
HAL Id: hal-00003463
https://hal.science/hal-00003463v1

Preprint submitted on 2 Dec 2004 (v1), last revised 9 Jan 2007 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The final phase of inspiral of neutron stars: realistic
equations of state

Dorota Gondek-Rosinska, Michal Bejger, Tomek Bulik, Eric Gourgoulhon,
Pawel Haensel, Francois Limousin, Leszek Zdunik

To cite this version:
Dorota Gondek-Rosinska, Michal Bejger, Tomek Bulik, Eric Gourgoulhon, Pawel Haensel, et al.. The
final phase of inspiral of neutron stars: realistic equations of state. 2004. �hal-00003463v1�

https://hal.science/hal-00003463v1
https://hal.archives-ouvertes.fr


cc
sd

-0
00

03
46

3,
 v

er
si

on
 1

 -
 2

 D
ec

 2
00

4

The final phase of inspiral of neutron stars:

realistic equations of state
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Abstract

Coalescing compact star binaries are expected to be among the strongest sources
of gravitational radiation to be seen by laser interferometers. We present calculations
of the final phase of inspiral of equal mass irrotational neutron star binaries and
strange quark star binaries. Six types of equations of state at zero temperature
are used - three realistic nuclear equations of state of various softness and three
different MIT bag models of strange quark matter. We study the precoalescing
stage within the Isenberg-Wilson-Mathews approximation of general relativity using
a multidomain spectral method. The gravitational-radiation driven evolution of the
binary system is approximated by a sequence of quasi-equilibrium configurations at
fixed baryon number and decreasing separation. We find that the innermost stable
circular orbit (ISCO) is given by an orbital instability for binary strange quark stars
and by the mass-shedding limit for neutron star binaries. The gravitational wave
frequency at the ISCO, which marks the end of the inspiral phase, is found to be
∼ 1100 − 1460 Hz for two 1.35M⊙ irrotational strange stars described by the MIT
bag model and between 800 Hz and 1230 Hz for neutron stars.
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1 Introduction

Coalescing neutron star binaries are considered among the strongest and most
likely sources of gravitational waves to be seen by VIRGO/LIGO interferome-
ters [10, 19, 5]. Due to the emission of gravitational radiation, binary compact
stars decrease their orbital separation and finally merge. The evolution of a
binary system can be separated into three phases : point-like inspiral where
orbital separation is much larger than the neutron star radius, hydrodynamical
inspiral where orbital separation is just a few times larger than the radius of
the NS so that hydrodynamics play an important role, and merger in which
the two stars coalesce dynamically. Gravitational waves emitted during the
hydrodynamical inspiral and the merger phase could yield important informa-
tions about the equation of state (EOS) of dense matter [13, 27, 24, 4, 20].
Up to now, all calculations (except those of [24, 4, 20]) of the hydrodynamical
inspiral and of the merger phase have been done for the simplified EOS of
dense matter - the polytropic EOS. In the paper we present the results of our
studies on the hydrodynamical phase of inspiraling binary systems containing
equal mass compact stars described by different realistic EOS of dense matter.
The calculations are performed in the framework of Isenberg-Wilson-Mathews
approximation to general relativity (see Ref. [3] for a review). We consider
binary systems consisting of two identical stars. We choose the gravitational
mass of each star to be 1.35 M⊙ at infinite separation in order to be consistent
with recent population synthesis calculations [8] and with the current set of
well-measured neutron star masses in relativistic binary radio pulsars [21, 9].

2 Equations of state and stellar models

In Fig. 1 we show gravitational mass versus areal radius for sequences of static
compact stars. We limit ourselves to neutron stars consisting of nucleons and
hyperons and strange quark stars described by the MIT bag model. Depending
on the EOS we obtain the radius of a 1.35 M⊙ star in the range 10-14 km. We
perform calculations for three nuclear EOS of dense matter based on modern
many-body calculations. The differences in the M-R relation for stellar models
of neutron stars (solid lines) shown in Fig. 1 reflect the uncertainties in the
existing theories of the interactions in nuclear matter. We consider one soft
(BPAL12, [7]) and one stiff (AkmalPR, [2]) EOS of matter composed of
nucleons, electrons and muons. We considered also one EOS in which hyperons
are present at high densities (GlendNH3, [17]). The neutron star crust is
described by means of a realistic EOS obtained in the many-body calculations
(see [4] for details)

Strange stars are currently considered as a possible alternative to neutron
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Fig. 1. Gravitational mass M versus stellar radius R for sequences of static neutron
stars described by three different nuclear equations of state (solid lines) and strange
quark stars described by different MIT bag models (dashed lines).

stars as compact objects (see e.g. [28, 22, 16] and references therein). Typi-
cally, they are modeled with an EOS based on the MIT-bag model in which
quark confinement is described by an energy term proportional to the vol-
ume (e.g. [1, 18]) in which quark confinement is described by an energy term
proportional to the volume [14]. There are three physical quantities entering
the MIT-bag model: the mass of the strange quarks, ms, the bag constant, B,
and the strength of the QCD coupling constant α. In the framework of this
model the quark matter is composed of massless u, d quarks, massive s quarks
and electrons. Strange stars are self-bound objects, having high density (in
the range ∼ 3 × 1014

− 6.4g/cm3 [16]) at the surface. Dashed lines in Fig. 1
correspond to sequences of static strange quark stars described by three dif-
ferent sets of parameters of the MIT-bag model: SQS56 - the standard MIT
bag model: msc

2 = 200 MeV, α = 0.2, B = 56 MeV/fm3; SQSB60 - the
simplified MIT bag model with ms = 0, α = 0; B = 60 MeV/fm3; SQSB40 -
the ”extreme” MIT bag model (relatively low strange quark mass and B but
high α) : msc

2 = 100 MeV, α = 0.6, B = 40 MeV/fm3.

