y : !B1( C;�2 ` t2[y u=x℄ : A Weakz : D1;�2; x �2; y : !B1 ( C;�1;�2 ` t2[y u=x℄ : A� rule( r:

We haveA = B( C and the last rule is of the form:



[�℄!;�; x : B ` t1 : C ( r[�℄!;� ` �x:t1 : B ( C
with an immediate subderivation that we callD1.

We distinguish two cases:

– first case: B 2 LDLAL?,
then by i.h. onD1 we get a DLAL derivationD01
and complete it in the following way to getD0:�;�; x : B ` t1 : C ( r�;� ` �x:t1 : B( C

– second case: B = !B1 with B1 2 LDLAL?,
asD is tidy, the!B1 on the l.h.s. has been intro-
duced by a!l rule, which must precede immedi-
ately the rule( r. HenceD is of the form:[�; B1℄!;� ` t1 : C !l[�℄!; x : B;� ` t1 : C ( r[�℄!;� ` �x:t1 : B( C
with an immediate subderivationD2.
By i.h. onD2 we get a DLAL derivationD02,
which we complete into a DLAL derivationD0
by: �; x : B1; � ` t1 : C ( r�;� ` �x:t1 : !B1( C� the other inductive cases are straightforward.

Proof. [Prop. 7] Assumet is a term in normal form and[�0℄!;�0 ` t : A0 can be derived in NLAL using(8e) only
with instantiation onLDLAL?. Then by Lemma 21 there
is a LAL sequent calculus derivationD of [�0℄!;�0 `LALt : A0,and quantification inD is only onLDLAL? formu-
las. Ast is in normal form it is easy to see thatD can be
taken without cut. Then by Lemma 25�;� `DLAL t : A
can be derived in DLAL sequent calculus (with�� = �0,�� = �0, A� = A0) thus by Lemma 22 in natural deduc-
tion DLAL.

D Proof of subject reduction

D.1 Proof of lemma 8

Proof. (1) By induction onn. (2) By induction onm. (3)
By induction onm. When the last rule of the derivation is
(x i):; �2; x : A;�02 `m�1 t : B0�2;x : [A℄x; [�02℄ `m t : xB0 (x i)

Apply (2) to obtain; �1;�1;�2;�02 `n+m�1 t[u=x℄ : B0;
then apply (x i) to obtain�1;�2; �1; [�02℄ `n+m t[u=x℄ : xB0:
(4) By induction onm. When the last rule of the derivation
is () e):~x : ~A;�;� ` t1 : D ) B ;xn : A ` t2 : D~x : ~A; xn : A;�;� ` (t1 t2) : B () e)

where~x : ~A � x1 : A1; : : : ; xn�1 : An�1. By the induc-
tion hypothesis, we havez : C;�;� ` t1[u=~x℄ : D ) B;
while by (2), we also have; z : C ` t2[u=xn℄ : D:
¿From these two, we immediately obtain the desired result:z : C;�;� ` (t1[u=~x℄ t2[u=xn℄) : D ) B:
D.2 Proof of Lemma 9

Proof. When the first or the second condition is violated,
apply the following rewriting rules:

.... D�;� `n t : A�;� `n+1 t : 8�:A (8 i)�;� `n+2 t : A[B=�℄ (8 e) =) .... D0�;� `n t : A[B=�℄

.... D1; �1;�1 `n u : A�1; [�1℄x `n+1 u : xA (x i)

.... D2�2;x : [A℄x;�2 `m t : B�1;�2; [�1℄x;�2 `n+m+2 t[u=x℄ : B (x e)=) .... D00�1;�2; [�1℄x;�2 `n+m t[u=x℄ : B
whereD0 andD00 are derivations obtained by Substitution
Lemma (1) and (3) respectively. The size of the derivation
strictly decreases. When the third condition is violated,
permute the two rules at issue: for instance, when the
conclusion of a (x e) rule is the major premise of another (x
e) rule, apply the rewriting rule in Figure 5. It is not hard
to see that, given a derivation, the process of applying the
above rewriting rules terminates eventually, resulting ina8x-normal derivation.



