
HAL Id: hal-00003444
https://hal.science/hal-00003444

Preprint submitted on 2 Dec 2004

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Jordan Normal and Rational Normal Form Algorithms
Bernard Parisse, Morgane Vaughan

To cite this version:
Bernard Parisse, Morgane Vaughan. Jordan Normal and Rational Normal Form Algorithms. 2004.
�hal-00003444�

https://hal.science/hal-00003444
https://hal.archives-ouvertes.fr

cc
sd

-0
00

03
44

4,
 v

er
si

on
 1

 -
 2

 D
ec

 2
00

4

Jordan Normal and Rational Normal

Form Algorithms

Bernard Parisse, Morgane Vaughan

Institut Fourier

CNRS-UMR 5582

100 rue des Maths

Université de Grenoble I

38402 St Martin d’Hères Cédex

Résumé

In this paper, we present a determinist Jordan normal form algorithms
based on the Fadeev formula :

(λ · I − A) · B(λ) = P (λ) · I

where B(λ) is (λ · I − A)’s comatrix and P (λ) is A’s characteristic poly-
nomial. This rational Jordan normal form algorithm differs from usual
algorithms since it is not based on the Frobenius/Smith normal form but
rather on the idea already remarked in Gantmacher that the non-zero col-
umn vectors of B(λ0) are eigenvectors of A associated to λ0 for any root
λ0 of the characteristical polynomial. The complexity of the algorithm
is O(n4) field operations if we know the factorization of the character-
istic polynomial (or O(n5 ln(n)) operations for a matrix of integers of
fixed size). This algorithm has been implemented using the Maple and
Giac/Xcas computer algebra systems.

1 Introduction

Let’s remember that the Jordan normal form of a matrix is :

A =

























λ1 0 0 . . . 0 0
? λ2 0 . . . 0 0
0 ? λ3 . . . 0 0
0 0 ? . . . 0 0
.
.
0 0 0 . . ? λn−1 0
0 0 0 . . . ? λn

























where there are 1 or 0 instead of the ?. It corresponds to a full factorization of the
characteristical polynomial. If the field of coefficients is not algebraically closed,

1

this Jordan form can only be achieved by adding a field extension. The Jordan
rational normal form is the best diagonal block form that can be achieved over
the field of coefficients, it corresponds to the factorization of the characteristic
polynomial in irreductible factors without adding any field extension.

In this paper, we first present a complex Jordan normal form algorithm. This
part does not provide an improvement per se, but it gives, in a simpler case,
a taste of the rational Jordan Normal form algorithm. More precisely we will
present a similar algorithm that provides a rational normal form maximizing
the number of 0s. This is not a rational Jordan form since the non-diagonal
block part does not commute with the block-diagonal part, but we show that it
is fairly easy to convert it to the rational Jordan form.

This algorithm is not based on the Frobenius form (see e.g. Ozello), and
assumes that the characteristic polynomial can be fully factorized (see e.g.
Fortuna-Gianni for rational normal forms corresponding to square-free or other
partial factorization). It might be combined with rational form algorithm after
the Frobenius step, but it can be used standalone. It has the same complexity as
other deterministic algorithms (e.g. Steel), is relatively easy to implement using
basic matrix operations, and could therefore benefit from parallelism (see also
Kaltofen et al. on this topic).

The algorithm of these articles have been implemented in Maple language,
they work under Maple V.5 or under Xcas 0.5 in Maple compatibility mode.
They are also natively implemented in Giac/Xcas. Please refer to section 4 to
download these implementations.

2 The complex normal Jordan form

2.1 A simplified case

Let A be a matrix and B(λ) be (λ · I −A)’s comatrix. If every eigenvalue is
simple, we consider one : λ0. Then we can write

(λ0 · I − A) · B(λ0) = P (λ0) · I = 0

The columns of B(λ0) are A eigenvectors for the eigenvalue λ0. To have a base
of A’s characteristic space for the eigenvalue λ0, we just have to calculate the
matrix B(λ0) (using Hörner’s method for example because B(λ) is a matrices’
polynomial) and to reduce the matrix in columns to find one that is not null.

