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Résumé

Ce rapport présente Jartege, un outil qui permet la génération aléatoire de tests unitaires
pour des classes Java spécifiées en JML. JML (Java Modeling Language) est un langage
de spécification pour Java qui permet d’écrire des invariants pour des classes, ainsi que
des pré- et des post-conditions pour des opérations. Comme dans l’outil JML-JUnit, nous
utilisons les spécifications JML d’une part pour éliminer des cas de test non pertinents,
et d’autre part comme oracle de test. Jartege génère de façon aléatoire des cas de test,
qui consistent en une séquence d’appels de constructeurs et de méthodes des classes sous
test. L’aspect aléatoire de l’outil peut être paramétré en associant des poids aux classes
et aux opérations, et en contrôlant le nombre d’instances créées pour chaque classe sous
test. L’utilisation pratique de Jartege est illustrée par une petite étude de cas.
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Abstract

This report presents Jartege, a tool which allows random generation of unit tests for Java
classes specified in JML. JML (Java Modeling Language) is a specification language for
Java which allows one to write invariants for classes, and pre- and postconditions for
operations. As in the JML-JUnit tool, we use JML specifications on the one hand to
eliminate irrelevant test cases, and on the other hand as a test oracle. Jartege randomly
generates test cases, which consist of a sequence of constructor and method calls for the
classes under test. The random aspect of the tool can be parameterized by associating
weights to classes and operations, and by controlling the number of instances which are
created for each class under test. The practical use of Jartege is illustrated by a small case
study.
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1 Introduction

Main validation technique in software engineering, program testing aims at ensuring that
the program is correct, i.e. conforms to its specifications. As the input domain of a
program is usually very large or infinite, exhaustive testing, which consists in testing the
program for all its possible inputs, is in general impossible. The objective of testing is
thus rather to improve the software quality by finding faults in it. Testing is an important
activity of software development, whose cost is usually estimated to about 40% of the total
cost of software development, exceeding the cost of code writing.

A test campaign for a program requires several steps: design and development of test
sets, execution and results examination (or oracle). Considering the cost of testing, it is
interesting to automate some of these steps.

For Java programs, the JUnit framework [JUn, BG98] allows the developer to write
an oracle for each test case, and to automatically execute test sets. JUnit in particular
permits to automatically regression test several test sets.

If a formal specification is available, it can be translated into assertions which can be
checked at runtime, and thus serve as a test oracle. For instance, the DAISTS system
[GMH81] compiles algebraic axioms of an abstract data type into consistency checks;
Rosenblum’s APP pre-processor allows the programmer to write assertions for C programs
[Ros92]; the Eiffel design and contract approach integrates assertions in the programming
language [Mey88, Mey92].

It is also interesting to automate the development of tests. We can distinguish between
two groups of strategies to produce test sets: random and systematic strategies. System-
atic strategies, such as functional testing or structural testing, consist in decomposing the
input domain of the program in several subdomains, often called “partitions”.

Many systematic strategies propose to derive test cases from a formal specification
[Gau95]. For instance, the Dick and Faivre method [DF93], which consists in constructing
a finite state automaton from the formal specification and in selecting test cases as paths
in this automaton, has been used as a basis by other approaches, in particular Casting
[ABM97] or BZTT [LPU02]. BZTT uses B or Z specifications to generate test cases which
consist in placing the system in a boundary state and calling an operation with a boundary
value.

In contrast to systematic methods, random testing generally does not use the program
nor the specification to produce test sets. It may use an operational profile of the program,
which describe how the program is expected to be used. The utility of random testing is
controversial in the testing community. It is usually presented as the poorest approach for
selecting test data [Mye94]. However, random testing has a few advantages which make
us think that it could be a good complement to systematic testing:

• random testing is cheap and rather easy to implement. In particular, it can produce
large or very large test sets;
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• it can detect a substantial number of errors at a low cost [DN84, HT90, Nta01].