.... D1�1; �1 ` v : xA .... D2�2;x : [A℄x;�2 ` u : xB�1;�2; �1;�2 ` u[v=x℄ : xB (x e)

.... D3�3; y : [B℄x;�3 ` t : C�1;�2;�3; �1;�2;�3 ` t[u[v=x℄=y℄ : C (x e)+
.... D1�1; �1 ` v : xA .... D2�2;x : [A℄x;�2 ` u : xB .... D3�3; y : [B℄x;�3 ` t : C�2;�3;x : [A℄x;�2;�3 ` t[u=y℄ : C (x e)�1;�2;�3; �1;�2;�3 ` t[u=y℄[v=x℄ : C (x e)

Figure 5. Rewriting rule

D.3 Proof of Lemma 10

Proof. By induction onD. First, (r) cannot be (8 e); if it
were, thenD would be of the form

...�;� ` �x:t : 8�:B (r’)�;� ` �x:t : B[C=�℄ (8 e)

SinceD is 8x-normal, (r’) is neither (weak), (cntr) nor
(x e). Hence by the induction hypothesis, (r’) must be (8 i),
but that is impossible.

Second, (r) cannot be (( e), () e) nor (variable), since
the subject�x:t does not match the subjects of these rules.
The only possibility is therefore an introduction rule corre-
sponding to the outermost connective ofA.

E Simulation lemma and polynomial time
strong normalization

In this section, we will give a simulation of DLAL ty-
pable lambda terms by terms of�LA . More specifically, we
show that every DLAL typable lambda termt translates to a
term~t of �LA (depending on the typing derivation fort), and
that any beta reduction sequence fromt can be simulated by
a longer�LA reduction sequence from~t. The polynomial
time strong normalization theorem for DLAL directly fol-
lows from this fact.

Let us first recall light affine lambda calculus�LA from
[24].

Definition 4 The set of (pseudo) terms of�LA is defined by
the following grammar:t; u ::= x j �x:t j tu j !t j let u be !x in t j xt j let u be xx in t:
A term of the form(�x:let x be !y in t[y=x℄), wherey is
fresh, is abbreviated by�!x:t.

Thedepthof t is the maximal number of occurrences of!u
andxu in a branch of the term tree fort.

DLAL can be considered as a type system for�LA . We
write �;� `�LADLAL t : A if t is a term of�LA and�;� `t : A is derivable by the type assignment rules in Figure 6.
Thedepthof a DLAL derivationD is the maximal number
of premises of (x i) and r.h.s. premises of () e) in a branch
of D.

The reduction rules of�LA are given on Figure 7.
A term t is (x; !; om)-normal if neither of the re-

duction rules(x), (!), (om1) and (om2) applies tot. We write t (��)�! u when t reduces tou by (�) fol-
lowed by several applications of (x), (!), (com1) and
(com2). Given an�LA -termt, its erasuret� is defined by:x� � x (tu)� � t�u�(�x:t)� � �x:(t�) (yt)� � t�(let u be y x in t)� � t�[u�=x℄

The following is the main result of [24]:

Theorem 26 (Polytime strong normalization for�LA )
Any typable�LA -term t of depthd reduces to the normal
form in O(jtj2d+1) reduction steps, and in timeO(jtj2d+2)
on a Turing machine. This result holds independently of
which reduction strategy we take.

Lemma 27 (DLAL and �LA )

(1) If �;� `�LADLAL t : A, then�;� `DLAL t� : A andjt�j � jtj.
(2) If �;� `DLAL t : A, then there is a�LA -term~t such

that �;� `�LADLAL ~t : A is derivable,(~t)� � t, and
the size and the depth of~t are bounded by those of the
derivation of�;� `DLAL t : A.

