N

N

Light types for polynomial time computation in
lambda-calculus
Patrick Baillot, Kazushige Terui

» To cite this version:

Patrick Baillot, Kazushige Terui. Light types for polynomial time computation in lambda-calculus.
2004, pp.266-275. hal-00003468

HAL Id: hal-00003468
https://hal.science/hal-00003468v1
Submitted on 3 Dec 2004

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00003468v1
https://hal.archives-ouvertes.fr

Light Types for Polynomial Time Computation in Lambda-Calculus *

Patrick Baillot Kazushige Terui
Laboratoire d’Informatique de Paris-Nord /CNRS National Institute of Informatics
Université Paris-Nord, France Tokyo, Japan
pb@lipn.univ-paris13.fr terui@nii.ac.jp
Abstract one can reason about polynomial time concepts. In particu-

lar the provably total functions of that set theory are elyact
We propose a new type system for lambda-calculus en-the polynomial time functions ([14, 25]).
suring that well-typed programs can be executed in polyno- However the syntax of LAL is quite delicate, in partic-
mial time: Dual light affine logic (DLAL). DLAL has a sim- ular because it has two modalities. Some term languages
ple type language with a linear and an intuitionistic type have been proposed (in particular in [24]) but programming
arrow, and one modality. It corresponds to a fragment of is in general difficult. We think a better grasp would be
Light affine logic (LAL). We show that contrarily to LAL, given on this system if one could use as language plain
DLAL ensures good properties on lambda-terms: subject lambda-calculus and then in a second phase have an auto-
reduction is satisfied and a well-typed term admits a poly- matic (or semi-automatic) LAL type inference performed.
nomial bound on the reduction by any strategy. Finally we In case of success a well-typed program would have the
establish that as LAL, DLAL allows to represent all poly- guarantee that it can be executed in polynomial time.
time functions. This approach has been examined in [3, 4]. In particular
it has been shown in [4] that type inference in propositional
LAL is decidable. However some problems remain:

1 Introduction e First, to execute the well-typed program with the ex-

pected polynomial bound the lambda-term is not suf-

Functional languages like ML assist the programmer ficient. One has to use the type derivation and extract
with prevention of such errors as run-time type errors, alight lambda term(introduced in [24]) or a proof-net
thanks to automatic type inference. One could wish to ex- ([2]) that can be executed with the correct bound. In
tend this setting to verification of quantitative propestie particular this means that if we use ordinary abstract
such as time or space complexity bounds (see for instance ~ machines for the evaluation we do not have any guar-
[17]). We think that progresses on such issues can fol- antee on the execution time.

low from advances in the topic of Implicit Computational . _ _ _
Complexity, the field that studies calculi and languages *® Second, even if type inference is decidable we do not

with intrinsic complexity properties. In particular some have for the moment any efficient procedure. The diffi-
lines of research have explored recursion-based apprsache ~ culty actually comes from two points: the type deriva-
([19, 8, 16]) and approaches based on linear logic to control ~ tion might need to specify some sharing of subterm;
the complexity of programs ([14, 18]). moreover the language of types is large (because there

Here we are interested in Light affine logic (LAL) are two modalities) and this results in an important
([2, 14]), a logical system designed from Linear logic and search space to explore.

which characterizes polynomial time computation. By the To trv to overcome these problems we propose here a new
Curry-Howard correspondence proofs in this logic can be y Probis > Propo

. . - type system, that we call Dual light affine logic (DLAL). It
used as programs. Some nice aspects of this system with

respect to other approaches are the facts that it includescorresponds o a simple fragment of LAL. It relies on the

higher-order types as well as polymorphism. Moreover it Idea of replacing thé modality by two notions of arrows:

naturally extends to a consistent naive set theorv. in WhiCha linear one and an intuitionistic one. This is in the line of
y Y the works of Barber and Plotkin (Dual intuitionistic linear

*Work partially supported by project GEOCAL AQlouvelles inter- !ogic, [7]) and Benton ([9]). DLAL then offers the follow-
faces des mathématiquasd project CRISS ACSécurité informatique ing advantages over LAL as a type system:

e its language of types is 'smaller’, in the sense that it 2.1 Light affine logic
corresponds to a strict subset of LAL types.
The formulas of Light affine logic (LAL) are given by

. the followi :
e DLAL keeps the same properties as LAL (P- € following grammar

completeness and polynomial bound on execution) but A/B:=a|A—oB|!A|§A|Va.A

ensures the complexity bound on the lambda-term it- . . o ! L
self: if a term is typable one can extract the bound We omltdth(;: cpﬁnfctlv® which is definable. We will write
from the derivation, then forget about the type and exe- f Instead of eithet or §.

cute the term using any strategy (and any abstract ma- _L|ght arf]flne |ngIC is a logic for polynomlﬁll time compu- |
chine), with the guarantee that the reduction will ter- tation In the proofs-as-programs approach to computing. 1t

minate within the bound. This means that DLAL of- controls the number of reduction (or cut-elimination) step

fers a system where the program part and the complex-Of a proof-.?rog'ram using two ideas:
ity specification part are really separate. The program (1) stratification,

part corresponds to the lambda-term and the complex- (i cqntro! on duplication. S
ity specification to the type. Stratification means that the proof-program is divided

into levels and that the execution preserves this organiza-
tion. Itis managed by the two modalities (also cakegbo-
o we think type inference should become easier, thoughnentialg ! ands.
this question still has to be explored. Indeed DLAL of- Duplication is controlled as in Linear logic: an argument
fers the following advantages: first there is no sharing can be duplicated only if it has undergoné-mule (hence
in DLAL derivations; second, a large part of the diffi- has a type of the formh4). What is specific to LAL with
culty of LAL type inference has to do with the fact that respect to Linear logic is the condition under which one can
the types can use any sequence of the two modalitiesapply a!-rule to a proof-program: it should have at most
!, §, that is to say words over a binary alphabet. For one occurrence of free variable (rulg)(of Figure 1).
this reason the type inference procedure of [4] used We present the system as a natural deduction type-
words constraints, which are hard to solve. By con- assignment system for lambda-calculus that we call NLAL:
trast Elementary affine logic (EAL) (corresponding to see Figure 1. We have:
elementary complexity) has only one modalitgand
its type inference can be performed using linear con-
straints, that is to say integer programming. The prob- e the (i) rule can also be applied to a judgement of the
lem of EAL type inference has been shown decidable form;+ u : A (u has no free variable).
and studied in detail by Coppotd al. (see [11, 12]),
starting from motivations in optimal reduction.

e for (Vi): (*) a does notappear free In

This system uses the notion discharged formulaswvhich
are expressions of the forfe]; with ¥ = ! or § (resp. !
discharged o§-discharged formula), wheté is a (proper)

We believe DLAL should be easier to understand than formula. Discharged formulas only appear on the L.h.s. of
LAL and could make this light logic approach accessible juggments and the only rules that can be applied to them
to a larger community. Moreover DLAL might open the are(le), (§¢) and(Cntr). In particular note that one cannot
way to a closer study of LAL types as well as of evaluation apply the(— 4) rule to a discharged formula. Discharged

procedures for LAL-typed lambda-terms. formulas are merely a technical artifact to handle the rules
The proofs omitted here due to space constraints can bdor modalities and contraction in a convenient way; in par-
foud in [6]. ticular we do not use them in final typing judgments.
Acknowledgements.We are grateful to Paolo Coppola, ~ The notationI', A will be used for environments at-
Simone Martini and Ugo Dal Lago for their accurate read- tlbutlng formulas to variables. For environments of dis-
ing and important suggestions. charged formulas we use the following notatiort if= z; :

A, oz, s ApthenT]y = 21 0 [Addy, oo 20 0 [Anlse
We also writefl’ =z : TA1,..., 25 : TAn.
2 Background on Light affine logic The sequent calculus presentation of LAL is perhaps bet-
ter known, but natural deduction is more convenient for our
purpose here. In the sequel we write-; 41, t : A for a
Notations. Given a lambda-termwe denote by#'V (¢) judgement derivable in NLAL.
the set of its free variables. Given a variablee denote by The depthof a derivationD is the maximal number of
no(zx,t) the number of occurrences ofin ¢. The notation (!i) and(§:) rules in a branch oD. We denote byD| the
— will stand for 3-reduction on lambda-terms. sizeof D defined as its number of judgments.

m:Al—m:A(Id)
Iz:A+t:B (i) I'ikt:A—B Fgl—u:A(e)
TFizt:A—B [, Dok (tu): B
M Ht: A x1 ¢ [Al,xo : [A, Tt B
I,Iakt: A (Weak) x: [Al, Tk t[z/z1,2/2s] : B (Cntr)
ARt A) MNkru:84 Fg,m:[A]§l—t:B(§e)
I, Ft:84 ™ I'y,[s Ftlu/z]: B ‘
Alg A
r:BFt:A D MNkFu:tA Fg,a::[A]!l—t:B('e)
z:[BiFt:1A " y,Ty Ftu/z] - B '
IF'Ft: A N FFt:Va.A
'+t:vVa.A i)) I'Ft: AlB/a) (ve)

Figure 1. Natural deduction for LAL

Now, Light affine logic enjoys the following property:

Theorem 1 ([14, 1]) Given a NLAL proofD with depthd,
its normal formD, can be computed i®(|D[2"") steps.

This statement refers to reduction performed either on

proof-nets ([14, 2]) or on light lambda terms ([24]). If the
depthd is fixed and the size dP might vary (for instance

when applying a fixed term to binary integers) then the re-

sult can be computed in polynomial steps.
Moreover we have:

Theorem 2 ([14, 2]) If a functionf : {0,1}* — {0,1}*is
computable in polynomial time, then it is representable in
LAL.