3 Numerical method

In the hydrodynamical phase, since the timescale of orbital shrinking due to
the emission of gravitational waves is longer than the orbital period, one may
consider a binary system to be in a quasi- equilibrium state (helical Killing vec-
tor approximation). For each EOS, we construct so called an evolutionary se-
quence by calculating a sequence of quasi-equilibrium configurations with fixed
baryon mass and decreasing orbital separation. The present computations of
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Fig. 2. Binding energy as a function of gravitational wave frequency (twice the
orbital frequency) along evolutionary sequences of irrotational binaries. The solid
lines denote neutron stars, the dashed one strange quark stars and the dotted line
point-mass binaries in the third order Post-Newtonian approximation [6]. Each evo-
lutionary sequence finishes at the innermost stable circular orbit The diamonds
correspond to dynamical orbital instability while circles to the mass-shedding limit.

close binary neutron star or strange star systems rely on the assumption of
irrotational flow of the fluid and a conformally flat spatial 3-metric (Isenberg-
Wilson-Mathews approximation). In order to calculate the last orbits of inspi-
ral phase of binary compact stars we use a numerical code which solves the five
coupled, nonlinear, elliptic equations for the gravitational field, supplemented
by an elliptic equation for the velocity potential of irrotational flows (see[20]
for a discussion on different boundary conditions in the case of strange stars
and neutron stars). The code has been already used successfully for calculating
the final phase of the inspiral of compact stars [25, 26, 27, 4, 20]. This code is
built upon the C++ library Lorene (http://www.lorene.obspm.fr). The
complete description of the resulting general relativistic equations, the whole
algorithm, as well numerous tests of the code can be found in [25]. Additional
tests have been presented in Sect. III of [27].

4 Results

In Fig. 2 we show the evolution of equal mass binary neutron stars (solid lines)
and strange stars (dashed lines) having total gravitational mass 2.7M⊙ at in-
finity. The binding energy Ebind is defined as the difference between MADM

(see [27]) and the total mass of the system at infinity. This energy is equal to
total energy emitted by a binary system in gravitational waves. The frequency
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of gravitational waves is twice the orbital frequency. Comparison of our nu-
merical results with 3rd order PN point masses calculations [6] reveals a good
agreement for small frequencies (large separations). The deviation from PN
curves at higher frequencies (smaller separation) is due to hydrodynamical ef-
fects, which are not taken into account in the PN approach. A turning point of
Ebind along an irrotational evolutionary sequence indicates the orbital (dynam-
ical) instability [15]. This instability originates both from relativistic effects
and hydrodynamical effects. In the case where no turning point of Ebind occurs
along the sequence, the mass-shedding limit (Roche lobe overflow) marks the
end of the inspiral phase of the binary system, since recent dynamical calcula-
tions for γ = 2 polytrope have shown that the time to coalescence was shorter
than one orbital period for configurations at the mass-shedding limit (i.e. see
[23]). Thus the physical inspiral of binary compact stars terminates by either
the orbital instability (turning point of Ebind) or the mass-shedding limit. In
both cases, this defines the innermost stable circular orbit (ISCO). The end of
inspiral phase strongly depends on EOS - for irrotational neutron star binaries
a quasi-equilibrium sequence terminates by mass-shedding limit (circles at the
end of each line in Fig 2) and for strange stars by orbital instability (shown as
diamonds in Fig. 2). The differences in the evolution of binary strange stars
and neutron stars stem from the fact that strange stars are principally bound
by additional force than gravitation: the strong interaction between quarks.
They are self-bound objects having very high adiabatic index at the stellar
surface (see [20]). Although the crust of a 1.35 M⊙ neutron star contains only a
few percent of the stellar mass, this region is easily deformed under the action
of the tidal forces resulting from the gravitational field produced by the com-
panion star. The end of inspiral phase of binary stars strongly depends on the
stiffness of matter in this region. The frequency of gravitational waves at the
ISCO is one of potentially observable parameters by the gravitational wave de-
tectors. The frequency of gravitational waves at the ISCO strongly depends on
EOS. For irrotational equal mass (of 1.35 M⊙ at infinite separation) binaries
this frequency is ∼ 1100−1460 Hz for strange stars described by the MIT bag
model and between 800 Hz and 1230 Hz for neutron stars described by nuclear
EOS (see also [24, 4]). The 3rd PN approximations for point masses derived
by different authors are giving ISCO at very high frequencies of gravitational
waves > 2 kHz [6, 11, 12]
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