Our goal is now to find a similar method when we have higher eigenvalues
multiplicity.

2.2 Fadeev Algorithm

First, we need an efficient method to calculate the matrices polynomial B(λ).
Fadeev’s algorithm makes it possible to calculate both the characteristic

polynomial (P (λ) = det(λI − A)) coefficients (pi (i = 0..n)) and the matrices

2

coefficients Bi (i = 0 . . n − 1) of the matrices polynomial giving (λ · I − A)’s
comatrix B(λ).

(λI − A)B(λ) = (λI − A)
∑

k≤n−1

Bkλk = (
∑

k≤n

pkλk)I = P (λ)I (1)

By identifying the coefficients of λ’s powers, we find the recurrence relations :

Bn−1 = pnI = I, Bk − ABk+1 = pk+1I

But we still miss a relation between pk and Bk, it is given by the :

Theorem 1 (Cohen thm)
The derivative of the characteristic polynomial P ′(λ), equals the (λI − A) co-
matrix trace.

tr(B(λ)) = P ′(λ)

The theorem gives tr(Bk) = (k + 1)pk+1. If we take the trace in the recurrence
relations above, we find :

tr(Bn−1) = npn, (k + 1)pk+1 − tr(ABk+1) = npk+1

Hence if the field of coefficients is of characteristic 0 (or greater than n) we
compute pk+1 in function of Bk+1 and then Bk :

pk+1 =
tr(ABk+1)

k + 1 − n
, Bk = ABk+1 + pk+1I

Let’s reorder P and B’s coefficients :

P (λ) = λn + p1λ
n−1 + p2λ

n−2... + pn

B(λ) = λn−1I + λn−2B1 + ... + Bn−1

We have proved that :


























A1 = A, p1 = −tr(A), B1 = A1 + p1I

A2 = AB1, p2 = −
1

2
tr(A2), B2 = A2 + p2I

...
...

...

Ak = ABk−1, pk = −
1

k
tr(Ak), Bk = Ak + pkI

We can now easily program this algorithm to compute the coefficients Bi

and pi. The number of operations is O(n4) field operations using classical ma-
trix multiplication, or better O(nω+1) using Strassen-like matrix multiplication
(for large values of n). For matrices with bounded integers coefficients, the com-
plexity would be O(n5 ln(n)) or O(nω+2 ln(n)) since the size of the coefficients
of Bk is O(k ln(k)).

Remark

If the field has non-zero characteristic, P (λ) should be computed first, e.g. using
Hessenberg reduction (an O(n3) field operations), then B(λ) can be computed
using Horner division of P (λ) by λI−A (an O(n4) field operation using standard
matrix multiplication).

3

2.3 Jordan cycles

Jordan cycles are cycles of vectors associated to an eigenvalue and giving a
basis of the characteristic space. In a cycle associated to λ0, giving a vector v
of the cycle, you can find the next one by multiplying (A− λ0 · I) by v and the
sum of the sizes of the cycles associated to an eigenvalue is its multiplicity.

For example, if λ0 has multiplicity 5, with one cycle of length 3 and one of
length 2, the block associated to λ0 in the Jordan basis of the matrix will be :













λ0 0 0 0 0
1 λ0 0 0 0
0 1 λ0 0 0
0 0 0 λ0 0
0 0 0 1 λ0













We are looking for vectors giving bases of characteristic spaces associated to
each eigenvalue of A, and these vectors must form Jordan cycles.