2.2 LAL and beta-reduction

It was shown in [24] that light affine lambda-calculus
admits polynomial strong normalization: the bound of the-
orem 1 holds on the length @y reduction sequence of
light affine lambda-terms. However, this property is noétru
for LAL-typed plain lambda-terms angreduction: indeed
[2] gives a family of LAL-typed terms (with a fixed depth)

First, observe that the following judgments are derivable:
y; JA—lA—lAFpap Ax.y;zx 1A—0lA

zdAbpap 2z 1A

From this it is easy to check that the following is derivable:
1 JA—olA—olA ...y, :lA—lA-olA 2 14 F
Azgpzx)(-- - (Azypzz)z---) 1A
Using (§i), (Cntr) and(le) we finally get:

y:1(1A—olA—olA) z NAF (Az.yzz)" 2z : §lA

Denote byt,, the term(Az.yxx)"z and byu,, its nor-
mal form. We haves,, = y u,_1u,_1, SO|u,| = O(2"),
whereagi,| = O(n): the size ofu,, is exponential in the
size oft,. Hence computing,, from ¢,, on a Turing ma-
chine will take at least exponential space (if the result is
written on the tape as a lambda-term).

It should be noted though that evenuif is of exponen-
tial size, it nevertheless has a type derivation of §i{e).
To see this, note that we have: [A];,y 1A —lA —o
'A Frap yzz !A. Now maken copies of it and com-
pose them by!(e); each time!(e) is applied, the term

such that there exists a reduction sequence of exponentia$ize is doubled. Finally, by applyind €), ¢ i), (Cnir)

length. So the reduction of LAL-typed lambda-terms is
not stronglypoly-step (when counting the number of beta-

reduction steps). Hence it is not strongly polytime, when

and (e) as before, we obtain a linear size derivation for
y:1(1A —lA —olA), 2 NMAFpap u, : §1A.

counting the cost of the simulation of the reduction on a 2.3 Discussion

Turing machine.

We stress here with an example the fact that normaliza-

tion of LAL-typed lambda-terms is not evemeaklypoly-
time: there exists a family of LAL-typed terms (with fixed

The counter-example of the previous section illustrates a
mismatch between lambda-calculus and Light affine logic.
It can be ascribed to the fact that tHeef rule on lambda-

depth) such that the computation of their normal form on a calculus not only introduces sharing but also causes dupli-

Turing machine (using any strategy) will take exponential
space, hence exponential time.

cation. As Asperti neatly points out ([1]), “while every da-
tum of type!A is eventually sharable, not all of them are

actually duplicable.” The abovgzz gives a typical exam-
ple. While itis of typel A and thus sharable, it should not be
duplicable, as it contains more than one free variable eccur
rence. Thel(e) rule on lambda-calculus, however, neglects
this delicate distinction, and actually causes duplicatio
Light affine lambda-calculusA{A) remedies this by
carefully designing the syntax so that tHeej rule allows
sharing but not duplication. As a result, it offers the prop-

e inthe (= e) rule the r.h.s. premise can also be of the
form;+ u : A (u has no free variable).

In the rest of the paper we will writE; A Fprar t: A
for a judgement derivable in NDLAL.

Remark 3 In fact one could give an alternative presenta-
tion of NLAL without discharged formulas: for that one

erties of subject-reduction with respect to LAL and polyno- Would replace the rulegi), (§e) by a single rule with sev-

mial strong normalization ([24]). However it is not as sim-
ple as lambda-calculus; in particular it includes new con-
structions!(.), §(.) and let(.) be(.)in (.) corresponding to
the management of boxes and contractions in proof-nets.

The solution we propose here is more drastic: we simply
do not allow the {e) rule to be applied to a term of type
!A. This is achieved by removing judgments of the form
't :1A. As a consequence, we also remove types of the
form A —!B. Bang! is used only in the formiA — B,
which we consider as a primitive connectide=- B. Note
that it hardly causes a loss of expressiveness in practice
since linear logic as decomposition of intuitionistic logi
does not use types of the form—!B.

3 Dual light affine logic (DLAL)

The system we propose does not use! ttennective but
distinguishes two kinds of function spaces (linear and non-
linear). This approach is analogous to that of Dual intu-
itionistic logic of Barber and Plotkin ([7]), or the systerh o
Benton ([9]), which correspond to Intuitionistic lineagio.
Thus we call our system Dual light affine logic (DLAL). We
will see that it corresponds in fact to a well-behaved frag-
ment of LAL.

The languag€ pr, 41, of DLAL types is given by:

AB:=a|A—-B|A= B|§A|Va.A

There is an unsurprising translatign)™ from DLAL to
LAL given by:

e (A= B)" =!4* — B*,
e (.)" commutes to the other connectives.

Let L1, a1« denote the image af 7,47, by (1)*.

For DLAL typing we will handle judgements of the form
['A R ¢ : C. The intended meaning is that variablesAn
are (affine) linear, that is to say that they have at most one
occurrence in the term, while variableslirare non-linear.

We give the typing rules as a natural deduction system that

we call NDLAL: see Figure 2. There is only one kind of
discharged formulagA]s, which as in the case of NLAL
are not used in final typing judgments. We have:

e (*) adoes not appear free iy, A;.

eral premises (in the style of [10]). The properties of the
system would be the same; we adopted the present formu-
lation because it is slightly more convenient to prove the
properties in the next sections.

Observe that the contraction ru{€ntr) is used only
on variables on the L.h.s. of the semi-column. It is then
straightforward to check the following statement:

Lemma4 If I'; A Fprar t : A then the seF'V (¢) is in-
cluded in the variables df U A, and ifz € A then we have
ho(x,t) < 1.

We can make the following remarks on NDLAL rules:

e Initially the variables are linear (rulgd)); to convert
a linear variable into a non-linear one we have to use
the (§i) rule. Note that it adds & to the type of the
result and that the variables that remain linear (the

get a discharged type.

the (— i) (resp. & i)) rule corresponds to abstraction
on a linear variable (resp. non-linear variable);

e observe £ e): aterm of typed = B can only be
applied to a termu with at most one occurrence of free
variable.

Note that the only rules which correspond to substitutions
in the term are (Cntr) andy (€): in (Cntr) only a variable

is substituted and in§(e) substitution is performed on a
linear variable. Combined with Lemma 4 this ensures the
following important property:
Proposition5 If a derivation D has conclusion
T;A Fprar t: Athenwe havét| < |D.

This Proposition shows that the mismatch between lambda-
calculus and LAL illustrated in the previous section is re-
solved with DLAL.

One can observe that the rules of DLAL are obtained
from the rules of LAL and thé.)" translation, and it follows
that:

Proposition 6 Given a lambda-term, if I'; A Fprar t:
A then[l"*];, A* bFpan t: A*.

;m:Al—.r:A(ld)
I';Ay,z:AFt: B (i) ;A Ft: A— B Fg;Agl—u:A(_oe)
Fi;AtFXzt:A— B [,T9; A1, A0 b (tu): B
I'i,z:A;A1Ft:B (=) ;Af+Ft:A=B ;z:Cl—u:A(:e)
;A Xet: A= B = I,2:C;A1F(tu): B
M A Rt A z1: Az AT ;AL B
t
L, Iy A, At A (Weak) x: AT A Fite/xy,x /2] - B (Cntr)
Doy :By,...,2,: B, Ft: A) F;A Fu:§A4 Doz [Alg,Axk-t: B G o)
Iz :[Bilg,...,2n : [Bplg Ft:84 1,09 A1, Ay Ftfu/x]: B ‘
§ §
Fl;AlktiA . F1;A1|—t:Va.A
;A Hit:Va A (¥1) () [y;A Ht: A[B/a] (Ve)

Figure 2. Natural deduction for DLAL

The data types of LAL can be directly adapted to DLAL. because lambda calculus does not have any constructs cor-

For instance we had for tally integeds" 4L = Va.!(a — responding to modalities of light logics; as a matter of fact
a) —o §(a — «), and in DLAL: LAL as a type assignment system for lambda-calculus (Fig-
ure 1) does not satisfy the subject reduction property. For
N = Va.(a—oa)=§a—oaq) this reason, we will give a rather detailed argument here.
W = Va.(a—oa)=(a—oa)=§a—oa) Throughout this section, by/; A + ¢ : A we will mean

_ . o _ A Fprar t: A, We will also use notatiofi; A " ¢ : A
The inhabitants of typéV are the familiar Church integers: whenD'; A ¢ : 4 has a derivation of size at mast
n=AXe.(f (f...(fx)...))

with n occurrences of. The following terms for addition ~ Lemma 8 (Substitution)
and multiplication on Church integers are typable in DLAL: (1) DA -7 ¢ : A, thenT[B/a]; A[B/a] F7 ¢ : A[B)

add = IndmAfdz(nf(mfz)): N—N—N a] for everyB.
mult = An.Am.(m Ak AfAz.(n f (k f))) 0 (2) LA F? w: AandDo;z 0 A, Ay F™ ¢ 2 B, then
mult : N = N —§N 1, Ta; Ay, Ay ET™ tu/x] : B.

3) If;T, Ay F* w - AandTy;z - [Alg, As F™ t @ B,
thenF],FQ; [A]]§,A2 pntm t[u/:c] : B.