Proof. By induction on the derivation.

Lemma 28 Let t be a term of�LA which is neither a vari-
ablex, application(u v) nor let u be xx in v.



;x : A ` x : A (variable)�1; �1; x : A ` t : B�1; �1 ` �x:t : A( B (( i)
�1; �1 ` t : A( B �2; �2 ` u : A�1;�2; �1;�2 ` (t u) : B (( e)�1; x : A; �1 ` t : B�1; �1 ` �!x:t : A) B () i)
�1; �1 ` t : A) B ; z : C ` u : A�1; z : C; �1 ` (t !u) : B () e)�1; �1 ` t : A�1;�2; �1;�2 ` t : A (Weak)

x1 : A; x2 : A;�1; �1 ` t : Bx : A;�1; �1 ` t[x=x1; x=x2℄ : B (Cntr); �1;�2 ` t : A�1; [�2℄x ` xt : xA (x i)
�1; �1 ` u : xA �2;x : [A℄x;�2 ` t : B�1;�2; �1;�2 ` let u be xx in t : B (x e)�1; �1 ` t : A�1; �1 ` t : 8�:A (8 i) (*)

�1; �1 ` t : 8�:A�1; �1 ` t : A[B=�℄ (8 e)

Figure 6. DLAL as a type system for �LA(�) (�x:t)u �! t[u=x℄(x) let xu be xx in t �! t[u=x℄(!) let !u be !x in t �! t[u=x℄(om1) (let u be y x in t)v �! let u be y x in (tv)(om2) let (let u be y x in t) be y y in v �! let u be y x in (let t be y y in v)
Figure 7. Reduction rules of �LA

(1) If �;� `�LADLAL t : 8�1 � � � 8�n:A( B (n � 0), thent is of the form�x:u.

(2) If �;� `�LADLAL t : 8�1 � � � 8�n:A ) B (n � 0), thent is of the form�!x:u.

(3) If �;� `�LADLAL t : 8�1 � � � 8�n:xA (n � 0) is deriv-
able, thent is of the formxu.

Proof. By induction on the derivation.

Lemma 29

(1) If �;� `�LADLAL (t u) : A and (t u) is (x; !; om)-
normal, thent is eitherx, (v1 v2) or �x:v.

(2) If �;� `�LADLAL let t be xx in u : A and
let t be xx in u is (x; !; om)-normal, thenu is eitherx or (v1 v2).

Proof. (1) Assume thatt is neitherx nor (u1 u2). The
proof is carried out by induction on the derivation. If the
last inference rule is(( r) of the form:�1; �1 ` t : A( B �2; �2 ` u : A�1;�2; �1;�2 ` (t u) : B (( e)

thent cannot be of the formlet v1 be xx in v2 since(t u) is(om)-normal. Hence by Lemma 28 (1),t is an abstraction.
The other cases are similar.
(2) Assume thatt is neitherx nor (u1 u2). The proof is
again by induction on the derivation. If the last rule is�1; �1 ` t : xA �2;x : [A℄x;�2 ` u : B�1;�2; �1;�2 ` let t be xx in u : B (x e)

then t cannot be of the formlet v1 be xx in v2 sincet is(om)-normal. Hence by Lemma 28 (3),t must be of the
form xv, but that is impossible sincelet t be xx in u is (x)-
normal. The other cases are immediate.

Lemma 30 (Simulation) Let t be a term of�LA which is
a subterm of a typable term and(x; !; om)-normal. If t�
reduces tou by (�) reduction, then there is a(x; !; om)-
normal term~u of�LA such thatt �! (��)u and(~u)� � u:t� ut ~u-(�)6�p p p p p p p p-(��) pppppppp6�
Proof. By induction ont.
(Case 1)t is a variable. Trivial.