2.4 Taylor expansion and the characteristic space.

Let (λi, ni) be the eigenvalues counted with their multiplicities. If the field
has characteristic 0, we make a Taylor development at the point λi (cf. equation
(1) p. 3) :

−P (λ)I = (A − λI)
(

B(λi) + B1(λi)(λ − λi) + ... + Bn−1(λi)(λ − λi)
n−1

)

= −(λ − λi)
ni

∏

j 6=i

(λ − λj)
nj I

where Bk is the k-th derivative of B divided by k!.
If the characteristic of the field of coefficients is not 0, the same expansion

holds, since the family ((λ−λi)
k)k is a basis of the vector space of polynomials

of degree less or equal to n − 1. In this case (but also in the former case), the
value of Bk can be computed using several Horner division of B(λ) by λ − λ0.

As A− λI = A− λiI − (λ − λi)I, we have for the ni first powers of λ− λi :

(A − λiI)B(λi) = 0 (2)

(A − λiI)B1(λi) = B(λi) (3)

... (4)

(A − λiI)Bni−1(λi) = Bni−2(λi) (5)

(A − λiI)Bni(λi) − Bni−1(λi) = −
∏

j 6=i

(λi − λj)
nj I (6)

Theorem 2 The characteristic space associated to λi is equal to the image of
Bni−1(λi).

Proof :

We first show that Bni−1(λi)’s image is included in the characteristic space

4

associated to λi using the fourth equation and the ones before. Let v be a
vector, v ∈ Im(Bni−1(λi)), then ∃ u so that v = Bni−1(λi) · u

(A − λi · I)ni · v = (A − λi · I)ni−1 · Bni−2(λi) · u

= (A − λi · I)ni−2 · Bni−3(λi) · u

.

.

.

= (A − λi · I) · B(λi) · u

= 0

Now we want to prove that every vector v in the characteristic space is also
in Bni−1(λi)’s image. We show it by a recurrence on the smallest integer m
verifying (A − λi)

mv = 0.
For m = 0,it’s obvious because v = 0.
Let’s suppose the case m is true and prove the case m+1. With the equation

(6), we just have to show that :

w = (A − λi)B
ni(λi)v

= Bni−1(λi) · v −
∏

j 6=i

(λi − λj)
nj · v

is in Bni−1(λi)’s image, because Bni−1(λi) · v is in Bni−1(λi)’s image and thus

if we prove that w is also in, we’ll get that
∏

j 6=i

(λi − λj)
nj · v is in and v is in.

As Bni(λi) commutes with A (because it’s a polynomial in A) :

(A − λi)
mw = Bni(λi)(A − λi)

m+1v = 0

We can now apply the recurrence hypothesis to w. We now know that w ∈
Bni−1(λi). And so does v.

2.5 Algorithm

To find the Jordan cycles, we apply a Gauss reduction on the columns of
the matrices B(k)(λi) where k < ni. Doing that at the same time for all the
matrices allow us to keep the relations (2) to (6) between them after reduction.

Let’s think of the matrices one under another, columns aligned. We reduce
the matrix B(λi) and we rewrite the elementary operations on columns done to
B(λi) on all the matrices Bk(λi) to keep the relations between them.

Once the matrix B(λi) is reduced, if we have k columns not null then we
know that we already have k ni-long Jordan cycles, taking the k chains of ni

vectors associated to the considered column. (In fact k is 0 or 1 at the first step,
see the last paragraph in this section).

If we don’t yet have enough vectors to make a base of the characteristic
space associated to λi, for each chain of columns of the Bk(λi) corresponding to

5

a column of B(λi) that isn’t null, we shift by one matrix down all the columns.
This process keeps the relations between the matrices.

Again, We reduce, collect the ni−1-long Jordan cycles and shift the non-null
columns. And again as long as we still need vectors to make a basis.

Remark :
If there are still columns that are not null after the reduction of B(λi), there is
really only one because one ni-long cycle already gives a base of λi’s character-
istic space if λi’s multiplicity is ni. If there are more than one cycle associated
to λi, B(λi) must be null and we can take care of B(1)(λi), etc..

2.6 Implementation

We present here the maple langage implementation.