@ If;z:Cru:Aandzy : A,... z, : AT; AR

Finally, we have a partial converse to Proposition 6:

Proposition 7 If the following conditions hold:

e tisinnormal form, B,thenz : C.\T; A F tu/xy,...,u/x,) : B.
e the judgmenfl];, A" -y 4y, ¢ - A" can be derived Us- Definition 1 The I.h.s. premises of- €), (= €) and §
ing (Ve) only with instantiation onCprar« formulas, e) as well as the unique premise &f€) are calledmajor
then the judgmertt; A Fppaz £ : AwithT* = IV, A* = premises. A DLAL derivation i§-normalif
A', A* = A’ is derivable. e no conclusion of aY(i) rule is the premise of ave)

See [6] for the proof. rule;

e no conclusion of a§i) rule is the major premise of a

4 Properties of DLAL (§ e) rule;
. . ¢ no conclusion of (Weak), (Cntr) anl €) is the major
4.1 Subject reduction premise of elimination rules: 4 e), (= e), § e), ¢

e).
In this section, we will establish the subject reduction
property for DLAL. It should be stressed that subject reduc- Lemma 9 (V§-Normalization) If T;A + ¢ : A has a
tion is by no means a trivial property in the current setting, derivation, then it also has @§-normal derivation.

This lemma can be proved by employing Substitution
Lemma (1) and (3) as well as permutability of (Weak),
(Cntr) and § e) over the elimination rules.

Lemma 10 (Abstraction Property) LetI'; A F Azt @ A
be derivable with &/§-normal derivationD. Suppose that
the last rule (r) ofD is neither (Weak), (Cntr) nor§(e).
Then, (r) is an introduction rule corresponding to the out-
ermost connective of.

Proof. By induction onD. First, (r) cannot beY e); if it
were, therD would be of the form

AR)\ﬂ;.t :Va.B (r& e)
AR Azt B[C/a]

SinceD is V§-normal, (r') is neither (weak), (cntr) nor
(§ e). Hence by the induction hypothesis, (r') must Ye)(
but that is impossible.

Second, (r) cannot be— €), (= e) nor (Id), since the
subjectAz.t does not match the subjects of these rules.
The only possibility is therefore an introduction rule cor-
responding to the outermost connectivedof

As a direct consequence, we have:

Lemma 11 (Paragraph Property) Let D be aVv§-normal

derivation. IfD contains an application ofy(e):

Fi;ArFu:§A4 Tojx:[Aly,AsFt: B
[,T9;A1,Aq - t[u/z] : B

(§e)

thenu is not of the form\z.v.

Proof. SinceD is assumed to b¥§-normal, the last rule
used for deriving the I.h.s. premise is neither (Weak), (Cnt
nor (§ €). Hence by the previous lemmayifis of the form
Az.v, the last rule must bé; (), which contradicts th&/§-
normality of D.

Theorem 12 (Subject Reduction)If T;A F ¢t : Ais
derivable andy — ¢, thenI'; A - ¢; : A is derivable.

Proof. By V§-Normalization Lemma, there is s§-
normal derivatiorD of I'; A - ¢ : A. The proof is carried
out by induction orD.

(Case 1) The last rule @? is (— €):

F],A]l_tA—OB Fz,Az u: A
Fl,FQ;Al,AQ F (f TI,)SB

(—e)

If the redex is inside or u, then the statement of the the-
orem follows from the induction hypothesis. (if) itself

is the redex, then must be of the form\z.v. By Abstrac-
tion Property Lemma, the last rule 6% is (— i), hence we
havel'i;z : A,A; F v : B. By Substitution Lemma (2),
we havel';,I's; Ay, Ay Fo[u/z] : B as required.
(Case 2) The lastrule @? is (= e): Similar to (Case 1),
except that Substitution Lemma (4) is used instead of (2).
(Case 3) The last rule i§ €):

;A Fu:8A Doz [Alg,AxFt: B
[y,T9; Ay, A - t[u/z] : B

(§e)

By Paragraph Property Lemma,is not an abstraction.
Therefore, no new redex is created by substitutirfigr z in
t. Thus each redex itju/z] has a counterpart ihor u, and
we can therefore apply the induction hypothesis to obtain
the desired result.

The other cases are straightforward.

4.2 Normalization

Thedepthof a DLAL derivationD is the maximal num-
ber of premises of§(i) and r.h.s. premises o&f €) in a
branch ofD. DLAL types ensure the following strong nor-
malization property:

Theorem 13 (Polynomial time strong normalization)

Lett be a lambda-term which has a typing derivatibrof
depthd in DLAL. Thent reduces to the normal form in

at most|t[>" reduction steps and in timé&(|¢/2""") on a
Turing machine. This result holds independently of which
reduction strategy we take.

In this section, we prove a weaker form of this theorem,
namely we prove that theexistsa reduction sequence from

t to u which is of length at mos|tt\2d and which requires
time O(|t\2d+2) to execute. Theorem 13 itself can then be
proved either by extending this result using the standard-
ization technique developed in [24] or by showing that any
beta reduction sequence for a DLAL typable lambda term
can be simulated by a longarA reduction sequence (see
Appendix E).

Definition 2 A stratified termis a term with each abstrac-
tion symbol\ annotated by a natural number(called its
depth and also possibly by symbbl

Thus an abstraction looks like’z.t or A%z.t. In the
following, A%x.t stands for eithen?z.t or *z.t. When
t is a stratified term¢[+1] denoteg with the depths of all
abstraction subterms increased by 1. The type assignment
rules for stratified terms are obtained by modifying the
rules (— i), (= i), (=€), § i) of DLAL as follows:

I'i;A,z:AFt: B
I';AFXzt:A—B
r,z:A;,A+t:B .
(=1

I AL FX"2t: A= B
N;AfFt:A=B ;z:CFru:A
[y,z:C; AL F (tu[+1]) : B

AL A R A .

Avi[Aals F et g4 O
A redex at depthl is a redex with the main abstraction

at depthd. Thedepthof a termt¢ is the maximal depth of all

the abstraction subterms. We write>¥u when there is a
reduction sequence frotrto u which consists of reductions
of redices at depth.

(=)

(=€)

Lemma 14 Given a DLAL derivation of ;A + ¢ : A of
depthd, ¢ can be decorated as a stratified terhof depthd
suchthafl; A - ¢ : A.

It is not hard to see that§-Normalization Lemma, Ab-

straction Property Lemma, Paragraph Property Lemma and

Subject Reduction Theorem hold for stratified terms as well.
The following three lemmas are all concerned with ty-
pable stratified terms.

Lemma 15 Reducing a redex at depthdoes not create a
new redex at depth less thadn

Proof. We prove that there is no typable stratified term
which contains a subterm of the form

(1) Az.t)(Ay.u) with e < d;
(2) Mz Ay .t with e < d.

The lemma easily follows from this, because a lower depth
redex is created only by reducing (1) or a redex of the form:
(A2 Ay t)uw with e < d.

The above claim is proved by induction on the size of
V§-normal derivatiorD.
(Case 1) The last inference is<(i): Since the rule { i)
always introduces an abstraction at deptta term of the
form (2) is never produced.
(Case 2) The last inference isq e):

F],A]l_tA—OB FQ;AQFU:A
F],FQ;A],AQF(tu):B

(—e)

If ¢ is an abstraction, then the last inference to derive
;A Ft: A — Bisnot (weak), (cntr) norg(e), sinceD
is V§-normal. By Abstraction Property Lemma, the last in-
ference should be- i) and¢ should be of the form\%z.¢'.
Hence a term of the form (1) is never produced.
(Case 3) The last inference is€):

Fi;ArFu:§A4 Tojx:[Aly,AsFt: B
F],FQ;A],AQ l‘t[’U,/Z‘]B

(§e)

By Paragraph Lemma, is not an abstraction. Hence aterm
of the form (1) or (2) is never produced by the substitution

t{u/x].

Lemma 16 If ¢ —2¥u, then the length of the reduction se-
quence is bounded b¥.

Proof. Observe:

e If a typable stratified term contains(\%z.u)v, then
no(xz,u) < 1.

e If a typable stratified term containg A% z.u)v, thenv
does not contain any abstractions at depth

Hence a reduction at depthstrictly decreases the number
of abstractions at depth) that is obviously bounded Byj.

Lemma 17 If |¢| > 2 and¢ —25*u, then|u| is bounded by
21([2] = 1).

Proof (sketch)Observe:

e Reducing a linear redef?z.v;)v, does not increase
the size.

The number of bound variables at deptlfi.e. those
bound by\®) is less thant| — 1 (trivial).

The above number does not increase by reduction:
Cl(A\z.v)v'] — C[v[v'/x]], because’ contains at
most one free variable (which is possibly bound by
A% in the contexiC), and all other variables in’ are
bound at deeper depths).

Therefore, any subterm inwhich is to be duplicated
during reductions at depth (such as’ above) has at
most|¢| — 1 copies inu.

A formal proof is given in [6].

Theorem 18 (Polynomial time weak normalization) Let
t be a lambda-term which has a typing derivatién of

depthd in DLAL. Thent can be normalized Withimﬂzd
reduction steps, and within tim@(\t|2d+2) by a Turing
machine.

Proof. By Lemma 14, can be decorated as a stratified
termt' of depthd. By Lemma 15, normalization can be
doneby levels Namely, there is a reduction sequence of the
form

1 0 1 4 d

t=tg—t1 — ---tg —u

with « normal. Without loss of generality, we may assume

that|¢t;| > 2 for 0 < i < d. The length of the reduction
sequence above is bounded |yl + |t1| + - - + |tq| DY
Lemma 16. Hence it is sufficient to show that

od
lto| + [ta] + -+ + [ta] < [t

The proof is by induction od. Since it is trivial whend =
0, let us assumé > 0. Then we have

d
STitil < 42" + |tal (by the induction hypothesis)
i=0
< 27+ Jtact|(Jtass] — 1) (by Lemma 17)
d—1 d—1 d—1
S [(R

(by the induction hypothesis)

= |t

It is readily seen that the numbﬁﬁd also bounds the
size of every term occurring in the above reduction se-
guence. Since a beta reduction step— wu costs time
O(|t|*) on a Turing machine, the overall time required for
normalization ist|” - O([t[>"2) < O(|¢)2"").