Moreover, if an operational profile of the program is available,

• random testing allows early detection of the failures that are most likely to appear
when using the program [FHLS98];

• it can be used to evaluate the program reliability [HT90, Ham94].

However, partition testing can be much more effective at finding failures, especially when
the strategy defines some very small subdomains with a high probability to cause failures
[WJ91].

Among the best practices of extreme programming, or XP [Bec99, Bec00], are contin-
uous testing and code refactoring. While they are writing code, developers should write
corresponding unit tests, using a testing framework such as JUnit. Unit testing is often
presented as a support to refactoring: it gives the developer confidence that the changes
have not introduced new errors. However, code refactoring often requires to change some
of the corresponding unit tests as well. If a class has to be tested intensively, the amount
of code corresponding to the tests often exceeds the amount of code of the class. Both
practices can therefore be hard to conciliate.

This report proposes to use random generation of tests to facilitate countinuous testing
and code refactoring in the context of extreme programming. We presents Jartege, a tool
for random generation of unit tests for Java classes specified in JML, which aims at easily
producing numerous test cases, in order to detect a substantial number of errors at a low
cost.

The rest of the report is organized as follows. Section 2 introduces the approach.
Section 3 presents a case study which consists in modeling bank accounts. This case study
will serve to illustrate the use of our testing tool. Section 4 presents our tool Jartege
and how it can be used to test the bank account case study. Section 5 introduces more
advanced features of Jartege, which allow one to parameterize its random aspect. Section
6 shows the errors which are detected by test cases generated by Jartege in the case study.
Section 7 presents and compares related approaches. Section 8 discusses some points about
random generation of tests and draw future work we intend to undertake around Jartege.

2 Approach

JML (Java Modeling Language) is a specification language for Java inspired by Eiffel,
VDM and Larch, which was designed by Gary Leavens and his colleagues [JML, LBR03,
LPC+03]. Several teams are currently still working on JML design and tools around JML
[BCC+03]. JML allows one to specify various assertions in particular invariants for classes
as well as pre- and postconditions for methods.

The JML compiler (jmlc) [CL02a] translates JML specifications into assertions checked
at runtime. If an assertion is violated, then a specific exception is raised. In the context
of a given method call, the JML compiler makes a useful difference between an entry
precondition which is a precondition of the given method, and an internal precondition,
which is a precondition of an operation being called, at some level, by the given method.

The JML-JUnit tool [CL02b] generates JUnit test cases for a Java program specified
in JML, using the JML compiler to translate JML specifications into test oracles. Test
cases are produced from a test fixture and parameter values supplied by the user.
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Our approach is inspired by the JML-JUnit tool: we propose to generate random tests
for Java programs specified in JML, using this specification as a test oracle, in the JML-
JUnit way. Our aim is to produce a big number of tests at a low cost, in order to facilitate
unit testing.

To implement these ideas, we started developing a prototype tool, called Jartege for
Java Random Test Generator. Jartege is designed to generate unit tests for Java classes
specified with JML. By unit tests, we here mean tests for some operations in a single class
or a small cluster of classes. In our context, a test case is a Java method which consists of
a sequence of operation (constructor or method) calls.

As in the JML-JUnit tool, we use the JML specification to assist test generation in
two ways:

1. It permits the rejection of test sequences which contain an operation call which
violates the operation entry precondition. We consider that these test sequences are
not interesting because they detect errors which correspond to a fault in the test
program.

(Although such sequences could be used to detect cases when a precondition is too
strong, this goal would prevent us from producing long sequences of calls. Thus,
we choose to trust the specification rather than the code. We can note that if an
operation uses a method whose precondition is too strong, this will produce an
internal precondition error and the sequence will not be rejected.)

2. The specification is also used as a test oracle: the test detects an error when another
assertion (e.g. an invariant, a postcondition or an internal precondition) is violated.
Such an error corresponds to a fault in the Java program or in the JML specification.