2.6.1 Useful functions

Before implementing this Jordan normal form algorithm, we have imple-
mented the Fadeev algorithm to calculate the Bi and the characteristic polyno-
mial’s coefficients, then the Hörner algorithm to calculate the B(λi).

– fadeev(A,Bliste,pliste) takes a matrix A and put the B(λ) and char-
acteristic polynomial’s coefficients,in Bliste and in pliste respectively,ordered
by increasing powers to make it easier to program a polynomial derivation.
This step requires O(nω+1) field operations (ω = 3 for classical matrix
multiplication).

– evalpolymat(l,a) takes a list of matrices, considered as a polynomial’s
coefficients ordered like before, and a numbera, and gives back the ma-
trix calculed by the Hörner’s method. Each evaluation requires O(n3) field
operations (expect n evaluations for a generic matrix with complex coef-
ficients).

Then a few utilities :
– derive_listemat(liste) takes a list as in evalpolymat and gives back

the derivated list.
– construction_colonneB(Bliste,pliste) takes what is calulated by fadeev

and gives back a list of p lists if the characteristic polynomial has p roots.
In each list, there is first a couple giving an eigenvalue and its multiplicity
and then the matrix of the B(k)(λi)/k! for k from 0 to (λi’s multiplicity)−1
stuck one under another.

– construction(l,n) makes the matrix of the eigenvectors using a list of
eigenvalues and associated cycles. n is the size of the matrix we are study-
ing. (see the Algorithm part for more details on the list used by this
function).

The previous section showed that the algorithm requires a reduction in
columns of the matrix. Maple has a function, called gaussjord, that makes
reduction but in rows, not columns, so after constructing the column matrix,
we will work with its transposed matrix. To work with it, we needed a few more
functions :

6

– test_ligne_nulle(B,i) takes a matrix that doen’t have to be square, for
example a matrix with n rows and m columns (we just have to consider
matrices where n ≤ m). The function returns 1 if the n first coefficients
of the i-th rows are null, 0 if not.

– decalage_ligne(B,i) takes the partial i-th row (with n coefficients) and
shifts it right by n.

– coupe_matrice(B) If the matrix has n rows and m columns (n ≤ m),
this function removes the first block nxn.

2.6.2 The Jordan normal form function

Splitting the work with all the small functions listed before makes the final
program quite simple. There are three embedded loops, one loops over all eigen-
values, it constructs the list of matrices Bk associated to the eigenvalue, the
second loop is a while loop that stops when all characteristic vectors for the
current eigenvalue have been found, the third (inner) loop corresponds to a
fixed length of the cycles that we are finding.

The program creates a list of p lists if the matrix has p eigenvalues that are
all different, each of these p lists contains an eigenvalue and the list of associated
Jordan cycles. Then with the function described above : construction(l,n)
the main program returns the matrix of eigenvectors and the Jordan normal
form of the matrix A.

2.6.3 Tests matrices

A =





3 −1 1
2 0 1
1 −1 2





B =





3 2 −2
−1 0 1
1 1 0





A has two eigenvalues : 2 (multiplcity 2) and 1 (multiplicity 1). B has only
one eigenvalue : 1 (multiplicity 3). Unlike A, the second matrix has two cycles
associated to only one eigenvalue, it revealed an error in a previous version
of the program : in the “while” loop, the stop test was inefficient because we
could collect linearly dependent vectors (because the Maple function “gaussjord”
making the reduction changes the order of the matrix rows). Hence the test
function looking if the vector (and the corresponding Jordan cycle we’re about
to collect) is independent of the vectors already collected (by making a matrix
with all these vectors and searching the rank).

Once the program showed right for these two examples, it was tested suc-
cessfully on Jordan matrices constructed with JordanBlock and BlockDiagonal,
moved to another basis by a random matrix conjugation.