4.3 Expressiveness

We will show that polynomial time Turing machines can
be simulated in DLAL by adapting the proof given for LAL
in [2]. The key point is that of coercions for typeé.

4.3.1 Coercions

Coercions will allow us under certain conditions to turn a
non-linear variable of integer typ¥ into a linear variable,
and a linear variable of typgV into a linear variable of type
N. We express coercions on the typeas rules derivable
in NDLAL:

n:N;AFt: A
sm N, SAFCL[t] : §A

(coercl)

Iin:§N,AFt: A

coerc2
F;m:N,AI—CQ[t]:A()

whereC4[.] andC,[.] are contexts, which contain as free
variables some variables of the environments:

(71[$]
Colz] =

(m (g Ap.(g (suce p)))(n.2)0
(An.z)(m succ 0)

succ is the usual term for successor.
conclusion of(coerc2) the context and the type of the term
are not changed, while they are(itvercl). Note also that
in the premise ofcoercl) the variablen is the only non-
linear variable of the context.

Lemma 19 Fori = 1,2 we have: for any Church integer
k and termt the termC;[t][k/m] reduces ta[k/n]. Hence
Am.C;[t] is extensionally equivalent ton.t.

Observe that in the

For instance([¢][2/m] reduces t@[2/n] as follows:

Ci[t][2/m] — (Ag-Ap.g (succ p))*An.t 0
H

(
¥ (A\g-Ap.g (suce p))(Ap.t[succ p/n]) 0
—* (Ap.(t[suce suce p/n])) 0

— t[succ succ 0/n] = t[2/n].

4.3.2 Encoding some polynomials

For the simulation we need to encode polynomials on the
type N. To keep things short and as it is sufficient for the
Turing machines we will content ourselves with the family
of polynomials of the form:

P[X]=aX?+b, witha,be Nandd = 2"
We will use the technique of [21]. Recall from section 3
that we have:

add: N —o N — N mult: N = N — §N.
Using successively the rules (coercl), (coerd®i), (Cntr)
and (coercl), we get from the typing judgmentofilt a
judgment;m : N F t : §*N. The termt is such that
square = Am.t computes the squaring function.

By composingsquare k times using the rules we get
a termu representing the functiom — 22" with type
N — §*k N,

We can derive for multiplication, using (coerc 1) and the
rules for§, a termmult, : § N — §#*' N — §PT2N and
for addition a termadd, : §N — §IN — §?N. The
Church integers andb representing: andb can be given
types§? N and§?/N. Hence, assuming > 1 and taking
p =4k — 1, ¢ = 4k + 1 we finally get the following term
representing the polynomial;

tp = An.(add,(multy, a (un)))b: N — §IN.

4.3.3 Simulation of Ptime Turing machines

The encoding of a Ptime Turing machine in LAL ([2]) con-
sists in two parts: (i) the quantitative part: encoding the
polynomial, (ii) the qualitative part: defining a functiof o
typecon fig — con fig wherecon fig is the type of config-
urations, which simulates an execution step of the machine.

The whole encoding then exploits these two parts to iter-
ate a suitable number of times the step function on thelnitia
configuration.

One can check on the LAL derivations of [2] that: all the
derivations, but those of the quantitative part, are done in
Lprars- In particular all rulegVe) are done orCpr, Az«
formulas. Such a derivation can be converted into a LAL
typing derivation for a lambda-termand it is possible to
assumet is in normal form (otherwise we normalize it).

Thus, using Proposition 7 we get that all these terms are
typable in DLAL. Together with the encoding of polynomi-
als of section 4.3.2 this shows that Ptime Turing machines
can be encoded in DLAL. Therefore we have:

Theorem 20 If a function f : {0,1}* — {0,1}* is com-
putable in polynomial time, then there exists a lambda-term
t and an integen such that-pr Az t : W — §"W andt
representsf.

5 Discussion on the DLAL type inference
problem

As there is a forgetful map from propositional EAL/LAL
to simple types (removing modalities and replacirgwith
—) the problem of type inference for lambda-calculus in
these systems can be addressed deaorationproblem
(in the line of [13]): starting from a simple type for the
term, decorate it with modalities in order to obtain a suit-
able EAL/LAL type. This approach has been explored for
EAL ([11]) and LAL ([3, 4]) type inference.

For EAL, types are decorated with sequenceg!it,
while for LAL they range over!,§}*. In both cases the
main difficulty is to determine where in the derivation to
place the exponentials introduction rulesi) for EAL and
('), (§ 1) for LAL. These rules correspond tmoxesin the
proof-nets syntax ([2]).

In [12] an algorithm for EAL type inference was de-
scribed as follows: first placabstract boxesn the simple
type derivation, parametered with integer variables (a box
with parameten corresponds ta ! rules); then express the
typing conditions for thisabstract derivationwhich yield
linear equations on the parameters. Finding a suitable EAL
derivation then amounts to solve these systems of linear
equations.

In [4] an analogous method was used for LAL type in-
ference, but as there are here two modalifie8} the con-
straints involved were constraints on words.

The system DLAL corresponds by tfig* translation to
a fragment of LAL where onlyg* and!§* sequences are
used (and a certain discipline dnis enforced). In fact
and§ are assigned two distinct rolesis used to handle po-
tential duplications whilg is used to manage stratification.
This suggests carrying out the decoration of the simple type
derivation with the following steps:

¢ step 1: finding non-linear applications; this step deals
with placing! exponentials in the derivation (which is
not very different from [13]).

¢ step 2: completing the type derivation by placing §he
rules, which is then similar to EAL inference.

We leave for future work the proper study of DLAL type
inference and of its complexity. A proposal of algorithm

following the previous scheme and adapting the EAL pro-
cedure of [12] can be found in [6].

6 Conclusion and perspectives

We have presented a polymorphic type system for
lambda-calculus which guarantees that typed terms can be
reduced in a polynomial number of steps, and in polyno-
mial time. This system, DLAL, has been designed as a
subsystem of LAL. We have proved that it is complete for
the class PTIME by showing how to encode polynomial
time Turing machines. Being arguably simpler than Light
affine logic, DLAL might help to a better understanding of
LAL, in particular of the reduction strategies it induces on
lambda-terms. It should also be more amenable to type in-
ference. Other approaches to characterization of complex-
ity classes in lambda-calculus have considered restnistio
on type orders (see [15, 20, 23]); it would be interesting
to examine the possible relations between this line of work
and the present setting based on linear logic. Finally DLAL
might provide some new intuitions on the topic of denota-
tional semantics for light logics ([5]).

References

[1] A. Asperti. Light affine logic.
IEEE Computer Society, 1998.

[2] A. Asperti and L. Roversi. Intuitionistic light affine ¢ic.

ACM Transactions on Computational Logi&(1):1-39,

2002.

P. Baillot. Checking polynomial time complexity withges.

In Proceedings of IFIP TCS'Q2Montreal, 2002. Kluwer

Academic Press.

P. Baillot. Type inference for polynomial time compléxi

via constraints on words. Preprint 02-03, LIPN, Univessit

Paris XllI, january 2003. submitted for publication.

P. Baillot. Stratified coherence spaces: a denotatigeal

mantics for light linear logicTheoretical Computer Science

2004. to appear.

P. Baillot and K. Terui. Light types for polynomial time

computation in lambda-calculus (long version). Technical

Report ¢s.L0O/0402059, arXiv, april 2004. available from

http://arXiv.org.

A. Barber and G. Plotkin. Dual intuitionistic linear lagy

Technical report, LFCS, University of Edinburgh, 1997.

[8] S. Bellantoni and S. Cook. New recursion-theoretic abar

terization of the polytime functionsComputational Com-

plexity, 2:97-110, 1992.

N. Benton. A mixed linear and non-linear logic: Proofs,

terms and models. IRroceedings of CSL'9%umber 933

in LNCS. Springer, 1994.

P. Benton, G. Bierman, V. de Paiva, and J. Hyland. A

term calculus for intuitionistic linear logic. IRroceedings

TLCA'93 volume 664 olLNCS Springer Verlag, 1993.

InProceedings LICS’98

(3]

(4]

(5]

(6]

(7]

9]

[10]

[11] P. Coppola and S. Martini. Typing lambda-terms in elame APPENDIX
tary logic with linear constraints. IRroceedings TLCA'01
volume 2044 o NCS 2001.

[12] P. Coppola and S. Ronchi della Rocca. Principal typimg i A Sequent calculus for LAL
Elementary Affine Logic. IfProceedings TLCA'Q3.NCS,

2003. The sequent-calculus presentation of LAL is given on

[13] V. _Danofs_, J.-B. J_oir_1etj, and H. Sche:}l?nx.fOnthehIinemadl figure 3. It is equivalent to the natural deduction presenta-
ration of intuitionistic derivationsArchive for Mathematica tion, as a type SyStem

Logic, 33(6), 1994.

[14] J.-Y. Girard. Light linear logic.Information and Computa-
tion, 143:175-204, 1998.

[15] G. Hillebrand and P. C. Kannelakis. On the expressiwvegro
of simply typed and let-polymorphic lambda calculi.Rro-

ceedings LICS'9gpages 253-263. IEEE Computer Society, B Sequent calculus for DLAL

Lemma 21 A judgmentl” F ¢ : A is derivable in the LAL
sequent calculus iff it is derivable in NLAL.