Our work has been influenced by the Lutess tool [Par96, dBORZ99], which aims at de-
riving test data for synchronous programs, with various generation methods, in particular
a purely random generation and a generation guided by operational profiles. The good
results obtained by Lutess, which won the best tool award of the first feature interaction
detection contest [dBZ99], have encouraged us to consider random generation of tests as
a viable approach.

3 Case Study

In this section, we present a case study to illustrate the use of Jartege. This case study
defines bank accounts and some operations on these accounts.

3.1 Informal Specification of the Bank Accounts

We describe here an informal specification of bank accounts:

1. An account contains a certain available amount of money (its balance), and is as-
sociated with a minimum amount that this account may contain (the minimum
balance).

2. It is possible to credit or debit an account. A debit operation is only possible if there
is enough money on the account.

3. One or several last credit or debit operations may be cancelled.
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4. The minimum balance of an account may be changed.

3.2 Bank Account Modeling

To represent accounts, we define a class Account with two attributes: balance and min
which respectively represent the balance and the minimum balance of the account, and
three methods: credit, debit and cancel. In order to implement the cancel operation, we
associate with each account an history, which is a linked list of the previous balances of
the account. The class History has one attribute, balance, which represents the balance
of its associated account before the last credit or debit operation. With each history is
associated its preceding history. Figure 1 shows the UML class diagram of bank accounts.

balance

Account

0..1

hist

0..1

prec

balance

History

cancel()
debit(amount: int)
credit(amount: int)

min

Figure 1: UML diagram of the case study

3.3 JML Specification and Java Implementation

We implement both class Account and History in Java, and specify them with JML. We
choose to write lightweight public specifications to emphasize that these specifications are
destined for clients and need not be complete.

In order to forbid uncontrolled modifications of the attributes, we declare them as
private and define associated access methods: getBalance, getMin and getHist in class
Account and getBalance and getPrec in class History. These methods are specified as pure
methods in JML because they are side effect free, which allows us to use them in JML
assertions.

The class Account has an invariant which specifies that the balance of an account must
always be greater than the minimum balance.

/* Class of bank accounts. */

public class Account {
/* Invariant of class Account. */

/*@ public invariant getBalance( ) >= getMin( ); */

private int balance; // The balance of this account
private int min; // The minimum balance
private History hist; // The history list of this account

/* The balance of this account. */

public /*@ pure */ int getBalance( ) { return balance; }

6



/* The history list of this account. */

public /*@ pure */ History getHist( ) { return hist; }

/* The minimum balance of this account. */

public /*@ pure */ int getMin( ) { return min; }

The constructor of class Account constructs an account with the specified balance and the
specified minimum balance. Its precondition asserts that the specified balance is greater
than the specified minimum balance.

/* Constructs an account with the specified balance and
* minimum balance. */

/*@ requires balance >= min; */

public Account (int balance, int min) {
this.balance = balance;
this.min = min;
this.hist = null;

}

As the minimum balance min is a private attribute, we have to introduce a method to
change its value. The method setMin (int min) sets the minimum balance to the specified
value. Its precondition asserts that the balance is greater than the specified minimum
value.

/* Sets the minimum balance to the specified value. */

/*@ requires getBalance ( ) >= min; */

public void setMin (int min) { this.min = min; }

The method credit (int amount) credits the account with the specified amount. Its precon-
dition requires the amount to be positive. Its postcondition asserts that the new balance is
the former balance augmented by the specified amount, that a new history is created with
balance the former balance of the account and with previous history the former history of
the account. Its exceptional postcondition asserts that the method should never terminate
abruptly.

/* Credits this account with the specified amount. */

/*@ requires amount >= 0;

*@ ensures getBalance ( ) == \old (getBalance ( )) + amount &&

*@ \fresh (getHist ( )) &&

*@ getHist ( ).getBalance ( ) == \old (getBalance ( )) &&

*@ getHist ( ).getPrec ( ) == \old (getHist ( ));
*@ signals (Exception e) false;
*/

public void credit(int amount) {
hist = new History (balance, getHist ( ));
balance = balance + amount;

}

The debit operation, which is very similar to the credit operation, is not detailed here.
It has the additional precondition that the balance decreased by the specified amount is
greater than the minimum balance.
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The method cancel cancels the last credit or debit operation. Its precondition requires
that the history is not null, which means that at least one operation of credit or debit has
taken place since the account was created. Its postcondition ensures that the balance and
the history of the account have been updated with their former values.