(Case 2)t is of the form�x:v. By the induction hypothesis.
(Case 3)t is of the form (u1 u2). In this case,t� is(u�1 u�2 ). When the redex is insideu�1 or u�2 , the induc-
tion hypothesis applies. When the redex ist� itself, thenu�1 must be of the form�x:v. By the definition of erasure,u1 cannot be a variable nor an application. Therefore, by
Lemma 30 (1),u1 must be of the form�x:~v with (~v)� � v.
We therefore have(�x:v)u�2 v[u�2 =x℄(�x:~v)u2 ~v[u2=x℄-(�)6� p p p p p p p-(��) pppppppp6�
as required.
(Case 4)t is of the form!v. By the induction hypothesis.
(Case 5)t is of the form let u1 be !x in u2. Sincet is a
subterm of a term typable in DLAL,u1 must be a variabley. Therefore,t� is of the formu�2 [y=x℄. It is then not hard
to see that ift� reduces tou, there is someu0 such thatu�2 �! u0 andu � u0[y=x℄. By the induction hypothesis,
there is~u such that u�2 u0u2 ~u0-(�)6� p p p p p p p-(��) pppppppp6�
We therefore haveu�2 [y=x℄ u0[y=x℄

let y be !x in u2 let y be !x in ~u0-(�)6� p p p p p p p-(��) pppppppp6�
as required.
(Case 6)t is of the formxv. By the induction hypothesis.
(Case 7)t is of the formlet u1 be xx in u2. In this case,t�
isu�2 [u�1 =x℄. By Lemma 30 (2),u1 is either a variable or an
application, and so isu�1 . Therefore, the redex int is either
insideu�1 or results from a redex inu�2 by substitutingu�1
for x. In the latter case, the proof is similar to that of (Case
5). In the former case, letu�1 �! u. Then by the induction
hypothesis, there is some~u such thatu�1 uu1 ~u-(�)6� p p p p p p p-(��) pppppppp6�

Therefore, we haveu�2 [u�1 =x℄ u�2 [u=x℄
let u1 be xx in u2 let ~u be xx in u2-(�)6� p p p p p p p-(��) ppppppppp6�

as required.

Theorem 31 (Polynomial time strong normalization)
Let t be a�-term which has a typing derivationD in DLAL.
Suppose thatD be of sizen and of depthd. Thent reduces
to the normal formu in O(n2d+1) reduction steps and in
time O(n2d+2) on a Turing machine. This result holds
independently of which reduction strategy we take.

Proof. By Lemma 27 (2), there is a term~t of �LA such
that(~t)� � t andj~tj is bounded by the size ofD. Hence by
Lemma 30, we have:t u~t ~u-(�) p p p p p p p p- -(�)6�p p p p p p p p-(��) p p p p p p p p- p p p p p p p p-(��) ppppppp6�
Since the length of the reduction sequence from~t to ~u is
bounded byO(j~tj2d+1) � O(jDj2d+1 ), so is the one fromt
to u.

F Normalization

F.1 Proof of Lemma 15

We prove that no typable stratified term contains a sub-
term of the form� (�dox:t)(�eoy:u) with e < d;� �dox:�eoy:t with e < d.

The lemma easily follows from this, since a lower depth
redex is created only by reducing a redex is of the form:� (�dox:t)�eoy:u with e < d, or� (�dox:�eoy:t)uv with e < d.

The above claim is proved by induction on the size of8x-normal derivationD
(Case 1) The last inference is (( i): Since the rule (( i)
always introduces an abstraction at depth0, the statement
of the lemma holds trivially.
(Case 2) The last inference is (( e):�1; �1 ` t : A( B �2; �2 ` u : A�1;�2; �1;�2 ` (t u) : B (( e)



If t is an abstraction, then the last inference to derive�1; �1 ` t : A ( B is not (weak), (cntr) nor (x e), sinceD is 8x-normal. By Abstraction Property Lemma, the last
inference should be (( i) and t should be of the form�0x:t0. Thus it is impossible to have(�dox:t0)�eoy:u0 withe < d.
(Case 3) The last inference is () i) or () e): Similarly.