1996.

[16] M. Hofmann. Linear types and non-size-increasing poly
nomial time computation. IfProceedings LICS'99IEEE ~ The sequent-calculus presentation of DLAL is given on
Computer Society, 1999. figure 4.

[17] M. Hofmann and S. Jost. Static prediction of heap space As usual in a sequent calculus presentation application
usage for first-order functional programs. Mmoc. ACM is handled by the left introduction rule for the arrow con-
POPL'03 2003. nective. Here there are two arrows» and=-. Note that

[18] Y. Lafont. Soft linear logic and polynomial time. to aggr

) ; ' in the case of= [), the argument: is constrained to be
in Theoretical Computer Science, 2004.

[19] D. Leivant. Predicative recurrence and computatiameh- typ?db\lNlth ﬁ.lur?.gr?emz +D Fu: A, soto have at most one
plexity I: word recurrence and poly-time. Feasible Math- varia ?' W _'C IS ,'near' .
ematics || pages 320-343. Birkhauser, 1994. Again, it is equivalent to the natural deduction formula-

[20] D. Leivant. Calibrating computational feasibility lagpstrac- tion:
tion rank. InProceedings LICS’02pages 345-353. IEEE .])]
Computer Society, 2002. Lemma 22 A judgmentl; A + ¢ : A is derivable in the
[21] H.Mairson and P. M. Neergard. LAL is square: Representa DLAL sequent calculus iff it is derivable in NDLAL.
tion and expressiveness in light affine logic, 2002. Presknt
at the 4th International Workshop on Implicit Computationa S
Complexity. P P P C From derivations in LAL to derivations in
[22] F. Maurel. Nondederministic Light Logics and NP-tima. DLAL: Proof of Proposition 7
Proceedings of TLCA'QA.NCS. Springer, 2003.

[23] A. Schubert. The complexity of beta-reduction in low or .
ders. InProceedings TLCA 2001NCS, pages 400414, To prove Prop. 7 we first prove the analogous property

Springer, 2001 with sequent calculus typing (Lemma 25) and then use the
[24] K. Teruij Lig'ht Affine Lambda-calculus and polytime fact that the sequent calculus and natural deduction presen

strong normalization. InProceedings LICS'01IEEE tations are equivalent (Lemmas 21 and 22). .
Computer Society, 2001. Full version available at In the rest of this section, unless explicitely stated deriv

http://research.nii.ac.jp/ terui. tions will be sequent calculus derivations dnét; 47, ¢ : A
[25] K. T(_erui._ Light aff_ine se_t theory: a naive set theory ofypo (resp. T; A Fppar t : A) will stand for a LAL (resp.
nomial time.Studia Logica77:9-40, 2004. DLAL) sequent calculus typing judgment.

Definition 3 We say an LAL derivation i&dy if it satisfies
the following conditions:

1. formulas in (Id) rules (axioms) do not start witH ar

§,

2. arule!l introducing a formuld A is followed by a rule
in which!A is active {1, — [, — r, Cut, !r, §r) or it
is the last rule of the derivation,

3. arule§r is followed by rules! for all the discharged
formulas[B]s on the L.h.s. of the sequent, or it is the
last rule of the derivation.

z:AFx:A Id

T't:C

ATFt.c Veak

I'bFu:Ay z:A,TyFt:C
F],yZA] —OAQ,FQ F t[yU/Z']C e

x:A[B/a],T Ft:C
z:Va. A, T +t:C

z: (AL, TF&:C '
s IATFEC

z:[Alg, T Ft:C
2:8A, T Ft¢t:C

I'kFt:Va. A

I'FuA z:ATy+t:C
F],FQ = t[U/Z']C

ut

z:[Al,y:[A), T +t:C
z:[A), T+ tlz/z,z/y]:C

Cntr

.’IIZA].‘F F t:A2
TFAet:A, —A,

Lk 5 VA (v is not free inl’)

r:BFt:A
z:[BiFt:1A ’

ARt A
[T],,[AJs F £:64 ir

Figure 3. Sequent-calculus for LAL

Intuitively: condition 2 says that ruld$ are appliedas
late as possiblgwith top-down orientation); condition 3
that ruless! are appliedas early as possible

Lemma 23 (tidying lemma) If ¢ is a lambda-term and
' Fpar t @ A is derivable, then this judgement can be
obtained with a tidy derivation. If the initial derivatiors i
cut-free, one can give a cut-free tidy derivation.

Proof. If there is in the derivation af/d) rule (axiom)
on a formula of the formB or § B then one cam-expand
it, using ruledl, !r, 81, §r until getting an(7d) rule which is
not of this form.

Then we observe that:

¢ al!l rule with main formuld A can commute top-down
with any rule but one active dnt or rules!r, §r. These
commutations do not change the lambda-term associ
ated to the derivation.

a §l rule acting on[A]s can commute top-down with
any rule but the one introducirigl]s, which is neces-
sarily a§r rule. These commutations do not change
the lambda-term associated to the derivation.

Applying these commutations we eventually end up with a
tidy derivation of the same judgement.

Lemma 24 (bang lemma)lf D is a tidy cut-free LAL
derivation of a judgemenfl]:, [Z]s,A F u : !'A with
2, A, Ain Lprars, then there exists a derivatid®' of
height inferior or equal to that oD and ending with:

z:BFu:A
z:[B F u:lA
x:[B,AF u:lA

Ir

Weak

and we havd’ = B, = = ();
or the same derivation without : B, in which case we
havel' = = =

Proof. Ther.h.s!A formula cannot have been introduced
by an(1d) rule as the derivation is tidy. Hence it has been
introduced by dr rule. Therefore withirD there is a sub-
derivationD; ending with a rule:

y:C Fit:A
y:[Clh F t:1A

Ir

or the same with ng : C on the L.h.s.

If there is a following rule irD call it R. The ruleR can
only be all or Weak rule. Ifitis !l it cannot be the last rule,
otherwiseA would contain a formuldB, which does not

belong toLpr, ar«. As the derivation is tidy the rul® is
followed by a rule active ohB: Vi, — [, — r, I, §7. The
rulesvl, — r are excluded because they would introduce a
formula not belonging t& 1, 41, which is impossible. The
rules— r, Ir, §r are excluded because they would change
the r.h.s. formula. Hence the rulecannot be & rule.

ThereforeR is a Weak rule. Similarly one can check
that if R is not the last rule, then the following rules can
only be Weak or VI, — [acting on weakened formulas.
As a consequence we haye= z, C = B, t = u and one
can replace the part of the derivation bel@w by simply
aWWeak rule and obtain the same judgement as conclusion.
The resulting derivation i®’.

Lemma25If ¢ is a lambda-term,I';=, A, A are in
Lprar, and D is an LAL derivation of the judgement
[[*]s, [E*]s, A* F ¢ : A* such that:

e ARz A (Id)
LARE:C

ST Ao (Veak)

Ii;AvFu:A To;z:B, Ay Ft:C
[y,To;y:A—o B, A1, Ay F tlyu/x]:C

()

iz2:DFuw:A Tyz:B,AFt:C
z:D,Tyy: A= B,AF tlyu/z]:C

(=1

D x1:By,...,2n:By, Ft:A)
[;21:8B1,...,x,:8B, Ft:8A

[;z:A[B/a),AFt:C
[2:Va. A, ARE:C

(V1)

;A Fu:A Tojx:A A HtE:C

;AR t:Va.A

Cut
F]7F2;A],A2|_t[lt/$]:c (u)

z: Ay AT;ARt:C
z2: AT AR t[z)z,z]y]:C

(Cntr)

Iiz:A,A+t:B
ITAFXzt:A—oB

(~or)

z:AT;AFt:B
TAFwiAsE =7

T:ARt:A . .
. (Vr), a is not free inl", A

Figure 4. Sequent calculus presentation of DLAL

e Dis cut-free,
¢ quantification inD is only on formulas of 7, 4 1.+,

thenl'; §=, A ¢ : Ais derivable in DLAL.

Proof. To simplify the notations we will omit the symbol
()" on formulas when there is no ambiguity.

By lemma 23 one can assume the derivatidiis tidy.
Then by the subformula property and the assumption on
guantification we get: any formula occurring 1 is in
Lprarx orofthe formlAwith Ain Lprars.

We proceed by induction o, considering its last rule:

e rule—I:
the last rule is of the form:

[El]§,[F1]!,A1 |— u B [EQ]§

,[FQ]!,AQ,J)SC F t2:A

I';851,Ay Fu:B [9;859,An,x:C F ty: A
[8E,Ay: B —C F thyu/x]: A

—o !

— second caseB = !By, with By € Lprar,

by lemma 24 there exists an LAL derivati@p
with height inferior to that of>; ending with:

z:Di Fu:B;

Ir

z:[Di)y b u:!B; Weak
ZZ[D]]“A] F UZ!B] ea
withT; = Dy,2; = 0,
or
F ’LLZB]
—Ir
Fou:!B; Weak
A] F UZ!B] ea

[Els, [T, A F taly u/z] : A

withT' = Fl,FQ, A= Al,AQ, = = El,EQ; Ca”Dl
andD, the two immediate subderivations.

AsB — CisinLprar« CisinLpr ar«. Moreover
as=,,I's, Ay, A € Lprar« One can apply the induc-
tion hypothesis td-, which gives a DLAL derivation
D, of conclusionT'y; §Z0, Ag,z : C F ty : A.