/* Cancels the last credit or debit operation. */

/*@ requires getHist ( ) != null;
*@ ensures getHist ( ) == \old (getHist ( ).getPrec ( )) &&

*@ getBalance ( ) == \old (getHist ( ).getBalance ( ));
*@ signals (Exception e) false;
*/

public void cancel ( ) {
balance = hist.getBalance ( );
hist = hist.getPrec ( );

}
} // End of class Account

We do not define any JML assertion for the class History.

/* Class of histories. */

public class History {
private int balance; // The balance of this history.
private History prec; // The preceding history.

/* Constructs a history with the specified balance and preceding history. */

public History (int balance, History prec) {
this.balance = balance; this.prec = prec;

}

/* The balance of this history. */

public /*@ pure */ int getBalance ( ) { return balance; }
/* The preceding history. */

public /*@ pure */ History getPrec ( ) { return prec; }
} // End of class History

4 Jartege

Jartege (Java Random Test Generator) is a framework for automatic random generation
of unit tests for Java classes specified with JML. This approach consists in producing test
programs which are composed of test cases, each test case consisting of randomly chosen
sequences of method calls for each class under test. Each generated test program can be
executed to test the classes, and re-executed later on either after having corrected some
faults or for regression test.

The tool is designed to produce unit tests, i.e. tests composed of calls of some methods
which belong to a few classes. As noticed in [LTFWD00], because of complex dependences
that exist between classes in object-oriented programs, it is usually not possible to test a
method or a class in complete isolation. Jartege thus is able to generate test cases which
allow the integration of several classes.
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4.1 Practical Use of Jartege

Suppose we wish to generate tests for the classes Account and History. We write the
following Java program:

import jartege.*;
/** Jartege test cases generator for classes Account and History. */

class TestGen {
public static void main (String[ ] args) {
// Creates a class tester
ClassTester t = new ClassTester ( );
// Adds the specified classes to the set of classes under test
t.addClass ("Account");
t.addClass ("History");
// Generates a test class TestBank, made of 100 test cases.
// For each test case, the tool tries to generate 50 method calls.
t.generate ("TestBank", 100, 50);

}
}

The main class of the Jartege framework is ClassTester. This class must be instantiated
to allow the creation of test programs.

The method addClass (String className) adds the class className to the set of classes
under test. In this example, we wish to generate tests for the classes Account and History.

The method generate (String className, int numberOfTests, int numberOfMethodCalls)
generates a file className.java which contains a class called className. This class is com-
posed of numberOfTests test cases. For each test case, the tool makes numberOfMethod-
Calls attempts to generate a method call of one of the classes under test. Using the
accessible constructors, the tool constructs objects which serve as parameters for these
method calls.

When the program TestGen is executed, it produces a file TestGen.java which contains
a main program. This main program calls successively 100 test methods test1 ( ), test2 ( )
... test100 ( ). Each test method contains about 50 method calls.

While the program is generated, Jartege executes on the fly each operation call, which
allows it to eliminate calls which violate the operation precondition. When this precon-
dition is strong, it may happen that the tool does not succeed in generating a call for a
given method, which explains that about 50 method calls are generated.

4.2 Test Programs Produced by Jartege

A test program produced by Jartege is a class with a main method which consists in calling
sequentially all generated test cases. Each test case consists of a sequence of constructor
and method calls of the classes under test. Here is an example of such a test case:

// Test case number 1
public void test1 ( ) throws Exception {

try {
Account ob1 = new Account (1023296578, 223978640);
ob1.debit (152022897);
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History ob2 = new History (1661966075, (History) null);
History ob3 = new History (-350589348, ob2);
History ob4 = ob2.getPrec ( );
int ob5 = ob3.getBalance ( );
ob1.cancel ( );
// ...