(Case 4) The last inference is (x i): By the induction hy-
pothesis.
(Case 5) The last inference is (x e):�1; �1 ` u : xA �2;x : [A℄x;�2 ` t : B�1;�2; �1;�2 ` t[u=x℄ : B (x e)

By Paragraph Lemma,u is not an abstraction. Hence the
substitutiont[u=x℄ does no harm.

F.2 Proof of Lemma 17

Let us temporarily use an explicit substitution notationtfu=xg, and call a stratified term with explicit substitution
notations anx-term. The variablex is bound in tfu=xg,
and the standard variable convention is adopted for explicit
substitution notations as well. There is an obvious map(:)�
from the x-terms to the original stratified term, given by(tfu=xg)� = t�[u�=x℄. In the following,t� stand for an
x-term of the formtfu1=x1g � � � fun=xng.

We prove the following by induction on the number of

reduction steps: whenevert d�!�u, there is an x-term~u
such that

(1) (~u)� = u,

(2) j~uj � jtj, and

(3) if either (�xd!:u1)�u2 or u1fu2=xg occurs in~u, thenu2 contains neither a redex at depthd nor an explicit
substitution; furthermore,u2 may have at most one
free variable, and in case it has, that variable is ei-
ther free in~u or is bound by an abstraction of the form�d!y:v.

In the base case, we take~u � t. The third property is eas-
ily checked by induction on the size of a8x-normal typing
derivation fort. In other cases, we simulate beta reduction
by the following reduction rules on x-terms:(�xd!:t)�u �! (t�)fu=xg(�xd:t)�u �! t[u=x℄�:
It is easily checked that these reduction rules preserve the
above properties.

Let us denote byno(u) the number of free variable oc-
currences inu. We now prove the following by induction
on the structure of~u: whenj~uj � 2,

(4) no(~u�) � j~uj, and

(5) j~u�j � j~uj � (j~uj � 1).
Suppose~u � u1fu2=xg. Then (4) holds sinceno((u1fu2=xg)�) � no(u�1 )� no(x; u�1 ) +no(x; u�1 ) � no(u�2 )� ju1j � no(x; u�1 ) + no(x; u�1 ) � 1� ju1j � j~uj;
by the induction hypothesis and (3) above (sinceu�2 � u2
and no(u2) � 1). As for (5), if u1 is a variable, thenj(u1fu2=xg)�j � ju2j, hence the claim holds trivially. Oth-
erwise,ju1j � 2 and we can use the induction hypothesis
onu1 (in addition to (4)). Thus,j(u1fu2=xg)�j � ju�1 j+ no(x; u�1 ) � ju�2 j� ju1j � (ju1j � 1) + ju1j � ju2j� ju1j � (ju1j � 1 + ju2j)� j~uj(j~uj � 1):
Putting (1), (2) and (5) together, we havejuj = j(~u)�j �j~uj(j~uj � 1) � jtj(jtj � 1) wheneverjuj � 2.

G Expressiveness

G.1 Encoding of polynomials

Here is the type derivation of a function for squaring:n1 : N ; n2 : N ` mult n1n2 : xN
(coerc1);m1 : N; n2 : xN ` C1[mult n1n2℄ : x2N

(coerc2);m1 : N;m2 : N ` C2[C1[mult n1n2℄℄ : x2N
(x i)m1 : N;m2 : N ; ` C2[C1[mult n1n2℄℄ : x3N

(Cntr) m : N ; ` C2[C1[mult n1n2℄℄[m=m1;m2 :℄x3N
(coerc1) ;m : N ` t : x4N

(( i); ` square : N ( x4N
H Type inference

One advantage of DLAL over LAL is that it assigns two
distinct roles to! andx: the modality! is used to handle po-
tential duplications whilex is used to manage stratification.
This separation shows up in particular with type-inference,
where in the case of DLAL we can take care of the two
modalities one at a time (contrarily to what happens with
LAL).