For D, we have two cases:

— first case B is not of the form! By,
thenB € Lprar and one can apply the i.h. to
D, getting a DLAL derivatiorD;. We then have
a DLAL derivation:

—o (With'; = 0,2, = 0.
Then by i.h. onD; we get a DAL derivatiorD;
of either;z : Dy F uw : Byor ; F u: By.
Let us assume for simplicity we are in the first
situation (the second one is similar). Then we
can take forD' the following DLAL derivation,
starting from subderivatior®; andD5:

;ZZD]l_’U,ZB] F2;§EQ,A27Z‘ZC|_t22A
z2:D1,T9;8 0,y : 1By — C, Ay F o[y u/x]: A
z2:D1,T9;8§ 59,y : 1B — C, A1, As F toyu/z]: A

—o

W eak

e rule —r:
We haved = B — (C and the last rule is of the form:

[, A,z:B F t:C
T],A F Azty:B—C

—or

with an immediate subderivation that we cBl.
We distinguish two cases:

— firstcase B € Lprars,

then by i.h. orD; we get a DLAL derivatiorD
and complete it in the following way to g&t':

Axz:BFt:C
A F Azty: B—C

—or

— second caseB = !B; with By € Lprars,

as?D is tidy, the! B; on the .h.s. has been intro-
duced by dl rule, which must precede immedi-
ately the rule— r. HenceD is of the form:

[F,B]]!,A F t] :C |

[[,z: B,AF t;:C °
[,A F Xzt;:B—C

—or

with an immediate subderivatidns.

By i.h. onD; we get a DLAL derivationD},
which we complete into a DLAL derivatio®’

by:

Dyz:Bi;A Rty C
A F Azt : !By — C

—or

¢ the other inductive cases are straightforward.

Proof. [Prop. 7] Assume is a term in normal form and
[['];, A" F ¢ : A’ can be derived in NLAL usingVve) only
with instantiation onCprarx. Then by Lemma 21 there
is a LAL sequent calculus derivatid® of [I'];, A’ Frar

t : A',and quantification irD is only onLpy 1. formu-
las. Ast is in normal form it is easy to see th&t can be
taken without cut. Then by Lemma 25 A Fprar t: A
can be derived in DLAL sequent calculus (with = I,
A* = A", A* = A') thus by Lemma 22 in natural deduc-
tion DLAL.

D Proof of subject reduction
D.1 Proofoflemma 8

Proof. (1) By induction onn. (2) By induction onm. (3)
By induction onm. When the last rule of the derivation is

(§1):

Do, w: A AL F™ Lt B!
oz [Alg, [AY] F™ t: §B'

(§1)

Apply (2) to obtain
T, Ay Ty, A FPP ™ /2] - B,
then apply § i) to obtain
[y, To; Ay, [AY F"T™ tu/z] : §B'.

(4) By induction onm. When the last rule of the derivation
is (= e):

f:A’,F;AI—tl:DéB iTnt AFty: D
f:g,mn:A,F;Al—(t] t2): B

(=e)

where# : A =2y : Ay,...,2y_1 : A,_1. By the induc-
tion hypothesis, we have

z:C,TAFt[u/E]: D = B,
while by (2), we also have
12 CFitufay] : D.
¢From these two, we immediately obtain the desired result:

z:C,T;AF (t1[u/?] ta[u/zy,]) : D = B.

D.2 Proofof Lemma?9

Proof. When the first or the second condition is violated,
apply the following rewriting rules:

: D
ARt A .
: (Vi) .
AR Vo A D
(Ve) = :
;A F2 ¢ A[B/a] ;AR : A[B/a]
D,
T, A1 FPu: A © D,

i .
L5 [A]g F" w84 6D Lojz: [Al5, As F™ ¢ : B
[y, Do; [Ay]g, A FTM 2 tu/z] : B

(§e)

. D
= :
F]7F2; [A]]§7A2 |_n+m t[U/J]] : B
whereD’ andD" are derivations obtained by Substitution
Lemma (1) and (3) respectively. The size of the derivation
strictly decreases. When the third condition is violated,
permute the two rules at issue: for instance, when the
conclusion of a{ e) rule is the major premise of anothér (
e) rule, apply the rewriting rule in Figure 5. It is not hard
to see that, given a derivation, the process of applying the
above rewriting rules terminates eventually, resultinguin
V§-normal derivation.

;A Fv:8A Doz [Alg,AsFu:§B : Ds
F],FQ;A],AQ "U[’l}/l’] : §B (§ e) F37y : [B]{i‘Ag Ft:C (§ e)
[y,T9,T3;A1, Ay, Ag - tulv/z]/y] : C
4
ED] [z [Alg, Ao Fu:§B Fg;y:[B]§,A3|—t:C(§e)
F];A] "’UZ§A FZ‘F37.’II[A]g,Az‘Agl_t[U/y]C

y,05,T5; A1, Ag, Az - tu/yllv/z]: C

(§e)

Figure 5. Rewriting rule

D.3 Proofof Lemma 10

Proof. By induction onD. First, (r) cannot beYy e); if it
were, therD would be of the form

AR)\ﬂ;.t :Va.B (r(i/ e)
AR Azt : B[C/a]

SinceD is V§-normal, (r') is neither (weak), (cntr) nor
(§ e). Hence by the induction hypothesis, (r') must Ye)(
but that is impossible.

Second, (r) cannot be-6 e), (= e) nor (variable), since
the subject\z.t does not match the subjects of these rules.
The only possibility is therefore an introduction rule @srr
sponding to the outermost connectivef

E Simulation lemma and polynomial time
strong normalization

In this section, we will give a simulation of DLAL ty-
pable lambda terms by terms ®A. More specifically, we
show that every DLAL typable lambda temtranslates to a
term¢ of ALA (depending on the typing derivation f§y and
that any beta reduction sequence frboan be simulated by
alonger A\LA reduction sequence from The polynomial
time strong normalization theorem for DLAL directly fol-
lows from this fact.

Let us first recall light affine lambda calculasA from
[24].

Definition 4 The set of (pseudo) termsXxfA is defined by
the following grammar:

t,u =z |Az.t|tu|lt|letubelzint|§t|letu be §zint.

A term of the form(Az.let z be ly in t[y/z]), wherey is
fresh, is abbreviated by z.t.

Thedepthof ¢ is the maximal number of occurrences!of
and§u in a branch of the term tree for

DLAL can be considered as a type system Xon. We
write T; A FALA 1 Aif tis a term ofALA andT; A F
t : Ais derivable by the type assignment rules in Figure 6.
Thedepthof a DLAL derivationD is the maximal number
of premises of{ i) and r.h.s. premises of£f €) in a branch
of D.

The reduction rules okLA are given on Figure 7.

A term t is (§,!, com)-normal if neither of the re-
duction rules(§), (!), (com1) and (com?2) applies to

t. We writet @ u whent reduces tou by (5) fol-
lowed by several applications off)((!), (coml) and
(com2). Given am\LA-termt, its erasuret ™ is defined by:

T = = (tu)- = t u"
Azt)” = Xz.(t7) (1) = t
(letube fzint)- = t [u /]

The following is the main result of [24]:

Theorem 26 (Polytime strong normalization for ALA)

Any typable\LA-term ¢ of depthd reduces to the normal
form in O(|t|>""") reduction steps, and in tim@(|¢[>"")

on a Turing machine. This result holds independently of
which reduction strategy we take.

Lemma 27 (DLAL and ALA)

(1) FT;A FA5A
] < [t

t: A, thenl;A Fprparp t= : Aand

(2) ;A Fprar t - A, then there is a\LA-term{ such
thatT; A FALA, 7 : A is derivable, (i)~ = ¢, and
the size and the depth bfire bounded by those of the

derivation ofl'; A Fpar t 2 A,
Proof. By induction on the derivation.

Lemma 28 Lett be a term of\LA which is neither a vari-
ablez, application(u v) norlet u be §z in v.

m (Varlable)

3T

I';Ay,z:AFt: B

F],A]l_tA—OB Fz,Az"’U,A

Fi;AtFXzt:A— B (=) [,T9;A1, A0 F(tu): B (—e)
F],CﬂiA;'Al"tiB (=) ';AvHt:A=> B ;z:CI—u:A(:}e)
I';AvFXNzt: A= B [y,z:C; A1 (tu): B
: o A0 AT ;A FHE: B
Fl,lil;,il,zz I—/i c A (Weak) T 5614,F17;mA21 [f[?"]/leT/’f“Q] : B (Cntr)
A, As A) ;A Fu:gA Fg;m:[A]§,A.2|—t:B(§e)
Ap;[As]g F gt 84 ™ Iy, Ty A, A Fletube §zint: B)

I; A Ht: A . ;A Ft:Va. A
;A Fit:VaA (¥1) () T3 A Ht: A[B/a] (Ve)
Figure 6. DLAL as a type system for ALA
(B) (Az.t)u — t{u/z]
(%) let §u be §zin ¢ — t{u/z]
M letlubelzint — t{u/x]
(com1) (letube Tzint)v — let u be {xin (tv)
(com2) let(letube fzint)be tyinv — letube Txin(lettbe {yinw)

Figure 7. Reduction rules of

(1) BT;A FMA ¢ :Vay - -Va,.A — B (n > 0), then

t is of the form\z.u.

(2) ;A FALA, ¢ Vay - Va,. A = B (n > 0), then
t is of the form\'z.u.

(3) IFT;A FALA, £ Vay -+ -Vay, §A (n > 0) is deriv-
able, thent is of the formgu.

Proof. By induction on the derivation.
Lemma 29
1) 1 ;A I—%Iﬁu (t w) : Aand(t u)is (§,!,com)-

normal, thery is eitherz, (v; v3) OF Az.v.