} catch (Throwable except) {
error ( except, 1);

}
}

For each test method, if a JML exception is raised, then an error message (coming from
jmlc) is printed. The test program terminates by printing an assessment of the test. As an
example, here is an excerpt of what is printed with a generated program TestBank.java:

1) Error detected in class TestBank by method test2:
org.jmlspecs.jmlrac.runtime.JMLInvariantError:
By method ”credit@post〈Account.java:79:18〉” of class ”Account”
for assertions specified at Account.java:11:32 [...]
at TestBank.test2(TestBank.java:138)

[...]
Number of tests: 100
Number of errors: 71
Number of inconclusive tests: 0

The program has detected 71 errors. The first error detected comes from a violation of
the invariant of class Account (specified line 11), which happened after a credit operation.

The test program also indicates the number of inconclusive tests. A test case is incon-
clusive when it does not allow one to conclude whether the program behaviour is correct
or not. A test program generated by Jartege indicates that a test case is inconclusive
when it contains an operation call whose entry precondition is violated. As Jartege is
designed to eliminate such operation calls, this situation may only arise when the code or
the specification of one of the classes under test has been modified after the test file was
generated. A high number of inconclusive tests indicates that the test file is no longer
relevant.

5 Controlling Random Generation

If we leave everything to chance, Jartege might not produce interesting sequences of calls.
Jartege thus provides a few possibilities to parameterize its random aspect. These features
can be useful for stress testing, for instance if we want to test more intensively a given
method. More generally, they allow us to define an operational profile for the classes under
test, which describe how these classes are likely to be used by other components.

5.1 Weights

With each class and operation of a class is associated a weight, which defines the probability
that a class will be chosen, and that an operation of this class will be called. In particular,
it is possible to forbid to call some operation by associating a null weight with it. By
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default, all weights are equal to 1. A weight can be modified by a weight change method.
In particular:

• changeAllMethodsWeight (String className, double weight) changes the weight of all
methods in the class className to the specified weight.

• changeMethodWeight (String className, String methodName, double weight) changes
the weight of the specified method(s) in the class className to the specified weight.

• changeMethodWeight (String className, String methodName, String [ ] signature, dou-
ble weight) changes the weight of the method by its name and its signature to the
specified weight.

5.2 Creation of Objects

Objects creation is commanded by creation probability functions, which define the prob-
ability of creating a new object according to the number of existing objects of the class
against that of reusing an already created object. If this probability is low, Jartege is more
likely to reuse an already created object than to construct a new one. This allows the user
either to create a predefined number of instances for a given class, or on the opposite, to
create numerous instances for a class.

In the example of bank accounts, it is not very interesting to create many accounts.
It is possible to test the class Account more efficiently for example by creating a unique
account and by applying numerous method calls to it.

The function changeCreationProbability(String className, CreationProbability creation-
ProbabilityFunction) changes the creation probability function associated with the specified
class to the the specified creation probability function.

The interface CreationProbability contains a unique method

double theFunction(int nbCreatedObjects)

which must satisfy the condition

theFunction(0) = 1;
theFunction(n) ∈ [0, 1], ∀n ≥ 1.

The class ThresholdProbability allows one to define threshold probability functions whose
value is 1 under some threshold s and 0 above.

theFunction(n) = 1, if n < s;
theFunction(n) = 0, otherwise.

A threshold probability function with threshold s allows one to define at most s instances
of a given class. We can for instance forbid the creation of more than one instance of
Account by adding the following statement in the test generator:

t.changeCreationProbability ("Account", new ThresholdProbability (1));
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5.3 Parameter Generation of Primitive Types

When a method has a strong precondition, the probability that Jartege, without any fur-
ther indication, will generate a call to this method which does not violate this precondition
is low. For primitive types, Jartege provides the possibility to define generators for some
parameters of a given method.