7

2.6.4 Limits of the implementation

The first version of the program was not really complete because it worked
only with matrices whose characteristic polynomial, “factors” could factor com-
pletely (e.g. integer matrices with rational eigenvalues, but not integer matri-
ces with algebraic eigenvalues). Since “solve” also finds algebraic eigenvalues,
a “solve”-answer-like to “factors”-answer-like converter was added. Hence this
Jordan normal form program is successfull if and only if “solve” is able to find
the roots of the characteristic polynomial.

3 The Jordan rational normal form

In the previous section, we sometimes had to introduce an algebraic exten-
sion of the coefficients field (e.g. Q) to be able to compute the characteristic
polynomial’s roots, in this section we will find a basis in the coefficient field
where the endomorphism matrix has the best almost diagonal block form, the
Jordan rational normal form. The diagonal blocks will be companion matrices
(corresponding to irreducible factors of the characteristical polynomial), and the
1 of the complex Jordan normal form will be replaced by identity block matrices.

We are first going to compute a normal form with as many zeros as possible,
and from this form, we will compute the Jordan rational form.

3.1 Pseudo rational Jordan form

3.1.1 Algorithm

The method we’re going to use is based on an algorithm similar to the one
used before. Let Q(λ) = q0 + ...+qd ·λ

d be an irreducible factor of the character-
istic polynomial in the field of coefficients of multiplicity q and degree d of the
characteristic polynomial P . Note that qd = 1 since Q divides the characteristic
polynomial P , hence the euclidean division algorithm of a polynomial by Q does
not require any coefficient division.

The characteristic space corresponding to the roots of Q will be replaced
by a rational characteristic space of dimension d · q made of “rational Jordan
cycles”. Recall that :

(λI − A) ·
∑

k≤n−1

Bkλk = P (λ)I

Since Q(λ) · I − Q(A) is divisible by λ · I − A, there exists a matrix M(λ) such
that :

(Q(λ)I − Q(A))(
∑

k≤n−1

Bkλk) = Q(λ)qM(λ) (7)

Now expand B(λ) with respect to increasing powers of Q(λ) by euclidean divi-
sion by Q :

B(λ) =
∑

k

Ck(λ)Q(λ)k , deg(Ck) < q

8

Replacing in (7) and observing that the matrix coefficients of order less than d
vanish, we get :

Q(A) · C0 = 0, Ck = Q(A) · Ck+1

This is similar to the case where the eigenvalue is rational, we get a chain of
polynomial matrices that are images of the preceding one by Q(A) :

Cq−1 → Cq−2... → C0 → 0

We will find the rational Jordan cycles by constructing Jordan cycles of Q(A).
Note that if we find a Jordan cycle of length k for Q(A) we can construct d− 1
other Jordan cycles by multiplying the cycle by Ai for i = 1..d − 1.

All these vectors are independent, indeed if

∑

i,j

λi,jA
iQ(A)jv = 0, Q(A)kv = 0, Q(A)k−1v 6= 0

by multiplying by Q(A)k−1 we get :

(
∑

i

λi,k−1A
i)Q(A)k−1v = 0

hence λi,k−1 = 0 for all is since Q(A)k−1v 6= 0 and Q(A) is irreducible. Multi-
plying further by Q(A)k−2, ..., identity, it follows that all λi,j are zero.

Once we have collected these kd vectors, we search for another cycle in the
vectors of the Cj matrices that are linearly independant to all AiQ(A)k−1v

starting from C0 and increasing j. If we find a new end cycle vector Q(A)k′−1w

such that Q(A)k′

w = 0 and Q(A)k′−1w is independent of the preceding end-cycle
vectors, then we can form k′d vectors AiQ(A)jw. We will show that these vectors
are independent of the AiQ(A)jv since Q(λ) = q0 + .. + qd · λd is irreducible.
Indeed if we had a relation like

∑

i,j

λi,jA
iQ(A)jv + µi,jA

iQ(A)jw = 0,

If j > k′ then λi,j = 0 by multiplication by Q(A)j for decreasing j > k′. Now

we multiply by Q(A)k′−1 and we get two polynomials P and R of degree less
than degree(Q) such that :

P (A)Q(A)k−1v + R(A)Q(A)k′−1w = 0

Since Q is irreducible, it is prime with R if R 6= 0. Hence if R 6= 0, by applying
Bézout’s theorem, we could invert R modulo Q and express w as a linear com-
bination of AiQ(A)k−1v. Therefore R = 0 and P = 0 and µi,k′−1 = λi,k′−1 = 0.