(2 If T;A FALA, lettbe §zinu A and
let t be §x inw is (§,!, com)-normal, thenu is either
x or (vq va).

Proof. (1) Assume that is neitherz nor (u; us). The
proof is carried out by induction on the derivation. If the
last inference rule i$— r) of the form:

I';Ai1Ft:A—oB Dy Asbu:

Lo
F],FQ;AhAg F (tU)B

ALA

thent cannot be of the forrfet v, be §z in v, since(t u) is
(com)-normal. Hence by Lemma 28 (%)is an abstraction.
The other cases are similar.

(2) Assume that is neitherz nor (uq u2). The proof is
again by induction on the derivation. If the last rule is

;A Ft:84 Toyx:[Alg, A0k u: B
Iy, To; A1, A Hlettbeszinu: B

(§e)

thent cannot be of the forntet v; be §x in v, sincet is
(com)-normal. Hence by Lemma 28 (3)must be of the
form §v, but that is impossible sindet ¢ be §z in u is (§)-
normal. The other cases are immediate.

Lemma 30 (Simulation) Lett be a term ofALA which is
a subterm of a typable term an@, !, com)-normal. If¢~
reduces tou by (8) reduction, then there is &, !, com)-
normal termiz of ALA such that — (f*)uand(a)” = u:

Proof. By induction ont.
(Case 1) is a variable. Trivial.

(Case 2} is of the formAz.v. By the induction hypothesis.
(Case 3)t is of the form (u; ws). In this caset™ is
(u; uy). When the redex is inside;” or u, , the induc-
tion hypothesis applies. When the redexsitself, then
u; must be of the form\z.v. By the definition of erasure,

uy cannot be a variable nor an application. Therefore, by

Lemma 30 (1)x; must be of the form\z. with (2)~
We therefore have

=.

(Az.v)uy N v[uy /]

A

as required.

(Case 4} is of the form!v. By the induction hypothesis.
(Case 5)t is of the formlet u; be !z in uy. Sincet is a
subterm of a term typable in DLALy; must be a variable
y. Thereforet~ is of the formu, [y/x]. It is then not hard
to see that ift— reduces tou, there is some:’ such that
uy, — u' andu = u'[y/z]. By the induction hypothesis,
there isi such that

(8)

We therefore have

uy y/2) — 22— w[y/a]

L

. B .
lety be !z in uy BN let y be !z in '

as required.

(Case 6} is of the form§v. By the induction hypothesis.
(Case 7} is of the formlet u; be §z in us. In this caset™

iSu, [ug /x]. By Lemma 30 (2)y, is either a variable or an
application, and so i8; . Therefore, the redex ihis either
insideu; or results from a redex in, by substitutingu;

for . In the latter case, the proof is similar to that of (Case
5). In the former case, let,;, — w. Then by the induction
hypothesis, there is somiesuch that

Therefore, we have

s [y fa] —— s uy [u/a]

A

5

let u; be §x in us AL let @ be §x in us
as required.

Theorem 31 (Polynomial time strong normalization)

Lett be a\-term which has a typing derivatiah in DLAL.
Suppose tha be of sizen and of depthl. Thent reduces
to the normal formu in O(n2""") reduction steps and in
time O(n2d+2) on a Turing machine. This result holds
independently of which reduction strategy we take.

Proof. By Lemma 27 (2), there is a termof ALA such
that(f)~ = ¢ and|¢| is bounded by the size @. Hence by
Lemma 30, we have:

P R . B

s
LB 67 -
P . . LB .-

Since the length of the reduction sequence frota i is
bounded byO(#2°"") < O(|D2*™"), so is the one from
to u.

F Normalization
F.1 Proof of Lemma 15

We prove that no typable stratified term contains a sub-
term of the form

o (A\z.t)(Ay.u) with e < d;
o Mg \ely twithe < d.

The lemma easily follows from this, since a lower depth
redex is created only by reducing a redex is of the form:

o (A\z.t)\y.u with e < d, or
o Az Ny t)uw with e < d.

The above claim is proved by induction on the size of
V§-normal derivatiorD
(Case 1) The last inference is<i): Since the rule € i)
always introduces an abstraction at depthhe statement
of the lemma holds trivially.
(Case 2) The last inference isq e):

I';Ai1Ft:A—o B Dy Astku:

1 (<o
F],FQ;A],AQ F (tU)B

If t is an abstraction, then the last inference to derive (4) no(a~) < |al, and
I'; A1 Ft: A — Bis not (weak), (cntr) nor§(e), since o _ _
D is V§-normal. By Abstraction Property Lemma, the last (5) [a~| <laf - (jaf = 1).

inference should be— i) and ¢ should be of the form Supposéi = u; {us/z}. Then (4) holds since
Az.#'. Thus it is impossible to have\“z.t') A*\y.u' with

e<d. no((u1{uz/z})”) < mno(uy) —no(x,uy)+
(Case 3) The last inference is(i) or (= €): Similarly. no(z,u;) - no(u;)
s Y1 2
(Case 4) The last inference &if: By the induction hy- < lwmf =no(z,uy) +no(z,uy) -1
< fu] < al,

pothesis.

(Case 5) The last inference is€): .)])
by the induction hypothesis and (3) above (singe= u,

PiiArbui§A Tojz:[Alg, As-t: B G e) andno(us) < 1). As for (5), if u; is a variable, then
[,T9;A1,Aq - t[u/z] : B) |(ui{ua/z})~| < |us|, hence the claim holds trivially. Oth-

)) erwise,|u;| > 2 and we can use the induction hypothesis
By Paragraph Lemmay is not an abstraction. Hence the on 4, (in addition to (4)). Thus,

substitutiort[u/z] does no harm.
(1 {ua/2}) " |

uy |+ no(z, uy) - Juy |
lua| - (Jur| = 1) + |ua | - us]
ur] - (Jus] = 14 [uz])

|af (|| — 1).

F.2 Proof of Lemma 17

Let us temporarily use an explicit substitution notation
t{u/z}, and call a stratified term with explicit substitution
notations arx-term The variablez is boundin t{u/z},
and the standard variable convention is adopted for explici
substitution notations as well. There is an obvious hap
from the x-terms to the original stratified term, given by]
(t{u/x})~ =t~ [u~/z]. Inthe following,td stand foran G EXpressiveness
x-term of the formé{wu; /z1} - - - {un /20 }.

We prove the following by induction on the number of G.1 Encoding of polynomials

reduction steps: whenever-%*u, there is an x-terni
such that Here is the type derivation of a function for squaring:

1) (@) =wu,
(2) |a| < t|, and

ININ IN A

Putting (1), (2) and (5) together, we hake = |(4)"| <
a|(|a] — 1) < |#](|t| — 1) whenevetu| > 2.

ni: N;no: N F mult ning : §N
imi: Nyna : §N F Ci[mult nin,] : 82N

(3) if either (Az% .u;)fus or uy {us/x} occurs ini, then smy i Nymy o N b Ca[Ch[mult nins]] : §2N
uy contains neither a redex at deptmor an explicit m1 Noms - N b CalCr[mult mma]] - §N
substitution; furthermorey, may have at most one (Cntr) "2 1 7 2l R AR

m: N; F Co[Ci[mult nins]][m/m1, ms |§*N

(coercl)

(coerc2)

(81

free variable, and in case it has, that variable is ei- (coercl)
ther free ina or is bound by an abstraction of the form ;m:N Ft:§'N (—i)
/\d’y-v- : F square: N — §'N

In the base case, we take= ¢. The third property is eas-
ily checked by induction on the size ofvg-normal typing
derivation fort. In other cases, we simulate beta reduction
by the following reduction rules on x-terms:

H Type inference

One advantage of DLAL over LAL is that it assigns two
Az .t)u — (1) {u/z} distinct roles td and§: the modality! is used to handle po-
Mzlt)u —s t[u/z]f. tential duplicgtions whilé i; used Fo manage strat_ification.
This separation shows up in particular with type-inference
It is easily checked that these reduction rules preserve thavhere in the case of DLAL we can take care of the two

above properties. modalities one at a time (contrarily to what happens with
Let us denote by.o(u) the number of free variable oc- LAL).
currences inu. We now prove the following by induction We give here a type-inference algorithm for proposi-

on the structure ofi: when|a| > 2, tional DLAL, which starting from a lambda-termand its

principal simple typeB finds all possible decorations &f

(if any) into a valid DLAL type fort. It will use as sub-
routine a type-inference procedure for Elementary affine
logic (EAL). Type-inference algorithms for EAL have been
givenin [11, 12]. We will use the algorithm of [11].

Givent and its principal simple typd3, with environ-
mentT for the free variables, we will try to decorate the
simple type derivatiorD of ' - ¢ : B into a LAL deriva-
tion corresponding to a DLAL derivation (by tiie* trans-
lation). For that we proceed in two stages:

e stage 1 non-linear arguments stage;

in this stage we place tHeules in the derivation. This
corresponds to working out which arguments are linear
and which arguments are non-linear. It is close to the
problem of linear decoration of intuitionistic deriva-
tions studied in [13].

stage 2 stratification stage;

in this stage we complete the type derivation by plac-
ing § rules; for that we use the EAL type-inference
procedure.

All solutions found by the procedure will give valid DLAL
type derivations fot. Conversely it can be typed in DLAL
with a judgemeni\ Fpr 4z t : C which is a decoration of
I' -t : B, then the procedure will provide a derivation of
Abtprart:C.

We adopt the following conventions for the simple type
derivationD of I' + ¢ : B: environments are handled as
multisets; application requires both terms to have environ
ments with disjoint sets of variables; contraction and weak
ening are handled with explicit rules (with a substitutign b
a fresh variable for contraction (Cntr)) and are performed
only just before doing an abstraction on the variable.