For example, the precondition of the debit operation requires the parameter amount to
be in range

[0, getBalance ( ) − getMin ( )].

Let us suppose the range is small, in other words that the balance is closed to the minimum
balance. If Jartege chooses an amount to be debited entirely randomly, this amount is not
likely to satisfy the method precondition.

Jartege provides a way of generating parameter values of primitive types for operations.
For this, we define a class JRT Account as follows.

import jartege.RandomValue;
public class JRT Account {

private Account theAccount; // The current account

/* Constructor. */

public JRT Account (Account theAccount) { this.theAccount = theAccount; }

/** Generator for the first parameter of operation debit (int). */

public int JRT debit int 1 ( ) {
return RandomValue.intValue (0,

theAccount.getBalance ( ) - theAccount.getMin ( ));
}

}

The class JRT Account must contain a private field of type Account which will contain
the current object on which an operation of class Account is applied. A constructor allows
Jartege to initialize this private field. The class also contains one parameter generation
method for each parameter for which we specify the generation of values. In the example,
to specify the generation of the first parameter of operation debit (int amount), we define
the method int JRT debit int 1 ( ). We use the signature of the operation in the name of
the method to allow overloading. The method RandomValue.intValue (int min, int max)
chooses a random integer in range [min, max].

5.4 Fixtures

If we want to generate several test cases which operate on a particular set of objects, we
can write a test fixture, in a similar way to JUnit. A test fixture is a class which contains:

• attributes corresponding to the objects a test operates on;

• an optional setUp method which defines the preamble of a test case (which typically
constructs these objects);

• an optional tearDown method which defines the postamble of a test case.
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6 Applying Jartege to the Case Study

The 100 test cases generated by Jartege, showing 71 failures, revealed three different errors:
one error caused by a credit operation, and two errors caused by a cancel operation. We
extracted the shorter sequence of calls which resulted in each failure and obtained the
following results. We also changed the parameter values and added some comments for
more readability.

Error 1. The credit operation can produce a balance inferior to the previous balance
because of an integer overflow.

public void test1 ( ) {
Account ob1 = new Account (250000000, 0);
ob1.credit (2000000000); // Produces a negative balance,

} // below the minimum balance.

Error 2. The cancel operation can produce an incorrect result if it is preceded by a
setMin operation which changes the minimum balance of the account to a value which is
superior to the balance before cancellation.

public void test11 ( ) {
Account ob1 = new Account (-50, -100);
ob1.credit (100);
ob1.setMin (0);
ob1.cancel ( ); // Restores the balance to a value

} // inferior to the minimum balance.

Error 3. The third error detected is a combination of an overflow on a debit operation
(similar to Error 1, which comes from an overflow on a credit operation) and of the second
error.

public void test13 ( ) {
Account ob1 = new Account (-1500000000, -2000000000);
ob1.debit (800000000); // Produces a positive balance.
ob1.setMin (0);
ob1.cancel ( ); // Restores the balance to a value

} // inferior to the minimum balance.

We have the feeling that the three errors detected with test cases generated by Jartege
are not totally obvious, and could have easily been forgotten in a manually developed test
suite. Errors 2 and 3 in particular require three method calls to be executed in a specific
order and with particular parameter values.

It must be noted that the case study was originally written to show the use of JML to
undergraduate students, without us being aware of the faults.

7 Comparison with Related Work

Our work has been widely inspired by the JML-JUnit approach [CL02b]. The JML-JUnit
tool generates test cases for a method which consist of a combination of calls of this method
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with various parameter values. The tester must supply the object invoking the method
and the parameter values. With this approach, interesting values could easily be forgotten
by the tester. Moreover, as a test case only consists of one method call, it is not possible
to detect errors which result of several calls of different methods. At last, the JML-JUnit
approach compels the user to construct the test data, which may require the call of several
constructors. Our approach thus has the advantage of being more automatic, and of being
able to detect more potential errors.