We give here a type-inference algorithm for proposi-
tional DLAL, which starting from a lambda-termt and its



principal simple typeB finds all possible decorations ofB
(if any) into a valid DLAL type fort. It will use as sub-
routine a type-inference procedure for Elementary affine
logic (EAL). Type-inference algorithms for EAL have been
given in [11, 12]. We will use the algorithm of [11].

Given t and its principal simple typeB, with environ-
ment� for the free variables, we will try to decorate the
simple type derivationD of � ` t : B into a LAL deriva-
tion corresponding to a DLAL derivation (by the(:)� trans-
lation). For that we proceed in two stages:� stage 1: non-linear arguments stage;

in this stage we place the! rules in the derivation. This
corresponds to working out which arguments are linear
and which arguments are non-linear. It is close to the
problem of linear decoration of intuitionistic deriva-
tions studied in [13].� stage 2: stratification stage;

in this stage we complete the type derivation by plac-
ing x rules; for that we use the EAL type-inference
procedure.

All solutions found by the procedure will give valid DLAL
type derivations fort. Conversely ift can be typed in DLAL
with a judgement� `DLAL t : C which is a decoration of� ` t : B, then the procedure will provide a derivation of� `DLAL t : C .

We adopt the following conventions for the simple type
derivationD of � ` t : B: environments are handled as
multisets; application requires both terms to have environ-
ments with disjoint sets of variables; contraction and weak-
ening are handled with explicit rules (with a substitution by
a fresh variable for contraction (Cntr)) and are performed
only just before doing an abstraction on the variable.

Stage 1: non-linear arguments stage.
We need to determine which applications of the term

should correspond to (( e) or to () e) rules, which is tied
to the issue of working out which abstractions correspond
to (( i) or to () i) rules.

For that we will associate a boolean parameter to each
application and abstraction rule of the derivationD, dec-
orate accordingly the types with these parameters and ex-
press the validity of thisabstractderivation by some con-
straints which should be satisfied.

We consider a set of parametersa; b : : : ranging overf0; 1g. The valuea = 1 corresponds in a type to a! modal-
ity, while a = 0 corresponds to absence of! modality.

The constraints are of the form:d1 = d2, wheredi is
either a disjunction of parametersa1_� � �_an or a constant
0 or 1. For convenience we will denote herea1 : : : an fora1_� � �_an and use notationu; v : : : for such disjunctions,
with n � 0..

Abstract typesare defined by the grammars:B ::= � j (a1 : : : anB) ! BA ::= (a1 : : : anB)
wheren � 0 anda1; : : : ; an are any parameters. TheBs
are called basic abstract types.

We write �1 � �2 if for any parametera we have�1(a) � �2(a).
Let U(A1; A2) be the set of constraints on parameters

obtained for unifying two abstract typesA1 andA2, defined
on Figure 8. IfA1 andA2 are abstract types with same un-
derlying simple type, thenm(A1; A2) is defined inductively
by: m(A1; A2) = u1u2� if Ai = ui� for i = 1; 2;m(A1; A2) = u1u2(m(A01; A02) ! m(B1; B2)) if Ai =ui(A0i ! Bi) for i = 1; 2.

We handleabstract judgementsof the following form:� ` t : B whereB is a basic abstract type,� is a environ-
ment assigning abstract types to variables.

If � is an environment, the notationa� will stand for the
environment given by:a�(x) is defined iff�(x) = A is
defined, and thena�(x) = aA.

A maximal decorationA of a simple typeA is a basic
abstract type defined by induction onA in the following
way: if A = � atomic thenA = �, if A = A1 ! A2 thenA = (aA1) ! A2 where theAi are maximal decorations
with disjoint parameters anda is a fresh parameter.