Stage 1: non-linear arguments stage.

We need to determine which applications of the term
should correspond to¢ €) or to & e) rules, which is tied
to the issue of working out which abstractions correspond
to (— i) orto (= i) rules.

For that we will associate a boolean parameter to each

application and abstraction rule of the derivatibn dec-

orate accordingly the types with these parameters and ex-

press the validity of thisbstractderivation by some con-
straints which should be satisfied.

We consider a set of parameters ... ranging over
{0,1}. The valuez = 1 corresponds in a type tolanodal-
ity, while a = 0 corresponds to absence!ahodality.

The constraints are of the forml; = d,, whered; is
either a disjunction of parametersV - - -V a,, or a constant
0 or 1. For convenience we will denote herge. .. a, for
a1 V---Va, and use notation, v . . . for such disjunctions,
withn > 0..

Abstract typesre defined by the grammars:

B
A

al(ay...a,B) - B
(a1...anB)

wheren > 0 anday, ..., a, are any parameters. THes
are called basic abstract types.

We write ¢; < ¢ if for any parametera we have
¢1(a) < ¢2(a).

Let U(A,, A,) be the set of constraints on parameters
obtained for unifying two abstract typels andA,, defined
on Figure 8. IfA; and A, are abstract types with same un-
derlying simple type, them (A4, A,) is defined inductively
by: m(A, A2) = wusa if A; = wzafori =1,2;

m(Ay, Ay) = urus(m(Ay, Ay) = m(By, By)) if A; =
UZ(A; — Bz) fori = 1,2.

We handleabstract judgementsf the following form:

I' -t : B whereB is a basic abstract typé€,is a environ-
ment assigning abstract types to variables.

If ' is an environment, the notatiaedd’ will stand for the
environment given byal'(z) is defined iff['(z) = A is
defined, and theal'(z) = aA.

A maximal decoratiotd of a simple typeA is a basic
abstract type defined by induction ohin the following
way: if A = o atomic thend = o, if A = 4; — A, then
A = (aA;) = A, where theA; are maximal decorations
with disjoint parameters andis a fresh parameter.

Given a simple type derivatiofr we will define induc-
tively a derivation of abstract judgmerfsand a set of con-
straintsC (D). Basically the idea is to add a parameter to
each argument of application and to each abstraction in or-
der to determine which abstractions should be non-linear.

GivenD, D andC(D) are defined by:

e if D is just an axiom rulec : A - z : AthenD is
obtained by replacing! by a maximal decorationt
andC (D) = true, the empty set of constraints.

if D is obtained by an application rule @y andD-,
thenD is defined fronD; andD, (taken with disjoint
parameters) using a fresh parameteavith the (appz)
rule of Figure 9. We sef(D) = C(D;,) U C(D,y) U
U(A] s aAg) .

if D is obtained by an abstraction rule @n define
similarly D from D; using the (abstu) rule of Figure
9. We set

{

if D is obtained by a contraction rule dn defineD
from D; using the (Cntr) rule of Figure 9.

C(Dy)
(D)) U{a =1}

if no(z,t)

C(D) if no(z,t)

<1,
>2.

if D is obtained fronD; by a weakening rule, the®
has as last rule a weakening on a maximal decoration
formula.

U(a1 ..an(A] —)B]),b] bm(Az —)Bz)) = {a1 V-
Uay...apa,by...bpa) = {a1V--
U(A, A" false

-Van:b] \/"'\/bm}UU(A],AQ)UU(B],BQ)
“Va, =0 V---Vby,}
in the other cases.

Figure 8. Unification of abstract types

F],Z‘ZAl_tZB F1|_t12A1—)Bl Fgl‘tg:Ag
abstr a

Fl FAx.t: ((IA) — B ((1) Fl,(lrg F (tl tg) . Bl (ppa)
A, 20 Ay, THE: B

T 1,22 2, (Cntr)

x:m(A1, As), T Ftlx/xy,x/xs] : B
Figure 9. Rules for abstract derivations
We now come back to the simple type derivatibrof ¢ mar:
and consider the associated abstract derivafiaand con- 0,0 == alo — o|"M T TG

straintsC(D), that we will denote ag. Note thatC has
at least one solution, as the constant functfore 1 is a
solution.

¢ From a solutios and the abstract derivatidn one de-
fines al-derivationD: D is the derivationD where appli-
cation rules corresponding to (app with ¢(a) = 1 are
annotated aé= e) (note that the types themselves are un-
changed). ID we say (thinking about LAL proof-nets) that
the r.h.s. subderivation above é& ¢) rule is in al-box

We will try to decorate a-derivationD (coming from a
solutiong) into a DLAL derivation if the following neces-
sary conditions are satisfied:

() in D any r.h.s. premise of &= ¢) rule has an envi-
ronment with at most one variable,

(ii) a variable belongs to at most one environment of
r.h.s. premise of= e).

These conditions are necessary for being able to decorate
the derivation into a DLAL derivation; in particular (i) is
needed to ensure that the variable in a r.h.s. environment of
(= e) islinear, in the DLAL derivation.

If no solution ¢ gives a!-derivation satisfying (i) and

wherek can take any positive value and, .. .n; are pa-
rameters.

The EAL type inference procedure starts from a lambda-

term¢ and proceeds in 3 steps:

e from the termt a setC'(¢) of canonical simple forms
of ¢ is computed. Acanonical simple fornof ¢ is a
kind of EAL meta-derivation corresponding to The
setC(t) is finite.

e an algorithmPT'(.) computes, given a canonical sim-
ple form @, a triple PT(Q) =< 6,0,C > where: f
is an assignment of type schemes to variabdeis a
type scheme fof) andC is a set of linear equations on
parameters (constraints).

e for any canonical simple form@Q of C(t), if
PT(Q) =< 6,0,C > and(C has a solutionX, then
from @, 6, o an EAL type derivation for can be con-
structed.

It was shown that this algorithm is correct and complete
for EAL (with respect to the EAL typing system without

(i) then the initial simple type cannot be decorated into a sharing: contraction is allowed only on variables).

DLAL type. If some solutions satisfy (i) and (ii) then we
try to decorate the corresponding derivati@ghato DLAL
derivations with stage 2 of the procedure.

Stage 2: stratification stage.

AssumeD is a!-derivation obtained by stage 1 and sat-
isfying (i) and (ii).

Let us briefly recall the EAL type inference procedure of
[12]. First we recall the notion dfype schemesWe con-
sider parametens, m, nq, . .. ranging over the sé¥ of non
negative integers. Type schemes are defined by the gram-

In stage 2 of our procedure we proceed in the following

way:

e a) first we apply the previous methoditto get its set
C'(t) of canonical simple forms;

e b) amongC'(¢) we then determine a §ubsé‘t(t) of
canonical simple forms compatible with;

e ¢) we give a functionPT"(.,.) which for Q in C(t)
computes a triple®T’(Q, D) =< #,0,C >. If X isa
solution ofC then from@Q, D, 6, o a DAL type deriva-
tion for ¢ can be constructed.

Let us make explicit these steps. To a canonical simple formRemark 32 This procedure is not very satisfactory because
() one can associate a syntactic tree with bdk€the boxes it starts by determining a distribution dfboxes (with sev-
correspond to th&/ constructors of the canonical simple eral possibilities) and then enumerates all canonical $enp

form). When naming boxes we will use, 5, If we derivations before searching which ones match the distri-
forget about the boxes the syntactic tree is that of the under bution of !-boxes. It would be more efficient to compute
lying lambda-term. directly the canonical simple derivations correspondiag t

Moreover al-derivationD can also be translated into a the distribution of-boxes.
syntactic tree with boxes (forgetting about types): a box is
put around each argument of & ¢) application.
Observe that if a canonical abstract derivatigrand a
I-derivationD correspond to the same tetthen their as-
sociated trees might only differ by the boxes.
We say a canonical simple for@, with tree7;, iscom-
patiblewith the!-derivationD, with tree7s, if the following
conditions hold:

e any box of7; corresponds to a box @, (thatis to say
71 is obtained fron¥; by adding some boxes);

¢ for any boxB, of 7, with input variablez (that is to
sayz is a free variable of the corresponding term) then:
any boxB; of 7; containgB3; also contains th& node
abstractinge (and no such box exists if is not ab-
stracted).

Graphically the second condition amounts to say that in
71 no box can be closed belof, and haver as input.
These two conditions can be checked by one traversal of
both trees, and by comparing the tree of each element of the
finite setC(¢) to that of D we can determin€’(¢) and thus
complete step b).

We now consider step c). L& be an element of'(#)
andPT(Q) =< 6,0,C >. The procedurédT(.) assignes
to each box of (the tree associated €ph distinct param-
etern. Let us denote by, ..., B the boxes of) corre-
sponding to boxes dP and byn, .. . n; the corresponding
parameters assigned BR7'(.). We introduce: new param-
etersmy, ..., my and define the set of constraiigtérom C
by:

C:=CU{ni=m; +1,1<i<k}

Then we set:
PT'(Q,D) :=<6,0,C > .

¢From the results oRT'(.) we can see that any solutich

of € induces an EAL derivation fat. It can also define an
LAL derivation in the following way: each bo®; (1 <

i < k) is instantiated into on&box and X (m;) §-boxes

(so possibly 0); all other boxes are instantiatedidyoxes
(possibly 0). For each-box ((§ i) rules) the type!(or §) of

the discharged variables can be chosen so as to get a valid
derivation. Finally an LAL type derivation farobtained in

this way is the translation bfy)" of a DLAL derivation.