Korat [BKM02] is a tool also based on the JML-JUnit approach, which allows ex-
haustive testing of a method for all objects of a bounded size. The tools automatically
construct all non isomorphic test cases and execute the method on each test case. Korat
therefore has the advantage over JML-JUnit of being able to construct the objects which
invoke the method under test. However, test cases constructed by Korat only consist of
one object construction and one method invocation on this object.

Tobias [Led02, MLBdB02] is a combinatorial testing tool for automatic generation of
test cases derived from a “test pattern”, which abstractly describes a test case. Tobias was
first designed to produce test objectives for the TGV tool [JM99] and was then adapted
to produce test cases for Java programs specified in JML and for programs specified in
VDM. The main problem of Tobias is the combinatorial explosion which happens if one
tries to generate test cases which consist of more than a couple of method calls. Jartege
was designed to allow the generation of long test sequences without facing the problem of
combinatorial explosion.

8 Discussion and Future Work

Jartege is only in its infancy and a lot of work remains to be done.
Primitive values generation for methods parameters is currently done manually by

writing primitive parameters generating methods. Code for these methods could be au-
tomatically constructed from the JML precondition of the method. This could consist in
extracting range constraints from the method precondition and automatically produce a
method which could generate meaningful values for the primitive parameters.

Jartege easily constructs test cases which consist of hundreds of constructors and meth-
ods calls. It would be useful to develop a tool for extracting a minimum sequence of calls
which results in a given failure.

We developed Jartege in Java, and we specified some of its classes with JML. We
applied Jartege to these classes to produce test cases, which allowed us to experiment
our tool on a larger case study and to detect a few errors. We found much easier to
produce tests with Jartege than to write unit tests with JUnit or JML-JUnit. We intend
to continue our work of specifying Jartege in JML and testing its classes with itself. We
hope that this real case study will help us to evaluate the effectiveness and scalability of
the approach.

A comparison of our work with other testing strategies still remains to be done. We can
expect systematic methods, using for instance boundary testing such as BZTT [LPU02],
to be able to produce more interesting test cases that ours. Our goal is certainly not to
pretend that tests produced randomly can replace tests produced by more sophisticated
methods, nor a carefully designed test set written by an experienced tester.

Our first goal in developing Jartege was to help the developer to write unit tests for
unstable Java classes, thus for “debug unit testing”. It would also be interesting to use
Jartege to evaluate the reliability of a stable component before it is released. Jartege
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provides some features to define an operational profile of a component, which should allow
statistical testing. However, the definition of a correct operational profile, especially in
the context of object-oriented programming, is a difficult task. Moreover, the relation
between test sets generated by Jartege and the reliability of a component requires more
theoretical work, one difficult point being to take into account the state of the component.

9 Conclusion

This report presents Jartege, a tool for random generation of unit tests for Java classes
specified in JML. The aim of the tool is to easily produce numerous test cases, in order to
detect a substantial number of errors without too much effort. It is designed to produce
automated tests, which can in part replace tests written by the developer using for in-
stance JUnit. We think that the automatic generation of such unit tests should facilitate
continuous testing as well as code refactoring in the context of extreme programming.

The JML specifications are used on the one hand to eliminate irrelevant test cases,
and on the other hand as a test oracle. We think that the additional cost of specification
writing should be compensated by the automatic oracle provided by the JML compiler, as
long as we wish to intensively test the classes. Moreover, this approach has the advantage
of supporting the debugging of a specification along with the corresponding program.
This allows the developer to increase his confidence in the specification and to use this
specification in other tools.

Most test generation methods are deterministic, while our approach is statistical. We
do not wish to oppose both approaches, thinking that they both have their advantages
and drawbacks, and that a combination of both could be fruitful.

At last, we found JML to be good language to start learning formal methods. Its
Java-based syntax makes it easy to learn for Java programmers. As JML specifications
are included in Java source code as comments, it is easy to develop and debug a Java
program along with its specification. Moreover, automatic test oracles as well as automatic
generation of test cases are good reasons of using specification languages such as JML.
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