Given a simple type derivationD we will define induc-
tively a derivation of abstract judgmentsD and a set of con-
straintsC(D). Basically the idea is to add a parameter to
each argument of application and to each abstraction in or-
der to determine which abstractions should be non-linear.

GivenD, D andC(D) are defined by:� if D is just an axiom rulex : A ` x : A thenD is
obtained by replacingA by a maximal decorationA
andC(D) = true, the empty set of constraints.� if D is obtained by an application rule onD1 andD2,
thenD is defined fromD1 andD2 (taken with disjoint
parameters) using a fresh parametera with the (appa)
rule of Figure 9. We setC(D) = C(D1) [ C(D2) [U(A1; aA2).� if D is obtained by an abstraction rule onD1 define
similarlyD fromD1 using the (abstra) rule of Figure
9. We setC(D) = � C(D1) if no(x; t) � 1;C(D1) [ fa = 1g if no(x; t) � 2: .� if D is obtained by a contraction rule onD1 defineD
fromD1 using the (Cntr) rule of Figure 9.� if D is obtained fromD1 by a weakening rule, thenD
has as last rule a weakening on a maximal decoration
formula.



U(a1 : : : an(A1 ! B1); b1 : : : bm(A2 ! B2)) = fa1 _ � � � _ an = b1 _ � � � _ bmg [ U(A1; A2) [ U(B1; B2)U(a1 : : : an�; b1 : : : bm�) = fa1 _ � � � _ an = b1 _ � � � _ bmgU(A;A0) = false in the other cases.

Figure 8. Unification of abstract types�1; x : A ` t : B�1 ` �x:t : (aA)! B (abstra)
�1 ` t1 : A1 ! B1 �2 ` t2 : A2�1; a�2 ` (t1 t2) : B1 (appa)x1 : A1; x2 : A2;� ` t : Bx : m(A1; A2);� ` t[x=x1; x=x2℄ : B (Cntr)

Figure 9. Rules for abstract derivations

We now come back to the simple type derivationD of t
and consider the associated abstract derivationD and con-
straintsC(D), that we will denote asC. Note thatC has
at least one solution, as the constant function� � 1 is a
solution.

¿From a solution� and the abstract derivationD one de-
fines a!-derivation ~D: ~D is the derivationD where appli-
cation rules corresponding to (appa) with �(a) = 1 are
annotated as() e) (note that the types themselves are un-
changed). In~D we say (thinking about LAL proof-nets) that
the r.h.s. subderivation above an() e) rule is in a!-box.

We will try to decorate a!-derivation ~D (coming from a
solution�) into a DLAL derivation if the following neces-
sary conditions are satisfied:

(i) in ~D any r.h.s. premise of a() e) rule has an envi-
ronment with at most one variable,

(ii) a variable belongs to at most one environment of
r.h.s. premise of() e).

These conditions are necessary for being able to decorate
the derivation into a DLAL derivation; in particular (ii) is
needed to ensure that the variable in a r.h.s. environment of() e) is linear, in the DLAL derivation.

If no solution� gives a!-derivation satisfying (i) and
(ii) then the initial simple type cannot be decorated into a
DLAL type. If some solutions satisfy (i) and (ii) then we
try to decorate the corresponding derivations~D into DLAL
derivations with stage 2 of the procedure.

Stage 2: stratification stage.
Assume~D is a !-derivation obtained by stage 1 and sat-

isfying (i) and (ii).
Let us briefly recall the EAL type inference procedure of

[12]. First we recall the notion oftype schemes. We con-
sider parametersn;m; n1; : : : ranging over the setN of non
negative integers. Type schemes are defined by the gram-

mar: �; �0 ::= �j�( �0j!n1+���+nk�
wherek can take any positive value andn1; : : : nk are pa-
rameters.