Let (vk−1) → (vk−2) → ... → (v0) → (0) be a cycle of Q(A), we have :

(vk−1, Avk−1, ..., A
d−1vk−1) → ... → (v0, Av0, ..., A

d−1v0) → (0, ..., 0)

where the arrow means “image by Q(A)”.

9

Let’s write the matrix A in the base v0, Av0, .., A
d−1v0, .., vk−1, .., A

d−1vk−1 :
we find an “almost Jordan rational blockl”, its size is k · d :





























0 0 ... −q0 0 0 ... 1 ...
1 0 ... −q1 0 0 ... 0 ...
0 1 ... −q2 0 0 ... 0 ...
...

... ...
...

...
... ...

... ...
0 0 ... −qd−1 0 0 ... 0 ...
0 0 ... 0 0 0 ... −q0 ...
0 0 ... 0 1 0 ... −q1 ...
...

... ...
...

...
... ...

... ...





























Indeed v0 image by A is A · v0 the second vector basis, etc. to Ad−1 · v0 whose
image by A is :

Ad · v0 = (Q(A) − q0 − q1 · A − ... − qd−1 · A
d−1) · v0

Since Q(A) · v0 = 0 (v0 ends a Jordan cycle of Q(A)), we get the first block of
the matrix in the new basis.

For the second block, we get the first d−1 columns in a similar way. For the
last one :

Ad · v1 = (Q(A) − q0 − q1 · A − ... − qd−1 · A
d−1) · v1

Since Q(A) · v1 = v0, we get the above matrix part. By applying the same
method to the rest of the cycle we get the matrix.

3.1.2 Complexity

Each euclidean division requires O(n3d) field operations (d is the degree of
the irreducible factor). There are q euclidean divisions of a polynomial of degree
less than n with n, n matrices coefficients by a polynomial of degree d, hence
computing the Cj requires O(n3dq) operations, adding for all irreducible factors,
we get a complexity of O(n4) for the division part.

Let r1d, ..., rqd be the number of Jordan cycles of Q(A) of length q, ..., 1.
We have :

r1q + r2(q − 1) + ... + rq = q

The first step of the reduction part requires reducing a n, nq matrix of rank r1d.
Then we will reduce a r1d+n, n(q−1) matrix of rank (r1+r2)d such that the r1d
first rows are already reduced and independant (hence r2d new independent rows
in the n last rows remain to be extracted), etc., then a (r1 + ...+ri)d+n, n(q−i)
matrix of rank (r1 + ... + ri+1)d with first (r1 + ... + ri)d independent reduced
rows and ri+1d new independent rows in the n last rows to extract, etc. We
will have to make nrid row operations on the i-th matrix. Hence we will make
O(nridn(q − i)) operations on the i-th matrix. Adding all reduction steps, we

10

will make O(n2dq) field operations for each irreducible factor, hence O(n3) field
operations for all irreducible factors.

The complexity of the whole pseudo-rational form is therefore O(n4) field
operations and is dominated by the Ci computation (since B can be computed
in O(nω+1) field operations).