The EAL type inference procedure starts from a lambda-
termt and proceeds in 3 steps:� from the termt a setC(t) of canonical simple forms

of t is computed. Acanonical simple formof t is a
kind of EAL meta-derivation corresponding tot. The
setC(t) is finite.� an algorithmPT (:) computes, given a canonical sim-
ple formQ, a triplePT (Q) =< �; �; C > where: �
is an assignment of type schemes to variables,� is a
type scheme forQ andC is a set of linear equations on
parameters (constraints).� for any canonical simple formQ of C(t), ifPT (Q) =< �; �; C > andC has a solutionX , then
fromQ, �, � an EAL type derivation fort can be con-
structed.

It was shown that this algorithm is correct and complete
for EAL (with respect to the EAL typing system without
sharing: contraction is allowed only on variables).

In stage 2 of our procedure we proceed in the following
way:� a) first we apply the previous method tot to get its setC(t) of canonical simple forms;� b) amongC(t) we then determine a subset~C(t) of

canonical simple forms compatible with~D;� c) we give a functionPT 0(:; :) which for Q in ~C(t)
computes a triplePT 0(Q; ~D) =< �; �; ~C >. If X is a
solution of ~C then fromQ, ~D, �, � a DAL type deriva-
tion for t can be constructed.



Let us make explicit these steps. To a canonical simple formQ one can associate a syntactic tree with boxesT (the boxes
correspond to ther constructors of the canonical simple
form). When naming boxes we will useB;B1 : : : . If we
forget about the boxes the syntactic tree is that of the under-
lying lambda-term.

Moreover a!-derivation ~D can also be translated into a
syntactic tree with boxes (forgetting about types): a box is
put around each argument of a() e) application.

Observe that if a canonical abstract derivationQ and a!-derivation ~D correspond to the same termt, then their as-
sociated trees might only differ by the boxes.

We say a canonical simple formQ, with treeT1, is com-
patiblewith the!-derivation~D, with treeT2, if the following
conditions hold:� any box ofT2 corresponds to a box ofT1 (that is to sayT1 is obtained fromT2 by adding some boxes);� for any boxB2 of T2 with input variablex (that is to

sayx is a free variable of the corresponding term) then:
any boxB1 of T1 containgB2 also contains the� node
abstractingx (and no such box exists ifx is not ab-
stracted).

Graphically the second condition amounts to say that inT1 no box can be closed belowB2 and havex as input.
These two conditions can be checked by one traversal of
both trees, and by comparing the tree of each element of the
finite setC(t) to that of ~D we can determine~C(t) and thus
complete step b).

We now consider step c). LetQ be an element of~C(t)
andPT (Q) =< �; �; C >. The procedurePT (:) assignes
to each box of (the tree associated to)Q a distinct param-
etern. Let us denote byB1; : : : ;Bk the boxes ofQ corre-
sponding to boxes of~D and byn1; : : : nk the corresponding
parameters assigned byPT (:). We introducek new param-
etersm1; : : : ;mk and define the set of constraints~C from C
by: ~C := C [ fni = mi + 1; 1 � i � kg
Then we set: PT 0(Q; ~D) :=< �; �; ~C > :
¿From the results onPT (:) we can see that any solutionX
of ~C induces an EAL derivation fort. It can also define an
LAL derivation in the following way: each boxBi (1 �i � k) is instantiated into one!-box andX(mi) x-boxes
(so possibly 0); all other boxes are instantiated byx-boxes
(possibly 0). For eachx-box ((x i) rules) the type (! or x) of
the discharged variables can be chosen so as to get a valid
derivation. Finally an LAL type derivation fort obtained in
this way is the translation by(:)� of a DLAL derivation.

Remark 32 This procedure is not very satisfactory because
it starts by determining a distribution of!-boxes (with sev-
eral possibilities) and then enumerates all canonical simple
derivations before searching which ones match the distri-
bution of !-boxes. It would be more efficient to compute
directly the canonical simple derivations corresponding to
the distribution of!-boxes.