3.1.3 Example

A =















































1 −2 4 −2 5 −4

0 1
5

2
−

7

2
2 −

5

2

1 −
5

2
2 −

1

2

5

2
−3

0 −1
9

2
−

7

2
3 −

7

2

0 0 2 −2 3 −1

1 −
3

2
−

1

2
1

3

2

1

2















































The characteristic polynomial of A is (x − 2)2(x2 − 2)2. For λ = 2 there are 2
eigenvectors :















































1 0

0 1

−
26

9
−

5

9

−
25

9
−

1

9

55

9

4

9

53

9
−

4

9















































For x2 − 2 of multiplicity 2, we find a cycle of length 2 for Q(A) = A2 − 2 · I :

(0, 0, 0,−1,−1,−1) → (1, 0, 0,−1,−1,−1) → (0, 0, 0, 0, 0, 0)

After multiplication by A, we get :

((0, 0, 0,−1,−1,−1), (1, 4, 1, 4, 0,−3)) → ((1, 0, 0,−1,−1,−1), (2, 4, 2, 4, 0,−2)) → 0

11

The matrix P is therefore :

P =















































1 2 0 1 0 1

0 4 0 4 1 0

0 2 0 1 −
5

9
−

26

9

−1 4 −1 4 −
1

9
−

25

9

−1 0 −1 0
4

9

55

9

−1 −2 −1 −3 −
4

9

53

9















































And A becomes :

P−1AP =

















0 2 0 1 0 0
1 0 0 0 0 0
0 0 0 2 0 0
0 0 1 0 0 0
0 0 0 0 2 0
0 0 0 0 0 2

















To obtain the rational normal form, we must replace the block

(

0 1
0 0

)

by

(

0 1
1 0

)

.

3.2 From pseudo-rational to rational Jordan form

The pseudo rational form has unfortunately not the commutation property,
the block diagonal part does not commute with the remainder, hence we will
compute the rational Jordan form from the pseudo rational form.

We now assume that we are in a basis where the endomorphism is in pseudo

rational form, and we want to compute a new basis so that the





... 0 1

... 0 0

...





blocks are replaced by identity matrices. Let’s assume that we have made the
first j blocks (each of size d) indexed from 0 to j−1 corresponding to the family
of vectors (v0,0, ..., v0,d−1, ..., vj−1,d−1). We want to find a vector vj,0 to begin
the next block. The vj,l will be defined in function of vj,l−1 using the relation
Avj,l−1 = vj,l + vj−1,l−1. Hence vj,0 must satisfy :

Avj,d−1 = −q0vj,0 − ... − qd−1vj,d−1 + vj−1,d−1 (8)

12

Applying the previous recurrence relations, we determine Q(A)vj,0 with respect
to vj′,l (with j′ < j, l < d). Since Q(A) is a shift of d indices to the left, we
will let vj,0 be the shift of d indices of Q(A)vj,0 to the right (if we stay in the
original basis, “inverting” Q(A) can be done using the pseudo-rational basis).

More precisely, let’s compute vj,l in terms of the vj,0 and vj′,l′ (j′ < j). We
denote the binomial coefficients by

(

l
m

)

(they can be computed efficiently using
Pascal’s triangle rule). A straightforward recurrence gives :

vj,l = Alvj,0 −

inf(l,j)
∑

m=1

(

l
m

)

vj−m,l−m (9)

Replacing in (8), we get :

Advj,0 −

inf(d,j)
∑

m=1

(

d
m

)

vj−m,d−m +

d−1
∑

l=0

ql(A
lvj,0 −

inf(l,j)
∑

m=1

(

l
m

)

vj−m,l−m) = 0

eventually :

Q(A)vj,0 =

d
∑

l=1

ql

inf(l,j)
∑

m=1

(

l
m

)

vj−m,l−m (10)

Application to the example :

We stay in the original basis for the coordinates. Here v0,0 = (4, 24, 12, 32, 8,−4)
and v0,1 = Avj,0. A preimage by Q(A) is given by w1,0 = (0, 4,−4, 8, 4,−4) and
w1,1 = Aw1,0. Applying (10), and q1 = 0, q2 = 1 we must satisfy :

Q(A)v1,0 =

2
∑

l=1

ql

inf(l,1)
∑

m=1

(

l
m

)

v1−m,l−m = 2v0,1

hence :

v1,0 = 2A(0, 4,−4, 8, 4,−4) = (−8,−32, 0,−48,−16, 16)
v1,1 = Av1,0 − v0,0 = (4, 40,−4, 64, 24,−20)

We have indeed Av1,1 = 2v1,0 + v0,1.

3.3 Maple implementation

In the first part, we were working with matrices polynomials and not poly-
nomial matrices, so the first thing to do was to create a traduction function
(which takes the list of the matrices that are B’s coefficients, B given by Fadeev
algorithm) to make the euclidean divisions on B(λ) coefficient by coefficient
(nouvelle_ecriture function, arguments are B the polynomial Q we want to
divide by, and Q’s multiplicity). Then we collect the cycles of Q(A) as in the
complex Jordan form case, by gluing the Ci matrices vertically and transposing
the result for Gauss-Jordan reductions. The main changes are that we generate

13

cycles of A by multiplication by I, A, ..., Ad−1 (fabriq_cycles function) and
we must take care that a new end-cycle vector must be independent not only of
a previous end-cycle vector vi but also of its images {A · vi, ..., A

d−1 · vi}.
The structure of the main rational Jordan form function Jordan2 is :
– A call to demarrage that will return a list of [[irreducible polynomial,

multiplicity],[cycles]].
– For first order irreducible polynomials, the functions of the complex nor-

mal form are called
– For each irreducible polynomial, conversion from pseudo-rational Jordan

form to rational Jordan form
– a call to construction_special to build the passage matrix.

4 “User guide”

The Giac/Xcas free computer algebra system is available at :
www-fourier.ujf-grenoble.fr/~parisse/giac.html

The functions jordan and rat_jordan implement the Jordan normal form and
the rational Jordan normal form.

The maple implementation of this algorithm is available at :
www-fourier.ujf-grenoble.fr/~parisse/jordan.map

Once the Maple session is opened, run the command read("jordan.map").
Then three programs are available :

– TER_Jordan takes a matrix A and returns the matrix of eigenvectors and
the Jordan normal form of A.

– final takes a matrix A and returns the matrix of eigenvectors and the
pseudo-rational form, calculated with a hybrid method combining the two
programs above.

– Jordan2 takes the matrix A and returns the rational form.
Note that in the current version, there is a small inconsistency, since for the
rational roots of the characteristical polynomial, the Jordan 1 are not on the
same side of the diagonal than the Jordan identity blocs for irreducible factors
of degree larger than 1.

This Maple implementation can also be run under Xcas, but it is of course
much faster to call the native Xcas functions.

5 References

– H. Cohen, A Course in Computational Algebraic Number Theory, Springer.
– Elisabetta Fortuna, Patrizia Gianni Square-free decomposition in finite

characteristic : an application to Jordon Form computation, ACM SIGSAM
Bulletin, v. 33 (4), p. 14-32, 1999

– F.R. Gantmacher. The theory of matrices. Chelsea Pub. Co., New York,
1959.

14

– Mark Giesbrecht, Nearly Optimal Algorithms For Canonical Matrix Forms,
SIAM Journal on Computing, v.24 n.5, p.948-969, Oct. 1995

– E. Kaltofen, M.S. Krishnamoorthy, and B.D. Saunders. Parallel algorithms
for matrix normal forms. Linear Algebras and its Appl., 136 :189-208, 1990.

– T.M.L. Mulders, A.H.M. Levelt, normform Maple package, 1993 www.maths.warwick.ac.uk/ bjs/normform
– P. Ozello. Calcul exact des formes de Jordan et de Frobenius d’une matrice.

PhD thesis, Univ. Scientifique et Médicale de Grenoble, Grenoble, France,
1987.

– Allan Steel, A new algorithm for the computation of canonical forms of
matrices over fields, Journal of Symbolic Computation, v.24 n.3-4, p.409-
432, Sept./Oct. 1997

15

